cfq-iosched.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. atomic_t ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. struct cfq_group *orig_cfqg;
  131. /* Number of sectors dispatched from queue in single dispatch round */
  132. unsigned long nr_sectors;
  133. };
  134. /*
  135. * First index in the service_trees.
  136. * IDLE is handled separately, so it has negative index
  137. */
  138. enum wl_prio_t {
  139. BE_WORKLOAD = 0,
  140. RT_WORKLOAD = 1,
  141. IDLE_WORKLOAD = 2,
  142. CFQ_PRIO_NR,
  143. };
  144. /*
  145. * Second index in the service_trees.
  146. */
  147. enum wl_type_t {
  148. ASYNC_WORKLOAD = 0,
  149. SYNC_NOIDLE_WORKLOAD = 1,
  150. SYNC_WORKLOAD = 2
  151. };
  152. /* This is per cgroup per device grouping structure */
  153. struct cfq_group {
  154. /* group service_tree member */
  155. struct rb_node rb_node;
  156. /* group service_tree key */
  157. u64 vdisktime;
  158. unsigned int weight;
  159. /* number of cfqq currently on this group */
  160. int nr_cfqq;
  161. /*
  162. * Per group busy queus average. Useful for workload slice calc. We
  163. * create the array for each prio class but at run time it is used
  164. * only for RT and BE class and slot for IDLE class remains unused.
  165. * This is primarily done to avoid confusion and a gcc warning.
  166. */
  167. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  168. /*
  169. * rr lists of queues with requests. We maintain service trees for
  170. * RT and BE classes. These trees are subdivided in subclasses
  171. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  172. * class there is no subclassification and all the cfq queues go on
  173. * a single tree service_tree_idle.
  174. * Counts are embedded in the cfq_rb_root
  175. */
  176. struct cfq_rb_root service_trees[2][3];
  177. struct cfq_rb_root service_tree_idle;
  178. unsigned long saved_workload_slice;
  179. enum wl_type_t saved_workload;
  180. enum wl_prio_t saved_serving_prio;
  181. struct blkio_group blkg;
  182. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  183. struct hlist_node cfqd_node;
  184. atomic_t ref;
  185. #endif
  186. /* number of requests that are on the dispatch list or inside driver */
  187. int dispatched;
  188. };
  189. /*
  190. * Per block device queue structure
  191. */
  192. struct cfq_data {
  193. struct request_queue *queue;
  194. /* Root service tree for cfq_groups */
  195. struct cfq_rb_root grp_service_tree;
  196. struct cfq_group root_group;
  197. /*
  198. * The priority currently being served
  199. */
  200. enum wl_prio_t serving_prio;
  201. enum wl_type_t serving_type;
  202. unsigned long workload_expires;
  203. struct cfq_group *serving_group;
  204. /*
  205. * Each priority tree is sorted by next_request position. These
  206. * trees are used when determining if two or more queues are
  207. * interleaving requests (see cfq_close_cooperator).
  208. */
  209. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  210. unsigned int busy_queues;
  211. int rq_in_driver;
  212. int rq_in_flight[2];
  213. /*
  214. * queue-depth detection
  215. */
  216. int rq_queued;
  217. int hw_tag;
  218. /*
  219. * hw_tag can be
  220. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  221. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  222. * 0 => no NCQ
  223. */
  224. int hw_tag_est_depth;
  225. unsigned int hw_tag_samples;
  226. /*
  227. * idle window management
  228. */
  229. struct timer_list idle_slice_timer;
  230. struct work_struct unplug_work;
  231. struct cfq_queue *active_queue;
  232. struct cfq_io_context *active_cic;
  233. /*
  234. * async queue for each priority case
  235. */
  236. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  237. struct cfq_queue *async_idle_cfqq;
  238. sector_t last_position;
  239. /*
  240. * tunables, see top of file
  241. */
  242. unsigned int cfq_quantum;
  243. unsigned int cfq_fifo_expire[2];
  244. unsigned int cfq_back_penalty;
  245. unsigned int cfq_back_max;
  246. unsigned int cfq_slice[2];
  247. unsigned int cfq_slice_async_rq;
  248. unsigned int cfq_slice_idle;
  249. unsigned int cfq_group_idle;
  250. unsigned int cfq_latency;
  251. unsigned int cfq_group_isolation;
  252. unsigned int cic_index;
  253. struct list_head cic_list;
  254. /*
  255. * Fallback dummy cfqq for extreme OOM conditions
  256. */
  257. struct cfq_queue oom_cfqq;
  258. unsigned long last_delayed_sync;
  259. /* List of cfq groups being managed on this device*/
  260. struct hlist_head cfqg_list;
  261. struct rcu_head rcu;
  262. };
  263. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  264. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  265. enum wl_prio_t prio,
  266. enum wl_type_t type)
  267. {
  268. if (!cfqg)
  269. return NULL;
  270. if (prio == IDLE_WORKLOAD)
  271. return &cfqg->service_tree_idle;
  272. return &cfqg->service_trees[prio][type];
  273. }
  274. enum cfqq_state_flags {
  275. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  276. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  277. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  278. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  279. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  280. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  281. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  282. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  283. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  284. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  285. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  286. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  287. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  288. };
  289. #define CFQ_CFQQ_FNS(name) \
  290. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  291. { \
  292. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  293. } \
  294. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  295. { \
  296. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  297. } \
  298. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  299. { \
  300. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  301. }
  302. CFQ_CFQQ_FNS(on_rr);
  303. CFQ_CFQQ_FNS(wait_request);
  304. CFQ_CFQQ_FNS(must_dispatch);
  305. CFQ_CFQQ_FNS(must_alloc_slice);
  306. CFQ_CFQQ_FNS(fifo_expire);
  307. CFQ_CFQQ_FNS(idle_window);
  308. CFQ_CFQQ_FNS(prio_changed);
  309. CFQ_CFQQ_FNS(slice_new);
  310. CFQ_CFQQ_FNS(sync);
  311. CFQ_CFQQ_FNS(coop);
  312. CFQ_CFQQ_FNS(split_coop);
  313. CFQ_CFQQ_FNS(deep);
  314. CFQ_CFQQ_FNS(wait_busy);
  315. #undef CFQ_CFQQ_FNS
  316. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  317. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  318. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  319. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  320. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  321. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  322. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  323. blkg_path(&(cfqg)->blkg), ##args); \
  324. #else
  325. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  326. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  327. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  328. #endif
  329. #define cfq_log(cfqd, fmt, args...) \
  330. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  331. /* Traverses through cfq group service trees */
  332. #define for_each_cfqg_st(cfqg, i, j, st) \
  333. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  334. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  335. : &cfqg->service_tree_idle; \
  336. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  337. (i == IDLE_WORKLOAD && j == 0); \
  338. j++, st = i < IDLE_WORKLOAD ? \
  339. &cfqg->service_trees[i][j]: NULL) \
  340. static inline bool iops_mode(struct cfq_data *cfqd)
  341. {
  342. /*
  343. * If we are not idling on queues and it is a NCQ drive, parallel
  344. * execution of requests is on and measuring time is not possible
  345. * in most of the cases until and unless we drive shallower queue
  346. * depths and that becomes a performance bottleneck. In such cases
  347. * switch to start providing fairness in terms of number of IOs.
  348. */
  349. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  350. return true;
  351. else
  352. return false;
  353. }
  354. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  355. {
  356. if (cfq_class_idle(cfqq))
  357. return IDLE_WORKLOAD;
  358. if (cfq_class_rt(cfqq))
  359. return RT_WORKLOAD;
  360. return BE_WORKLOAD;
  361. }
  362. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  363. {
  364. if (!cfq_cfqq_sync(cfqq))
  365. return ASYNC_WORKLOAD;
  366. if (!cfq_cfqq_idle_window(cfqq))
  367. return SYNC_NOIDLE_WORKLOAD;
  368. return SYNC_WORKLOAD;
  369. }
  370. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  371. struct cfq_data *cfqd,
  372. struct cfq_group *cfqg)
  373. {
  374. if (wl == IDLE_WORKLOAD)
  375. return cfqg->service_tree_idle.count;
  376. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  377. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  378. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  379. }
  380. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  381. struct cfq_group *cfqg)
  382. {
  383. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  384. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  385. }
  386. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  387. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  388. struct io_context *, gfp_t);
  389. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  390. struct io_context *);
  391. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  392. bool is_sync)
  393. {
  394. return cic->cfqq[is_sync];
  395. }
  396. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  397. struct cfq_queue *cfqq, bool is_sync)
  398. {
  399. cic->cfqq[is_sync] = cfqq;
  400. }
  401. #define CIC_DEAD_KEY 1ul
  402. #define CIC_DEAD_INDEX_SHIFT 1
  403. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  404. {
  405. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  406. }
  407. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  408. {
  409. struct cfq_data *cfqd = cic->key;
  410. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  411. return NULL;
  412. return cfqd;
  413. }
  414. /*
  415. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  416. * set (in which case it could also be direct WRITE).
  417. */
  418. static inline bool cfq_bio_sync(struct bio *bio)
  419. {
  420. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  421. }
  422. /*
  423. * scheduler run of queue, if there are requests pending and no one in the
  424. * driver that will restart queueing
  425. */
  426. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  427. {
  428. if (cfqd->busy_queues) {
  429. cfq_log(cfqd, "schedule dispatch");
  430. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  431. }
  432. }
  433. static int cfq_queue_empty(struct request_queue *q)
  434. {
  435. struct cfq_data *cfqd = q->elevator->elevator_data;
  436. return !cfqd->rq_queued;
  437. }
  438. /*
  439. * Scale schedule slice based on io priority. Use the sync time slice only
  440. * if a queue is marked sync and has sync io queued. A sync queue with async
  441. * io only, should not get full sync slice length.
  442. */
  443. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  444. unsigned short prio)
  445. {
  446. const int base_slice = cfqd->cfq_slice[sync];
  447. WARN_ON(prio >= IOPRIO_BE_NR);
  448. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  449. }
  450. static inline int
  451. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  452. {
  453. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  454. }
  455. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  456. {
  457. u64 d = delta << CFQ_SERVICE_SHIFT;
  458. d = d * BLKIO_WEIGHT_DEFAULT;
  459. do_div(d, cfqg->weight);
  460. return d;
  461. }
  462. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  463. {
  464. s64 delta = (s64)(vdisktime - min_vdisktime);
  465. if (delta > 0)
  466. min_vdisktime = vdisktime;
  467. return min_vdisktime;
  468. }
  469. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  470. {
  471. s64 delta = (s64)(vdisktime - min_vdisktime);
  472. if (delta < 0)
  473. min_vdisktime = vdisktime;
  474. return min_vdisktime;
  475. }
  476. static void update_min_vdisktime(struct cfq_rb_root *st)
  477. {
  478. u64 vdisktime = st->min_vdisktime;
  479. struct cfq_group *cfqg;
  480. if (st->left) {
  481. cfqg = rb_entry_cfqg(st->left);
  482. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  483. }
  484. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  485. }
  486. /*
  487. * get averaged number of queues of RT/BE priority.
  488. * average is updated, with a formula that gives more weight to higher numbers,
  489. * to quickly follows sudden increases and decrease slowly
  490. */
  491. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  492. struct cfq_group *cfqg, bool rt)
  493. {
  494. unsigned min_q, max_q;
  495. unsigned mult = cfq_hist_divisor - 1;
  496. unsigned round = cfq_hist_divisor / 2;
  497. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  498. min_q = min(cfqg->busy_queues_avg[rt], busy);
  499. max_q = max(cfqg->busy_queues_avg[rt], busy);
  500. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  501. cfq_hist_divisor;
  502. return cfqg->busy_queues_avg[rt];
  503. }
  504. static inline unsigned
  505. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  506. {
  507. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  508. return cfq_target_latency * cfqg->weight / st->total_weight;
  509. }
  510. static inline void
  511. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  512. {
  513. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  514. if (cfqd->cfq_latency) {
  515. /*
  516. * interested queues (we consider only the ones with the same
  517. * priority class in the cfq group)
  518. */
  519. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  520. cfq_class_rt(cfqq));
  521. unsigned sync_slice = cfqd->cfq_slice[1];
  522. unsigned expect_latency = sync_slice * iq;
  523. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  524. if (expect_latency > group_slice) {
  525. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  526. /* scale low_slice according to IO priority
  527. * and sync vs async */
  528. unsigned low_slice =
  529. min(slice, base_low_slice * slice / sync_slice);
  530. /* the adapted slice value is scaled to fit all iqs
  531. * into the target latency */
  532. slice = max(slice * group_slice / expect_latency,
  533. low_slice);
  534. }
  535. }
  536. cfqq->slice_start = jiffies;
  537. cfqq->slice_end = jiffies + slice;
  538. cfqq->allocated_slice = slice;
  539. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  540. }
  541. /*
  542. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  543. * isn't valid until the first request from the dispatch is activated
  544. * and the slice time set.
  545. */
  546. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  547. {
  548. if (cfq_cfqq_slice_new(cfqq))
  549. return false;
  550. if (time_before(jiffies, cfqq->slice_end))
  551. return false;
  552. return true;
  553. }
  554. /*
  555. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  556. * We choose the request that is closest to the head right now. Distance
  557. * behind the head is penalized and only allowed to a certain extent.
  558. */
  559. static struct request *
  560. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  561. {
  562. sector_t s1, s2, d1 = 0, d2 = 0;
  563. unsigned long back_max;
  564. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  565. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  566. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  567. if (rq1 == NULL || rq1 == rq2)
  568. return rq2;
  569. if (rq2 == NULL)
  570. return rq1;
  571. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  572. return rq1;
  573. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  574. return rq2;
  575. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  576. return rq1;
  577. else if ((rq2->cmd_flags & REQ_META) &&
  578. !(rq1->cmd_flags & REQ_META))
  579. return rq2;
  580. s1 = blk_rq_pos(rq1);
  581. s2 = blk_rq_pos(rq2);
  582. /*
  583. * by definition, 1KiB is 2 sectors
  584. */
  585. back_max = cfqd->cfq_back_max * 2;
  586. /*
  587. * Strict one way elevator _except_ in the case where we allow
  588. * short backward seeks which are biased as twice the cost of a
  589. * similar forward seek.
  590. */
  591. if (s1 >= last)
  592. d1 = s1 - last;
  593. else if (s1 + back_max >= last)
  594. d1 = (last - s1) * cfqd->cfq_back_penalty;
  595. else
  596. wrap |= CFQ_RQ1_WRAP;
  597. if (s2 >= last)
  598. d2 = s2 - last;
  599. else if (s2 + back_max >= last)
  600. d2 = (last - s2) * cfqd->cfq_back_penalty;
  601. else
  602. wrap |= CFQ_RQ2_WRAP;
  603. /* Found required data */
  604. /*
  605. * By doing switch() on the bit mask "wrap" we avoid having to
  606. * check two variables for all permutations: --> faster!
  607. */
  608. switch (wrap) {
  609. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  610. if (d1 < d2)
  611. return rq1;
  612. else if (d2 < d1)
  613. return rq2;
  614. else {
  615. if (s1 >= s2)
  616. return rq1;
  617. else
  618. return rq2;
  619. }
  620. case CFQ_RQ2_WRAP:
  621. return rq1;
  622. case CFQ_RQ1_WRAP:
  623. return rq2;
  624. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  625. default:
  626. /*
  627. * Since both rqs are wrapped,
  628. * start with the one that's further behind head
  629. * (--> only *one* back seek required),
  630. * since back seek takes more time than forward.
  631. */
  632. if (s1 <= s2)
  633. return rq1;
  634. else
  635. return rq2;
  636. }
  637. }
  638. /*
  639. * The below is leftmost cache rbtree addon
  640. */
  641. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  642. {
  643. /* Service tree is empty */
  644. if (!root->count)
  645. return NULL;
  646. if (!root->left)
  647. root->left = rb_first(&root->rb);
  648. if (root->left)
  649. return rb_entry(root->left, struct cfq_queue, rb_node);
  650. return NULL;
  651. }
  652. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  653. {
  654. if (!root->left)
  655. root->left = rb_first(&root->rb);
  656. if (root->left)
  657. return rb_entry_cfqg(root->left);
  658. return NULL;
  659. }
  660. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  661. {
  662. rb_erase(n, root);
  663. RB_CLEAR_NODE(n);
  664. }
  665. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  666. {
  667. if (root->left == n)
  668. root->left = NULL;
  669. rb_erase_init(n, &root->rb);
  670. --root->count;
  671. }
  672. /*
  673. * would be nice to take fifo expire time into account as well
  674. */
  675. static struct request *
  676. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  677. struct request *last)
  678. {
  679. struct rb_node *rbnext = rb_next(&last->rb_node);
  680. struct rb_node *rbprev = rb_prev(&last->rb_node);
  681. struct request *next = NULL, *prev = NULL;
  682. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  683. if (rbprev)
  684. prev = rb_entry_rq(rbprev);
  685. if (rbnext)
  686. next = rb_entry_rq(rbnext);
  687. else {
  688. rbnext = rb_first(&cfqq->sort_list);
  689. if (rbnext && rbnext != &last->rb_node)
  690. next = rb_entry_rq(rbnext);
  691. }
  692. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  693. }
  694. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  695. struct cfq_queue *cfqq)
  696. {
  697. /*
  698. * just an approximation, should be ok.
  699. */
  700. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  701. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  702. }
  703. static inline s64
  704. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  705. {
  706. return cfqg->vdisktime - st->min_vdisktime;
  707. }
  708. static void
  709. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  710. {
  711. struct rb_node **node = &st->rb.rb_node;
  712. struct rb_node *parent = NULL;
  713. struct cfq_group *__cfqg;
  714. s64 key = cfqg_key(st, cfqg);
  715. int left = 1;
  716. while (*node != NULL) {
  717. parent = *node;
  718. __cfqg = rb_entry_cfqg(parent);
  719. if (key < cfqg_key(st, __cfqg))
  720. node = &parent->rb_left;
  721. else {
  722. node = &parent->rb_right;
  723. left = 0;
  724. }
  725. }
  726. if (left)
  727. st->left = &cfqg->rb_node;
  728. rb_link_node(&cfqg->rb_node, parent, node);
  729. rb_insert_color(&cfqg->rb_node, &st->rb);
  730. }
  731. static void
  732. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  733. {
  734. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  735. struct cfq_group *__cfqg;
  736. struct rb_node *n;
  737. cfqg->nr_cfqq++;
  738. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  739. return;
  740. /*
  741. * Currently put the group at the end. Later implement something
  742. * so that groups get lesser vtime based on their weights, so that
  743. * if group does not loose all if it was not continously backlogged.
  744. */
  745. n = rb_last(&st->rb);
  746. if (n) {
  747. __cfqg = rb_entry_cfqg(n);
  748. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  749. } else
  750. cfqg->vdisktime = st->min_vdisktime;
  751. __cfq_group_service_tree_add(st, cfqg);
  752. st->total_weight += cfqg->weight;
  753. }
  754. static void
  755. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  756. {
  757. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  758. BUG_ON(cfqg->nr_cfqq < 1);
  759. cfqg->nr_cfqq--;
  760. /* If there are other cfq queues under this group, don't delete it */
  761. if (cfqg->nr_cfqq)
  762. return;
  763. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  764. st->total_weight -= cfqg->weight;
  765. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  766. cfq_rb_erase(&cfqg->rb_node, st);
  767. cfqg->saved_workload_slice = 0;
  768. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  769. }
  770. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  771. {
  772. unsigned int slice_used;
  773. /*
  774. * Queue got expired before even a single request completed or
  775. * got expired immediately after first request completion.
  776. */
  777. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  778. /*
  779. * Also charge the seek time incurred to the group, otherwise
  780. * if there are mutiple queues in the group, each can dispatch
  781. * a single request on seeky media and cause lots of seek time
  782. * and group will never know it.
  783. */
  784. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  785. 1);
  786. } else {
  787. slice_used = jiffies - cfqq->slice_start;
  788. if (slice_used > cfqq->allocated_slice)
  789. slice_used = cfqq->allocated_slice;
  790. }
  791. return slice_used;
  792. }
  793. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  794. struct cfq_queue *cfqq)
  795. {
  796. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  797. unsigned int used_sl, charge;
  798. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  799. - cfqg->service_tree_idle.count;
  800. BUG_ON(nr_sync < 0);
  801. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  802. if (iops_mode(cfqd))
  803. charge = cfqq->slice_dispatch;
  804. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  805. charge = cfqq->allocated_slice;
  806. /* Can't update vdisktime while group is on service tree */
  807. cfq_rb_erase(&cfqg->rb_node, st);
  808. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  809. __cfq_group_service_tree_add(st, cfqg);
  810. /* This group is being expired. Save the context */
  811. if (time_after(cfqd->workload_expires, jiffies)) {
  812. cfqg->saved_workload_slice = cfqd->workload_expires
  813. - jiffies;
  814. cfqg->saved_workload = cfqd->serving_type;
  815. cfqg->saved_serving_prio = cfqd->serving_prio;
  816. } else
  817. cfqg->saved_workload_slice = 0;
  818. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  819. st->min_vdisktime);
  820. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  821. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  822. iops_mode(cfqd), cfqq->nr_sectors);
  823. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  824. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  825. }
  826. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  827. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  828. {
  829. if (blkg)
  830. return container_of(blkg, struct cfq_group, blkg);
  831. return NULL;
  832. }
  833. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  834. unsigned int weight)
  835. {
  836. cfqg_of_blkg(blkg)->weight = weight;
  837. }
  838. static struct cfq_group *
  839. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  840. {
  841. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  842. struct cfq_group *cfqg = NULL;
  843. void *key = cfqd;
  844. int i, j;
  845. struct cfq_rb_root *st;
  846. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  847. unsigned int major, minor;
  848. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  849. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  850. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  851. cfqg->blkg.dev = MKDEV(major, minor);
  852. goto done;
  853. }
  854. if (cfqg || !create)
  855. goto done;
  856. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  857. if (!cfqg)
  858. goto done;
  859. for_each_cfqg_st(cfqg, i, j, st)
  860. *st = CFQ_RB_ROOT;
  861. RB_CLEAR_NODE(&cfqg->rb_node);
  862. /*
  863. * Take the initial reference that will be released on destroy
  864. * This can be thought of a joint reference by cgroup and
  865. * elevator which will be dropped by either elevator exit
  866. * or cgroup deletion path depending on who is exiting first.
  867. */
  868. atomic_set(&cfqg->ref, 1);
  869. /*
  870. * Add group onto cgroup list. It might happen that bdi->dev is
  871. * not initiliazed yet. Initialize this new group without major
  872. * and minor info and this info will be filled in once a new thread
  873. * comes for IO. See code above.
  874. */
  875. if (bdi->dev) {
  876. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  877. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  878. MKDEV(major, minor));
  879. } else
  880. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  881. 0);
  882. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  883. /* Add group on cfqd list */
  884. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  885. done:
  886. return cfqg;
  887. }
  888. /*
  889. * Search for the cfq group current task belongs to. If create = 1, then also
  890. * create the cfq group if it does not exist. request_queue lock must be held.
  891. */
  892. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  893. {
  894. struct cgroup *cgroup;
  895. struct cfq_group *cfqg = NULL;
  896. rcu_read_lock();
  897. cgroup = task_cgroup(current, blkio_subsys_id);
  898. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  899. if (!cfqg && create)
  900. cfqg = &cfqd->root_group;
  901. rcu_read_unlock();
  902. return cfqg;
  903. }
  904. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  905. {
  906. atomic_inc(&cfqg->ref);
  907. return cfqg;
  908. }
  909. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  910. {
  911. /* Currently, all async queues are mapped to root group */
  912. if (!cfq_cfqq_sync(cfqq))
  913. cfqg = &cfqq->cfqd->root_group;
  914. cfqq->cfqg = cfqg;
  915. /* cfqq reference on cfqg */
  916. atomic_inc(&cfqq->cfqg->ref);
  917. }
  918. static void cfq_put_cfqg(struct cfq_group *cfqg)
  919. {
  920. struct cfq_rb_root *st;
  921. int i, j;
  922. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  923. if (!atomic_dec_and_test(&cfqg->ref))
  924. return;
  925. for_each_cfqg_st(cfqg, i, j, st)
  926. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  927. kfree(cfqg);
  928. }
  929. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  930. {
  931. /* Something wrong if we are trying to remove same group twice */
  932. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  933. hlist_del_init(&cfqg->cfqd_node);
  934. /*
  935. * Put the reference taken at the time of creation so that when all
  936. * queues are gone, group can be destroyed.
  937. */
  938. cfq_put_cfqg(cfqg);
  939. }
  940. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  941. {
  942. struct hlist_node *pos, *n;
  943. struct cfq_group *cfqg;
  944. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  945. /*
  946. * If cgroup removal path got to blk_group first and removed
  947. * it from cgroup list, then it will take care of destroying
  948. * cfqg also.
  949. */
  950. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  951. cfq_destroy_cfqg(cfqd, cfqg);
  952. }
  953. }
  954. /*
  955. * Blk cgroup controller notification saying that blkio_group object is being
  956. * delinked as associated cgroup object is going away. That also means that
  957. * no new IO will come in this group. So get rid of this group as soon as
  958. * any pending IO in the group is finished.
  959. *
  960. * This function is called under rcu_read_lock(). key is the rcu protected
  961. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  962. * read lock.
  963. *
  964. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  965. * it should not be NULL as even if elevator was exiting, cgroup deltion
  966. * path got to it first.
  967. */
  968. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  969. {
  970. unsigned long flags;
  971. struct cfq_data *cfqd = key;
  972. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  973. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  974. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  975. }
  976. #else /* GROUP_IOSCHED */
  977. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  978. {
  979. return &cfqd->root_group;
  980. }
  981. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  982. {
  983. return cfqg;
  984. }
  985. static inline void
  986. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  987. cfqq->cfqg = cfqg;
  988. }
  989. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  990. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  991. #endif /* GROUP_IOSCHED */
  992. /*
  993. * The cfqd->service_trees holds all pending cfq_queue's that have
  994. * requests waiting to be processed. It is sorted in the order that
  995. * we will service the queues.
  996. */
  997. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  998. bool add_front)
  999. {
  1000. struct rb_node **p, *parent;
  1001. struct cfq_queue *__cfqq;
  1002. unsigned long rb_key;
  1003. struct cfq_rb_root *service_tree;
  1004. int left;
  1005. int new_cfqq = 1;
  1006. int group_changed = 0;
  1007. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1008. if (!cfqd->cfq_group_isolation
  1009. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  1010. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  1011. /* Move this cfq to root group */
  1012. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  1013. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1014. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1015. cfqq->orig_cfqg = cfqq->cfqg;
  1016. cfqq->cfqg = &cfqd->root_group;
  1017. atomic_inc(&cfqd->root_group.ref);
  1018. group_changed = 1;
  1019. } else if (!cfqd->cfq_group_isolation
  1020. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1021. /* cfqq is sequential now needs to go to its original group */
  1022. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1023. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1024. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1025. cfq_put_cfqg(cfqq->cfqg);
  1026. cfqq->cfqg = cfqq->orig_cfqg;
  1027. cfqq->orig_cfqg = NULL;
  1028. group_changed = 1;
  1029. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1030. }
  1031. #endif
  1032. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1033. cfqq_type(cfqq));
  1034. if (cfq_class_idle(cfqq)) {
  1035. rb_key = CFQ_IDLE_DELAY;
  1036. parent = rb_last(&service_tree->rb);
  1037. if (parent && parent != &cfqq->rb_node) {
  1038. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1039. rb_key += __cfqq->rb_key;
  1040. } else
  1041. rb_key += jiffies;
  1042. } else if (!add_front) {
  1043. /*
  1044. * Get our rb key offset. Subtract any residual slice
  1045. * value carried from last service. A negative resid
  1046. * count indicates slice overrun, and this should position
  1047. * the next service time further away in the tree.
  1048. */
  1049. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1050. rb_key -= cfqq->slice_resid;
  1051. cfqq->slice_resid = 0;
  1052. } else {
  1053. rb_key = -HZ;
  1054. __cfqq = cfq_rb_first(service_tree);
  1055. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1056. }
  1057. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1058. new_cfqq = 0;
  1059. /*
  1060. * same position, nothing more to do
  1061. */
  1062. if (rb_key == cfqq->rb_key &&
  1063. cfqq->service_tree == service_tree)
  1064. return;
  1065. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1066. cfqq->service_tree = NULL;
  1067. }
  1068. left = 1;
  1069. parent = NULL;
  1070. cfqq->service_tree = service_tree;
  1071. p = &service_tree->rb.rb_node;
  1072. while (*p) {
  1073. struct rb_node **n;
  1074. parent = *p;
  1075. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1076. /*
  1077. * sort by key, that represents service time.
  1078. */
  1079. if (time_before(rb_key, __cfqq->rb_key))
  1080. n = &(*p)->rb_left;
  1081. else {
  1082. n = &(*p)->rb_right;
  1083. left = 0;
  1084. }
  1085. p = n;
  1086. }
  1087. if (left)
  1088. service_tree->left = &cfqq->rb_node;
  1089. cfqq->rb_key = rb_key;
  1090. rb_link_node(&cfqq->rb_node, parent, p);
  1091. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1092. service_tree->count++;
  1093. if ((add_front || !new_cfqq) && !group_changed)
  1094. return;
  1095. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1096. }
  1097. static struct cfq_queue *
  1098. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1099. sector_t sector, struct rb_node **ret_parent,
  1100. struct rb_node ***rb_link)
  1101. {
  1102. struct rb_node **p, *parent;
  1103. struct cfq_queue *cfqq = NULL;
  1104. parent = NULL;
  1105. p = &root->rb_node;
  1106. while (*p) {
  1107. struct rb_node **n;
  1108. parent = *p;
  1109. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1110. /*
  1111. * Sort strictly based on sector. Smallest to the left,
  1112. * largest to the right.
  1113. */
  1114. if (sector > blk_rq_pos(cfqq->next_rq))
  1115. n = &(*p)->rb_right;
  1116. else if (sector < blk_rq_pos(cfqq->next_rq))
  1117. n = &(*p)->rb_left;
  1118. else
  1119. break;
  1120. p = n;
  1121. cfqq = NULL;
  1122. }
  1123. *ret_parent = parent;
  1124. if (rb_link)
  1125. *rb_link = p;
  1126. return cfqq;
  1127. }
  1128. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1129. {
  1130. struct rb_node **p, *parent;
  1131. struct cfq_queue *__cfqq;
  1132. if (cfqq->p_root) {
  1133. rb_erase(&cfqq->p_node, cfqq->p_root);
  1134. cfqq->p_root = NULL;
  1135. }
  1136. if (cfq_class_idle(cfqq))
  1137. return;
  1138. if (!cfqq->next_rq)
  1139. return;
  1140. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1141. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1142. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1143. if (!__cfqq) {
  1144. rb_link_node(&cfqq->p_node, parent, p);
  1145. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1146. } else
  1147. cfqq->p_root = NULL;
  1148. }
  1149. /*
  1150. * Update cfqq's position in the service tree.
  1151. */
  1152. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1153. {
  1154. /*
  1155. * Resorting requires the cfqq to be on the RR list already.
  1156. */
  1157. if (cfq_cfqq_on_rr(cfqq)) {
  1158. cfq_service_tree_add(cfqd, cfqq, 0);
  1159. cfq_prio_tree_add(cfqd, cfqq);
  1160. }
  1161. }
  1162. /*
  1163. * add to busy list of queues for service, trying to be fair in ordering
  1164. * the pending list according to last request service
  1165. */
  1166. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1167. {
  1168. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1169. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1170. cfq_mark_cfqq_on_rr(cfqq);
  1171. cfqd->busy_queues++;
  1172. cfq_resort_rr_list(cfqd, cfqq);
  1173. }
  1174. /*
  1175. * Called when the cfqq no longer has requests pending, remove it from
  1176. * the service tree.
  1177. */
  1178. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1179. {
  1180. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1181. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1182. cfq_clear_cfqq_on_rr(cfqq);
  1183. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1184. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1185. cfqq->service_tree = NULL;
  1186. }
  1187. if (cfqq->p_root) {
  1188. rb_erase(&cfqq->p_node, cfqq->p_root);
  1189. cfqq->p_root = NULL;
  1190. }
  1191. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1192. BUG_ON(!cfqd->busy_queues);
  1193. cfqd->busy_queues--;
  1194. }
  1195. /*
  1196. * rb tree support functions
  1197. */
  1198. static void cfq_del_rq_rb(struct request *rq)
  1199. {
  1200. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1201. const int sync = rq_is_sync(rq);
  1202. BUG_ON(!cfqq->queued[sync]);
  1203. cfqq->queued[sync]--;
  1204. elv_rb_del(&cfqq->sort_list, rq);
  1205. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1206. /*
  1207. * Queue will be deleted from service tree when we actually
  1208. * expire it later. Right now just remove it from prio tree
  1209. * as it is empty.
  1210. */
  1211. if (cfqq->p_root) {
  1212. rb_erase(&cfqq->p_node, cfqq->p_root);
  1213. cfqq->p_root = NULL;
  1214. }
  1215. }
  1216. }
  1217. static void cfq_add_rq_rb(struct request *rq)
  1218. {
  1219. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1220. struct cfq_data *cfqd = cfqq->cfqd;
  1221. struct request *__alias, *prev;
  1222. cfqq->queued[rq_is_sync(rq)]++;
  1223. /*
  1224. * looks a little odd, but the first insert might return an alias.
  1225. * if that happens, put the alias on the dispatch list
  1226. */
  1227. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1228. cfq_dispatch_insert(cfqd->queue, __alias);
  1229. if (!cfq_cfqq_on_rr(cfqq))
  1230. cfq_add_cfqq_rr(cfqd, cfqq);
  1231. /*
  1232. * check if this request is a better next-serve candidate
  1233. */
  1234. prev = cfqq->next_rq;
  1235. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1236. /*
  1237. * adjust priority tree position, if ->next_rq changes
  1238. */
  1239. if (prev != cfqq->next_rq)
  1240. cfq_prio_tree_add(cfqd, cfqq);
  1241. BUG_ON(!cfqq->next_rq);
  1242. }
  1243. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1244. {
  1245. elv_rb_del(&cfqq->sort_list, rq);
  1246. cfqq->queued[rq_is_sync(rq)]--;
  1247. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1248. rq_data_dir(rq), rq_is_sync(rq));
  1249. cfq_add_rq_rb(rq);
  1250. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1251. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1252. rq_is_sync(rq));
  1253. }
  1254. static struct request *
  1255. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1256. {
  1257. struct task_struct *tsk = current;
  1258. struct cfq_io_context *cic;
  1259. struct cfq_queue *cfqq;
  1260. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1261. if (!cic)
  1262. return NULL;
  1263. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1264. if (cfqq) {
  1265. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1266. return elv_rb_find(&cfqq->sort_list, sector);
  1267. }
  1268. return NULL;
  1269. }
  1270. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1271. {
  1272. struct cfq_data *cfqd = q->elevator->elevator_data;
  1273. cfqd->rq_in_driver++;
  1274. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1275. cfqd->rq_in_driver);
  1276. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1277. }
  1278. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1279. {
  1280. struct cfq_data *cfqd = q->elevator->elevator_data;
  1281. WARN_ON(!cfqd->rq_in_driver);
  1282. cfqd->rq_in_driver--;
  1283. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1284. cfqd->rq_in_driver);
  1285. }
  1286. static void cfq_remove_request(struct request *rq)
  1287. {
  1288. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1289. if (cfqq->next_rq == rq)
  1290. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1291. list_del_init(&rq->queuelist);
  1292. cfq_del_rq_rb(rq);
  1293. cfqq->cfqd->rq_queued--;
  1294. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1295. rq_data_dir(rq), rq_is_sync(rq));
  1296. if (rq->cmd_flags & REQ_META) {
  1297. WARN_ON(!cfqq->meta_pending);
  1298. cfqq->meta_pending--;
  1299. }
  1300. }
  1301. static int cfq_merge(struct request_queue *q, struct request **req,
  1302. struct bio *bio)
  1303. {
  1304. struct cfq_data *cfqd = q->elevator->elevator_data;
  1305. struct request *__rq;
  1306. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1307. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1308. *req = __rq;
  1309. return ELEVATOR_FRONT_MERGE;
  1310. }
  1311. return ELEVATOR_NO_MERGE;
  1312. }
  1313. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1314. int type)
  1315. {
  1316. if (type == ELEVATOR_FRONT_MERGE) {
  1317. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1318. cfq_reposition_rq_rb(cfqq, req);
  1319. }
  1320. }
  1321. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1322. struct bio *bio)
  1323. {
  1324. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1325. bio_data_dir(bio), cfq_bio_sync(bio));
  1326. }
  1327. static void
  1328. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1329. struct request *next)
  1330. {
  1331. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1332. /*
  1333. * reposition in fifo if next is older than rq
  1334. */
  1335. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1336. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1337. list_move(&rq->queuelist, &next->queuelist);
  1338. rq_set_fifo_time(rq, rq_fifo_time(next));
  1339. }
  1340. if (cfqq->next_rq == next)
  1341. cfqq->next_rq = rq;
  1342. cfq_remove_request(next);
  1343. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1344. rq_data_dir(next), rq_is_sync(next));
  1345. }
  1346. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1347. struct bio *bio)
  1348. {
  1349. struct cfq_data *cfqd = q->elevator->elevator_data;
  1350. struct cfq_io_context *cic;
  1351. struct cfq_queue *cfqq;
  1352. /*
  1353. * Disallow merge of a sync bio into an async request.
  1354. */
  1355. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1356. return false;
  1357. /*
  1358. * Lookup the cfqq that this bio will be queued with. Allow
  1359. * merge only if rq is queued there.
  1360. */
  1361. cic = cfq_cic_lookup(cfqd, current->io_context);
  1362. if (!cic)
  1363. return false;
  1364. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1365. return cfqq == RQ_CFQQ(rq);
  1366. }
  1367. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1368. {
  1369. del_timer(&cfqd->idle_slice_timer);
  1370. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1371. }
  1372. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1373. struct cfq_queue *cfqq)
  1374. {
  1375. if (cfqq) {
  1376. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1377. cfqd->serving_prio, cfqd->serving_type);
  1378. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1379. cfqq->slice_start = 0;
  1380. cfqq->dispatch_start = jiffies;
  1381. cfqq->allocated_slice = 0;
  1382. cfqq->slice_end = 0;
  1383. cfqq->slice_dispatch = 0;
  1384. cfqq->nr_sectors = 0;
  1385. cfq_clear_cfqq_wait_request(cfqq);
  1386. cfq_clear_cfqq_must_dispatch(cfqq);
  1387. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1388. cfq_clear_cfqq_fifo_expire(cfqq);
  1389. cfq_mark_cfqq_slice_new(cfqq);
  1390. cfq_del_timer(cfqd, cfqq);
  1391. }
  1392. cfqd->active_queue = cfqq;
  1393. }
  1394. /*
  1395. * current cfqq expired its slice (or was too idle), select new one
  1396. */
  1397. static void
  1398. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1399. bool timed_out)
  1400. {
  1401. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1402. if (cfq_cfqq_wait_request(cfqq))
  1403. cfq_del_timer(cfqd, cfqq);
  1404. cfq_clear_cfqq_wait_request(cfqq);
  1405. cfq_clear_cfqq_wait_busy(cfqq);
  1406. /*
  1407. * If this cfqq is shared between multiple processes, check to
  1408. * make sure that those processes are still issuing I/Os within
  1409. * the mean seek distance. If not, it may be time to break the
  1410. * queues apart again.
  1411. */
  1412. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1413. cfq_mark_cfqq_split_coop(cfqq);
  1414. /*
  1415. * store what was left of this slice, if the queue idled/timed out
  1416. */
  1417. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1418. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1419. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1420. }
  1421. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1422. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1423. cfq_del_cfqq_rr(cfqd, cfqq);
  1424. cfq_resort_rr_list(cfqd, cfqq);
  1425. if (cfqq == cfqd->active_queue)
  1426. cfqd->active_queue = NULL;
  1427. if (cfqd->active_cic) {
  1428. put_io_context(cfqd->active_cic->ioc);
  1429. cfqd->active_cic = NULL;
  1430. }
  1431. }
  1432. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1433. {
  1434. struct cfq_queue *cfqq = cfqd->active_queue;
  1435. if (cfqq)
  1436. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1437. }
  1438. /*
  1439. * Get next queue for service. Unless we have a queue preemption,
  1440. * we'll simply select the first cfqq in the service tree.
  1441. */
  1442. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1443. {
  1444. struct cfq_rb_root *service_tree =
  1445. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1446. cfqd->serving_type);
  1447. if (!cfqd->rq_queued)
  1448. return NULL;
  1449. /* There is nothing to dispatch */
  1450. if (!service_tree)
  1451. return NULL;
  1452. if (RB_EMPTY_ROOT(&service_tree->rb))
  1453. return NULL;
  1454. return cfq_rb_first(service_tree);
  1455. }
  1456. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1457. {
  1458. struct cfq_group *cfqg;
  1459. struct cfq_queue *cfqq;
  1460. int i, j;
  1461. struct cfq_rb_root *st;
  1462. if (!cfqd->rq_queued)
  1463. return NULL;
  1464. cfqg = cfq_get_next_cfqg(cfqd);
  1465. if (!cfqg)
  1466. return NULL;
  1467. for_each_cfqg_st(cfqg, i, j, st)
  1468. if ((cfqq = cfq_rb_first(st)) != NULL)
  1469. return cfqq;
  1470. return NULL;
  1471. }
  1472. /*
  1473. * Get and set a new active queue for service.
  1474. */
  1475. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1476. struct cfq_queue *cfqq)
  1477. {
  1478. if (!cfqq)
  1479. cfqq = cfq_get_next_queue(cfqd);
  1480. __cfq_set_active_queue(cfqd, cfqq);
  1481. return cfqq;
  1482. }
  1483. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1484. struct request *rq)
  1485. {
  1486. if (blk_rq_pos(rq) >= cfqd->last_position)
  1487. return blk_rq_pos(rq) - cfqd->last_position;
  1488. else
  1489. return cfqd->last_position - blk_rq_pos(rq);
  1490. }
  1491. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1492. struct request *rq)
  1493. {
  1494. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1495. }
  1496. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1497. struct cfq_queue *cur_cfqq)
  1498. {
  1499. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1500. struct rb_node *parent, *node;
  1501. struct cfq_queue *__cfqq;
  1502. sector_t sector = cfqd->last_position;
  1503. if (RB_EMPTY_ROOT(root))
  1504. return NULL;
  1505. /*
  1506. * First, if we find a request starting at the end of the last
  1507. * request, choose it.
  1508. */
  1509. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1510. if (__cfqq)
  1511. return __cfqq;
  1512. /*
  1513. * If the exact sector wasn't found, the parent of the NULL leaf
  1514. * will contain the closest sector.
  1515. */
  1516. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1517. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1518. return __cfqq;
  1519. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1520. node = rb_next(&__cfqq->p_node);
  1521. else
  1522. node = rb_prev(&__cfqq->p_node);
  1523. if (!node)
  1524. return NULL;
  1525. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1526. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1527. return __cfqq;
  1528. return NULL;
  1529. }
  1530. /*
  1531. * cfqd - obvious
  1532. * cur_cfqq - passed in so that we don't decide that the current queue is
  1533. * closely cooperating with itself.
  1534. *
  1535. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1536. * one request, and that cfqd->last_position reflects a position on the disk
  1537. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1538. * assumption.
  1539. */
  1540. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1541. struct cfq_queue *cur_cfqq)
  1542. {
  1543. struct cfq_queue *cfqq;
  1544. if (cfq_class_idle(cur_cfqq))
  1545. return NULL;
  1546. if (!cfq_cfqq_sync(cur_cfqq))
  1547. return NULL;
  1548. if (CFQQ_SEEKY(cur_cfqq))
  1549. return NULL;
  1550. /*
  1551. * Don't search priority tree if it's the only queue in the group.
  1552. */
  1553. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1554. return NULL;
  1555. /*
  1556. * We should notice if some of the queues are cooperating, eg
  1557. * working closely on the same area of the disk. In that case,
  1558. * we can group them together and don't waste time idling.
  1559. */
  1560. cfqq = cfqq_close(cfqd, cur_cfqq);
  1561. if (!cfqq)
  1562. return NULL;
  1563. /* If new queue belongs to different cfq_group, don't choose it */
  1564. if (cur_cfqq->cfqg != cfqq->cfqg)
  1565. return NULL;
  1566. /*
  1567. * It only makes sense to merge sync queues.
  1568. */
  1569. if (!cfq_cfqq_sync(cfqq))
  1570. return NULL;
  1571. if (CFQQ_SEEKY(cfqq))
  1572. return NULL;
  1573. /*
  1574. * Do not merge queues of different priority classes
  1575. */
  1576. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1577. return NULL;
  1578. return cfqq;
  1579. }
  1580. /*
  1581. * Determine whether we should enforce idle window for this queue.
  1582. */
  1583. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1584. {
  1585. enum wl_prio_t prio = cfqq_prio(cfqq);
  1586. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1587. BUG_ON(!service_tree);
  1588. BUG_ON(!service_tree->count);
  1589. if (!cfqd->cfq_slice_idle)
  1590. return false;
  1591. /* We never do for idle class queues. */
  1592. if (prio == IDLE_WORKLOAD)
  1593. return false;
  1594. /* We do for queues that were marked with idle window flag. */
  1595. if (cfq_cfqq_idle_window(cfqq) &&
  1596. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1597. return true;
  1598. /*
  1599. * Otherwise, we do only if they are the last ones
  1600. * in their service tree.
  1601. */
  1602. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1603. return true;
  1604. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1605. service_tree->count);
  1606. return false;
  1607. }
  1608. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1609. {
  1610. struct cfq_queue *cfqq = cfqd->active_queue;
  1611. struct cfq_io_context *cic;
  1612. unsigned long sl, group_idle = 0;
  1613. /*
  1614. * SSD device without seek penalty, disable idling. But only do so
  1615. * for devices that support queuing, otherwise we still have a problem
  1616. * with sync vs async workloads.
  1617. */
  1618. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1619. return;
  1620. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1621. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1622. /*
  1623. * idle is disabled, either manually or by past process history
  1624. */
  1625. if (!cfq_should_idle(cfqd, cfqq)) {
  1626. /* no queue idling. Check for group idling */
  1627. if (cfqd->cfq_group_idle)
  1628. group_idle = cfqd->cfq_group_idle;
  1629. else
  1630. return;
  1631. }
  1632. /*
  1633. * still active requests from this queue, don't idle
  1634. */
  1635. if (cfqq->dispatched)
  1636. return;
  1637. /*
  1638. * task has exited, don't wait
  1639. */
  1640. cic = cfqd->active_cic;
  1641. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1642. return;
  1643. /*
  1644. * If our average think time is larger than the remaining time
  1645. * slice, then don't idle. This avoids overrunning the allotted
  1646. * time slice.
  1647. */
  1648. if (sample_valid(cic->ttime_samples) &&
  1649. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1650. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1651. cic->ttime_mean);
  1652. return;
  1653. }
  1654. /* There are other queues in the group, don't do group idle */
  1655. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1656. return;
  1657. cfq_mark_cfqq_wait_request(cfqq);
  1658. if (group_idle)
  1659. sl = cfqd->cfq_group_idle;
  1660. else
  1661. sl = cfqd->cfq_slice_idle;
  1662. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1663. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1664. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1665. group_idle ? 1 : 0);
  1666. }
  1667. /*
  1668. * Move request from internal lists to the request queue dispatch list.
  1669. */
  1670. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1671. {
  1672. struct cfq_data *cfqd = q->elevator->elevator_data;
  1673. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1674. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1675. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1676. cfq_remove_request(rq);
  1677. cfqq->dispatched++;
  1678. (RQ_CFQG(rq))->dispatched++;
  1679. elv_dispatch_sort(q, rq);
  1680. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1681. cfqq->nr_sectors += blk_rq_sectors(rq);
  1682. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1683. rq_data_dir(rq), rq_is_sync(rq));
  1684. }
  1685. /*
  1686. * return expired entry, or NULL to just start from scratch in rbtree
  1687. */
  1688. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1689. {
  1690. struct request *rq = NULL;
  1691. if (cfq_cfqq_fifo_expire(cfqq))
  1692. return NULL;
  1693. cfq_mark_cfqq_fifo_expire(cfqq);
  1694. if (list_empty(&cfqq->fifo))
  1695. return NULL;
  1696. rq = rq_entry_fifo(cfqq->fifo.next);
  1697. if (time_before(jiffies, rq_fifo_time(rq)))
  1698. rq = NULL;
  1699. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1700. return rq;
  1701. }
  1702. static inline int
  1703. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1704. {
  1705. const int base_rq = cfqd->cfq_slice_async_rq;
  1706. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1707. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1708. }
  1709. /*
  1710. * Must be called with the queue_lock held.
  1711. */
  1712. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1713. {
  1714. int process_refs, io_refs;
  1715. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1716. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1717. BUG_ON(process_refs < 0);
  1718. return process_refs;
  1719. }
  1720. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1721. {
  1722. int process_refs, new_process_refs;
  1723. struct cfq_queue *__cfqq;
  1724. /*
  1725. * If there are no process references on the new_cfqq, then it is
  1726. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1727. * chain may have dropped their last reference (not just their
  1728. * last process reference).
  1729. */
  1730. if (!cfqq_process_refs(new_cfqq))
  1731. return;
  1732. /* Avoid a circular list and skip interim queue merges */
  1733. while ((__cfqq = new_cfqq->new_cfqq)) {
  1734. if (__cfqq == cfqq)
  1735. return;
  1736. new_cfqq = __cfqq;
  1737. }
  1738. process_refs = cfqq_process_refs(cfqq);
  1739. new_process_refs = cfqq_process_refs(new_cfqq);
  1740. /*
  1741. * If the process for the cfqq has gone away, there is no
  1742. * sense in merging the queues.
  1743. */
  1744. if (process_refs == 0 || new_process_refs == 0)
  1745. return;
  1746. /*
  1747. * Merge in the direction of the lesser amount of work.
  1748. */
  1749. if (new_process_refs >= process_refs) {
  1750. cfqq->new_cfqq = new_cfqq;
  1751. atomic_add(process_refs, &new_cfqq->ref);
  1752. } else {
  1753. new_cfqq->new_cfqq = cfqq;
  1754. atomic_add(new_process_refs, &cfqq->ref);
  1755. }
  1756. }
  1757. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1758. struct cfq_group *cfqg, enum wl_prio_t prio)
  1759. {
  1760. struct cfq_queue *queue;
  1761. int i;
  1762. bool key_valid = false;
  1763. unsigned long lowest_key = 0;
  1764. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1765. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1766. /* select the one with lowest rb_key */
  1767. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1768. if (queue &&
  1769. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1770. lowest_key = queue->rb_key;
  1771. cur_best = i;
  1772. key_valid = true;
  1773. }
  1774. }
  1775. return cur_best;
  1776. }
  1777. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1778. {
  1779. unsigned slice;
  1780. unsigned count;
  1781. struct cfq_rb_root *st;
  1782. unsigned group_slice;
  1783. enum wl_prio_t original_prio = cfqd->serving_prio;
  1784. if (!cfqg) {
  1785. cfqd->serving_prio = IDLE_WORKLOAD;
  1786. cfqd->workload_expires = jiffies + 1;
  1787. return;
  1788. }
  1789. /* Choose next priority. RT > BE > IDLE */
  1790. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1791. cfqd->serving_prio = RT_WORKLOAD;
  1792. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1793. cfqd->serving_prio = BE_WORKLOAD;
  1794. else {
  1795. cfqd->serving_prio = IDLE_WORKLOAD;
  1796. cfqd->workload_expires = jiffies + 1;
  1797. return;
  1798. }
  1799. if (original_prio != cfqd->serving_prio)
  1800. goto new_workload;
  1801. /*
  1802. * For RT and BE, we have to choose also the type
  1803. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1804. * expiration time
  1805. */
  1806. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1807. count = st->count;
  1808. /*
  1809. * check workload expiration, and that we still have other queues ready
  1810. */
  1811. if (count && !time_after(jiffies, cfqd->workload_expires))
  1812. return;
  1813. new_workload:
  1814. /* otherwise select new workload type */
  1815. cfqd->serving_type =
  1816. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1817. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1818. count = st->count;
  1819. /*
  1820. * the workload slice is computed as a fraction of target latency
  1821. * proportional to the number of queues in that workload, over
  1822. * all the queues in the same priority class
  1823. */
  1824. group_slice = cfq_group_slice(cfqd, cfqg);
  1825. slice = group_slice * count /
  1826. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1827. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1828. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1829. unsigned int tmp;
  1830. /*
  1831. * Async queues are currently system wide. Just taking
  1832. * proportion of queues with-in same group will lead to higher
  1833. * async ratio system wide as generally root group is going
  1834. * to have higher weight. A more accurate thing would be to
  1835. * calculate system wide asnc/sync ratio.
  1836. */
  1837. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1838. tmp = tmp/cfqd->busy_queues;
  1839. slice = min_t(unsigned, slice, tmp);
  1840. /* async workload slice is scaled down according to
  1841. * the sync/async slice ratio. */
  1842. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1843. } else
  1844. /* sync workload slice is at least 2 * cfq_slice_idle */
  1845. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1846. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1847. cfq_log(cfqd, "workload slice:%d", slice);
  1848. cfqd->workload_expires = jiffies + slice;
  1849. }
  1850. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1851. {
  1852. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1853. struct cfq_group *cfqg;
  1854. if (RB_EMPTY_ROOT(&st->rb))
  1855. return NULL;
  1856. cfqg = cfq_rb_first_group(st);
  1857. update_min_vdisktime(st);
  1858. return cfqg;
  1859. }
  1860. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1861. {
  1862. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1863. cfqd->serving_group = cfqg;
  1864. /* Restore the workload type data */
  1865. if (cfqg->saved_workload_slice) {
  1866. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1867. cfqd->serving_type = cfqg->saved_workload;
  1868. cfqd->serving_prio = cfqg->saved_serving_prio;
  1869. } else
  1870. cfqd->workload_expires = jiffies - 1;
  1871. choose_service_tree(cfqd, cfqg);
  1872. }
  1873. /*
  1874. * Select a queue for service. If we have a current active queue,
  1875. * check whether to continue servicing it, or retrieve and set a new one.
  1876. */
  1877. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1878. {
  1879. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1880. cfqq = cfqd->active_queue;
  1881. if (!cfqq)
  1882. goto new_queue;
  1883. if (!cfqd->rq_queued)
  1884. return NULL;
  1885. /*
  1886. * We were waiting for group to get backlogged. Expire the queue
  1887. */
  1888. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1889. goto expire;
  1890. /*
  1891. * The active queue has run out of time, expire it and select new.
  1892. */
  1893. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1894. /*
  1895. * If slice had not expired at the completion of last request
  1896. * we might not have turned on wait_busy flag. Don't expire
  1897. * the queue yet. Allow the group to get backlogged.
  1898. *
  1899. * The very fact that we have used the slice, that means we
  1900. * have been idling all along on this queue and it should be
  1901. * ok to wait for this request to complete.
  1902. */
  1903. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1904. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1905. cfqq = NULL;
  1906. goto keep_queue;
  1907. } else
  1908. goto check_group_idle;
  1909. }
  1910. /*
  1911. * The active queue has requests and isn't expired, allow it to
  1912. * dispatch.
  1913. */
  1914. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1915. goto keep_queue;
  1916. /*
  1917. * If another queue has a request waiting within our mean seek
  1918. * distance, let it run. The expire code will check for close
  1919. * cooperators and put the close queue at the front of the service
  1920. * tree. If possible, merge the expiring queue with the new cfqq.
  1921. */
  1922. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1923. if (new_cfqq) {
  1924. if (!cfqq->new_cfqq)
  1925. cfq_setup_merge(cfqq, new_cfqq);
  1926. goto expire;
  1927. }
  1928. /*
  1929. * No requests pending. If the active queue still has requests in
  1930. * flight or is idling for a new request, allow either of these
  1931. * conditions to happen (or time out) before selecting a new queue.
  1932. */
  1933. if (timer_pending(&cfqd->idle_slice_timer)) {
  1934. cfqq = NULL;
  1935. goto keep_queue;
  1936. }
  1937. /*
  1938. * This is a deep seek queue, but the device is much faster than
  1939. * the queue can deliver, don't idle
  1940. **/
  1941. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1942. (cfq_cfqq_slice_new(cfqq) ||
  1943. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1944. cfq_clear_cfqq_deep(cfqq);
  1945. cfq_clear_cfqq_idle_window(cfqq);
  1946. }
  1947. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1948. cfqq = NULL;
  1949. goto keep_queue;
  1950. }
  1951. /*
  1952. * If group idle is enabled and there are requests dispatched from
  1953. * this group, wait for requests to complete.
  1954. */
  1955. check_group_idle:
  1956. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1957. && cfqq->cfqg->dispatched) {
  1958. cfqq = NULL;
  1959. goto keep_queue;
  1960. }
  1961. expire:
  1962. cfq_slice_expired(cfqd, 0);
  1963. new_queue:
  1964. /*
  1965. * Current queue expired. Check if we have to switch to a new
  1966. * service tree
  1967. */
  1968. if (!new_cfqq)
  1969. cfq_choose_cfqg(cfqd);
  1970. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1971. keep_queue:
  1972. return cfqq;
  1973. }
  1974. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1975. {
  1976. int dispatched = 0;
  1977. while (cfqq->next_rq) {
  1978. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1979. dispatched++;
  1980. }
  1981. BUG_ON(!list_empty(&cfqq->fifo));
  1982. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1983. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1984. return dispatched;
  1985. }
  1986. /*
  1987. * Drain our current requests. Used for barriers and when switching
  1988. * io schedulers on-the-fly.
  1989. */
  1990. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1991. {
  1992. struct cfq_queue *cfqq;
  1993. int dispatched = 0;
  1994. /* Expire the timeslice of the current active queue first */
  1995. cfq_slice_expired(cfqd, 0);
  1996. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1997. __cfq_set_active_queue(cfqd, cfqq);
  1998. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1999. }
  2000. BUG_ON(cfqd->busy_queues);
  2001. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2002. return dispatched;
  2003. }
  2004. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2005. struct cfq_queue *cfqq)
  2006. {
  2007. /* the queue hasn't finished any request, can't estimate */
  2008. if (cfq_cfqq_slice_new(cfqq))
  2009. return true;
  2010. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2011. cfqq->slice_end))
  2012. return true;
  2013. return false;
  2014. }
  2015. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2016. {
  2017. unsigned int max_dispatch;
  2018. /*
  2019. * Drain async requests before we start sync IO
  2020. */
  2021. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2022. return false;
  2023. /*
  2024. * If this is an async queue and we have sync IO in flight, let it wait
  2025. */
  2026. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2027. return false;
  2028. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2029. if (cfq_class_idle(cfqq))
  2030. max_dispatch = 1;
  2031. /*
  2032. * Does this cfqq already have too much IO in flight?
  2033. */
  2034. if (cfqq->dispatched >= max_dispatch) {
  2035. /*
  2036. * idle queue must always only have a single IO in flight
  2037. */
  2038. if (cfq_class_idle(cfqq))
  2039. return false;
  2040. /*
  2041. * We have other queues, don't allow more IO from this one
  2042. */
  2043. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  2044. return false;
  2045. /*
  2046. * Sole queue user, no limit
  2047. */
  2048. if (cfqd->busy_queues == 1)
  2049. max_dispatch = -1;
  2050. else
  2051. /*
  2052. * Normally we start throttling cfqq when cfq_quantum/2
  2053. * requests have been dispatched. But we can drive
  2054. * deeper queue depths at the beginning of slice
  2055. * subjected to upper limit of cfq_quantum.
  2056. * */
  2057. max_dispatch = cfqd->cfq_quantum;
  2058. }
  2059. /*
  2060. * Async queues must wait a bit before being allowed dispatch.
  2061. * We also ramp up the dispatch depth gradually for async IO,
  2062. * based on the last sync IO we serviced
  2063. */
  2064. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2065. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2066. unsigned int depth;
  2067. depth = last_sync / cfqd->cfq_slice[1];
  2068. if (!depth && !cfqq->dispatched)
  2069. depth = 1;
  2070. if (depth < max_dispatch)
  2071. max_dispatch = depth;
  2072. }
  2073. /*
  2074. * If we're below the current max, allow a dispatch
  2075. */
  2076. return cfqq->dispatched < max_dispatch;
  2077. }
  2078. /*
  2079. * Dispatch a request from cfqq, moving them to the request queue
  2080. * dispatch list.
  2081. */
  2082. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2083. {
  2084. struct request *rq;
  2085. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2086. if (!cfq_may_dispatch(cfqd, cfqq))
  2087. return false;
  2088. /*
  2089. * follow expired path, else get first next available
  2090. */
  2091. rq = cfq_check_fifo(cfqq);
  2092. if (!rq)
  2093. rq = cfqq->next_rq;
  2094. /*
  2095. * insert request into driver dispatch list
  2096. */
  2097. cfq_dispatch_insert(cfqd->queue, rq);
  2098. if (!cfqd->active_cic) {
  2099. struct cfq_io_context *cic = RQ_CIC(rq);
  2100. atomic_long_inc(&cic->ioc->refcount);
  2101. cfqd->active_cic = cic;
  2102. }
  2103. return true;
  2104. }
  2105. /*
  2106. * Find the cfqq that we need to service and move a request from that to the
  2107. * dispatch list
  2108. */
  2109. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2110. {
  2111. struct cfq_data *cfqd = q->elevator->elevator_data;
  2112. struct cfq_queue *cfqq;
  2113. if (!cfqd->busy_queues)
  2114. return 0;
  2115. if (unlikely(force))
  2116. return cfq_forced_dispatch(cfqd);
  2117. cfqq = cfq_select_queue(cfqd);
  2118. if (!cfqq)
  2119. return 0;
  2120. /*
  2121. * Dispatch a request from this cfqq, if it is allowed
  2122. */
  2123. if (!cfq_dispatch_request(cfqd, cfqq))
  2124. return 0;
  2125. cfqq->slice_dispatch++;
  2126. cfq_clear_cfqq_must_dispatch(cfqq);
  2127. /*
  2128. * expire an async queue immediately if it has used up its slice. idle
  2129. * queue always expire after 1 dispatch round.
  2130. */
  2131. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2132. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2133. cfq_class_idle(cfqq))) {
  2134. cfqq->slice_end = jiffies + 1;
  2135. cfq_slice_expired(cfqd, 0);
  2136. }
  2137. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2138. return 1;
  2139. }
  2140. /*
  2141. * task holds one reference to the queue, dropped when task exits. each rq
  2142. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2143. *
  2144. * Each cfq queue took a reference on the parent group. Drop it now.
  2145. * queue lock must be held here.
  2146. */
  2147. static void cfq_put_queue(struct cfq_queue *cfqq)
  2148. {
  2149. struct cfq_data *cfqd = cfqq->cfqd;
  2150. struct cfq_group *cfqg, *orig_cfqg;
  2151. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2152. if (!atomic_dec_and_test(&cfqq->ref))
  2153. return;
  2154. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2155. BUG_ON(rb_first(&cfqq->sort_list));
  2156. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2157. cfqg = cfqq->cfqg;
  2158. orig_cfqg = cfqq->orig_cfqg;
  2159. if (unlikely(cfqd->active_queue == cfqq)) {
  2160. __cfq_slice_expired(cfqd, cfqq, 0);
  2161. cfq_schedule_dispatch(cfqd);
  2162. }
  2163. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2164. kmem_cache_free(cfq_pool, cfqq);
  2165. cfq_put_cfqg(cfqg);
  2166. if (orig_cfqg)
  2167. cfq_put_cfqg(orig_cfqg);
  2168. }
  2169. /*
  2170. * Must always be called with the rcu_read_lock() held
  2171. */
  2172. static void
  2173. __call_for_each_cic(struct io_context *ioc,
  2174. void (*func)(struct io_context *, struct cfq_io_context *))
  2175. {
  2176. struct cfq_io_context *cic;
  2177. struct hlist_node *n;
  2178. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2179. func(ioc, cic);
  2180. }
  2181. /*
  2182. * Call func for each cic attached to this ioc.
  2183. */
  2184. static void
  2185. call_for_each_cic(struct io_context *ioc,
  2186. void (*func)(struct io_context *, struct cfq_io_context *))
  2187. {
  2188. rcu_read_lock();
  2189. __call_for_each_cic(ioc, func);
  2190. rcu_read_unlock();
  2191. }
  2192. static void cfq_cic_free_rcu(struct rcu_head *head)
  2193. {
  2194. struct cfq_io_context *cic;
  2195. cic = container_of(head, struct cfq_io_context, rcu_head);
  2196. kmem_cache_free(cfq_ioc_pool, cic);
  2197. elv_ioc_count_dec(cfq_ioc_count);
  2198. if (ioc_gone) {
  2199. /*
  2200. * CFQ scheduler is exiting, grab exit lock and check
  2201. * the pending io context count. If it hits zero,
  2202. * complete ioc_gone and set it back to NULL
  2203. */
  2204. spin_lock(&ioc_gone_lock);
  2205. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2206. complete(ioc_gone);
  2207. ioc_gone = NULL;
  2208. }
  2209. spin_unlock(&ioc_gone_lock);
  2210. }
  2211. }
  2212. static void cfq_cic_free(struct cfq_io_context *cic)
  2213. {
  2214. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2215. }
  2216. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2217. {
  2218. unsigned long flags;
  2219. unsigned long dead_key = (unsigned long) cic->key;
  2220. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2221. spin_lock_irqsave(&ioc->lock, flags);
  2222. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2223. hlist_del_rcu(&cic->cic_list);
  2224. spin_unlock_irqrestore(&ioc->lock, flags);
  2225. cfq_cic_free(cic);
  2226. }
  2227. /*
  2228. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2229. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2230. * and ->trim() which is called with the task lock held
  2231. */
  2232. static void cfq_free_io_context(struct io_context *ioc)
  2233. {
  2234. /*
  2235. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2236. * so no more cic's are allowed to be linked into this ioc. So it
  2237. * should be ok to iterate over the known list, we will see all cic's
  2238. * since no new ones are added.
  2239. */
  2240. __call_for_each_cic(ioc, cic_free_func);
  2241. }
  2242. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2243. {
  2244. struct cfq_queue *__cfqq, *next;
  2245. /*
  2246. * If this queue was scheduled to merge with another queue, be
  2247. * sure to drop the reference taken on that queue (and others in
  2248. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2249. */
  2250. __cfqq = cfqq->new_cfqq;
  2251. while (__cfqq) {
  2252. if (__cfqq == cfqq) {
  2253. WARN(1, "cfqq->new_cfqq loop detected\n");
  2254. break;
  2255. }
  2256. next = __cfqq->new_cfqq;
  2257. cfq_put_queue(__cfqq);
  2258. __cfqq = next;
  2259. }
  2260. }
  2261. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2262. {
  2263. if (unlikely(cfqq == cfqd->active_queue)) {
  2264. __cfq_slice_expired(cfqd, cfqq, 0);
  2265. cfq_schedule_dispatch(cfqd);
  2266. }
  2267. cfq_put_cooperator(cfqq);
  2268. cfq_put_queue(cfqq);
  2269. }
  2270. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2271. struct cfq_io_context *cic)
  2272. {
  2273. struct io_context *ioc = cic->ioc;
  2274. list_del_init(&cic->queue_list);
  2275. /*
  2276. * Make sure dead mark is seen for dead queues
  2277. */
  2278. smp_wmb();
  2279. cic->key = cfqd_dead_key(cfqd);
  2280. if (ioc->ioc_data == cic)
  2281. rcu_assign_pointer(ioc->ioc_data, NULL);
  2282. if (cic->cfqq[BLK_RW_ASYNC]) {
  2283. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2284. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2285. }
  2286. if (cic->cfqq[BLK_RW_SYNC]) {
  2287. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2288. cic->cfqq[BLK_RW_SYNC] = NULL;
  2289. }
  2290. }
  2291. static void cfq_exit_single_io_context(struct io_context *ioc,
  2292. struct cfq_io_context *cic)
  2293. {
  2294. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2295. if (cfqd) {
  2296. struct request_queue *q = cfqd->queue;
  2297. unsigned long flags;
  2298. spin_lock_irqsave(q->queue_lock, flags);
  2299. /*
  2300. * Ensure we get a fresh copy of the ->key to prevent
  2301. * race between exiting task and queue
  2302. */
  2303. smp_read_barrier_depends();
  2304. if (cic->key == cfqd)
  2305. __cfq_exit_single_io_context(cfqd, cic);
  2306. spin_unlock_irqrestore(q->queue_lock, flags);
  2307. }
  2308. }
  2309. /*
  2310. * The process that ioc belongs to has exited, we need to clean up
  2311. * and put the internal structures we have that belongs to that process.
  2312. */
  2313. static void cfq_exit_io_context(struct io_context *ioc)
  2314. {
  2315. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2316. }
  2317. static struct cfq_io_context *
  2318. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2319. {
  2320. struct cfq_io_context *cic;
  2321. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2322. cfqd->queue->node);
  2323. if (cic) {
  2324. cic->last_end_request = jiffies;
  2325. INIT_LIST_HEAD(&cic->queue_list);
  2326. INIT_HLIST_NODE(&cic->cic_list);
  2327. cic->dtor = cfq_free_io_context;
  2328. cic->exit = cfq_exit_io_context;
  2329. elv_ioc_count_inc(cfq_ioc_count);
  2330. }
  2331. return cic;
  2332. }
  2333. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2334. {
  2335. struct task_struct *tsk = current;
  2336. int ioprio_class;
  2337. if (!cfq_cfqq_prio_changed(cfqq))
  2338. return;
  2339. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2340. switch (ioprio_class) {
  2341. default:
  2342. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2343. case IOPRIO_CLASS_NONE:
  2344. /*
  2345. * no prio set, inherit CPU scheduling settings
  2346. */
  2347. cfqq->ioprio = task_nice_ioprio(tsk);
  2348. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2349. break;
  2350. case IOPRIO_CLASS_RT:
  2351. cfqq->ioprio = task_ioprio(ioc);
  2352. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2353. break;
  2354. case IOPRIO_CLASS_BE:
  2355. cfqq->ioprio = task_ioprio(ioc);
  2356. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2357. break;
  2358. case IOPRIO_CLASS_IDLE:
  2359. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2360. cfqq->ioprio = 7;
  2361. cfq_clear_cfqq_idle_window(cfqq);
  2362. break;
  2363. }
  2364. /*
  2365. * keep track of original prio settings in case we have to temporarily
  2366. * elevate the priority of this queue
  2367. */
  2368. cfqq->org_ioprio = cfqq->ioprio;
  2369. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2370. cfq_clear_cfqq_prio_changed(cfqq);
  2371. }
  2372. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2373. {
  2374. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2375. struct cfq_queue *cfqq;
  2376. unsigned long flags;
  2377. if (unlikely(!cfqd))
  2378. return;
  2379. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2380. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2381. if (cfqq) {
  2382. struct cfq_queue *new_cfqq;
  2383. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2384. GFP_ATOMIC);
  2385. if (new_cfqq) {
  2386. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2387. cfq_put_queue(cfqq);
  2388. }
  2389. }
  2390. cfqq = cic->cfqq[BLK_RW_SYNC];
  2391. if (cfqq)
  2392. cfq_mark_cfqq_prio_changed(cfqq);
  2393. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2394. }
  2395. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2396. {
  2397. call_for_each_cic(ioc, changed_ioprio);
  2398. ioc->ioprio_changed = 0;
  2399. }
  2400. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2401. pid_t pid, bool is_sync)
  2402. {
  2403. RB_CLEAR_NODE(&cfqq->rb_node);
  2404. RB_CLEAR_NODE(&cfqq->p_node);
  2405. INIT_LIST_HEAD(&cfqq->fifo);
  2406. atomic_set(&cfqq->ref, 0);
  2407. cfqq->cfqd = cfqd;
  2408. cfq_mark_cfqq_prio_changed(cfqq);
  2409. if (is_sync) {
  2410. if (!cfq_class_idle(cfqq))
  2411. cfq_mark_cfqq_idle_window(cfqq);
  2412. cfq_mark_cfqq_sync(cfqq);
  2413. }
  2414. cfqq->pid = pid;
  2415. }
  2416. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2417. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2418. {
  2419. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2420. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2421. unsigned long flags;
  2422. struct request_queue *q;
  2423. if (unlikely(!cfqd))
  2424. return;
  2425. q = cfqd->queue;
  2426. spin_lock_irqsave(q->queue_lock, flags);
  2427. if (sync_cfqq) {
  2428. /*
  2429. * Drop reference to sync queue. A new sync queue will be
  2430. * assigned in new group upon arrival of a fresh request.
  2431. */
  2432. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2433. cic_set_cfqq(cic, NULL, 1);
  2434. cfq_put_queue(sync_cfqq);
  2435. }
  2436. spin_unlock_irqrestore(q->queue_lock, flags);
  2437. }
  2438. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2439. {
  2440. call_for_each_cic(ioc, changed_cgroup);
  2441. ioc->cgroup_changed = 0;
  2442. }
  2443. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2444. static struct cfq_queue *
  2445. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2446. struct io_context *ioc, gfp_t gfp_mask)
  2447. {
  2448. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2449. struct cfq_io_context *cic;
  2450. struct cfq_group *cfqg;
  2451. retry:
  2452. cfqg = cfq_get_cfqg(cfqd, 1);
  2453. cic = cfq_cic_lookup(cfqd, ioc);
  2454. /* cic always exists here */
  2455. cfqq = cic_to_cfqq(cic, is_sync);
  2456. /*
  2457. * Always try a new alloc if we fell back to the OOM cfqq
  2458. * originally, since it should just be a temporary situation.
  2459. */
  2460. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2461. cfqq = NULL;
  2462. if (new_cfqq) {
  2463. cfqq = new_cfqq;
  2464. new_cfqq = NULL;
  2465. } else if (gfp_mask & __GFP_WAIT) {
  2466. spin_unlock_irq(cfqd->queue->queue_lock);
  2467. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2468. gfp_mask | __GFP_ZERO,
  2469. cfqd->queue->node);
  2470. spin_lock_irq(cfqd->queue->queue_lock);
  2471. if (new_cfqq)
  2472. goto retry;
  2473. } else {
  2474. cfqq = kmem_cache_alloc_node(cfq_pool,
  2475. gfp_mask | __GFP_ZERO,
  2476. cfqd->queue->node);
  2477. }
  2478. if (cfqq) {
  2479. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2480. cfq_init_prio_data(cfqq, ioc);
  2481. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2482. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2483. } else
  2484. cfqq = &cfqd->oom_cfqq;
  2485. }
  2486. if (new_cfqq)
  2487. kmem_cache_free(cfq_pool, new_cfqq);
  2488. return cfqq;
  2489. }
  2490. static struct cfq_queue **
  2491. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2492. {
  2493. switch (ioprio_class) {
  2494. case IOPRIO_CLASS_RT:
  2495. return &cfqd->async_cfqq[0][ioprio];
  2496. case IOPRIO_CLASS_BE:
  2497. return &cfqd->async_cfqq[1][ioprio];
  2498. case IOPRIO_CLASS_IDLE:
  2499. return &cfqd->async_idle_cfqq;
  2500. default:
  2501. BUG();
  2502. }
  2503. }
  2504. static struct cfq_queue *
  2505. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2506. gfp_t gfp_mask)
  2507. {
  2508. const int ioprio = task_ioprio(ioc);
  2509. const int ioprio_class = task_ioprio_class(ioc);
  2510. struct cfq_queue **async_cfqq = NULL;
  2511. struct cfq_queue *cfqq = NULL;
  2512. if (!is_sync) {
  2513. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2514. cfqq = *async_cfqq;
  2515. }
  2516. if (!cfqq)
  2517. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2518. /*
  2519. * pin the queue now that it's allocated, scheduler exit will prune it
  2520. */
  2521. if (!is_sync && !(*async_cfqq)) {
  2522. atomic_inc(&cfqq->ref);
  2523. *async_cfqq = cfqq;
  2524. }
  2525. atomic_inc(&cfqq->ref);
  2526. return cfqq;
  2527. }
  2528. /*
  2529. * We drop cfq io contexts lazily, so we may find a dead one.
  2530. */
  2531. static void
  2532. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2533. struct cfq_io_context *cic)
  2534. {
  2535. unsigned long flags;
  2536. WARN_ON(!list_empty(&cic->queue_list));
  2537. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2538. spin_lock_irqsave(&ioc->lock, flags);
  2539. BUG_ON(ioc->ioc_data == cic);
  2540. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2541. hlist_del_rcu(&cic->cic_list);
  2542. spin_unlock_irqrestore(&ioc->lock, flags);
  2543. cfq_cic_free(cic);
  2544. }
  2545. static struct cfq_io_context *
  2546. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2547. {
  2548. struct cfq_io_context *cic;
  2549. unsigned long flags;
  2550. if (unlikely(!ioc))
  2551. return NULL;
  2552. rcu_read_lock();
  2553. /*
  2554. * we maintain a last-hit cache, to avoid browsing over the tree
  2555. */
  2556. cic = rcu_dereference(ioc->ioc_data);
  2557. if (cic && cic->key == cfqd) {
  2558. rcu_read_unlock();
  2559. return cic;
  2560. }
  2561. do {
  2562. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2563. rcu_read_unlock();
  2564. if (!cic)
  2565. break;
  2566. if (unlikely(cic->key != cfqd)) {
  2567. cfq_drop_dead_cic(cfqd, ioc, cic);
  2568. rcu_read_lock();
  2569. continue;
  2570. }
  2571. spin_lock_irqsave(&ioc->lock, flags);
  2572. rcu_assign_pointer(ioc->ioc_data, cic);
  2573. spin_unlock_irqrestore(&ioc->lock, flags);
  2574. break;
  2575. } while (1);
  2576. return cic;
  2577. }
  2578. /*
  2579. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2580. * the process specific cfq io context when entered from the block layer.
  2581. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2582. */
  2583. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2584. struct cfq_io_context *cic, gfp_t gfp_mask)
  2585. {
  2586. unsigned long flags;
  2587. int ret;
  2588. ret = radix_tree_preload(gfp_mask);
  2589. if (!ret) {
  2590. cic->ioc = ioc;
  2591. cic->key = cfqd;
  2592. spin_lock_irqsave(&ioc->lock, flags);
  2593. ret = radix_tree_insert(&ioc->radix_root,
  2594. cfqd->cic_index, cic);
  2595. if (!ret)
  2596. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2597. spin_unlock_irqrestore(&ioc->lock, flags);
  2598. radix_tree_preload_end();
  2599. if (!ret) {
  2600. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2601. list_add(&cic->queue_list, &cfqd->cic_list);
  2602. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2603. }
  2604. }
  2605. if (ret)
  2606. printk(KERN_ERR "cfq: cic link failed!\n");
  2607. return ret;
  2608. }
  2609. /*
  2610. * Setup general io context and cfq io context. There can be several cfq
  2611. * io contexts per general io context, if this process is doing io to more
  2612. * than one device managed by cfq.
  2613. */
  2614. static struct cfq_io_context *
  2615. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2616. {
  2617. struct io_context *ioc = NULL;
  2618. struct cfq_io_context *cic;
  2619. might_sleep_if(gfp_mask & __GFP_WAIT);
  2620. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2621. if (!ioc)
  2622. return NULL;
  2623. cic = cfq_cic_lookup(cfqd, ioc);
  2624. if (cic)
  2625. goto out;
  2626. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2627. if (cic == NULL)
  2628. goto err;
  2629. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2630. goto err_free;
  2631. out:
  2632. smp_read_barrier_depends();
  2633. if (unlikely(ioc->ioprio_changed))
  2634. cfq_ioc_set_ioprio(ioc);
  2635. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2636. if (unlikely(ioc->cgroup_changed))
  2637. cfq_ioc_set_cgroup(ioc);
  2638. #endif
  2639. return cic;
  2640. err_free:
  2641. cfq_cic_free(cic);
  2642. err:
  2643. put_io_context(ioc);
  2644. return NULL;
  2645. }
  2646. static void
  2647. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2648. {
  2649. unsigned long elapsed = jiffies - cic->last_end_request;
  2650. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2651. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2652. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2653. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2654. }
  2655. static void
  2656. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2657. struct request *rq)
  2658. {
  2659. sector_t sdist = 0;
  2660. sector_t n_sec = blk_rq_sectors(rq);
  2661. if (cfqq->last_request_pos) {
  2662. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2663. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2664. else
  2665. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2666. }
  2667. cfqq->seek_history <<= 1;
  2668. if (blk_queue_nonrot(cfqd->queue))
  2669. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2670. else
  2671. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2672. }
  2673. /*
  2674. * Disable idle window if the process thinks too long or seeks so much that
  2675. * it doesn't matter
  2676. */
  2677. static void
  2678. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2679. struct cfq_io_context *cic)
  2680. {
  2681. int old_idle, enable_idle;
  2682. /*
  2683. * Don't idle for async or idle io prio class
  2684. */
  2685. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2686. return;
  2687. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2688. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2689. cfq_mark_cfqq_deep(cfqq);
  2690. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2691. enable_idle = 0;
  2692. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2693. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2694. enable_idle = 0;
  2695. else if (sample_valid(cic->ttime_samples)) {
  2696. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2697. enable_idle = 0;
  2698. else
  2699. enable_idle = 1;
  2700. }
  2701. if (old_idle != enable_idle) {
  2702. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2703. if (enable_idle)
  2704. cfq_mark_cfqq_idle_window(cfqq);
  2705. else
  2706. cfq_clear_cfqq_idle_window(cfqq);
  2707. }
  2708. }
  2709. /*
  2710. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2711. * no or if we aren't sure, a 1 will cause a preempt.
  2712. */
  2713. static bool
  2714. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2715. struct request *rq)
  2716. {
  2717. struct cfq_queue *cfqq;
  2718. cfqq = cfqd->active_queue;
  2719. if (!cfqq)
  2720. return false;
  2721. if (cfq_class_idle(new_cfqq))
  2722. return false;
  2723. if (cfq_class_idle(cfqq))
  2724. return true;
  2725. /*
  2726. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2727. */
  2728. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2729. return false;
  2730. /*
  2731. * if the new request is sync, but the currently running queue is
  2732. * not, let the sync request have priority.
  2733. */
  2734. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2735. return true;
  2736. if (new_cfqq->cfqg != cfqq->cfqg)
  2737. return false;
  2738. if (cfq_slice_used(cfqq))
  2739. return true;
  2740. /* Allow preemption only if we are idling on sync-noidle tree */
  2741. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2742. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2743. new_cfqq->service_tree->count == 2 &&
  2744. RB_EMPTY_ROOT(&cfqq->sort_list))
  2745. return true;
  2746. /*
  2747. * So both queues are sync. Let the new request get disk time if
  2748. * it's a metadata request and the current queue is doing regular IO.
  2749. */
  2750. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2751. return true;
  2752. /*
  2753. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2754. */
  2755. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2756. return true;
  2757. /* An idle queue should not be idle now for some reason */
  2758. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2759. return true;
  2760. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2761. return false;
  2762. /*
  2763. * if this request is as-good as one we would expect from the
  2764. * current cfqq, let it preempt
  2765. */
  2766. if (cfq_rq_close(cfqd, cfqq, rq))
  2767. return true;
  2768. return false;
  2769. }
  2770. /*
  2771. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2772. * let it have half of its nominal slice.
  2773. */
  2774. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2775. {
  2776. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2777. cfq_slice_expired(cfqd, 1);
  2778. /*
  2779. * Put the new queue at the front of the of the current list,
  2780. * so we know that it will be selected next.
  2781. */
  2782. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2783. cfq_service_tree_add(cfqd, cfqq, 1);
  2784. cfqq->slice_end = 0;
  2785. cfq_mark_cfqq_slice_new(cfqq);
  2786. }
  2787. /*
  2788. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2789. * something we should do about it
  2790. */
  2791. static void
  2792. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2793. struct request *rq)
  2794. {
  2795. struct cfq_io_context *cic = RQ_CIC(rq);
  2796. cfqd->rq_queued++;
  2797. if (rq->cmd_flags & REQ_META)
  2798. cfqq->meta_pending++;
  2799. cfq_update_io_thinktime(cfqd, cic);
  2800. cfq_update_io_seektime(cfqd, cfqq, rq);
  2801. cfq_update_idle_window(cfqd, cfqq, cic);
  2802. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2803. if (cfqq == cfqd->active_queue) {
  2804. /*
  2805. * Remember that we saw a request from this process, but
  2806. * don't start queuing just yet. Otherwise we risk seeing lots
  2807. * of tiny requests, because we disrupt the normal plugging
  2808. * and merging. If the request is already larger than a single
  2809. * page, let it rip immediately. For that case we assume that
  2810. * merging is already done. Ditto for a busy system that
  2811. * has other work pending, don't risk delaying until the
  2812. * idle timer unplug to continue working.
  2813. */
  2814. if (cfq_cfqq_wait_request(cfqq)) {
  2815. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2816. cfqd->busy_queues > 1) {
  2817. cfq_del_timer(cfqd, cfqq);
  2818. cfq_clear_cfqq_wait_request(cfqq);
  2819. __blk_run_queue(cfqd->queue);
  2820. } else {
  2821. cfq_blkiocg_update_idle_time_stats(
  2822. &cfqq->cfqg->blkg);
  2823. cfq_mark_cfqq_must_dispatch(cfqq);
  2824. }
  2825. }
  2826. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2827. /*
  2828. * not the active queue - expire current slice if it is
  2829. * idle and has expired it's mean thinktime or this new queue
  2830. * has some old slice time left and is of higher priority or
  2831. * this new queue is RT and the current one is BE
  2832. */
  2833. cfq_preempt_queue(cfqd, cfqq);
  2834. __blk_run_queue(cfqd->queue);
  2835. }
  2836. }
  2837. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2838. {
  2839. struct cfq_data *cfqd = q->elevator->elevator_data;
  2840. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2841. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2842. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2843. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2844. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2845. cfq_add_rq_rb(rq);
  2846. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2847. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2848. rq_is_sync(rq));
  2849. cfq_rq_enqueued(cfqd, cfqq, rq);
  2850. }
  2851. /*
  2852. * Update hw_tag based on peak queue depth over 50 samples under
  2853. * sufficient load.
  2854. */
  2855. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2856. {
  2857. struct cfq_queue *cfqq = cfqd->active_queue;
  2858. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2859. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2860. if (cfqd->hw_tag == 1)
  2861. return;
  2862. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2863. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2864. return;
  2865. /*
  2866. * If active queue hasn't enough requests and can idle, cfq might not
  2867. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2868. * case
  2869. */
  2870. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2871. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2872. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2873. return;
  2874. if (cfqd->hw_tag_samples++ < 50)
  2875. return;
  2876. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2877. cfqd->hw_tag = 1;
  2878. else
  2879. cfqd->hw_tag = 0;
  2880. }
  2881. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2882. {
  2883. struct cfq_io_context *cic = cfqd->active_cic;
  2884. /* If there are other queues in the group, don't wait */
  2885. if (cfqq->cfqg->nr_cfqq > 1)
  2886. return false;
  2887. if (cfq_slice_used(cfqq))
  2888. return true;
  2889. /* if slice left is less than think time, wait busy */
  2890. if (cic && sample_valid(cic->ttime_samples)
  2891. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2892. return true;
  2893. /*
  2894. * If think times is less than a jiffy than ttime_mean=0 and above
  2895. * will not be true. It might happen that slice has not expired yet
  2896. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2897. * case where think time is less than a jiffy, mark the queue wait
  2898. * busy if only 1 jiffy is left in the slice.
  2899. */
  2900. if (cfqq->slice_end - jiffies == 1)
  2901. return true;
  2902. return false;
  2903. }
  2904. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2905. {
  2906. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2907. struct cfq_data *cfqd = cfqq->cfqd;
  2908. const int sync = rq_is_sync(rq);
  2909. unsigned long now;
  2910. now = jiffies;
  2911. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2912. !!(rq->cmd_flags & REQ_NOIDLE));
  2913. cfq_update_hw_tag(cfqd);
  2914. WARN_ON(!cfqd->rq_in_driver);
  2915. WARN_ON(!cfqq->dispatched);
  2916. cfqd->rq_in_driver--;
  2917. cfqq->dispatched--;
  2918. (RQ_CFQG(rq))->dispatched--;
  2919. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2920. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2921. rq_data_dir(rq), rq_is_sync(rq));
  2922. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2923. if (sync) {
  2924. RQ_CIC(rq)->last_end_request = now;
  2925. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2926. cfqd->last_delayed_sync = now;
  2927. }
  2928. /*
  2929. * If this is the active queue, check if it needs to be expired,
  2930. * or if we want to idle in case it has no pending requests.
  2931. */
  2932. if (cfqd->active_queue == cfqq) {
  2933. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2934. if (cfq_cfqq_slice_new(cfqq)) {
  2935. cfq_set_prio_slice(cfqd, cfqq);
  2936. cfq_clear_cfqq_slice_new(cfqq);
  2937. }
  2938. /*
  2939. * Should we wait for next request to come in before we expire
  2940. * the queue.
  2941. */
  2942. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2943. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2944. if (!cfqd->cfq_slice_idle)
  2945. extend_sl = cfqd->cfq_group_idle;
  2946. cfqq->slice_end = jiffies + extend_sl;
  2947. cfq_mark_cfqq_wait_busy(cfqq);
  2948. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2949. }
  2950. /*
  2951. * Idling is not enabled on:
  2952. * - expired queues
  2953. * - idle-priority queues
  2954. * - async queues
  2955. * - queues with still some requests queued
  2956. * - when there is a close cooperator
  2957. */
  2958. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2959. cfq_slice_expired(cfqd, 1);
  2960. else if (sync && cfqq_empty &&
  2961. !cfq_close_cooperator(cfqd, cfqq)) {
  2962. cfq_arm_slice_timer(cfqd);
  2963. }
  2964. }
  2965. if (!cfqd->rq_in_driver)
  2966. cfq_schedule_dispatch(cfqd);
  2967. }
  2968. /*
  2969. * we temporarily boost lower priority queues if they are holding fs exclusive
  2970. * resources. they are boosted to normal prio (CLASS_BE/4)
  2971. */
  2972. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2973. {
  2974. if (has_fs_excl()) {
  2975. /*
  2976. * boost idle prio on transactions that would lock out other
  2977. * users of the filesystem
  2978. */
  2979. if (cfq_class_idle(cfqq))
  2980. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2981. if (cfqq->ioprio > IOPRIO_NORM)
  2982. cfqq->ioprio = IOPRIO_NORM;
  2983. } else {
  2984. /*
  2985. * unboost the queue (if needed)
  2986. */
  2987. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2988. cfqq->ioprio = cfqq->org_ioprio;
  2989. }
  2990. }
  2991. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2992. {
  2993. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2994. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2995. return ELV_MQUEUE_MUST;
  2996. }
  2997. return ELV_MQUEUE_MAY;
  2998. }
  2999. static int cfq_may_queue(struct request_queue *q, int rw)
  3000. {
  3001. struct cfq_data *cfqd = q->elevator->elevator_data;
  3002. struct task_struct *tsk = current;
  3003. struct cfq_io_context *cic;
  3004. struct cfq_queue *cfqq;
  3005. /*
  3006. * don't force setup of a queue from here, as a call to may_queue
  3007. * does not necessarily imply that a request actually will be queued.
  3008. * so just lookup a possibly existing queue, or return 'may queue'
  3009. * if that fails
  3010. */
  3011. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3012. if (!cic)
  3013. return ELV_MQUEUE_MAY;
  3014. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3015. if (cfqq) {
  3016. cfq_init_prio_data(cfqq, cic->ioc);
  3017. cfq_prio_boost(cfqq);
  3018. return __cfq_may_queue(cfqq);
  3019. }
  3020. return ELV_MQUEUE_MAY;
  3021. }
  3022. /*
  3023. * queue lock held here
  3024. */
  3025. static void cfq_put_request(struct request *rq)
  3026. {
  3027. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3028. if (cfqq) {
  3029. const int rw = rq_data_dir(rq);
  3030. BUG_ON(!cfqq->allocated[rw]);
  3031. cfqq->allocated[rw]--;
  3032. put_io_context(RQ_CIC(rq)->ioc);
  3033. rq->elevator_private = NULL;
  3034. rq->elevator_private2 = NULL;
  3035. /* Put down rq reference on cfqg */
  3036. cfq_put_cfqg(RQ_CFQG(rq));
  3037. rq->elevator_private3 = NULL;
  3038. cfq_put_queue(cfqq);
  3039. }
  3040. }
  3041. static struct cfq_queue *
  3042. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3043. struct cfq_queue *cfqq)
  3044. {
  3045. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3046. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3047. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3048. cfq_put_queue(cfqq);
  3049. return cic_to_cfqq(cic, 1);
  3050. }
  3051. /*
  3052. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3053. * was the last process referring to said cfqq.
  3054. */
  3055. static struct cfq_queue *
  3056. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3057. {
  3058. if (cfqq_process_refs(cfqq) == 1) {
  3059. cfqq->pid = current->pid;
  3060. cfq_clear_cfqq_coop(cfqq);
  3061. cfq_clear_cfqq_split_coop(cfqq);
  3062. return cfqq;
  3063. }
  3064. cic_set_cfqq(cic, NULL, 1);
  3065. cfq_put_cooperator(cfqq);
  3066. cfq_put_queue(cfqq);
  3067. return NULL;
  3068. }
  3069. /*
  3070. * Allocate cfq data structures associated with this request.
  3071. */
  3072. static int
  3073. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3074. {
  3075. struct cfq_data *cfqd = q->elevator->elevator_data;
  3076. struct cfq_io_context *cic;
  3077. const int rw = rq_data_dir(rq);
  3078. const bool is_sync = rq_is_sync(rq);
  3079. struct cfq_queue *cfqq;
  3080. unsigned long flags;
  3081. might_sleep_if(gfp_mask & __GFP_WAIT);
  3082. cic = cfq_get_io_context(cfqd, gfp_mask);
  3083. spin_lock_irqsave(q->queue_lock, flags);
  3084. if (!cic)
  3085. goto queue_fail;
  3086. new_queue:
  3087. cfqq = cic_to_cfqq(cic, is_sync);
  3088. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3089. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3090. cic_set_cfqq(cic, cfqq, is_sync);
  3091. } else {
  3092. /*
  3093. * If the queue was seeky for too long, break it apart.
  3094. */
  3095. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3096. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3097. cfqq = split_cfqq(cic, cfqq);
  3098. if (!cfqq)
  3099. goto new_queue;
  3100. }
  3101. /*
  3102. * Check to see if this queue is scheduled to merge with
  3103. * another, closely cooperating queue. The merging of
  3104. * queues happens here as it must be done in process context.
  3105. * The reference on new_cfqq was taken in merge_cfqqs.
  3106. */
  3107. if (cfqq->new_cfqq)
  3108. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3109. }
  3110. cfqq->allocated[rw]++;
  3111. atomic_inc(&cfqq->ref);
  3112. spin_unlock_irqrestore(q->queue_lock, flags);
  3113. rq->elevator_private = cic;
  3114. rq->elevator_private2 = cfqq;
  3115. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3116. return 0;
  3117. queue_fail:
  3118. if (cic)
  3119. put_io_context(cic->ioc);
  3120. cfq_schedule_dispatch(cfqd);
  3121. spin_unlock_irqrestore(q->queue_lock, flags);
  3122. cfq_log(cfqd, "set_request fail");
  3123. return 1;
  3124. }
  3125. static void cfq_kick_queue(struct work_struct *work)
  3126. {
  3127. struct cfq_data *cfqd =
  3128. container_of(work, struct cfq_data, unplug_work);
  3129. struct request_queue *q = cfqd->queue;
  3130. spin_lock_irq(q->queue_lock);
  3131. __blk_run_queue(cfqd->queue);
  3132. spin_unlock_irq(q->queue_lock);
  3133. }
  3134. /*
  3135. * Timer running if the active_queue is currently idling inside its time slice
  3136. */
  3137. static void cfq_idle_slice_timer(unsigned long data)
  3138. {
  3139. struct cfq_data *cfqd = (struct cfq_data *) data;
  3140. struct cfq_queue *cfqq;
  3141. unsigned long flags;
  3142. int timed_out = 1;
  3143. cfq_log(cfqd, "idle timer fired");
  3144. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3145. cfqq = cfqd->active_queue;
  3146. if (cfqq) {
  3147. timed_out = 0;
  3148. /*
  3149. * We saw a request before the queue expired, let it through
  3150. */
  3151. if (cfq_cfqq_must_dispatch(cfqq))
  3152. goto out_kick;
  3153. /*
  3154. * expired
  3155. */
  3156. if (cfq_slice_used(cfqq))
  3157. goto expire;
  3158. /*
  3159. * only expire and reinvoke request handler, if there are
  3160. * other queues with pending requests
  3161. */
  3162. if (!cfqd->busy_queues)
  3163. goto out_cont;
  3164. /*
  3165. * not expired and it has a request pending, let it dispatch
  3166. */
  3167. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3168. goto out_kick;
  3169. /*
  3170. * Queue depth flag is reset only when the idle didn't succeed
  3171. */
  3172. cfq_clear_cfqq_deep(cfqq);
  3173. }
  3174. expire:
  3175. cfq_slice_expired(cfqd, timed_out);
  3176. out_kick:
  3177. cfq_schedule_dispatch(cfqd);
  3178. out_cont:
  3179. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3180. }
  3181. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3182. {
  3183. del_timer_sync(&cfqd->idle_slice_timer);
  3184. cancel_work_sync(&cfqd->unplug_work);
  3185. }
  3186. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3187. {
  3188. int i;
  3189. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3190. if (cfqd->async_cfqq[0][i])
  3191. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3192. if (cfqd->async_cfqq[1][i])
  3193. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3194. }
  3195. if (cfqd->async_idle_cfqq)
  3196. cfq_put_queue(cfqd->async_idle_cfqq);
  3197. }
  3198. static void cfq_cfqd_free(struct rcu_head *head)
  3199. {
  3200. kfree(container_of(head, struct cfq_data, rcu));
  3201. }
  3202. static void cfq_exit_queue(struct elevator_queue *e)
  3203. {
  3204. struct cfq_data *cfqd = e->elevator_data;
  3205. struct request_queue *q = cfqd->queue;
  3206. cfq_shutdown_timer_wq(cfqd);
  3207. spin_lock_irq(q->queue_lock);
  3208. if (cfqd->active_queue)
  3209. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3210. while (!list_empty(&cfqd->cic_list)) {
  3211. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3212. struct cfq_io_context,
  3213. queue_list);
  3214. __cfq_exit_single_io_context(cfqd, cic);
  3215. }
  3216. cfq_put_async_queues(cfqd);
  3217. cfq_release_cfq_groups(cfqd);
  3218. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3219. spin_unlock_irq(q->queue_lock);
  3220. cfq_shutdown_timer_wq(cfqd);
  3221. spin_lock(&cic_index_lock);
  3222. ida_remove(&cic_index_ida, cfqd->cic_index);
  3223. spin_unlock(&cic_index_lock);
  3224. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3225. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3226. }
  3227. static int cfq_alloc_cic_index(void)
  3228. {
  3229. int index, error;
  3230. do {
  3231. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3232. return -ENOMEM;
  3233. spin_lock(&cic_index_lock);
  3234. error = ida_get_new(&cic_index_ida, &index);
  3235. spin_unlock(&cic_index_lock);
  3236. if (error && error != -EAGAIN)
  3237. return error;
  3238. } while (error);
  3239. return index;
  3240. }
  3241. static void *cfq_init_queue(struct request_queue *q)
  3242. {
  3243. struct cfq_data *cfqd;
  3244. int i, j;
  3245. struct cfq_group *cfqg;
  3246. struct cfq_rb_root *st;
  3247. i = cfq_alloc_cic_index();
  3248. if (i < 0)
  3249. return NULL;
  3250. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3251. if (!cfqd)
  3252. return NULL;
  3253. cfqd->cic_index = i;
  3254. /* Init root service tree */
  3255. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3256. /* Init root group */
  3257. cfqg = &cfqd->root_group;
  3258. for_each_cfqg_st(cfqg, i, j, st)
  3259. *st = CFQ_RB_ROOT;
  3260. RB_CLEAR_NODE(&cfqg->rb_node);
  3261. /* Give preference to root group over other groups */
  3262. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3263. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3264. /*
  3265. * Take a reference to root group which we never drop. This is just
  3266. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3267. */
  3268. atomic_set(&cfqg->ref, 1);
  3269. rcu_read_lock();
  3270. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3271. (void *)cfqd, 0);
  3272. rcu_read_unlock();
  3273. #endif
  3274. /*
  3275. * Not strictly needed (since RB_ROOT just clears the node and we
  3276. * zeroed cfqd on alloc), but better be safe in case someone decides
  3277. * to add magic to the rb code
  3278. */
  3279. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3280. cfqd->prio_trees[i] = RB_ROOT;
  3281. /*
  3282. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3283. * Grab a permanent reference to it, so that the normal code flow
  3284. * will not attempt to free it.
  3285. */
  3286. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3287. atomic_inc(&cfqd->oom_cfqq.ref);
  3288. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3289. INIT_LIST_HEAD(&cfqd->cic_list);
  3290. cfqd->queue = q;
  3291. init_timer(&cfqd->idle_slice_timer);
  3292. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3293. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3294. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3295. cfqd->cfq_quantum = cfq_quantum;
  3296. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3297. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3298. cfqd->cfq_back_max = cfq_back_max;
  3299. cfqd->cfq_back_penalty = cfq_back_penalty;
  3300. cfqd->cfq_slice[0] = cfq_slice_async;
  3301. cfqd->cfq_slice[1] = cfq_slice_sync;
  3302. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3303. cfqd->cfq_slice_idle = cfq_slice_idle;
  3304. cfqd->cfq_group_idle = cfq_group_idle;
  3305. cfqd->cfq_latency = 1;
  3306. cfqd->cfq_group_isolation = 0;
  3307. cfqd->hw_tag = -1;
  3308. /*
  3309. * we optimistically start assuming sync ops weren't delayed in last
  3310. * second, in order to have larger depth for async operations.
  3311. */
  3312. cfqd->last_delayed_sync = jiffies - HZ;
  3313. return cfqd;
  3314. }
  3315. static void cfq_slab_kill(void)
  3316. {
  3317. /*
  3318. * Caller already ensured that pending RCU callbacks are completed,
  3319. * so we should have no busy allocations at this point.
  3320. */
  3321. if (cfq_pool)
  3322. kmem_cache_destroy(cfq_pool);
  3323. if (cfq_ioc_pool)
  3324. kmem_cache_destroy(cfq_ioc_pool);
  3325. }
  3326. static int __init cfq_slab_setup(void)
  3327. {
  3328. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3329. if (!cfq_pool)
  3330. goto fail;
  3331. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3332. if (!cfq_ioc_pool)
  3333. goto fail;
  3334. return 0;
  3335. fail:
  3336. cfq_slab_kill();
  3337. return -ENOMEM;
  3338. }
  3339. /*
  3340. * sysfs parts below -->
  3341. */
  3342. static ssize_t
  3343. cfq_var_show(unsigned int var, char *page)
  3344. {
  3345. return sprintf(page, "%d\n", var);
  3346. }
  3347. static ssize_t
  3348. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3349. {
  3350. char *p = (char *) page;
  3351. *var = simple_strtoul(p, &p, 10);
  3352. return count;
  3353. }
  3354. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3355. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3356. { \
  3357. struct cfq_data *cfqd = e->elevator_data; \
  3358. unsigned int __data = __VAR; \
  3359. if (__CONV) \
  3360. __data = jiffies_to_msecs(__data); \
  3361. return cfq_var_show(__data, (page)); \
  3362. }
  3363. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3364. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3365. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3366. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3367. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3368. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3369. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3370. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3371. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3372. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3373. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3374. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3375. #undef SHOW_FUNCTION
  3376. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3377. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3378. { \
  3379. struct cfq_data *cfqd = e->elevator_data; \
  3380. unsigned int __data; \
  3381. int ret = cfq_var_store(&__data, (page), count); \
  3382. if (__data < (MIN)) \
  3383. __data = (MIN); \
  3384. else if (__data > (MAX)) \
  3385. __data = (MAX); \
  3386. if (__CONV) \
  3387. *(__PTR) = msecs_to_jiffies(__data); \
  3388. else \
  3389. *(__PTR) = __data; \
  3390. return ret; \
  3391. }
  3392. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3393. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3394. UINT_MAX, 1);
  3395. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3396. UINT_MAX, 1);
  3397. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3398. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3399. UINT_MAX, 0);
  3400. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3401. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3402. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3403. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3404. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3405. UINT_MAX, 0);
  3406. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3407. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3408. #undef STORE_FUNCTION
  3409. #define CFQ_ATTR(name) \
  3410. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3411. static struct elv_fs_entry cfq_attrs[] = {
  3412. CFQ_ATTR(quantum),
  3413. CFQ_ATTR(fifo_expire_sync),
  3414. CFQ_ATTR(fifo_expire_async),
  3415. CFQ_ATTR(back_seek_max),
  3416. CFQ_ATTR(back_seek_penalty),
  3417. CFQ_ATTR(slice_sync),
  3418. CFQ_ATTR(slice_async),
  3419. CFQ_ATTR(slice_async_rq),
  3420. CFQ_ATTR(slice_idle),
  3421. CFQ_ATTR(group_idle),
  3422. CFQ_ATTR(low_latency),
  3423. CFQ_ATTR(group_isolation),
  3424. __ATTR_NULL
  3425. };
  3426. static struct elevator_type iosched_cfq = {
  3427. .ops = {
  3428. .elevator_merge_fn = cfq_merge,
  3429. .elevator_merged_fn = cfq_merged_request,
  3430. .elevator_merge_req_fn = cfq_merged_requests,
  3431. .elevator_allow_merge_fn = cfq_allow_merge,
  3432. .elevator_bio_merged_fn = cfq_bio_merged,
  3433. .elevator_dispatch_fn = cfq_dispatch_requests,
  3434. .elevator_add_req_fn = cfq_insert_request,
  3435. .elevator_activate_req_fn = cfq_activate_request,
  3436. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3437. .elevator_queue_empty_fn = cfq_queue_empty,
  3438. .elevator_completed_req_fn = cfq_completed_request,
  3439. .elevator_former_req_fn = elv_rb_former_request,
  3440. .elevator_latter_req_fn = elv_rb_latter_request,
  3441. .elevator_set_req_fn = cfq_set_request,
  3442. .elevator_put_req_fn = cfq_put_request,
  3443. .elevator_may_queue_fn = cfq_may_queue,
  3444. .elevator_init_fn = cfq_init_queue,
  3445. .elevator_exit_fn = cfq_exit_queue,
  3446. .trim = cfq_free_io_context,
  3447. },
  3448. .elevator_attrs = cfq_attrs,
  3449. .elevator_name = "cfq",
  3450. .elevator_owner = THIS_MODULE,
  3451. };
  3452. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3453. static struct blkio_policy_type blkio_policy_cfq = {
  3454. .ops = {
  3455. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3456. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3457. },
  3458. .plid = BLKIO_POLICY_PROP,
  3459. };
  3460. #else
  3461. static struct blkio_policy_type blkio_policy_cfq;
  3462. #endif
  3463. static int __init cfq_init(void)
  3464. {
  3465. /*
  3466. * could be 0 on HZ < 1000 setups
  3467. */
  3468. if (!cfq_slice_async)
  3469. cfq_slice_async = 1;
  3470. if (!cfq_slice_idle)
  3471. cfq_slice_idle = 1;
  3472. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3473. if (!cfq_group_idle)
  3474. cfq_group_idle = 1;
  3475. #else
  3476. cfq_group_idle = 0;
  3477. #endif
  3478. if (cfq_slab_setup())
  3479. return -ENOMEM;
  3480. elv_register(&iosched_cfq);
  3481. blkio_policy_register(&blkio_policy_cfq);
  3482. return 0;
  3483. }
  3484. static void __exit cfq_exit(void)
  3485. {
  3486. DECLARE_COMPLETION_ONSTACK(all_gone);
  3487. blkio_policy_unregister(&blkio_policy_cfq);
  3488. elv_unregister(&iosched_cfq);
  3489. ioc_gone = &all_gone;
  3490. /* ioc_gone's update must be visible before reading ioc_count */
  3491. smp_wmb();
  3492. /*
  3493. * this also protects us from entering cfq_slab_kill() with
  3494. * pending RCU callbacks
  3495. */
  3496. if (elv_ioc_count_read(cfq_ioc_count))
  3497. wait_for_completion(&all_gone);
  3498. ida_destroy(&cic_index_ida);
  3499. cfq_slab_kill();
  3500. }
  3501. module_init(cfq_init);
  3502. module_exit(cfq_exit);
  3503. MODULE_AUTHOR("Jens Axboe");
  3504. MODULE_LICENSE("GPL");
  3505. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");