libfs.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002
  1. /*
  2. * fs/libfs.c
  3. * Library for filesystems writers.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/slab.h>
  8. #include <linux/mount.h>
  9. #include <linux/vfs.h>
  10. #include <linux/quotaops.h>
  11. #include <linux/mutex.h>
  12. #include <linux/exportfs.h>
  13. #include <linux/writeback.h>
  14. #include <linux/buffer_head.h>
  15. #include <asm/uaccess.h>
  16. static inline int simple_positive(struct dentry *dentry)
  17. {
  18. return dentry->d_inode && !d_unhashed(dentry);
  19. }
  20. int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  21. struct kstat *stat)
  22. {
  23. struct inode *inode = dentry->d_inode;
  24. generic_fillattr(inode, stat);
  25. stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  26. return 0;
  27. }
  28. int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  29. {
  30. buf->f_type = dentry->d_sb->s_magic;
  31. buf->f_bsize = PAGE_CACHE_SIZE;
  32. buf->f_namelen = NAME_MAX;
  33. return 0;
  34. }
  35. /*
  36. * Retaining negative dentries for an in-memory filesystem just wastes
  37. * memory and lookup time: arrange for them to be deleted immediately.
  38. */
  39. static int simple_delete_dentry(const struct dentry *dentry)
  40. {
  41. return 1;
  42. }
  43. /*
  44. * Lookup the data. This is trivial - if the dentry didn't already
  45. * exist, we know it is negative. Set d_op to delete negative dentries.
  46. */
  47. struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  48. {
  49. static const struct dentry_operations simple_dentry_operations = {
  50. .d_delete = simple_delete_dentry,
  51. };
  52. if (dentry->d_name.len > NAME_MAX)
  53. return ERR_PTR(-ENAMETOOLONG);
  54. d_set_d_op(dentry, &simple_dentry_operations);
  55. d_add(dentry, NULL);
  56. return NULL;
  57. }
  58. int dcache_dir_open(struct inode *inode, struct file *file)
  59. {
  60. static struct qstr cursor_name = {.len = 1, .name = "."};
  61. file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  62. return file->private_data ? 0 : -ENOMEM;
  63. }
  64. int dcache_dir_close(struct inode *inode, struct file *file)
  65. {
  66. dput(file->private_data);
  67. return 0;
  68. }
  69. loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
  70. {
  71. struct dentry *dentry = file->f_path.dentry;
  72. mutex_lock(&dentry->d_inode->i_mutex);
  73. switch (origin) {
  74. case 1:
  75. offset += file->f_pos;
  76. case 0:
  77. if (offset >= 0)
  78. break;
  79. default:
  80. mutex_unlock(&dentry->d_inode->i_mutex);
  81. return -EINVAL;
  82. }
  83. if (offset != file->f_pos) {
  84. file->f_pos = offset;
  85. if (file->f_pos >= 2) {
  86. struct list_head *p;
  87. struct dentry *cursor = file->private_data;
  88. loff_t n = file->f_pos - 2;
  89. spin_lock(&dentry->d_lock);
  90. /* d_lock not required for cursor */
  91. list_del(&cursor->d_u.d_child);
  92. p = dentry->d_subdirs.next;
  93. while (n && p != &dentry->d_subdirs) {
  94. struct dentry *next;
  95. next = list_entry(p, struct dentry, d_u.d_child);
  96. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  97. if (simple_positive(next))
  98. n--;
  99. spin_unlock(&next->d_lock);
  100. p = p->next;
  101. }
  102. list_add_tail(&cursor->d_u.d_child, p);
  103. spin_unlock(&dentry->d_lock);
  104. }
  105. }
  106. mutex_unlock(&dentry->d_inode->i_mutex);
  107. return offset;
  108. }
  109. /* Relationship between i_mode and the DT_xxx types */
  110. static inline unsigned char dt_type(struct inode *inode)
  111. {
  112. return (inode->i_mode >> 12) & 15;
  113. }
  114. /*
  115. * Directory is locked and all positive dentries in it are safe, since
  116. * for ramfs-type trees they can't go away without unlink() or rmdir(),
  117. * both impossible due to the lock on directory.
  118. */
  119. int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
  120. {
  121. struct dentry *dentry = filp->f_path.dentry;
  122. struct dentry *cursor = filp->private_data;
  123. struct list_head *p, *q = &cursor->d_u.d_child;
  124. ino_t ino;
  125. int i = filp->f_pos;
  126. switch (i) {
  127. case 0:
  128. ino = dentry->d_inode->i_ino;
  129. if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
  130. break;
  131. filp->f_pos++;
  132. i++;
  133. /* fallthrough */
  134. case 1:
  135. ino = parent_ino(dentry);
  136. if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
  137. break;
  138. filp->f_pos++;
  139. i++;
  140. /* fallthrough */
  141. default:
  142. spin_lock(&dentry->d_lock);
  143. if (filp->f_pos == 2)
  144. list_move(q, &dentry->d_subdirs);
  145. for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
  146. struct dentry *next;
  147. next = list_entry(p, struct dentry, d_u.d_child);
  148. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  149. if (!simple_positive(next)) {
  150. spin_unlock(&next->d_lock);
  151. continue;
  152. }
  153. spin_unlock(&next->d_lock);
  154. spin_unlock(&dentry->d_lock);
  155. if (filldir(dirent, next->d_name.name,
  156. next->d_name.len, filp->f_pos,
  157. next->d_inode->i_ino,
  158. dt_type(next->d_inode)) < 0)
  159. return 0;
  160. spin_lock(&dentry->d_lock);
  161. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  162. /* next is still alive */
  163. list_move(q, p);
  164. spin_unlock(&next->d_lock);
  165. p = q;
  166. filp->f_pos++;
  167. }
  168. spin_unlock(&dentry->d_lock);
  169. }
  170. return 0;
  171. }
  172. ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
  173. {
  174. return -EISDIR;
  175. }
  176. const struct file_operations simple_dir_operations = {
  177. .open = dcache_dir_open,
  178. .release = dcache_dir_close,
  179. .llseek = dcache_dir_lseek,
  180. .read = generic_read_dir,
  181. .readdir = dcache_readdir,
  182. .fsync = noop_fsync,
  183. };
  184. const struct inode_operations simple_dir_inode_operations = {
  185. .lookup = simple_lookup,
  186. };
  187. static const struct super_operations simple_super_operations = {
  188. .statfs = simple_statfs,
  189. };
  190. /*
  191. * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
  192. * will never be mountable)
  193. */
  194. struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
  195. const struct super_operations *ops,
  196. const struct dentry_operations *dops, unsigned long magic)
  197. {
  198. struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
  199. struct dentry *dentry;
  200. struct inode *root;
  201. struct qstr d_name = {.name = name, .len = strlen(name)};
  202. if (IS_ERR(s))
  203. return ERR_CAST(s);
  204. s->s_flags = MS_NOUSER;
  205. s->s_maxbytes = MAX_LFS_FILESIZE;
  206. s->s_blocksize = PAGE_SIZE;
  207. s->s_blocksize_bits = PAGE_SHIFT;
  208. s->s_magic = magic;
  209. s->s_op = ops ? ops : &simple_super_operations;
  210. s->s_time_gran = 1;
  211. root = new_inode(s);
  212. if (!root)
  213. goto Enomem;
  214. /*
  215. * since this is the first inode, make it number 1. New inodes created
  216. * after this must take care not to collide with it (by passing
  217. * max_reserved of 1 to iunique).
  218. */
  219. root->i_ino = 1;
  220. root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
  221. root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
  222. dentry = d_alloc(NULL, &d_name);
  223. if (!dentry) {
  224. iput(root);
  225. goto Enomem;
  226. }
  227. dentry->d_sb = s;
  228. dentry->d_parent = dentry;
  229. d_instantiate(dentry, root);
  230. s->s_root = dentry;
  231. s->s_d_op = dops;
  232. s->s_flags |= MS_ACTIVE;
  233. return dget(s->s_root);
  234. Enomem:
  235. deactivate_locked_super(s);
  236. return ERR_PTR(-ENOMEM);
  237. }
  238. int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
  239. {
  240. struct inode *inode = old_dentry->d_inode;
  241. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  242. inc_nlink(inode);
  243. ihold(inode);
  244. dget(dentry);
  245. d_instantiate(dentry, inode);
  246. return 0;
  247. }
  248. int simple_empty(struct dentry *dentry)
  249. {
  250. struct dentry *child;
  251. int ret = 0;
  252. spin_lock(&dentry->d_lock);
  253. list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
  254. spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
  255. if (simple_positive(child)) {
  256. spin_unlock(&child->d_lock);
  257. goto out;
  258. }
  259. spin_unlock(&child->d_lock);
  260. }
  261. ret = 1;
  262. out:
  263. spin_unlock(&dentry->d_lock);
  264. return ret;
  265. }
  266. int simple_unlink(struct inode *dir, struct dentry *dentry)
  267. {
  268. struct inode *inode = dentry->d_inode;
  269. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  270. drop_nlink(inode);
  271. dput(dentry);
  272. return 0;
  273. }
  274. int simple_rmdir(struct inode *dir, struct dentry *dentry)
  275. {
  276. if (!simple_empty(dentry))
  277. return -ENOTEMPTY;
  278. dentry_unhash(dentry);
  279. drop_nlink(dentry->d_inode);
  280. simple_unlink(dir, dentry);
  281. drop_nlink(dir);
  282. return 0;
  283. }
  284. int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
  285. struct inode *new_dir, struct dentry *new_dentry)
  286. {
  287. struct inode *inode = old_dentry->d_inode;
  288. int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
  289. if (new_dentry->d_inode && S_ISDIR(new_dentry->d_inode->i_mode))
  290. dentry_unhash(new_dentry);
  291. if (!simple_empty(new_dentry))
  292. return -ENOTEMPTY;
  293. if (new_dentry->d_inode) {
  294. simple_unlink(new_dir, new_dentry);
  295. if (they_are_dirs)
  296. drop_nlink(old_dir);
  297. } else if (they_are_dirs) {
  298. drop_nlink(old_dir);
  299. inc_nlink(new_dir);
  300. }
  301. old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
  302. new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
  303. return 0;
  304. }
  305. /**
  306. * simple_setattr - setattr for simple filesystem
  307. * @dentry: dentry
  308. * @iattr: iattr structure
  309. *
  310. * Returns 0 on success, -error on failure.
  311. *
  312. * simple_setattr is a simple ->setattr implementation without a proper
  313. * implementation of size changes.
  314. *
  315. * It can either be used for in-memory filesystems or special files
  316. * on simple regular filesystems. Anything that needs to change on-disk
  317. * or wire state on size changes needs its own setattr method.
  318. */
  319. int simple_setattr(struct dentry *dentry, struct iattr *iattr)
  320. {
  321. struct inode *inode = dentry->d_inode;
  322. int error;
  323. WARN_ON_ONCE(inode->i_op->truncate);
  324. error = inode_change_ok(inode, iattr);
  325. if (error)
  326. return error;
  327. if (iattr->ia_valid & ATTR_SIZE)
  328. truncate_setsize(inode, iattr->ia_size);
  329. setattr_copy(inode, iattr);
  330. mark_inode_dirty(inode);
  331. return 0;
  332. }
  333. EXPORT_SYMBOL(simple_setattr);
  334. int simple_readpage(struct file *file, struct page *page)
  335. {
  336. clear_highpage(page);
  337. flush_dcache_page(page);
  338. SetPageUptodate(page);
  339. unlock_page(page);
  340. return 0;
  341. }
  342. int simple_write_begin(struct file *file, struct address_space *mapping,
  343. loff_t pos, unsigned len, unsigned flags,
  344. struct page **pagep, void **fsdata)
  345. {
  346. struct page *page;
  347. pgoff_t index;
  348. index = pos >> PAGE_CACHE_SHIFT;
  349. page = grab_cache_page_write_begin(mapping, index, flags);
  350. if (!page)
  351. return -ENOMEM;
  352. *pagep = page;
  353. if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
  354. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  355. zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
  356. }
  357. return 0;
  358. }
  359. /**
  360. * simple_write_end - .write_end helper for non-block-device FSes
  361. * @available: See .write_end of address_space_operations
  362. * @file: "
  363. * @mapping: "
  364. * @pos: "
  365. * @len: "
  366. * @copied: "
  367. * @page: "
  368. * @fsdata: "
  369. *
  370. * simple_write_end does the minimum needed for updating a page after writing is
  371. * done. It has the same API signature as the .write_end of
  372. * address_space_operations vector. So it can just be set onto .write_end for
  373. * FSes that don't need any other processing. i_mutex is assumed to be held.
  374. * Block based filesystems should use generic_write_end().
  375. * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
  376. * is not called, so a filesystem that actually does store data in .write_inode
  377. * should extend on what's done here with a call to mark_inode_dirty() in the
  378. * case that i_size has changed.
  379. */
  380. int simple_write_end(struct file *file, struct address_space *mapping,
  381. loff_t pos, unsigned len, unsigned copied,
  382. struct page *page, void *fsdata)
  383. {
  384. struct inode *inode = page->mapping->host;
  385. loff_t last_pos = pos + copied;
  386. /* zero the stale part of the page if we did a short copy */
  387. if (copied < len) {
  388. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  389. zero_user(page, from + copied, len - copied);
  390. }
  391. if (!PageUptodate(page))
  392. SetPageUptodate(page);
  393. /*
  394. * No need to use i_size_read() here, the i_size
  395. * cannot change under us because we hold the i_mutex.
  396. */
  397. if (last_pos > inode->i_size)
  398. i_size_write(inode, last_pos);
  399. set_page_dirty(page);
  400. unlock_page(page);
  401. page_cache_release(page);
  402. return copied;
  403. }
  404. /*
  405. * the inodes created here are not hashed. If you use iunique to generate
  406. * unique inode values later for this filesystem, then you must take care
  407. * to pass it an appropriate max_reserved value to avoid collisions.
  408. */
  409. int simple_fill_super(struct super_block *s, unsigned long magic,
  410. struct tree_descr *files)
  411. {
  412. struct inode *inode;
  413. struct dentry *root;
  414. struct dentry *dentry;
  415. int i;
  416. s->s_blocksize = PAGE_CACHE_SIZE;
  417. s->s_blocksize_bits = PAGE_CACHE_SHIFT;
  418. s->s_magic = magic;
  419. s->s_op = &simple_super_operations;
  420. s->s_time_gran = 1;
  421. inode = new_inode(s);
  422. if (!inode)
  423. return -ENOMEM;
  424. /*
  425. * because the root inode is 1, the files array must not contain an
  426. * entry at index 1
  427. */
  428. inode->i_ino = 1;
  429. inode->i_mode = S_IFDIR | 0755;
  430. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  431. inode->i_op = &simple_dir_inode_operations;
  432. inode->i_fop = &simple_dir_operations;
  433. inode->i_nlink = 2;
  434. root = d_alloc_root(inode);
  435. if (!root) {
  436. iput(inode);
  437. return -ENOMEM;
  438. }
  439. for (i = 0; !files->name || files->name[0]; i++, files++) {
  440. if (!files->name)
  441. continue;
  442. /* warn if it tries to conflict with the root inode */
  443. if (unlikely(i == 1))
  444. printk(KERN_WARNING "%s: %s passed in a files array"
  445. "with an index of 1!\n", __func__,
  446. s->s_type->name);
  447. dentry = d_alloc_name(root, files->name);
  448. if (!dentry)
  449. goto out;
  450. inode = new_inode(s);
  451. if (!inode)
  452. goto out;
  453. inode->i_mode = S_IFREG | files->mode;
  454. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  455. inode->i_fop = files->ops;
  456. inode->i_ino = i;
  457. d_add(dentry, inode);
  458. }
  459. s->s_root = root;
  460. return 0;
  461. out:
  462. d_genocide(root);
  463. dput(root);
  464. return -ENOMEM;
  465. }
  466. static DEFINE_SPINLOCK(pin_fs_lock);
  467. int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
  468. {
  469. struct vfsmount *mnt = NULL;
  470. spin_lock(&pin_fs_lock);
  471. if (unlikely(!*mount)) {
  472. spin_unlock(&pin_fs_lock);
  473. mnt = vfs_kern_mount(type, 0, type->name, NULL);
  474. if (IS_ERR(mnt))
  475. return PTR_ERR(mnt);
  476. spin_lock(&pin_fs_lock);
  477. if (!*mount)
  478. *mount = mnt;
  479. }
  480. mntget(*mount);
  481. ++*count;
  482. spin_unlock(&pin_fs_lock);
  483. mntput(mnt);
  484. return 0;
  485. }
  486. void simple_release_fs(struct vfsmount **mount, int *count)
  487. {
  488. struct vfsmount *mnt;
  489. spin_lock(&pin_fs_lock);
  490. mnt = *mount;
  491. if (!--*count)
  492. *mount = NULL;
  493. spin_unlock(&pin_fs_lock);
  494. mntput(mnt);
  495. }
  496. /**
  497. * simple_read_from_buffer - copy data from the buffer to user space
  498. * @to: the user space buffer to read to
  499. * @count: the maximum number of bytes to read
  500. * @ppos: the current position in the buffer
  501. * @from: the buffer to read from
  502. * @available: the size of the buffer
  503. *
  504. * The simple_read_from_buffer() function reads up to @count bytes from the
  505. * buffer @from at offset @ppos into the user space address starting at @to.
  506. *
  507. * On success, the number of bytes read is returned and the offset @ppos is
  508. * advanced by this number, or negative value is returned on error.
  509. **/
  510. ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
  511. const void *from, size_t available)
  512. {
  513. loff_t pos = *ppos;
  514. size_t ret;
  515. if (pos < 0)
  516. return -EINVAL;
  517. if (pos >= available || !count)
  518. return 0;
  519. if (count > available - pos)
  520. count = available - pos;
  521. ret = copy_to_user(to, from + pos, count);
  522. if (ret == count)
  523. return -EFAULT;
  524. count -= ret;
  525. *ppos = pos + count;
  526. return count;
  527. }
  528. /**
  529. * simple_write_to_buffer - copy data from user space to the buffer
  530. * @to: the buffer to write to
  531. * @available: the size of the buffer
  532. * @ppos: the current position in the buffer
  533. * @from: the user space buffer to read from
  534. * @count: the maximum number of bytes to read
  535. *
  536. * The simple_write_to_buffer() function reads up to @count bytes from the user
  537. * space address starting at @from into the buffer @to at offset @ppos.
  538. *
  539. * On success, the number of bytes written is returned and the offset @ppos is
  540. * advanced by this number, or negative value is returned on error.
  541. **/
  542. ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
  543. const void __user *from, size_t count)
  544. {
  545. loff_t pos = *ppos;
  546. size_t res;
  547. if (pos < 0)
  548. return -EINVAL;
  549. if (pos >= available || !count)
  550. return 0;
  551. if (count > available - pos)
  552. count = available - pos;
  553. res = copy_from_user(to + pos, from, count);
  554. if (res == count)
  555. return -EFAULT;
  556. count -= res;
  557. *ppos = pos + count;
  558. return count;
  559. }
  560. /**
  561. * memory_read_from_buffer - copy data from the buffer
  562. * @to: the kernel space buffer to read to
  563. * @count: the maximum number of bytes to read
  564. * @ppos: the current position in the buffer
  565. * @from: the buffer to read from
  566. * @available: the size of the buffer
  567. *
  568. * The memory_read_from_buffer() function reads up to @count bytes from the
  569. * buffer @from at offset @ppos into the kernel space address starting at @to.
  570. *
  571. * On success, the number of bytes read is returned and the offset @ppos is
  572. * advanced by this number, or negative value is returned on error.
  573. **/
  574. ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
  575. const void *from, size_t available)
  576. {
  577. loff_t pos = *ppos;
  578. if (pos < 0)
  579. return -EINVAL;
  580. if (pos >= available)
  581. return 0;
  582. if (count > available - pos)
  583. count = available - pos;
  584. memcpy(to, from + pos, count);
  585. *ppos = pos + count;
  586. return count;
  587. }
  588. /*
  589. * Transaction based IO.
  590. * The file expects a single write which triggers the transaction, and then
  591. * possibly a read which collects the result - which is stored in a
  592. * file-local buffer.
  593. */
  594. void simple_transaction_set(struct file *file, size_t n)
  595. {
  596. struct simple_transaction_argresp *ar = file->private_data;
  597. BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
  598. /*
  599. * The barrier ensures that ar->size will really remain zero until
  600. * ar->data is ready for reading.
  601. */
  602. smp_mb();
  603. ar->size = n;
  604. }
  605. char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
  606. {
  607. struct simple_transaction_argresp *ar;
  608. static DEFINE_SPINLOCK(simple_transaction_lock);
  609. if (size > SIMPLE_TRANSACTION_LIMIT - 1)
  610. return ERR_PTR(-EFBIG);
  611. ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
  612. if (!ar)
  613. return ERR_PTR(-ENOMEM);
  614. spin_lock(&simple_transaction_lock);
  615. /* only one write allowed per open */
  616. if (file->private_data) {
  617. spin_unlock(&simple_transaction_lock);
  618. free_page((unsigned long)ar);
  619. return ERR_PTR(-EBUSY);
  620. }
  621. file->private_data = ar;
  622. spin_unlock(&simple_transaction_lock);
  623. if (copy_from_user(ar->data, buf, size))
  624. return ERR_PTR(-EFAULT);
  625. return ar->data;
  626. }
  627. ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
  628. {
  629. struct simple_transaction_argresp *ar = file->private_data;
  630. if (!ar)
  631. return 0;
  632. return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
  633. }
  634. int simple_transaction_release(struct inode *inode, struct file *file)
  635. {
  636. free_page((unsigned long)file->private_data);
  637. return 0;
  638. }
  639. /* Simple attribute files */
  640. struct simple_attr {
  641. int (*get)(void *, u64 *);
  642. int (*set)(void *, u64);
  643. char get_buf[24]; /* enough to store a u64 and "\n\0" */
  644. char set_buf[24];
  645. void *data;
  646. const char *fmt; /* format for read operation */
  647. struct mutex mutex; /* protects access to these buffers */
  648. };
  649. /* simple_attr_open is called by an actual attribute open file operation
  650. * to set the attribute specific access operations. */
  651. int simple_attr_open(struct inode *inode, struct file *file,
  652. int (*get)(void *, u64 *), int (*set)(void *, u64),
  653. const char *fmt)
  654. {
  655. struct simple_attr *attr;
  656. attr = kmalloc(sizeof(*attr), GFP_KERNEL);
  657. if (!attr)
  658. return -ENOMEM;
  659. attr->get = get;
  660. attr->set = set;
  661. attr->data = inode->i_private;
  662. attr->fmt = fmt;
  663. mutex_init(&attr->mutex);
  664. file->private_data = attr;
  665. return nonseekable_open(inode, file);
  666. }
  667. int simple_attr_release(struct inode *inode, struct file *file)
  668. {
  669. kfree(file->private_data);
  670. return 0;
  671. }
  672. /* read from the buffer that is filled with the get function */
  673. ssize_t simple_attr_read(struct file *file, char __user *buf,
  674. size_t len, loff_t *ppos)
  675. {
  676. struct simple_attr *attr;
  677. size_t size;
  678. ssize_t ret;
  679. attr = file->private_data;
  680. if (!attr->get)
  681. return -EACCES;
  682. ret = mutex_lock_interruptible(&attr->mutex);
  683. if (ret)
  684. return ret;
  685. if (*ppos) { /* continued read */
  686. size = strlen(attr->get_buf);
  687. } else { /* first read */
  688. u64 val;
  689. ret = attr->get(attr->data, &val);
  690. if (ret)
  691. goto out;
  692. size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
  693. attr->fmt, (unsigned long long)val);
  694. }
  695. ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
  696. out:
  697. mutex_unlock(&attr->mutex);
  698. return ret;
  699. }
  700. /* interpret the buffer as a number to call the set function with */
  701. ssize_t simple_attr_write(struct file *file, const char __user *buf,
  702. size_t len, loff_t *ppos)
  703. {
  704. struct simple_attr *attr;
  705. u64 val;
  706. size_t size;
  707. ssize_t ret;
  708. attr = file->private_data;
  709. if (!attr->set)
  710. return -EACCES;
  711. ret = mutex_lock_interruptible(&attr->mutex);
  712. if (ret)
  713. return ret;
  714. ret = -EFAULT;
  715. size = min(sizeof(attr->set_buf) - 1, len);
  716. if (copy_from_user(attr->set_buf, buf, size))
  717. goto out;
  718. attr->set_buf[size] = '\0';
  719. val = simple_strtol(attr->set_buf, NULL, 0);
  720. ret = attr->set(attr->data, val);
  721. if (ret == 0)
  722. ret = len; /* on success, claim we got the whole input */
  723. out:
  724. mutex_unlock(&attr->mutex);
  725. return ret;
  726. }
  727. /**
  728. * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
  729. * @sb: filesystem to do the file handle conversion on
  730. * @fid: file handle to convert
  731. * @fh_len: length of the file handle in bytes
  732. * @fh_type: type of file handle
  733. * @get_inode: filesystem callback to retrieve inode
  734. *
  735. * This function decodes @fid as long as it has one of the well-known
  736. * Linux filehandle types and calls @get_inode on it to retrieve the
  737. * inode for the object specified in the file handle.
  738. */
  739. struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
  740. int fh_len, int fh_type, struct inode *(*get_inode)
  741. (struct super_block *sb, u64 ino, u32 gen))
  742. {
  743. struct inode *inode = NULL;
  744. if (fh_len < 2)
  745. return NULL;
  746. switch (fh_type) {
  747. case FILEID_INO32_GEN:
  748. case FILEID_INO32_GEN_PARENT:
  749. inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
  750. break;
  751. }
  752. return d_obtain_alias(inode);
  753. }
  754. EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
  755. /**
  756. * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
  757. * @sb: filesystem to do the file handle conversion on
  758. * @fid: file handle to convert
  759. * @fh_len: length of the file handle in bytes
  760. * @fh_type: type of file handle
  761. * @get_inode: filesystem callback to retrieve inode
  762. *
  763. * This function decodes @fid as long as it has one of the well-known
  764. * Linux filehandle types and calls @get_inode on it to retrieve the
  765. * inode for the _parent_ object specified in the file handle if it
  766. * is specified in the file handle, or NULL otherwise.
  767. */
  768. struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
  769. int fh_len, int fh_type, struct inode *(*get_inode)
  770. (struct super_block *sb, u64 ino, u32 gen))
  771. {
  772. struct inode *inode = NULL;
  773. if (fh_len <= 2)
  774. return NULL;
  775. switch (fh_type) {
  776. case FILEID_INO32_GEN_PARENT:
  777. inode = get_inode(sb, fid->i32.parent_ino,
  778. (fh_len > 3 ? fid->i32.parent_gen : 0));
  779. break;
  780. }
  781. return d_obtain_alias(inode);
  782. }
  783. EXPORT_SYMBOL_GPL(generic_fh_to_parent);
  784. /**
  785. * generic_file_fsync - generic fsync implementation for simple filesystems
  786. * @file: file to synchronize
  787. * @datasync: only synchronize essential metadata if true
  788. *
  789. * This is a generic implementation of the fsync method for simple
  790. * filesystems which track all non-inode metadata in the buffers list
  791. * hanging off the address_space structure.
  792. */
  793. int generic_file_fsync(struct file *file, int datasync)
  794. {
  795. struct inode *inode = file->f_mapping->host;
  796. int err;
  797. int ret;
  798. ret = sync_mapping_buffers(inode->i_mapping);
  799. if (!(inode->i_state & I_DIRTY))
  800. return ret;
  801. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  802. return ret;
  803. err = sync_inode_metadata(inode, 1);
  804. if (ret == 0)
  805. ret = err;
  806. return ret;
  807. }
  808. EXPORT_SYMBOL(generic_file_fsync);
  809. /**
  810. * generic_check_addressable - Check addressability of file system
  811. * @blocksize_bits: log of file system block size
  812. * @num_blocks: number of blocks in file system
  813. *
  814. * Determine whether a file system with @num_blocks blocks (and a
  815. * block size of 2**@blocksize_bits) is addressable by the sector_t
  816. * and page cache of the system. Return 0 if so and -EFBIG otherwise.
  817. */
  818. int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
  819. {
  820. u64 last_fs_block = num_blocks - 1;
  821. u64 last_fs_page =
  822. last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
  823. if (unlikely(num_blocks == 0))
  824. return 0;
  825. if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
  826. return -EINVAL;
  827. if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
  828. (last_fs_page > (pgoff_t)(~0ULL))) {
  829. return -EFBIG;
  830. }
  831. return 0;
  832. }
  833. EXPORT_SYMBOL(generic_check_addressable);
  834. /*
  835. * No-op implementation of ->fsync for in-memory filesystems.
  836. */
  837. int noop_fsync(struct file *file, int datasync)
  838. {
  839. return 0;
  840. }
  841. EXPORT_SYMBOL(dcache_dir_close);
  842. EXPORT_SYMBOL(dcache_dir_lseek);
  843. EXPORT_SYMBOL(dcache_dir_open);
  844. EXPORT_SYMBOL(dcache_readdir);
  845. EXPORT_SYMBOL(generic_read_dir);
  846. EXPORT_SYMBOL(mount_pseudo);
  847. EXPORT_SYMBOL(simple_write_begin);
  848. EXPORT_SYMBOL(simple_write_end);
  849. EXPORT_SYMBOL(simple_dir_inode_operations);
  850. EXPORT_SYMBOL(simple_dir_operations);
  851. EXPORT_SYMBOL(simple_empty);
  852. EXPORT_SYMBOL(simple_fill_super);
  853. EXPORT_SYMBOL(simple_getattr);
  854. EXPORT_SYMBOL(simple_link);
  855. EXPORT_SYMBOL(simple_lookup);
  856. EXPORT_SYMBOL(simple_pin_fs);
  857. EXPORT_SYMBOL(simple_readpage);
  858. EXPORT_SYMBOL(simple_release_fs);
  859. EXPORT_SYMBOL(simple_rename);
  860. EXPORT_SYMBOL(simple_rmdir);
  861. EXPORT_SYMBOL(simple_statfs);
  862. EXPORT_SYMBOL(noop_fsync);
  863. EXPORT_SYMBOL(simple_unlink);
  864. EXPORT_SYMBOL(simple_read_from_buffer);
  865. EXPORT_SYMBOL(simple_write_to_buffer);
  866. EXPORT_SYMBOL(memory_read_from_buffer);
  867. EXPORT_SYMBOL(simple_transaction_set);
  868. EXPORT_SYMBOL(simple_transaction_get);
  869. EXPORT_SYMBOL(simple_transaction_read);
  870. EXPORT_SYMBOL(simple_transaction_release);
  871. EXPORT_SYMBOL_GPL(simple_attr_open);
  872. EXPORT_SYMBOL_GPL(simple_attr_release);
  873. EXPORT_SYMBOL_GPL(simple_attr_read);
  874. EXPORT_SYMBOL_GPL(simple_attr_write);