mmu.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  233. {
  234. #ifdef CONFIG_X86_64
  235. return xchg(sptep, new_spte);
  236. #else
  237. u64 old_spte;
  238. do {
  239. old_spte = *sptep;
  240. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  241. return old_spte;
  242. #endif
  243. }
  244. static void update_spte(u64 *sptep, u64 new_spte)
  245. {
  246. u64 old_spte;
  247. if (!shadow_accessed_mask || (new_spte & shadow_accessed_mask) ||
  248. !is_rmap_spte(*sptep))
  249. __set_spte(sptep, new_spte);
  250. else {
  251. old_spte = __xchg_spte(sptep, new_spte);
  252. if (old_spte & shadow_accessed_mask)
  253. mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte)));
  254. }
  255. }
  256. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  257. struct kmem_cache *base_cache, int min)
  258. {
  259. void *obj;
  260. if (cache->nobjs >= min)
  261. return 0;
  262. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  263. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  264. if (!obj)
  265. return -ENOMEM;
  266. cache->objects[cache->nobjs++] = obj;
  267. }
  268. return 0;
  269. }
  270. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  271. struct kmem_cache *cache)
  272. {
  273. while (mc->nobjs)
  274. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  275. }
  276. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  277. int min)
  278. {
  279. struct page *page;
  280. if (cache->nobjs >= min)
  281. return 0;
  282. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  283. page = alloc_page(GFP_KERNEL);
  284. if (!page)
  285. return -ENOMEM;
  286. cache->objects[cache->nobjs++] = page_address(page);
  287. }
  288. return 0;
  289. }
  290. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  291. {
  292. while (mc->nobjs)
  293. free_page((unsigned long)mc->objects[--mc->nobjs]);
  294. }
  295. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  296. {
  297. int r;
  298. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  299. pte_chain_cache, 4);
  300. if (r)
  301. goto out;
  302. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  303. rmap_desc_cache, 4);
  304. if (r)
  305. goto out;
  306. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  307. if (r)
  308. goto out;
  309. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  310. mmu_page_header_cache, 4);
  311. out:
  312. return r;
  313. }
  314. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  315. {
  316. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  317. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  318. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  319. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  320. mmu_page_header_cache);
  321. }
  322. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  323. size_t size)
  324. {
  325. void *p;
  326. BUG_ON(!mc->nobjs);
  327. p = mc->objects[--mc->nobjs];
  328. return p;
  329. }
  330. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  331. {
  332. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  333. sizeof(struct kvm_pte_chain));
  334. }
  335. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  336. {
  337. kmem_cache_free(pte_chain_cache, pc);
  338. }
  339. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  340. {
  341. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  342. sizeof(struct kvm_rmap_desc));
  343. }
  344. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  345. {
  346. kmem_cache_free(rmap_desc_cache, rd);
  347. }
  348. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  349. {
  350. if (!sp->role.direct)
  351. return sp->gfns[index];
  352. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  353. }
  354. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  355. {
  356. if (sp->role.direct)
  357. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  358. else
  359. sp->gfns[index] = gfn;
  360. }
  361. /*
  362. * Return the pointer to the largepage write count for a given
  363. * gfn, handling slots that are not large page aligned.
  364. */
  365. static int *slot_largepage_idx(gfn_t gfn,
  366. struct kvm_memory_slot *slot,
  367. int level)
  368. {
  369. unsigned long idx;
  370. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  371. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  372. return &slot->lpage_info[level - 2][idx].write_count;
  373. }
  374. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  375. {
  376. struct kvm_memory_slot *slot;
  377. int *write_count;
  378. int i;
  379. slot = gfn_to_memslot(kvm, gfn);
  380. for (i = PT_DIRECTORY_LEVEL;
  381. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  382. write_count = slot_largepage_idx(gfn, slot, i);
  383. *write_count += 1;
  384. }
  385. }
  386. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  387. {
  388. struct kvm_memory_slot *slot;
  389. int *write_count;
  390. int i;
  391. slot = gfn_to_memslot(kvm, gfn);
  392. for (i = PT_DIRECTORY_LEVEL;
  393. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  394. write_count = slot_largepage_idx(gfn, slot, i);
  395. *write_count -= 1;
  396. WARN_ON(*write_count < 0);
  397. }
  398. }
  399. static int has_wrprotected_page(struct kvm *kvm,
  400. gfn_t gfn,
  401. int level)
  402. {
  403. struct kvm_memory_slot *slot;
  404. int *largepage_idx;
  405. slot = gfn_to_memslot(kvm, gfn);
  406. if (slot) {
  407. largepage_idx = slot_largepage_idx(gfn, slot, level);
  408. return *largepage_idx;
  409. }
  410. return 1;
  411. }
  412. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  413. {
  414. unsigned long page_size;
  415. int i, ret = 0;
  416. page_size = kvm_host_page_size(kvm, gfn);
  417. for (i = PT_PAGE_TABLE_LEVEL;
  418. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  419. if (page_size >= KVM_HPAGE_SIZE(i))
  420. ret = i;
  421. else
  422. break;
  423. }
  424. return ret;
  425. }
  426. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  427. {
  428. struct kvm_memory_slot *slot;
  429. int host_level, level, max_level;
  430. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  431. if (slot && slot->dirty_bitmap)
  432. return PT_PAGE_TABLE_LEVEL;
  433. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  434. if (host_level == PT_PAGE_TABLE_LEVEL)
  435. return host_level;
  436. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  437. kvm_x86_ops->get_lpage_level() : host_level;
  438. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  439. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  440. break;
  441. return level - 1;
  442. }
  443. /*
  444. * Take gfn and return the reverse mapping to it.
  445. */
  446. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  447. {
  448. struct kvm_memory_slot *slot;
  449. unsigned long idx;
  450. slot = gfn_to_memslot(kvm, gfn);
  451. if (likely(level == PT_PAGE_TABLE_LEVEL))
  452. return &slot->rmap[gfn - slot->base_gfn];
  453. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  454. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  455. return &slot->lpage_info[level - 2][idx].rmap_pde;
  456. }
  457. /*
  458. * Reverse mapping data structures:
  459. *
  460. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  461. * that points to page_address(page).
  462. *
  463. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  464. * containing more mappings.
  465. *
  466. * Returns the number of rmap entries before the spte was added or zero if
  467. * the spte was not added.
  468. *
  469. */
  470. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  471. {
  472. struct kvm_mmu_page *sp;
  473. struct kvm_rmap_desc *desc;
  474. unsigned long *rmapp;
  475. int i, count = 0;
  476. if (!is_rmap_spte(*spte))
  477. return count;
  478. sp = page_header(__pa(spte));
  479. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  480. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  481. if (!*rmapp) {
  482. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  483. *rmapp = (unsigned long)spte;
  484. } else if (!(*rmapp & 1)) {
  485. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  486. desc = mmu_alloc_rmap_desc(vcpu);
  487. desc->sptes[0] = (u64 *)*rmapp;
  488. desc->sptes[1] = spte;
  489. *rmapp = (unsigned long)desc | 1;
  490. } else {
  491. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  492. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  493. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  494. desc = desc->more;
  495. count += RMAP_EXT;
  496. }
  497. if (desc->sptes[RMAP_EXT-1]) {
  498. desc->more = mmu_alloc_rmap_desc(vcpu);
  499. desc = desc->more;
  500. }
  501. for (i = 0; desc->sptes[i]; ++i)
  502. ;
  503. desc->sptes[i] = spte;
  504. }
  505. return count;
  506. }
  507. static void rmap_desc_remove_entry(unsigned long *rmapp,
  508. struct kvm_rmap_desc *desc,
  509. int i,
  510. struct kvm_rmap_desc *prev_desc)
  511. {
  512. int j;
  513. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  514. ;
  515. desc->sptes[i] = desc->sptes[j];
  516. desc->sptes[j] = NULL;
  517. if (j != 0)
  518. return;
  519. if (!prev_desc && !desc->more)
  520. *rmapp = (unsigned long)desc->sptes[0];
  521. else
  522. if (prev_desc)
  523. prev_desc->more = desc->more;
  524. else
  525. *rmapp = (unsigned long)desc->more | 1;
  526. mmu_free_rmap_desc(desc);
  527. }
  528. static void rmap_remove(struct kvm *kvm, u64 *spte)
  529. {
  530. struct kvm_rmap_desc *desc;
  531. struct kvm_rmap_desc *prev_desc;
  532. struct kvm_mmu_page *sp;
  533. gfn_t gfn;
  534. unsigned long *rmapp;
  535. int i;
  536. sp = page_header(__pa(spte));
  537. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  538. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  539. if (!*rmapp) {
  540. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  541. BUG();
  542. } else if (!(*rmapp & 1)) {
  543. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  544. if ((u64 *)*rmapp != spte) {
  545. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  546. spte, *spte);
  547. BUG();
  548. }
  549. *rmapp = 0;
  550. } else {
  551. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  552. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  553. prev_desc = NULL;
  554. while (desc) {
  555. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  556. if (desc->sptes[i] == spte) {
  557. rmap_desc_remove_entry(rmapp,
  558. desc, i,
  559. prev_desc);
  560. return;
  561. }
  562. prev_desc = desc;
  563. desc = desc->more;
  564. }
  565. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  566. BUG();
  567. }
  568. }
  569. static void set_spte_track_bits(u64 *sptep, u64 new_spte)
  570. {
  571. pfn_t pfn;
  572. u64 old_spte;
  573. old_spte = __xchg_spte(sptep, new_spte);
  574. if (!is_rmap_spte(old_spte))
  575. return;
  576. pfn = spte_to_pfn(old_spte);
  577. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  578. kvm_set_pfn_accessed(pfn);
  579. if (is_writable_pte(old_spte))
  580. kvm_set_pfn_dirty(pfn);
  581. }
  582. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  583. {
  584. set_spte_track_bits(sptep, new_spte);
  585. rmap_remove(kvm, sptep);
  586. }
  587. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  588. {
  589. struct kvm_rmap_desc *desc;
  590. u64 *prev_spte;
  591. int i;
  592. if (!*rmapp)
  593. return NULL;
  594. else if (!(*rmapp & 1)) {
  595. if (!spte)
  596. return (u64 *)*rmapp;
  597. return NULL;
  598. }
  599. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  600. prev_spte = NULL;
  601. while (desc) {
  602. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  603. if (prev_spte == spte)
  604. return desc->sptes[i];
  605. prev_spte = desc->sptes[i];
  606. }
  607. desc = desc->more;
  608. }
  609. return NULL;
  610. }
  611. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  612. {
  613. unsigned long *rmapp;
  614. u64 *spte;
  615. int i, write_protected = 0;
  616. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  617. spte = rmap_next(kvm, rmapp, NULL);
  618. while (spte) {
  619. BUG_ON(!spte);
  620. BUG_ON(!(*spte & PT_PRESENT_MASK));
  621. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  622. if (is_writable_pte(*spte)) {
  623. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  624. write_protected = 1;
  625. }
  626. spte = rmap_next(kvm, rmapp, spte);
  627. }
  628. if (write_protected) {
  629. pfn_t pfn;
  630. spte = rmap_next(kvm, rmapp, NULL);
  631. pfn = spte_to_pfn(*spte);
  632. kvm_set_pfn_dirty(pfn);
  633. }
  634. /* check for huge page mappings */
  635. for (i = PT_DIRECTORY_LEVEL;
  636. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  637. rmapp = gfn_to_rmap(kvm, gfn, i);
  638. spte = rmap_next(kvm, rmapp, NULL);
  639. while (spte) {
  640. BUG_ON(!spte);
  641. BUG_ON(!(*spte & PT_PRESENT_MASK));
  642. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  643. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  644. if (is_writable_pte(*spte)) {
  645. drop_spte(kvm, spte,
  646. shadow_trap_nonpresent_pte);
  647. --kvm->stat.lpages;
  648. spte = NULL;
  649. write_protected = 1;
  650. }
  651. spte = rmap_next(kvm, rmapp, spte);
  652. }
  653. }
  654. return write_protected;
  655. }
  656. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  657. unsigned long data)
  658. {
  659. u64 *spte;
  660. int need_tlb_flush = 0;
  661. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  662. BUG_ON(!(*spte & PT_PRESENT_MASK));
  663. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  664. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  665. need_tlb_flush = 1;
  666. }
  667. return need_tlb_flush;
  668. }
  669. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  670. unsigned long data)
  671. {
  672. int need_flush = 0;
  673. u64 *spte, new_spte;
  674. pte_t *ptep = (pte_t *)data;
  675. pfn_t new_pfn;
  676. WARN_ON(pte_huge(*ptep));
  677. new_pfn = pte_pfn(*ptep);
  678. spte = rmap_next(kvm, rmapp, NULL);
  679. while (spte) {
  680. BUG_ON(!is_shadow_present_pte(*spte));
  681. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  682. need_flush = 1;
  683. if (pte_write(*ptep)) {
  684. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  685. spte = rmap_next(kvm, rmapp, NULL);
  686. } else {
  687. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  688. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  689. new_spte &= ~PT_WRITABLE_MASK;
  690. new_spte &= ~SPTE_HOST_WRITEABLE;
  691. new_spte &= ~shadow_accessed_mask;
  692. set_spte_track_bits(spte, new_spte);
  693. spte = rmap_next(kvm, rmapp, spte);
  694. }
  695. }
  696. if (need_flush)
  697. kvm_flush_remote_tlbs(kvm);
  698. return 0;
  699. }
  700. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  701. unsigned long data,
  702. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  703. unsigned long data))
  704. {
  705. int i, j;
  706. int ret;
  707. int retval = 0;
  708. struct kvm_memslots *slots;
  709. slots = kvm_memslots(kvm);
  710. for (i = 0; i < slots->nmemslots; i++) {
  711. struct kvm_memory_slot *memslot = &slots->memslots[i];
  712. unsigned long start = memslot->userspace_addr;
  713. unsigned long end;
  714. end = start + (memslot->npages << PAGE_SHIFT);
  715. if (hva >= start && hva < end) {
  716. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  717. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  718. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  719. unsigned long idx;
  720. int sh;
  721. sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
  722. idx = ((memslot->base_gfn+gfn_offset) >> sh) -
  723. (memslot->base_gfn >> sh);
  724. ret |= handler(kvm,
  725. &memslot->lpage_info[j][idx].rmap_pde,
  726. data);
  727. }
  728. trace_kvm_age_page(hva, memslot, ret);
  729. retval |= ret;
  730. }
  731. }
  732. return retval;
  733. }
  734. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  735. {
  736. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  737. }
  738. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  739. {
  740. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  741. }
  742. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  743. unsigned long data)
  744. {
  745. u64 *spte;
  746. int young = 0;
  747. /*
  748. * Emulate the accessed bit for EPT, by checking if this page has
  749. * an EPT mapping, and clearing it if it does. On the next access,
  750. * a new EPT mapping will be established.
  751. * This has some overhead, but not as much as the cost of swapping
  752. * out actively used pages or breaking up actively used hugepages.
  753. */
  754. if (!shadow_accessed_mask)
  755. return kvm_unmap_rmapp(kvm, rmapp, data);
  756. spte = rmap_next(kvm, rmapp, NULL);
  757. while (spte) {
  758. int _young;
  759. u64 _spte = *spte;
  760. BUG_ON(!(_spte & PT_PRESENT_MASK));
  761. _young = _spte & PT_ACCESSED_MASK;
  762. if (_young) {
  763. young = 1;
  764. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  765. }
  766. spte = rmap_next(kvm, rmapp, spte);
  767. }
  768. return young;
  769. }
  770. #define RMAP_RECYCLE_THRESHOLD 1000
  771. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  772. {
  773. unsigned long *rmapp;
  774. struct kvm_mmu_page *sp;
  775. sp = page_header(__pa(spte));
  776. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  777. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  778. kvm_flush_remote_tlbs(vcpu->kvm);
  779. }
  780. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  781. {
  782. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  783. }
  784. #ifdef MMU_DEBUG
  785. static int is_empty_shadow_page(u64 *spt)
  786. {
  787. u64 *pos;
  788. u64 *end;
  789. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  790. if (is_shadow_present_pte(*pos)) {
  791. printk(KERN_ERR "%s: %p %llx\n", __func__,
  792. pos, *pos);
  793. return 0;
  794. }
  795. return 1;
  796. }
  797. #endif
  798. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  799. {
  800. ASSERT(is_empty_shadow_page(sp->spt));
  801. hlist_del(&sp->hash_link);
  802. list_del(&sp->link);
  803. __free_page(virt_to_page(sp->spt));
  804. if (!sp->role.direct)
  805. __free_page(virt_to_page(sp->gfns));
  806. kmem_cache_free(mmu_page_header_cache, sp);
  807. ++kvm->arch.n_free_mmu_pages;
  808. }
  809. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  810. {
  811. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  812. }
  813. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  814. u64 *parent_pte, int direct)
  815. {
  816. struct kvm_mmu_page *sp;
  817. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  818. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  819. if (!direct)
  820. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  821. PAGE_SIZE);
  822. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  823. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  824. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  825. sp->multimapped = 0;
  826. sp->parent_pte = parent_pte;
  827. --vcpu->kvm->arch.n_free_mmu_pages;
  828. return sp;
  829. }
  830. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  831. struct kvm_mmu_page *sp, u64 *parent_pte)
  832. {
  833. struct kvm_pte_chain *pte_chain;
  834. struct hlist_node *node;
  835. int i;
  836. if (!parent_pte)
  837. return;
  838. if (!sp->multimapped) {
  839. u64 *old = sp->parent_pte;
  840. if (!old) {
  841. sp->parent_pte = parent_pte;
  842. return;
  843. }
  844. sp->multimapped = 1;
  845. pte_chain = mmu_alloc_pte_chain(vcpu);
  846. INIT_HLIST_HEAD(&sp->parent_ptes);
  847. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  848. pte_chain->parent_ptes[0] = old;
  849. }
  850. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  851. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  852. continue;
  853. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  854. if (!pte_chain->parent_ptes[i]) {
  855. pte_chain->parent_ptes[i] = parent_pte;
  856. return;
  857. }
  858. }
  859. pte_chain = mmu_alloc_pte_chain(vcpu);
  860. BUG_ON(!pte_chain);
  861. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  862. pte_chain->parent_ptes[0] = parent_pte;
  863. }
  864. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  865. u64 *parent_pte)
  866. {
  867. struct kvm_pte_chain *pte_chain;
  868. struct hlist_node *node;
  869. int i;
  870. if (!sp->multimapped) {
  871. BUG_ON(sp->parent_pte != parent_pte);
  872. sp->parent_pte = NULL;
  873. return;
  874. }
  875. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  876. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  877. if (!pte_chain->parent_ptes[i])
  878. break;
  879. if (pte_chain->parent_ptes[i] != parent_pte)
  880. continue;
  881. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  882. && pte_chain->parent_ptes[i + 1]) {
  883. pte_chain->parent_ptes[i]
  884. = pte_chain->parent_ptes[i + 1];
  885. ++i;
  886. }
  887. pte_chain->parent_ptes[i] = NULL;
  888. if (i == 0) {
  889. hlist_del(&pte_chain->link);
  890. mmu_free_pte_chain(pte_chain);
  891. if (hlist_empty(&sp->parent_ptes)) {
  892. sp->multimapped = 0;
  893. sp->parent_pte = NULL;
  894. }
  895. }
  896. return;
  897. }
  898. BUG();
  899. }
  900. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  901. {
  902. struct kvm_pte_chain *pte_chain;
  903. struct hlist_node *node;
  904. struct kvm_mmu_page *parent_sp;
  905. int i;
  906. if (!sp->multimapped && sp->parent_pte) {
  907. parent_sp = page_header(__pa(sp->parent_pte));
  908. fn(parent_sp, sp->parent_pte);
  909. return;
  910. }
  911. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  912. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  913. u64 *spte = pte_chain->parent_ptes[i];
  914. if (!spte)
  915. break;
  916. parent_sp = page_header(__pa(spte));
  917. fn(parent_sp, spte);
  918. }
  919. }
  920. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  921. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  922. {
  923. mmu_parent_walk(sp, mark_unsync);
  924. }
  925. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  926. {
  927. unsigned int index;
  928. index = spte - sp->spt;
  929. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  930. return;
  931. if (sp->unsync_children++)
  932. return;
  933. kvm_mmu_mark_parents_unsync(sp);
  934. }
  935. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  936. struct kvm_mmu_page *sp)
  937. {
  938. int i;
  939. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  940. sp->spt[i] = shadow_trap_nonpresent_pte;
  941. }
  942. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  943. struct kvm_mmu_page *sp, bool clear_unsync)
  944. {
  945. return 1;
  946. }
  947. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  948. {
  949. }
  950. #define KVM_PAGE_ARRAY_NR 16
  951. struct kvm_mmu_pages {
  952. struct mmu_page_and_offset {
  953. struct kvm_mmu_page *sp;
  954. unsigned int idx;
  955. } page[KVM_PAGE_ARRAY_NR];
  956. unsigned int nr;
  957. };
  958. #define for_each_unsync_children(bitmap, idx) \
  959. for (idx = find_first_bit(bitmap, 512); \
  960. idx < 512; \
  961. idx = find_next_bit(bitmap, 512, idx+1))
  962. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  963. int idx)
  964. {
  965. int i;
  966. if (sp->unsync)
  967. for (i=0; i < pvec->nr; i++)
  968. if (pvec->page[i].sp == sp)
  969. return 0;
  970. pvec->page[pvec->nr].sp = sp;
  971. pvec->page[pvec->nr].idx = idx;
  972. pvec->nr++;
  973. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  974. }
  975. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  976. struct kvm_mmu_pages *pvec)
  977. {
  978. int i, ret, nr_unsync_leaf = 0;
  979. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  980. struct kvm_mmu_page *child;
  981. u64 ent = sp->spt[i];
  982. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  983. goto clear_child_bitmap;
  984. child = page_header(ent & PT64_BASE_ADDR_MASK);
  985. if (child->unsync_children) {
  986. if (mmu_pages_add(pvec, child, i))
  987. return -ENOSPC;
  988. ret = __mmu_unsync_walk(child, pvec);
  989. if (!ret)
  990. goto clear_child_bitmap;
  991. else if (ret > 0)
  992. nr_unsync_leaf += ret;
  993. else
  994. return ret;
  995. } else if (child->unsync) {
  996. nr_unsync_leaf++;
  997. if (mmu_pages_add(pvec, child, i))
  998. return -ENOSPC;
  999. } else
  1000. goto clear_child_bitmap;
  1001. continue;
  1002. clear_child_bitmap:
  1003. __clear_bit(i, sp->unsync_child_bitmap);
  1004. sp->unsync_children--;
  1005. WARN_ON((int)sp->unsync_children < 0);
  1006. }
  1007. return nr_unsync_leaf;
  1008. }
  1009. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1010. struct kvm_mmu_pages *pvec)
  1011. {
  1012. if (!sp->unsync_children)
  1013. return 0;
  1014. mmu_pages_add(pvec, sp, 0);
  1015. return __mmu_unsync_walk(sp, pvec);
  1016. }
  1017. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1018. {
  1019. WARN_ON(!sp->unsync);
  1020. trace_kvm_mmu_sync_page(sp);
  1021. sp->unsync = 0;
  1022. --kvm->stat.mmu_unsync;
  1023. }
  1024. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1025. struct list_head *invalid_list);
  1026. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1027. struct list_head *invalid_list);
  1028. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1029. hlist_for_each_entry(sp, pos, \
  1030. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1031. if ((sp)->gfn != (gfn)) {} else
  1032. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1033. hlist_for_each_entry(sp, pos, \
  1034. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1035. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1036. (sp)->role.invalid) {} else
  1037. /* @sp->gfn should be write-protected at the call site */
  1038. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1039. struct list_head *invalid_list, bool clear_unsync)
  1040. {
  1041. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1042. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1043. return 1;
  1044. }
  1045. if (clear_unsync)
  1046. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1047. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1048. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1049. return 1;
  1050. }
  1051. kvm_mmu_flush_tlb(vcpu);
  1052. return 0;
  1053. }
  1054. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1055. struct kvm_mmu_page *sp)
  1056. {
  1057. LIST_HEAD(invalid_list);
  1058. int ret;
  1059. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1060. if (ret)
  1061. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1062. return ret;
  1063. }
  1064. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1065. struct list_head *invalid_list)
  1066. {
  1067. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1068. }
  1069. /* @gfn should be write-protected at the call site */
  1070. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1071. {
  1072. struct kvm_mmu_page *s;
  1073. struct hlist_node *node;
  1074. LIST_HEAD(invalid_list);
  1075. bool flush = false;
  1076. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1077. if (!s->unsync)
  1078. continue;
  1079. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1080. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1081. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1082. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1083. continue;
  1084. }
  1085. kvm_unlink_unsync_page(vcpu->kvm, s);
  1086. flush = true;
  1087. }
  1088. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1089. if (flush)
  1090. kvm_mmu_flush_tlb(vcpu);
  1091. }
  1092. struct mmu_page_path {
  1093. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1094. unsigned int idx[PT64_ROOT_LEVEL-1];
  1095. };
  1096. #define for_each_sp(pvec, sp, parents, i) \
  1097. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1098. sp = pvec.page[i].sp; \
  1099. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1100. i = mmu_pages_next(&pvec, &parents, i))
  1101. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1102. struct mmu_page_path *parents,
  1103. int i)
  1104. {
  1105. int n;
  1106. for (n = i+1; n < pvec->nr; n++) {
  1107. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1108. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1109. parents->idx[0] = pvec->page[n].idx;
  1110. return n;
  1111. }
  1112. parents->parent[sp->role.level-2] = sp;
  1113. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1114. }
  1115. return n;
  1116. }
  1117. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1118. {
  1119. struct kvm_mmu_page *sp;
  1120. unsigned int level = 0;
  1121. do {
  1122. unsigned int idx = parents->idx[level];
  1123. sp = parents->parent[level];
  1124. if (!sp)
  1125. return;
  1126. --sp->unsync_children;
  1127. WARN_ON((int)sp->unsync_children < 0);
  1128. __clear_bit(idx, sp->unsync_child_bitmap);
  1129. level++;
  1130. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1131. }
  1132. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1133. struct mmu_page_path *parents,
  1134. struct kvm_mmu_pages *pvec)
  1135. {
  1136. parents->parent[parent->role.level-1] = NULL;
  1137. pvec->nr = 0;
  1138. }
  1139. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1140. struct kvm_mmu_page *parent)
  1141. {
  1142. int i;
  1143. struct kvm_mmu_page *sp;
  1144. struct mmu_page_path parents;
  1145. struct kvm_mmu_pages pages;
  1146. LIST_HEAD(invalid_list);
  1147. kvm_mmu_pages_init(parent, &parents, &pages);
  1148. while (mmu_unsync_walk(parent, &pages)) {
  1149. int protected = 0;
  1150. for_each_sp(pages, sp, parents, i)
  1151. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1152. if (protected)
  1153. kvm_flush_remote_tlbs(vcpu->kvm);
  1154. for_each_sp(pages, sp, parents, i) {
  1155. kvm_sync_page(vcpu, sp, &invalid_list);
  1156. mmu_pages_clear_parents(&parents);
  1157. }
  1158. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1159. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1160. kvm_mmu_pages_init(parent, &parents, &pages);
  1161. }
  1162. }
  1163. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1164. gfn_t gfn,
  1165. gva_t gaddr,
  1166. unsigned level,
  1167. int direct,
  1168. unsigned access,
  1169. u64 *parent_pte)
  1170. {
  1171. union kvm_mmu_page_role role;
  1172. unsigned quadrant;
  1173. struct kvm_mmu_page *sp;
  1174. struct hlist_node *node;
  1175. bool need_sync = false;
  1176. role = vcpu->arch.mmu.base_role;
  1177. role.level = level;
  1178. role.direct = direct;
  1179. if (role.direct)
  1180. role.cr4_pae = 0;
  1181. role.access = access;
  1182. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1183. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1184. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1185. role.quadrant = quadrant;
  1186. }
  1187. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1188. if (!need_sync && sp->unsync)
  1189. need_sync = true;
  1190. if (sp->role.word != role.word)
  1191. continue;
  1192. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1193. break;
  1194. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1195. if (sp->unsync_children) {
  1196. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1197. kvm_mmu_mark_parents_unsync(sp);
  1198. } else if (sp->unsync)
  1199. kvm_mmu_mark_parents_unsync(sp);
  1200. trace_kvm_mmu_get_page(sp, false);
  1201. return sp;
  1202. }
  1203. ++vcpu->kvm->stat.mmu_cache_miss;
  1204. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1205. if (!sp)
  1206. return sp;
  1207. sp->gfn = gfn;
  1208. sp->role = role;
  1209. hlist_add_head(&sp->hash_link,
  1210. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1211. if (!direct) {
  1212. if (rmap_write_protect(vcpu->kvm, gfn))
  1213. kvm_flush_remote_tlbs(vcpu->kvm);
  1214. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1215. kvm_sync_pages(vcpu, gfn);
  1216. account_shadowed(vcpu->kvm, gfn);
  1217. }
  1218. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1219. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1220. else
  1221. nonpaging_prefetch_page(vcpu, sp);
  1222. trace_kvm_mmu_get_page(sp, true);
  1223. return sp;
  1224. }
  1225. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1226. struct kvm_vcpu *vcpu, u64 addr)
  1227. {
  1228. iterator->addr = addr;
  1229. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1230. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1231. if (iterator->level == PT32E_ROOT_LEVEL) {
  1232. iterator->shadow_addr
  1233. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1234. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1235. --iterator->level;
  1236. if (!iterator->shadow_addr)
  1237. iterator->level = 0;
  1238. }
  1239. }
  1240. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1241. {
  1242. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1243. return false;
  1244. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1245. if (is_large_pte(*iterator->sptep))
  1246. return false;
  1247. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1248. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1249. return true;
  1250. }
  1251. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1252. {
  1253. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1254. --iterator->level;
  1255. }
  1256. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1257. {
  1258. u64 spte;
  1259. spte = __pa(sp->spt)
  1260. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1261. | PT_WRITABLE_MASK | PT_USER_MASK;
  1262. __set_spte(sptep, spte);
  1263. }
  1264. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1265. {
  1266. if (is_large_pte(*sptep)) {
  1267. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1268. kvm_flush_remote_tlbs(vcpu->kvm);
  1269. }
  1270. }
  1271. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1272. unsigned direct_access)
  1273. {
  1274. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1275. struct kvm_mmu_page *child;
  1276. /*
  1277. * For the direct sp, if the guest pte's dirty bit
  1278. * changed form clean to dirty, it will corrupt the
  1279. * sp's access: allow writable in the read-only sp,
  1280. * so we should update the spte at this point to get
  1281. * a new sp with the correct access.
  1282. */
  1283. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1284. if (child->role.access == direct_access)
  1285. return;
  1286. mmu_page_remove_parent_pte(child, sptep);
  1287. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1288. kvm_flush_remote_tlbs(vcpu->kvm);
  1289. }
  1290. }
  1291. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1292. struct kvm_mmu_page *sp)
  1293. {
  1294. unsigned i;
  1295. u64 *pt;
  1296. u64 ent;
  1297. pt = sp->spt;
  1298. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1299. ent = pt[i];
  1300. if (is_shadow_present_pte(ent)) {
  1301. if (!is_last_spte(ent, sp->role.level)) {
  1302. ent &= PT64_BASE_ADDR_MASK;
  1303. mmu_page_remove_parent_pte(page_header(ent),
  1304. &pt[i]);
  1305. } else {
  1306. if (is_large_pte(ent))
  1307. --kvm->stat.lpages;
  1308. drop_spte(kvm, &pt[i],
  1309. shadow_trap_nonpresent_pte);
  1310. }
  1311. }
  1312. pt[i] = shadow_trap_nonpresent_pte;
  1313. }
  1314. }
  1315. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1316. {
  1317. mmu_page_remove_parent_pte(sp, parent_pte);
  1318. }
  1319. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1320. {
  1321. int i;
  1322. struct kvm_vcpu *vcpu;
  1323. kvm_for_each_vcpu(i, vcpu, kvm)
  1324. vcpu->arch.last_pte_updated = NULL;
  1325. }
  1326. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1327. {
  1328. u64 *parent_pte;
  1329. while (sp->multimapped || sp->parent_pte) {
  1330. if (!sp->multimapped)
  1331. parent_pte = sp->parent_pte;
  1332. else {
  1333. struct kvm_pte_chain *chain;
  1334. chain = container_of(sp->parent_ptes.first,
  1335. struct kvm_pte_chain, link);
  1336. parent_pte = chain->parent_ptes[0];
  1337. }
  1338. BUG_ON(!parent_pte);
  1339. kvm_mmu_put_page(sp, parent_pte);
  1340. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1341. }
  1342. }
  1343. static int mmu_zap_unsync_children(struct kvm *kvm,
  1344. struct kvm_mmu_page *parent,
  1345. struct list_head *invalid_list)
  1346. {
  1347. int i, zapped = 0;
  1348. struct mmu_page_path parents;
  1349. struct kvm_mmu_pages pages;
  1350. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1351. return 0;
  1352. kvm_mmu_pages_init(parent, &parents, &pages);
  1353. while (mmu_unsync_walk(parent, &pages)) {
  1354. struct kvm_mmu_page *sp;
  1355. for_each_sp(pages, sp, parents, i) {
  1356. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1357. mmu_pages_clear_parents(&parents);
  1358. zapped++;
  1359. }
  1360. kvm_mmu_pages_init(parent, &parents, &pages);
  1361. }
  1362. return zapped;
  1363. }
  1364. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1365. struct list_head *invalid_list)
  1366. {
  1367. int ret;
  1368. trace_kvm_mmu_prepare_zap_page(sp);
  1369. ++kvm->stat.mmu_shadow_zapped;
  1370. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1371. kvm_mmu_page_unlink_children(kvm, sp);
  1372. kvm_mmu_unlink_parents(kvm, sp);
  1373. if (!sp->role.invalid && !sp->role.direct)
  1374. unaccount_shadowed(kvm, sp->gfn);
  1375. if (sp->unsync)
  1376. kvm_unlink_unsync_page(kvm, sp);
  1377. if (!sp->root_count) {
  1378. /* Count self */
  1379. ret++;
  1380. list_move(&sp->link, invalid_list);
  1381. } else {
  1382. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1383. kvm_reload_remote_mmus(kvm);
  1384. }
  1385. sp->role.invalid = 1;
  1386. kvm_mmu_reset_last_pte_updated(kvm);
  1387. return ret;
  1388. }
  1389. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1390. struct list_head *invalid_list)
  1391. {
  1392. struct kvm_mmu_page *sp;
  1393. if (list_empty(invalid_list))
  1394. return;
  1395. kvm_flush_remote_tlbs(kvm);
  1396. do {
  1397. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1398. WARN_ON(!sp->role.invalid || sp->root_count);
  1399. kvm_mmu_free_page(kvm, sp);
  1400. } while (!list_empty(invalid_list));
  1401. }
  1402. /*
  1403. * Changing the number of mmu pages allocated to the vm
  1404. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1405. */
  1406. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1407. {
  1408. int used_pages;
  1409. LIST_HEAD(invalid_list);
  1410. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1411. used_pages = max(0, used_pages);
  1412. /*
  1413. * If we set the number of mmu pages to be smaller be than the
  1414. * number of actived pages , we must to free some mmu pages before we
  1415. * change the value
  1416. */
  1417. if (used_pages > kvm_nr_mmu_pages) {
  1418. while (used_pages > kvm_nr_mmu_pages &&
  1419. !list_empty(&kvm->arch.active_mmu_pages)) {
  1420. struct kvm_mmu_page *page;
  1421. page = container_of(kvm->arch.active_mmu_pages.prev,
  1422. struct kvm_mmu_page, link);
  1423. used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
  1424. &invalid_list);
  1425. }
  1426. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1427. kvm_nr_mmu_pages = used_pages;
  1428. kvm->arch.n_free_mmu_pages = 0;
  1429. }
  1430. else
  1431. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1432. - kvm->arch.n_alloc_mmu_pages;
  1433. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1434. }
  1435. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1436. {
  1437. struct kvm_mmu_page *sp;
  1438. struct hlist_node *node;
  1439. LIST_HEAD(invalid_list);
  1440. int r;
  1441. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1442. r = 0;
  1443. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1444. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1445. sp->role.word);
  1446. r = 1;
  1447. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1448. }
  1449. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1450. return r;
  1451. }
  1452. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1453. {
  1454. struct kvm_mmu_page *sp;
  1455. struct hlist_node *node;
  1456. LIST_HEAD(invalid_list);
  1457. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1458. pgprintk("%s: zap %lx %x\n",
  1459. __func__, gfn, sp->role.word);
  1460. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1461. }
  1462. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1463. }
  1464. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1465. {
  1466. int slot = memslot_id(kvm, gfn);
  1467. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1468. __set_bit(slot, sp->slot_bitmap);
  1469. }
  1470. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1471. {
  1472. int i;
  1473. u64 *pt = sp->spt;
  1474. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1475. return;
  1476. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1477. if (pt[i] == shadow_notrap_nonpresent_pte)
  1478. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1479. }
  1480. }
  1481. /*
  1482. * The function is based on mtrr_type_lookup() in
  1483. * arch/x86/kernel/cpu/mtrr/generic.c
  1484. */
  1485. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1486. u64 start, u64 end)
  1487. {
  1488. int i;
  1489. u64 base, mask;
  1490. u8 prev_match, curr_match;
  1491. int num_var_ranges = KVM_NR_VAR_MTRR;
  1492. if (!mtrr_state->enabled)
  1493. return 0xFF;
  1494. /* Make end inclusive end, instead of exclusive */
  1495. end--;
  1496. /* Look in fixed ranges. Just return the type as per start */
  1497. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1498. int idx;
  1499. if (start < 0x80000) {
  1500. idx = 0;
  1501. idx += (start >> 16);
  1502. return mtrr_state->fixed_ranges[idx];
  1503. } else if (start < 0xC0000) {
  1504. idx = 1 * 8;
  1505. idx += ((start - 0x80000) >> 14);
  1506. return mtrr_state->fixed_ranges[idx];
  1507. } else if (start < 0x1000000) {
  1508. idx = 3 * 8;
  1509. idx += ((start - 0xC0000) >> 12);
  1510. return mtrr_state->fixed_ranges[idx];
  1511. }
  1512. }
  1513. /*
  1514. * Look in variable ranges
  1515. * Look of multiple ranges matching this address and pick type
  1516. * as per MTRR precedence
  1517. */
  1518. if (!(mtrr_state->enabled & 2))
  1519. return mtrr_state->def_type;
  1520. prev_match = 0xFF;
  1521. for (i = 0; i < num_var_ranges; ++i) {
  1522. unsigned short start_state, end_state;
  1523. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1524. continue;
  1525. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1526. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1527. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1528. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1529. start_state = ((start & mask) == (base & mask));
  1530. end_state = ((end & mask) == (base & mask));
  1531. if (start_state != end_state)
  1532. return 0xFE;
  1533. if ((start & mask) != (base & mask))
  1534. continue;
  1535. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1536. if (prev_match == 0xFF) {
  1537. prev_match = curr_match;
  1538. continue;
  1539. }
  1540. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1541. curr_match == MTRR_TYPE_UNCACHABLE)
  1542. return MTRR_TYPE_UNCACHABLE;
  1543. if ((prev_match == MTRR_TYPE_WRBACK &&
  1544. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1545. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1546. curr_match == MTRR_TYPE_WRBACK)) {
  1547. prev_match = MTRR_TYPE_WRTHROUGH;
  1548. curr_match = MTRR_TYPE_WRTHROUGH;
  1549. }
  1550. if (prev_match != curr_match)
  1551. return MTRR_TYPE_UNCACHABLE;
  1552. }
  1553. if (prev_match != 0xFF)
  1554. return prev_match;
  1555. return mtrr_state->def_type;
  1556. }
  1557. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1558. {
  1559. u8 mtrr;
  1560. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1561. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1562. if (mtrr == 0xfe || mtrr == 0xff)
  1563. mtrr = MTRR_TYPE_WRBACK;
  1564. return mtrr;
  1565. }
  1566. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1567. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1568. {
  1569. trace_kvm_mmu_unsync_page(sp);
  1570. ++vcpu->kvm->stat.mmu_unsync;
  1571. sp->unsync = 1;
  1572. kvm_mmu_mark_parents_unsync(sp);
  1573. mmu_convert_notrap(sp);
  1574. }
  1575. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1576. {
  1577. struct kvm_mmu_page *s;
  1578. struct hlist_node *node;
  1579. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1580. if (s->unsync)
  1581. continue;
  1582. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1583. __kvm_unsync_page(vcpu, s);
  1584. }
  1585. }
  1586. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1587. bool can_unsync)
  1588. {
  1589. struct kvm_mmu_page *s;
  1590. struct hlist_node *node;
  1591. bool need_unsync = false;
  1592. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1593. if (!can_unsync)
  1594. return 1;
  1595. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1596. return 1;
  1597. if (!need_unsync && !s->unsync) {
  1598. if (!oos_shadow)
  1599. return 1;
  1600. need_unsync = true;
  1601. }
  1602. }
  1603. if (need_unsync)
  1604. kvm_unsync_pages(vcpu, gfn);
  1605. return 0;
  1606. }
  1607. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1608. unsigned pte_access, int user_fault,
  1609. int write_fault, int dirty, int level,
  1610. gfn_t gfn, pfn_t pfn, bool speculative,
  1611. bool can_unsync, bool reset_host_protection)
  1612. {
  1613. u64 spte;
  1614. int ret = 0;
  1615. /*
  1616. * We don't set the accessed bit, since we sometimes want to see
  1617. * whether the guest actually used the pte (in order to detect
  1618. * demand paging).
  1619. */
  1620. spte = shadow_base_present_pte | shadow_dirty_mask;
  1621. if (!speculative)
  1622. spte |= shadow_accessed_mask;
  1623. if (!dirty)
  1624. pte_access &= ~ACC_WRITE_MASK;
  1625. if (pte_access & ACC_EXEC_MASK)
  1626. spte |= shadow_x_mask;
  1627. else
  1628. spte |= shadow_nx_mask;
  1629. if (pte_access & ACC_USER_MASK)
  1630. spte |= shadow_user_mask;
  1631. if (level > PT_PAGE_TABLE_LEVEL)
  1632. spte |= PT_PAGE_SIZE_MASK;
  1633. if (tdp_enabled)
  1634. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1635. kvm_is_mmio_pfn(pfn));
  1636. if (reset_host_protection)
  1637. spte |= SPTE_HOST_WRITEABLE;
  1638. spte |= (u64)pfn << PAGE_SHIFT;
  1639. if ((pte_access & ACC_WRITE_MASK)
  1640. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1641. && !user_fault)) {
  1642. if (level > PT_PAGE_TABLE_LEVEL &&
  1643. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1644. ret = 1;
  1645. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1646. goto done;
  1647. }
  1648. spte |= PT_WRITABLE_MASK;
  1649. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1650. spte &= ~PT_USER_MASK;
  1651. /*
  1652. * Optimization: for pte sync, if spte was writable the hash
  1653. * lookup is unnecessary (and expensive). Write protection
  1654. * is responsibility of mmu_get_page / kvm_sync_page.
  1655. * Same reasoning can be applied to dirty page accounting.
  1656. */
  1657. if (!can_unsync && is_writable_pte(*sptep))
  1658. goto set_pte;
  1659. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1660. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1661. __func__, gfn);
  1662. ret = 1;
  1663. pte_access &= ~ACC_WRITE_MASK;
  1664. if (is_writable_pte(spte))
  1665. spte &= ~PT_WRITABLE_MASK;
  1666. }
  1667. }
  1668. if (pte_access & ACC_WRITE_MASK)
  1669. mark_page_dirty(vcpu->kvm, gfn);
  1670. set_pte:
  1671. if (is_writable_pte(*sptep) && !is_writable_pte(spte))
  1672. kvm_set_pfn_dirty(pfn);
  1673. update_spte(sptep, spte);
  1674. done:
  1675. return ret;
  1676. }
  1677. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1678. unsigned pt_access, unsigned pte_access,
  1679. int user_fault, int write_fault, int dirty,
  1680. int *ptwrite, int level, gfn_t gfn,
  1681. pfn_t pfn, bool speculative,
  1682. bool reset_host_protection)
  1683. {
  1684. int was_rmapped = 0;
  1685. int rmap_count;
  1686. pgprintk("%s: spte %llx access %x write_fault %d"
  1687. " user_fault %d gfn %lx\n",
  1688. __func__, *sptep, pt_access,
  1689. write_fault, user_fault, gfn);
  1690. if (is_rmap_spte(*sptep)) {
  1691. /*
  1692. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1693. * the parent of the now unreachable PTE.
  1694. */
  1695. if (level > PT_PAGE_TABLE_LEVEL &&
  1696. !is_large_pte(*sptep)) {
  1697. struct kvm_mmu_page *child;
  1698. u64 pte = *sptep;
  1699. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1700. mmu_page_remove_parent_pte(child, sptep);
  1701. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1702. kvm_flush_remote_tlbs(vcpu->kvm);
  1703. } else if (pfn != spte_to_pfn(*sptep)) {
  1704. pgprintk("hfn old %lx new %lx\n",
  1705. spte_to_pfn(*sptep), pfn);
  1706. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1707. kvm_flush_remote_tlbs(vcpu->kvm);
  1708. } else
  1709. was_rmapped = 1;
  1710. }
  1711. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1712. dirty, level, gfn, pfn, speculative, true,
  1713. reset_host_protection)) {
  1714. if (write_fault)
  1715. *ptwrite = 1;
  1716. kvm_mmu_flush_tlb(vcpu);
  1717. }
  1718. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1719. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1720. is_large_pte(*sptep)? "2MB" : "4kB",
  1721. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1722. *sptep, sptep);
  1723. if (!was_rmapped && is_large_pte(*sptep))
  1724. ++vcpu->kvm->stat.lpages;
  1725. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1726. if (!was_rmapped) {
  1727. rmap_count = rmap_add(vcpu, sptep, gfn);
  1728. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1729. rmap_recycle(vcpu, sptep, gfn);
  1730. }
  1731. kvm_release_pfn_clean(pfn);
  1732. if (speculative) {
  1733. vcpu->arch.last_pte_updated = sptep;
  1734. vcpu->arch.last_pte_gfn = gfn;
  1735. }
  1736. }
  1737. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1738. {
  1739. }
  1740. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1741. int level, gfn_t gfn, pfn_t pfn)
  1742. {
  1743. struct kvm_shadow_walk_iterator iterator;
  1744. struct kvm_mmu_page *sp;
  1745. int pt_write = 0;
  1746. gfn_t pseudo_gfn;
  1747. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1748. if (iterator.level == level) {
  1749. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1750. 0, write, 1, &pt_write,
  1751. level, gfn, pfn, false, true);
  1752. ++vcpu->stat.pf_fixed;
  1753. break;
  1754. }
  1755. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1756. u64 base_addr = iterator.addr;
  1757. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1758. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1759. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1760. iterator.level - 1,
  1761. 1, ACC_ALL, iterator.sptep);
  1762. if (!sp) {
  1763. pgprintk("nonpaging_map: ENOMEM\n");
  1764. kvm_release_pfn_clean(pfn);
  1765. return -ENOMEM;
  1766. }
  1767. __set_spte(iterator.sptep,
  1768. __pa(sp->spt)
  1769. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1770. | shadow_user_mask | shadow_x_mask);
  1771. }
  1772. }
  1773. return pt_write;
  1774. }
  1775. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1776. {
  1777. char buf[1];
  1778. void __user *hva;
  1779. int r;
  1780. /* Touch the page, so send SIGBUS */
  1781. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1782. r = copy_from_user(buf, hva, 1);
  1783. }
  1784. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1785. {
  1786. kvm_release_pfn_clean(pfn);
  1787. if (is_hwpoison_pfn(pfn)) {
  1788. kvm_send_hwpoison_signal(kvm, gfn);
  1789. return 0;
  1790. } else if (is_fault_pfn(pfn))
  1791. return -EFAULT;
  1792. return 1;
  1793. }
  1794. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1795. {
  1796. int r;
  1797. int level;
  1798. pfn_t pfn;
  1799. unsigned long mmu_seq;
  1800. level = mapping_level(vcpu, gfn);
  1801. /*
  1802. * This path builds a PAE pagetable - so we can map 2mb pages at
  1803. * maximum. Therefore check if the level is larger than that.
  1804. */
  1805. if (level > PT_DIRECTORY_LEVEL)
  1806. level = PT_DIRECTORY_LEVEL;
  1807. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1808. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1809. smp_rmb();
  1810. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1811. /* mmio */
  1812. if (is_error_pfn(pfn))
  1813. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1814. spin_lock(&vcpu->kvm->mmu_lock);
  1815. if (mmu_notifier_retry(vcpu, mmu_seq))
  1816. goto out_unlock;
  1817. kvm_mmu_free_some_pages(vcpu);
  1818. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1819. spin_unlock(&vcpu->kvm->mmu_lock);
  1820. return r;
  1821. out_unlock:
  1822. spin_unlock(&vcpu->kvm->mmu_lock);
  1823. kvm_release_pfn_clean(pfn);
  1824. return 0;
  1825. }
  1826. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1827. {
  1828. int i;
  1829. struct kvm_mmu_page *sp;
  1830. LIST_HEAD(invalid_list);
  1831. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1832. return;
  1833. spin_lock(&vcpu->kvm->mmu_lock);
  1834. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1835. hpa_t root = vcpu->arch.mmu.root_hpa;
  1836. sp = page_header(root);
  1837. --sp->root_count;
  1838. if (!sp->root_count && sp->role.invalid) {
  1839. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1840. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1841. }
  1842. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1843. spin_unlock(&vcpu->kvm->mmu_lock);
  1844. return;
  1845. }
  1846. for (i = 0; i < 4; ++i) {
  1847. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1848. if (root) {
  1849. root &= PT64_BASE_ADDR_MASK;
  1850. sp = page_header(root);
  1851. --sp->root_count;
  1852. if (!sp->root_count && sp->role.invalid)
  1853. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1854. &invalid_list);
  1855. }
  1856. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1857. }
  1858. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1859. spin_unlock(&vcpu->kvm->mmu_lock);
  1860. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1861. }
  1862. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1863. {
  1864. int ret = 0;
  1865. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1866. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1867. ret = 1;
  1868. }
  1869. return ret;
  1870. }
  1871. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1872. {
  1873. int i;
  1874. gfn_t root_gfn;
  1875. struct kvm_mmu_page *sp;
  1876. int direct = 0;
  1877. u64 pdptr;
  1878. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1879. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1880. hpa_t root = vcpu->arch.mmu.root_hpa;
  1881. ASSERT(!VALID_PAGE(root));
  1882. if (mmu_check_root(vcpu, root_gfn))
  1883. return 1;
  1884. if (tdp_enabled) {
  1885. direct = 1;
  1886. root_gfn = 0;
  1887. }
  1888. spin_lock(&vcpu->kvm->mmu_lock);
  1889. kvm_mmu_free_some_pages(vcpu);
  1890. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1891. PT64_ROOT_LEVEL, direct,
  1892. ACC_ALL, NULL);
  1893. root = __pa(sp->spt);
  1894. ++sp->root_count;
  1895. spin_unlock(&vcpu->kvm->mmu_lock);
  1896. vcpu->arch.mmu.root_hpa = root;
  1897. return 0;
  1898. }
  1899. direct = !is_paging(vcpu);
  1900. for (i = 0; i < 4; ++i) {
  1901. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1902. ASSERT(!VALID_PAGE(root));
  1903. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1904. pdptr = kvm_pdptr_read(vcpu, i);
  1905. if (!is_present_gpte(pdptr)) {
  1906. vcpu->arch.mmu.pae_root[i] = 0;
  1907. continue;
  1908. }
  1909. root_gfn = pdptr >> PAGE_SHIFT;
  1910. } else if (vcpu->arch.mmu.root_level == 0)
  1911. root_gfn = 0;
  1912. if (mmu_check_root(vcpu, root_gfn))
  1913. return 1;
  1914. if (tdp_enabled) {
  1915. direct = 1;
  1916. root_gfn = i << 30;
  1917. }
  1918. spin_lock(&vcpu->kvm->mmu_lock);
  1919. kvm_mmu_free_some_pages(vcpu);
  1920. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1921. PT32_ROOT_LEVEL, direct,
  1922. ACC_ALL, NULL);
  1923. root = __pa(sp->spt);
  1924. ++sp->root_count;
  1925. spin_unlock(&vcpu->kvm->mmu_lock);
  1926. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1927. }
  1928. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1929. return 0;
  1930. }
  1931. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1932. {
  1933. int i;
  1934. struct kvm_mmu_page *sp;
  1935. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1936. return;
  1937. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1938. hpa_t root = vcpu->arch.mmu.root_hpa;
  1939. sp = page_header(root);
  1940. mmu_sync_children(vcpu, sp);
  1941. return;
  1942. }
  1943. for (i = 0; i < 4; ++i) {
  1944. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1945. if (root && VALID_PAGE(root)) {
  1946. root &= PT64_BASE_ADDR_MASK;
  1947. sp = page_header(root);
  1948. mmu_sync_children(vcpu, sp);
  1949. }
  1950. }
  1951. }
  1952. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1953. {
  1954. spin_lock(&vcpu->kvm->mmu_lock);
  1955. mmu_sync_roots(vcpu);
  1956. spin_unlock(&vcpu->kvm->mmu_lock);
  1957. }
  1958. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1959. u32 access, u32 *error)
  1960. {
  1961. if (error)
  1962. *error = 0;
  1963. return vaddr;
  1964. }
  1965. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1966. u32 error_code)
  1967. {
  1968. gfn_t gfn;
  1969. int r;
  1970. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1971. r = mmu_topup_memory_caches(vcpu);
  1972. if (r)
  1973. return r;
  1974. ASSERT(vcpu);
  1975. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1976. gfn = gva >> PAGE_SHIFT;
  1977. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1978. error_code & PFERR_WRITE_MASK, gfn);
  1979. }
  1980. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1981. u32 error_code)
  1982. {
  1983. pfn_t pfn;
  1984. int r;
  1985. int level;
  1986. gfn_t gfn = gpa >> PAGE_SHIFT;
  1987. unsigned long mmu_seq;
  1988. ASSERT(vcpu);
  1989. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1990. r = mmu_topup_memory_caches(vcpu);
  1991. if (r)
  1992. return r;
  1993. level = mapping_level(vcpu, gfn);
  1994. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1995. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1996. smp_rmb();
  1997. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1998. if (is_error_pfn(pfn))
  1999. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2000. spin_lock(&vcpu->kvm->mmu_lock);
  2001. if (mmu_notifier_retry(vcpu, mmu_seq))
  2002. goto out_unlock;
  2003. kvm_mmu_free_some_pages(vcpu);
  2004. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2005. level, gfn, pfn);
  2006. spin_unlock(&vcpu->kvm->mmu_lock);
  2007. return r;
  2008. out_unlock:
  2009. spin_unlock(&vcpu->kvm->mmu_lock);
  2010. kvm_release_pfn_clean(pfn);
  2011. return 0;
  2012. }
  2013. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2014. {
  2015. mmu_free_roots(vcpu);
  2016. }
  2017. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  2018. {
  2019. struct kvm_mmu *context = &vcpu->arch.mmu;
  2020. context->new_cr3 = nonpaging_new_cr3;
  2021. context->page_fault = nonpaging_page_fault;
  2022. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2023. context->free = nonpaging_free;
  2024. context->prefetch_page = nonpaging_prefetch_page;
  2025. context->sync_page = nonpaging_sync_page;
  2026. context->invlpg = nonpaging_invlpg;
  2027. context->root_level = 0;
  2028. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2029. context->root_hpa = INVALID_PAGE;
  2030. return 0;
  2031. }
  2032. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2033. {
  2034. ++vcpu->stat.tlb_flush;
  2035. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2036. }
  2037. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2038. {
  2039. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2040. mmu_free_roots(vcpu);
  2041. }
  2042. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2043. u64 addr,
  2044. u32 err_code)
  2045. {
  2046. kvm_inject_page_fault(vcpu, addr, err_code);
  2047. }
  2048. static void paging_free(struct kvm_vcpu *vcpu)
  2049. {
  2050. nonpaging_free(vcpu);
  2051. }
  2052. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2053. {
  2054. int bit7;
  2055. bit7 = (gpte >> 7) & 1;
  2056. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2057. }
  2058. #define PTTYPE 64
  2059. #include "paging_tmpl.h"
  2060. #undef PTTYPE
  2061. #define PTTYPE 32
  2062. #include "paging_tmpl.h"
  2063. #undef PTTYPE
  2064. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2065. {
  2066. struct kvm_mmu *context = &vcpu->arch.mmu;
  2067. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2068. u64 exb_bit_rsvd = 0;
  2069. if (!is_nx(vcpu))
  2070. exb_bit_rsvd = rsvd_bits(63, 63);
  2071. switch (level) {
  2072. case PT32_ROOT_LEVEL:
  2073. /* no rsvd bits for 2 level 4K page table entries */
  2074. context->rsvd_bits_mask[0][1] = 0;
  2075. context->rsvd_bits_mask[0][0] = 0;
  2076. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2077. if (!is_pse(vcpu)) {
  2078. context->rsvd_bits_mask[1][1] = 0;
  2079. break;
  2080. }
  2081. if (is_cpuid_PSE36())
  2082. /* 36bits PSE 4MB page */
  2083. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2084. else
  2085. /* 32 bits PSE 4MB page */
  2086. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2087. break;
  2088. case PT32E_ROOT_LEVEL:
  2089. context->rsvd_bits_mask[0][2] =
  2090. rsvd_bits(maxphyaddr, 63) |
  2091. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2092. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2093. rsvd_bits(maxphyaddr, 62); /* PDE */
  2094. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2095. rsvd_bits(maxphyaddr, 62); /* PTE */
  2096. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2097. rsvd_bits(maxphyaddr, 62) |
  2098. rsvd_bits(13, 20); /* large page */
  2099. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2100. break;
  2101. case PT64_ROOT_LEVEL:
  2102. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2103. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2104. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2105. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2106. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2107. rsvd_bits(maxphyaddr, 51);
  2108. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2109. rsvd_bits(maxphyaddr, 51);
  2110. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2111. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2112. rsvd_bits(maxphyaddr, 51) |
  2113. rsvd_bits(13, 29);
  2114. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2115. rsvd_bits(maxphyaddr, 51) |
  2116. rsvd_bits(13, 20); /* large page */
  2117. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2118. break;
  2119. }
  2120. }
  2121. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2122. {
  2123. struct kvm_mmu *context = &vcpu->arch.mmu;
  2124. ASSERT(is_pae(vcpu));
  2125. context->new_cr3 = paging_new_cr3;
  2126. context->page_fault = paging64_page_fault;
  2127. context->gva_to_gpa = paging64_gva_to_gpa;
  2128. context->prefetch_page = paging64_prefetch_page;
  2129. context->sync_page = paging64_sync_page;
  2130. context->invlpg = paging64_invlpg;
  2131. context->free = paging_free;
  2132. context->root_level = level;
  2133. context->shadow_root_level = level;
  2134. context->root_hpa = INVALID_PAGE;
  2135. return 0;
  2136. }
  2137. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2138. {
  2139. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2140. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2141. }
  2142. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2143. {
  2144. struct kvm_mmu *context = &vcpu->arch.mmu;
  2145. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2146. context->new_cr3 = paging_new_cr3;
  2147. context->page_fault = paging32_page_fault;
  2148. context->gva_to_gpa = paging32_gva_to_gpa;
  2149. context->free = paging_free;
  2150. context->prefetch_page = paging32_prefetch_page;
  2151. context->sync_page = paging32_sync_page;
  2152. context->invlpg = paging32_invlpg;
  2153. context->root_level = PT32_ROOT_LEVEL;
  2154. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2155. context->root_hpa = INVALID_PAGE;
  2156. return 0;
  2157. }
  2158. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2159. {
  2160. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2161. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2162. }
  2163. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2164. {
  2165. struct kvm_mmu *context = &vcpu->arch.mmu;
  2166. context->new_cr3 = nonpaging_new_cr3;
  2167. context->page_fault = tdp_page_fault;
  2168. context->free = nonpaging_free;
  2169. context->prefetch_page = nonpaging_prefetch_page;
  2170. context->sync_page = nonpaging_sync_page;
  2171. context->invlpg = nonpaging_invlpg;
  2172. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2173. context->root_hpa = INVALID_PAGE;
  2174. if (!is_paging(vcpu)) {
  2175. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2176. context->root_level = 0;
  2177. } else if (is_long_mode(vcpu)) {
  2178. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2179. context->gva_to_gpa = paging64_gva_to_gpa;
  2180. context->root_level = PT64_ROOT_LEVEL;
  2181. } else if (is_pae(vcpu)) {
  2182. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2183. context->gva_to_gpa = paging64_gva_to_gpa;
  2184. context->root_level = PT32E_ROOT_LEVEL;
  2185. } else {
  2186. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2187. context->gva_to_gpa = paging32_gva_to_gpa;
  2188. context->root_level = PT32_ROOT_LEVEL;
  2189. }
  2190. return 0;
  2191. }
  2192. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2193. {
  2194. int r;
  2195. ASSERT(vcpu);
  2196. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2197. if (!is_paging(vcpu))
  2198. r = nonpaging_init_context(vcpu);
  2199. else if (is_long_mode(vcpu))
  2200. r = paging64_init_context(vcpu);
  2201. else if (is_pae(vcpu))
  2202. r = paging32E_init_context(vcpu);
  2203. else
  2204. r = paging32_init_context(vcpu);
  2205. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2206. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2207. return r;
  2208. }
  2209. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2210. {
  2211. vcpu->arch.update_pte.pfn = bad_pfn;
  2212. if (tdp_enabled)
  2213. return init_kvm_tdp_mmu(vcpu);
  2214. else
  2215. return init_kvm_softmmu(vcpu);
  2216. }
  2217. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2218. {
  2219. ASSERT(vcpu);
  2220. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2221. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2222. vcpu->arch.mmu.free(vcpu);
  2223. }
  2224. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2225. {
  2226. destroy_kvm_mmu(vcpu);
  2227. return init_kvm_mmu(vcpu);
  2228. }
  2229. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2230. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2231. {
  2232. int r;
  2233. r = mmu_topup_memory_caches(vcpu);
  2234. if (r)
  2235. goto out;
  2236. r = mmu_alloc_roots(vcpu);
  2237. spin_lock(&vcpu->kvm->mmu_lock);
  2238. mmu_sync_roots(vcpu);
  2239. spin_unlock(&vcpu->kvm->mmu_lock);
  2240. if (r)
  2241. goto out;
  2242. /* set_cr3() should ensure TLB has been flushed */
  2243. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2244. out:
  2245. return r;
  2246. }
  2247. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2248. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2249. {
  2250. mmu_free_roots(vcpu);
  2251. }
  2252. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2253. struct kvm_mmu_page *sp,
  2254. u64 *spte)
  2255. {
  2256. u64 pte;
  2257. struct kvm_mmu_page *child;
  2258. pte = *spte;
  2259. if (is_shadow_present_pte(pte)) {
  2260. if (is_last_spte(pte, sp->role.level))
  2261. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2262. else {
  2263. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2264. mmu_page_remove_parent_pte(child, spte);
  2265. }
  2266. }
  2267. __set_spte(spte, shadow_trap_nonpresent_pte);
  2268. if (is_large_pte(pte))
  2269. --vcpu->kvm->stat.lpages;
  2270. }
  2271. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2272. struct kvm_mmu_page *sp,
  2273. u64 *spte,
  2274. const void *new)
  2275. {
  2276. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2277. ++vcpu->kvm->stat.mmu_pde_zapped;
  2278. return;
  2279. }
  2280. if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
  2281. return;
  2282. ++vcpu->kvm->stat.mmu_pte_updated;
  2283. if (!sp->role.cr4_pae)
  2284. paging32_update_pte(vcpu, sp, spte, new);
  2285. else
  2286. paging64_update_pte(vcpu, sp, spte, new);
  2287. }
  2288. static bool need_remote_flush(u64 old, u64 new)
  2289. {
  2290. if (!is_shadow_present_pte(old))
  2291. return false;
  2292. if (!is_shadow_present_pte(new))
  2293. return true;
  2294. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2295. return true;
  2296. old ^= PT64_NX_MASK;
  2297. new ^= PT64_NX_MASK;
  2298. return (old & ~new & PT64_PERM_MASK) != 0;
  2299. }
  2300. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2301. bool remote_flush, bool local_flush)
  2302. {
  2303. if (zap_page)
  2304. return;
  2305. if (remote_flush)
  2306. kvm_flush_remote_tlbs(vcpu->kvm);
  2307. else if (local_flush)
  2308. kvm_mmu_flush_tlb(vcpu);
  2309. }
  2310. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2311. {
  2312. u64 *spte = vcpu->arch.last_pte_updated;
  2313. return !!(spte && (*spte & shadow_accessed_mask));
  2314. }
  2315. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2316. u64 gpte)
  2317. {
  2318. gfn_t gfn;
  2319. pfn_t pfn;
  2320. if (!is_present_gpte(gpte))
  2321. return;
  2322. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2323. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2324. smp_rmb();
  2325. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2326. if (is_error_pfn(pfn)) {
  2327. kvm_release_pfn_clean(pfn);
  2328. return;
  2329. }
  2330. vcpu->arch.update_pte.gfn = gfn;
  2331. vcpu->arch.update_pte.pfn = pfn;
  2332. }
  2333. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2334. {
  2335. u64 *spte = vcpu->arch.last_pte_updated;
  2336. if (spte
  2337. && vcpu->arch.last_pte_gfn == gfn
  2338. && shadow_accessed_mask
  2339. && !(*spte & shadow_accessed_mask)
  2340. && is_shadow_present_pte(*spte))
  2341. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2342. }
  2343. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2344. const u8 *new, int bytes,
  2345. bool guest_initiated)
  2346. {
  2347. gfn_t gfn = gpa >> PAGE_SHIFT;
  2348. union kvm_mmu_page_role mask = { .word = 0 };
  2349. struct kvm_mmu_page *sp;
  2350. struct hlist_node *node;
  2351. LIST_HEAD(invalid_list);
  2352. u64 entry, gentry;
  2353. u64 *spte;
  2354. unsigned offset = offset_in_page(gpa);
  2355. unsigned pte_size;
  2356. unsigned page_offset;
  2357. unsigned misaligned;
  2358. unsigned quadrant;
  2359. int level;
  2360. int flooded = 0;
  2361. int npte;
  2362. int r;
  2363. int invlpg_counter;
  2364. bool remote_flush, local_flush, zap_page;
  2365. zap_page = remote_flush = local_flush = false;
  2366. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2367. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2368. /*
  2369. * Assume that the pte write on a page table of the same type
  2370. * as the current vcpu paging mode. This is nearly always true
  2371. * (might be false while changing modes). Note it is verified later
  2372. * by update_pte().
  2373. */
  2374. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2375. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2376. if (is_pae(vcpu)) {
  2377. gpa &= ~(gpa_t)7;
  2378. bytes = 8;
  2379. }
  2380. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2381. if (r)
  2382. gentry = 0;
  2383. new = (const u8 *)&gentry;
  2384. }
  2385. switch (bytes) {
  2386. case 4:
  2387. gentry = *(const u32 *)new;
  2388. break;
  2389. case 8:
  2390. gentry = *(const u64 *)new;
  2391. break;
  2392. default:
  2393. gentry = 0;
  2394. break;
  2395. }
  2396. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2397. spin_lock(&vcpu->kvm->mmu_lock);
  2398. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2399. gentry = 0;
  2400. kvm_mmu_access_page(vcpu, gfn);
  2401. kvm_mmu_free_some_pages(vcpu);
  2402. ++vcpu->kvm->stat.mmu_pte_write;
  2403. kvm_mmu_audit(vcpu, "pre pte write");
  2404. if (guest_initiated) {
  2405. if (gfn == vcpu->arch.last_pt_write_gfn
  2406. && !last_updated_pte_accessed(vcpu)) {
  2407. ++vcpu->arch.last_pt_write_count;
  2408. if (vcpu->arch.last_pt_write_count >= 3)
  2409. flooded = 1;
  2410. } else {
  2411. vcpu->arch.last_pt_write_gfn = gfn;
  2412. vcpu->arch.last_pt_write_count = 1;
  2413. vcpu->arch.last_pte_updated = NULL;
  2414. }
  2415. }
  2416. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2417. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2418. pte_size = sp->role.cr4_pae ? 8 : 4;
  2419. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2420. misaligned |= bytes < 4;
  2421. if (misaligned || flooded) {
  2422. /*
  2423. * Misaligned accesses are too much trouble to fix
  2424. * up; also, they usually indicate a page is not used
  2425. * as a page table.
  2426. *
  2427. * If we're seeing too many writes to a page,
  2428. * it may no longer be a page table, or we may be
  2429. * forking, in which case it is better to unmap the
  2430. * page.
  2431. */
  2432. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2433. gpa, bytes, sp->role.word);
  2434. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2435. &invalid_list);
  2436. ++vcpu->kvm->stat.mmu_flooded;
  2437. continue;
  2438. }
  2439. page_offset = offset;
  2440. level = sp->role.level;
  2441. npte = 1;
  2442. if (!sp->role.cr4_pae) {
  2443. page_offset <<= 1; /* 32->64 */
  2444. /*
  2445. * A 32-bit pde maps 4MB while the shadow pdes map
  2446. * only 2MB. So we need to double the offset again
  2447. * and zap two pdes instead of one.
  2448. */
  2449. if (level == PT32_ROOT_LEVEL) {
  2450. page_offset &= ~7; /* kill rounding error */
  2451. page_offset <<= 1;
  2452. npte = 2;
  2453. }
  2454. quadrant = page_offset >> PAGE_SHIFT;
  2455. page_offset &= ~PAGE_MASK;
  2456. if (quadrant != sp->role.quadrant)
  2457. continue;
  2458. }
  2459. local_flush = true;
  2460. spte = &sp->spt[page_offset / sizeof(*spte)];
  2461. while (npte--) {
  2462. entry = *spte;
  2463. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2464. if (gentry &&
  2465. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2466. & mask.word))
  2467. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2468. if (!remote_flush && need_remote_flush(entry, *spte))
  2469. remote_flush = true;
  2470. ++spte;
  2471. }
  2472. }
  2473. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2474. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2475. kvm_mmu_audit(vcpu, "post pte write");
  2476. spin_unlock(&vcpu->kvm->mmu_lock);
  2477. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2478. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2479. vcpu->arch.update_pte.pfn = bad_pfn;
  2480. }
  2481. }
  2482. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2483. {
  2484. gpa_t gpa;
  2485. int r;
  2486. if (tdp_enabled)
  2487. return 0;
  2488. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2489. spin_lock(&vcpu->kvm->mmu_lock);
  2490. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2491. spin_unlock(&vcpu->kvm->mmu_lock);
  2492. return r;
  2493. }
  2494. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2495. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2496. {
  2497. int free_pages;
  2498. LIST_HEAD(invalid_list);
  2499. free_pages = vcpu->kvm->arch.n_free_mmu_pages;
  2500. while (free_pages < KVM_REFILL_PAGES &&
  2501. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2502. struct kvm_mmu_page *sp;
  2503. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2504. struct kvm_mmu_page, link);
  2505. free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2506. &invalid_list);
  2507. ++vcpu->kvm->stat.mmu_recycled;
  2508. }
  2509. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2510. }
  2511. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2512. {
  2513. int r;
  2514. enum emulation_result er;
  2515. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2516. if (r < 0)
  2517. goto out;
  2518. if (!r) {
  2519. r = 1;
  2520. goto out;
  2521. }
  2522. r = mmu_topup_memory_caches(vcpu);
  2523. if (r)
  2524. goto out;
  2525. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2526. switch (er) {
  2527. case EMULATE_DONE:
  2528. return 1;
  2529. case EMULATE_DO_MMIO:
  2530. ++vcpu->stat.mmio_exits;
  2531. /* fall through */
  2532. case EMULATE_FAIL:
  2533. return 0;
  2534. default:
  2535. BUG();
  2536. }
  2537. out:
  2538. return r;
  2539. }
  2540. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2541. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2542. {
  2543. vcpu->arch.mmu.invlpg(vcpu, gva);
  2544. kvm_mmu_flush_tlb(vcpu);
  2545. ++vcpu->stat.invlpg;
  2546. }
  2547. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2548. void kvm_enable_tdp(void)
  2549. {
  2550. tdp_enabled = true;
  2551. }
  2552. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2553. void kvm_disable_tdp(void)
  2554. {
  2555. tdp_enabled = false;
  2556. }
  2557. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2558. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2559. {
  2560. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2561. }
  2562. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2563. {
  2564. struct page *page;
  2565. int i;
  2566. ASSERT(vcpu);
  2567. /*
  2568. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2569. * Therefore we need to allocate shadow page tables in the first
  2570. * 4GB of memory, which happens to fit the DMA32 zone.
  2571. */
  2572. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2573. if (!page)
  2574. return -ENOMEM;
  2575. vcpu->arch.mmu.pae_root = page_address(page);
  2576. for (i = 0; i < 4; ++i)
  2577. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2578. return 0;
  2579. }
  2580. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2581. {
  2582. ASSERT(vcpu);
  2583. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2584. return alloc_mmu_pages(vcpu);
  2585. }
  2586. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2587. {
  2588. ASSERT(vcpu);
  2589. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2590. return init_kvm_mmu(vcpu);
  2591. }
  2592. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2593. {
  2594. ASSERT(vcpu);
  2595. destroy_kvm_mmu(vcpu);
  2596. free_mmu_pages(vcpu);
  2597. mmu_free_memory_caches(vcpu);
  2598. }
  2599. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2600. {
  2601. struct kvm_mmu_page *sp;
  2602. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2603. int i;
  2604. u64 *pt;
  2605. if (!test_bit(slot, sp->slot_bitmap))
  2606. continue;
  2607. pt = sp->spt;
  2608. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2609. /* avoid RMW */
  2610. if (is_writable_pte(pt[i]))
  2611. pt[i] &= ~PT_WRITABLE_MASK;
  2612. }
  2613. kvm_flush_remote_tlbs(kvm);
  2614. }
  2615. void kvm_mmu_zap_all(struct kvm *kvm)
  2616. {
  2617. struct kvm_mmu_page *sp, *node;
  2618. LIST_HEAD(invalid_list);
  2619. spin_lock(&kvm->mmu_lock);
  2620. restart:
  2621. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2622. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2623. goto restart;
  2624. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2625. spin_unlock(&kvm->mmu_lock);
  2626. }
  2627. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2628. struct list_head *invalid_list)
  2629. {
  2630. struct kvm_mmu_page *page;
  2631. page = container_of(kvm->arch.active_mmu_pages.prev,
  2632. struct kvm_mmu_page, link);
  2633. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2634. }
  2635. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2636. {
  2637. struct kvm *kvm;
  2638. struct kvm *kvm_freed = NULL;
  2639. int cache_count = 0;
  2640. spin_lock(&kvm_lock);
  2641. list_for_each_entry(kvm, &vm_list, vm_list) {
  2642. int npages, idx, freed_pages;
  2643. LIST_HEAD(invalid_list);
  2644. idx = srcu_read_lock(&kvm->srcu);
  2645. spin_lock(&kvm->mmu_lock);
  2646. npages = kvm->arch.n_alloc_mmu_pages -
  2647. kvm->arch.n_free_mmu_pages;
  2648. cache_count += npages;
  2649. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2650. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2651. &invalid_list);
  2652. cache_count -= freed_pages;
  2653. kvm_freed = kvm;
  2654. }
  2655. nr_to_scan--;
  2656. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2657. spin_unlock(&kvm->mmu_lock);
  2658. srcu_read_unlock(&kvm->srcu, idx);
  2659. }
  2660. if (kvm_freed)
  2661. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2662. spin_unlock(&kvm_lock);
  2663. return cache_count;
  2664. }
  2665. static struct shrinker mmu_shrinker = {
  2666. .shrink = mmu_shrink,
  2667. .seeks = DEFAULT_SEEKS * 10,
  2668. };
  2669. static void mmu_destroy_caches(void)
  2670. {
  2671. if (pte_chain_cache)
  2672. kmem_cache_destroy(pte_chain_cache);
  2673. if (rmap_desc_cache)
  2674. kmem_cache_destroy(rmap_desc_cache);
  2675. if (mmu_page_header_cache)
  2676. kmem_cache_destroy(mmu_page_header_cache);
  2677. }
  2678. void kvm_mmu_module_exit(void)
  2679. {
  2680. mmu_destroy_caches();
  2681. unregister_shrinker(&mmu_shrinker);
  2682. }
  2683. int kvm_mmu_module_init(void)
  2684. {
  2685. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2686. sizeof(struct kvm_pte_chain),
  2687. 0, 0, NULL);
  2688. if (!pte_chain_cache)
  2689. goto nomem;
  2690. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2691. sizeof(struct kvm_rmap_desc),
  2692. 0, 0, NULL);
  2693. if (!rmap_desc_cache)
  2694. goto nomem;
  2695. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2696. sizeof(struct kvm_mmu_page),
  2697. 0, 0, NULL);
  2698. if (!mmu_page_header_cache)
  2699. goto nomem;
  2700. register_shrinker(&mmu_shrinker);
  2701. return 0;
  2702. nomem:
  2703. mmu_destroy_caches();
  2704. return -ENOMEM;
  2705. }
  2706. /*
  2707. * Caculate mmu pages needed for kvm.
  2708. */
  2709. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2710. {
  2711. int i;
  2712. unsigned int nr_mmu_pages;
  2713. unsigned int nr_pages = 0;
  2714. struct kvm_memslots *slots;
  2715. slots = kvm_memslots(kvm);
  2716. for (i = 0; i < slots->nmemslots; i++)
  2717. nr_pages += slots->memslots[i].npages;
  2718. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2719. nr_mmu_pages = max(nr_mmu_pages,
  2720. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2721. return nr_mmu_pages;
  2722. }
  2723. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2724. unsigned len)
  2725. {
  2726. if (len > buffer->len)
  2727. return NULL;
  2728. return buffer->ptr;
  2729. }
  2730. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2731. unsigned len)
  2732. {
  2733. void *ret;
  2734. ret = pv_mmu_peek_buffer(buffer, len);
  2735. if (!ret)
  2736. return ret;
  2737. buffer->ptr += len;
  2738. buffer->len -= len;
  2739. buffer->processed += len;
  2740. return ret;
  2741. }
  2742. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2743. gpa_t addr, gpa_t value)
  2744. {
  2745. int bytes = 8;
  2746. int r;
  2747. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2748. bytes = 4;
  2749. r = mmu_topup_memory_caches(vcpu);
  2750. if (r)
  2751. return r;
  2752. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2753. return -EFAULT;
  2754. return 1;
  2755. }
  2756. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2757. {
  2758. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2759. return 1;
  2760. }
  2761. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2762. {
  2763. spin_lock(&vcpu->kvm->mmu_lock);
  2764. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2765. spin_unlock(&vcpu->kvm->mmu_lock);
  2766. return 1;
  2767. }
  2768. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2769. struct kvm_pv_mmu_op_buffer *buffer)
  2770. {
  2771. struct kvm_mmu_op_header *header;
  2772. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2773. if (!header)
  2774. return 0;
  2775. switch (header->op) {
  2776. case KVM_MMU_OP_WRITE_PTE: {
  2777. struct kvm_mmu_op_write_pte *wpte;
  2778. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2779. if (!wpte)
  2780. return 0;
  2781. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2782. wpte->pte_val);
  2783. }
  2784. case KVM_MMU_OP_FLUSH_TLB: {
  2785. struct kvm_mmu_op_flush_tlb *ftlb;
  2786. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2787. if (!ftlb)
  2788. return 0;
  2789. return kvm_pv_mmu_flush_tlb(vcpu);
  2790. }
  2791. case KVM_MMU_OP_RELEASE_PT: {
  2792. struct kvm_mmu_op_release_pt *rpt;
  2793. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2794. if (!rpt)
  2795. return 0;
  2796. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2797. }
  2798. default: return 0;
  2799. }
  2800. }
  2801. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2802. gpa_t addr, unsigned long *ret)
  2803. {
  2804. int r;
  2805. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2806. buffer->ptr = buffer->buf;
  2807. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2808. buffer->processed = 0;
  2809. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2810. if (r)
  2811. goto out;
  2812. while (buffer->len) {
  2813. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2814. if (r < 0)
  2815. goto out;
  2816. if (r == 0)
  2817. break;
  2818. }
  2819. r = 1;
  2820. out:
  2821. *ret = buffer->processed;
  2822. return r;
  2823. }
  2824. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2825. {
  2826. struct kvm_shadow_walk_iterator iterator;
  2827. int nr_sptes = 0;
  2828. spin_lock(&vcpu->kvm->mmu_lock);
  2829. for_each_shadow_entry(vcpu, addr, iterator) {
  2830. sptes[iterator.level-1] = *iterator.sptep;
  2831. nr_sptes++;
  2832. if (!is_shadow_present_pte(*iterator.sptep))
  2833. break;
  2834. }
  2835. spin_unlock(&vcpu->kvm->mmu_lock);
  2836. return nr_sptes;
  2837. }
  2838. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2839. #ifdef AUDIT
  2840. static const char *audit_msg;
  2841. static gva_t canonicalize(gva_t gva)
  2842. {
  2843. #ifdef CONFIG_X86_64
  2844. gva = (long long)(gva << 16) >> 16;
  2845. #endif
  2846. return gva;
  2847. }
  2848. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2849. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2850. inspect_spte_fn fn)
  2851. {
  2852. int i;
  2853. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2854. u64 ent = sp->spt[i];
  2855. if (is_shadow_present_pte(ent)) {
  2856. if (!is_last_spte(ent, sp->role.level)) {
  2857. struct kvm_mmu_page *child;
  2858. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2859. __mmu_spte_walk(kvm, child, fn);
  2860. } else
  2861. fn(kvm, &sp->spt[i]);
  2862. }
  2863. }
  2864. }
  2865. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2866. {
  2867. int i;
  2868. struct kvm_mmu_page *sp;
  2869. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2870. return;
  2871. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2872. hpa_t root = vcpu->arch.mmu.root_hpa;
  2873. sp = page_header(root);
  2874. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2875. return;
  2876. }
  2877. for (i = 0; i < 4; ++i) {
  2878. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2879. if (root && VALID_PAGE(root)) {
  2880. root &= PT64_BASE_ADDR_MASK;
  2881. sp = page_header(root);
  2882. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2883. }
  2884. }
  2885. return;
  2886. }
  2887. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2888. gva_t va, int level)
  2889. {
  2890. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2891. int i;
  2892. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2893. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2894. u64 ent = pt[i];
  2895. if (ent == shadow_trap_nonpresent_pte)
  2896. continue;
  2897. va = canonicalize(va);
  2898. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2899. audit_mappings_page(vcpu, ent, va, level - 1);
  2900. else {
  2901. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2902. gfn_t gfn = gpa >> PAGE_SHIFT;
  2903. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2904. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2905. if (is_error_pfn(pfn)) {
  2906. kvm_release_pfn_clean(pfn);
  2907. continue;
  2908. }
  2909. if (is_shadow_present_pte(ent)
  2910. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2911. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2912. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2913. audit_msg, vcpu->arch.mmu.root_level,
  2914. va, gpa, hpa, ent,
  2915. is_shadow_present_pte(ent));
  2916. else if (ent == shadow_notrap_nonpresent_pte
  2917. && !is_error_hpa(hpa))
  2918. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2919. " valid guest gva %lx\n", audit_msg, va);
  2920. kvm_release_pfn_clean(pfn);
  2921. }
  2922. }
  2923. }
  2924. static void audit_mappings(struct kvm_vcpu *vcpu)
  2925. {
  2926. unsigned i;
  2927. if (vcpu->arch.mmu.root_level == 4)
  2928. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2929. else
  2930. for (i = 0; i < 4; ++i)
  2931. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2932. audit_mappings_page(vcpu,
  2933. vcpu->arch.mmu.pae_root[i],
  2934. i << 30,
  2935. 2);
  2936. }
  2937. static int count_rmaps(struct kvm_vcpu *vcpu)
  2938. {
  2939. struct kvm *kvm = vcpu->kvm;
  2940. struct kvm_memslots *slots;
  2941. int nmaps = 0;
  2942. int i, j, k, idx;
  2943. idx = srcu_read_lock(&kvm->srcu);
  2944. slots = kvm_memslots(kvm);
  2945. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2946. struct kvm_memory_slot *m = &slots->memslots[i];
  2947. struct kvm_rmap_desc *d;
  2948. for (j = 0; j < m->npages; ++j) {
  2949. unsigned long *rmapp = &m->rmap[j];
  2950. if (!*rmapp)
  2951. continue;
  2952. if (!(*rmapp & 1)) {
  2953. ++nmaps;
  2954. continue;
  2955. }
  2956. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2957. while (d) {
  2958. for (k = 0; k < RMAP_EXT; ++k)
  2959. if (d->sptes[k])
  2960. ++nmaps;
  2961. else
  2962. break;
  2963. d = d->more;
  2964. }
  2965. }
  2966. }
  2967. srcu_read_unlock(&kvm->srcu, idx);
  2968. return nmaps;
  2969. }
  2970. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2971. {
  2972. unsigned long *rmapp;
  2973. struct kvm_mmu_page *rev_sp;
  2974. gfn_t gfn;
  2975. if (is_writable_pte(*sptep)) {
  2976. rev_sp = page_header(__pa(sptep));
  2977. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2978. if (!gfn_to_memslot(kvm, gfn)) {
  2979. if (!printk_ratelimit())
  2980. return;
  2981. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2982. audit_msg, gfn);
  2983. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2984. audit_msg, (long int)(sptep - rev_sp->spt),
  2985. rev_sp->gfn);
  2986. dump_stack();
  2987. return;
  2988. }
  2989. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2990. if (!*rmapp) {
  2991. if (!printk_ratelimit())
  2992. return;
  2993. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2994. audit_msg, *sptep);
  2995. dump_stack();
  2996. }
  2997. }
  2998. }
  2999. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  3000. {
  3001. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  3002. }
  3003. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  3004. {
  3005. struct kvm_mmu_page *sp;
  3006. int i;
  3007. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3008. u64 *pt = sp->spt;
  3009. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  3010. continue;
  3011. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3012. u64 ent = pt[i];
  3013. if (!(ent & PT_PRESENT_MASK))
  3014. continue;
  3015. if (!is_writable_pte(ent))
  3016. continue;
  3017. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  3018. }
  3019. }
  3020. return;
  3021. }
  3022. static void audit_rmap(struct kvm_vcpu *vcpu)
  3023. {
  3024. check_writable_mappings_rmap(vcpu);
  3025. count_rmaps(vcpu);
  3026. }
  3027. static void audit_write_protection(struct kvm_vcpu *vcpu)
  3028. {
  3029. struct kvm_mmu_page *sp;
  3030. struct kvm_memory_slot *slot;
  3031. unsigned long *rmapp;
  3032. u64 *spte;
  3033. gfn_t gfn;
  3034. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3035. if (sp->role.direct)
  3036. continue;
  3037. if (sp->unsync)
  3038. continue;
  3039. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  3040. rmapp = &slot->rmap[gfn - slot->base_gfn];
  3041. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  3042. while (spte) {
  3043. if (is_writable_pte(*spte))
  3044. printk(KERN_ERR "%s: (%s) shadow page has "
  3045. "writable mappings: gfn %lx role %x\n",
  3046. __func__, audit_msg, sp->gfn,
  3047. sp->role.word);
  3048. spte = rmap_next(vcpu->kvm, rmapp, spte);
  3049. }
  3050. }
  3051. }
  3052. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  3053. {
  3054. int olddbg = dbg;
  3055. dbg = 0;
  3056. audit_msg = msg;
  3057. audit_rmap(vcpu);
  3058. audit_write_protection(vcpu);
  3059. if (strcmp("pre pte write", audit_msg) != 0)
  3060. audit_mappings(vcpu);
  3061. audit_writable_sptes_have_rmaps(vcpu);
  3062. dbg = olddbg;
  3063. }
  3064. #endif