uaccess_pt.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. /*
  2. * arch/s390/lib/uaccess_pt.c
  3. *
  4. * User access functions based on page table walks for enhanced
  5. * system layout without hardware support.
  6. *
  7. * Copyright IBM Corp. 2006
  8. * Author(s): Gerald Schaefer (gerald.schaefer@de.ibm.com)
  9. */
  10. #include <linux/errno.h>
  11. #include <linux/hardirq.h>
  12. #include <linux/mm.h>
  13. #include <asm/uaccess.h>
  14. #include <asm/futex.h>
  15. #include "uaccess.h"
  16. static inline pte_t *follow_table(struct mm_struct *mm, unsigned long addr)
  17. {
  18. pgd_t *pgd;
  19. pmd_t *pmd;
  20. pgd = pgd_offset(mm, addr);
  21. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  22. return NULL;
  23. pmd = pmd_offset(pgd, addr);
  24. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  25. return NULL;
  26. return pte_offset_map(pmd, addr);
  27. }
  28. static int __handle_fault(struct mm_struct *mm, unsigned long address,
  29. int write_access)
  30. {
  31. struct vm_area_struct *vma;
  32. int ret = -EFAULT;
  33. int fault;
  34. if (in_atomic())
  35. return ret;
  36. down_read(&mm->mmap_sem);
  37. vma = find_vma(mm, address);
  38. if (unlikely(!vma))
  39. goto out;
  40. if (unlikely(vma->vm_start > address)) {
  41. if (!(vma->vm_flags & VM_GROWSDOWN))
  42. goto out;
  43. if (expand_stack(vma, address))
  44. goto out;
  45. }
  46. if (!write_access) {
  47. /* page not present, check vm flags */
  48. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  49. goto out;
  50. } else {
  51. if (!(vma->vm_flags & VM_WRITE))
  52. goto out;
  53. }
  54. survive:
  55. fault = handle_mm_fault(mm, vma, address, write_access);
  56. if (unlikely(fault & VM_FAULT_ERROR)) {
  57. if (fault & VM_FAULT_OOM)
  58. goto out_of_memory;
  59. else if (fault & VM_FAULT_SIGBUS)
  60. goto out_sigbus;
  61. BUG();
  62. }
  63. if (fault & VM_FAULT_MAJOR)
  64. current->maj_flt++;
  65. else
  66. current->min_flt++;
  67. ret = 0;
  68. out:
  69. up_read(&mm->mmap_sem);
  70. return ret;
  71. out_of_memory:
  72. up_read(&mm->mmap_sem);
  73. if (is_global_init(current)) {
  74. yield();
  75. down_read(&mm->mmap_sem);
  76. goto survive;
  77. }
  78. printk("VM: killing process %s\n", current->comm);
  79. return ret;
  80. out_sigbus:
  81. up_read(&mm->mmap_sem);
  82. current->thread.prot_addr = address;
  83. current->thread.trap_no = 0x11;
  84. force_sig(SIGBUS, current);
  85. return ret;
  86. }
  87. static size_t __user_copy_pt(unsigned long uaddr, void *kptr,
  88. size_t n, int write_user)
  89. {
  90. struct mm_struct *mm = current->mm;
  91. unsigned long offset, pfn, done, size;
  92. pte_t *pte;
  93. void *from, *to;
  94. done = 0;
  95. retry:
  96. spin_lock(&mm->page_table_lock);
  97. do {
  98. pte = follow_table(mm, uaddr);
  99. if (!pte || !pte_present(*pte) ||
  100. (write_user && !pte_write(*pte)))
  101. goto fault;
  102. pfn = pte_pfn(*pte);
  103. if (!pfn_valid(pfn))
  104. goto out;
  105. offset = uaddr & (PAGE_SIZE - 1);
  106. size = min(n - done, PAGE_SIZE - offset);
  107. if (write_user) {
  108. to = (void *)((pfn << PAGE_SHIFT) + offset);
  109. from = kptr + done;
  110. } else {
  111. from = (void *)((pfn << PAGE_SHIFT) + offset);
  112. to = kptr + done;
  113. }
  114. memcpy(to, from, size);
  115. done += size;
  116. uaddr += size;
  117. } while (done < n);
  118. out:
  119. spin_unlock(&mm->page_table_lock);
  120. return n - done;
  121. fault:
  122. spin_unlock(&mm->page_table_lock);
  123. if (__handle_fault(mm, uaddr, write_user))
  124. return n - done;
  125. goto retry;
  126. }
  127. /*
  128. * Do DAT for user address by page table walk, return kernel address.
  129. * This function needs to be called with current->mm->page_table_lock held.
  130. */
  131. static unsigned long __dat_user_addr(unsigned long uaddr)
  132. {
  133. struct mm_struct *mm = current->mm;
  134. unsigned long pfn, ret;
  135. pte_t *pte;
  136. int rc;
  137. ret = 0;
  138. retry:
  139. pte = follow_table(mm, uaddr);
  140. if (!pte || !pte_present(*pte))
  141. goto fault;
  142. pfn = pte_pfn(*pte);
  143. if (!pfn_valid(pfn))
  144. goto out;
  145. ret = (pfn << PAGE_SHIFT) + (uaddr & (PAGE_SIZE - 1));
  146. out:
  147. return ret;
  148. fault:
  149. spin_unlock(&mm->page_table_lock);
  150. rc = __handle_fault(mm, uaddr, 0);
  151. spin_lock(&mm->page_table_lock);
  152. if (rc)
  153. goto out;
  154. goto retry;
  155. }
  156. size_t copy_from_user_pt(size_t n, const void __user *from, void *to)
  157. {
  158. size_t rc;
  159. if (segment_eq(get_fs(), KERNEL_DS)) {
  160. memcpy(to, (void __kernel __force *) from, n);
  161. return 0;
  162. }
  163. rc = __user_copy_pt((unsigned long) from, to, n, 0);
  164. if (unlikely(rc))
  165. memset(to + n - rc, 0, rc);
  166. return rc;
  167. }
  168. size_t copy_to_user_pt(size_t n, void __user *to, const void *from)
  169. {
  170. if (segment_eq(get_fs(), KERNEL_DS)) {
  171. memcpy((void __kernel __force *) to, from, n);
  172. return 0;
  173. }
  174. return __user_copy_pt((unsigned long) to, (void *) from, n, 1);
  175. }
  176. static size_t clear_user_pt(size_t n, void __user *to)
  177. {
  178. long done, size, ret;
  179. if (segment_eq(get_fs(), KERNEL_DS)) {
  180. memset((void __kernel __force *) to, 0, n);
  181. return 0;
  182. }
  183. done = 0;
  184. do {
  185. if (n - done > PAGE_SIZE)
  186. size = PAGE_SIZE;
  187. else
  188. size = n - done;
  189. ret = __user_copy_pt((unsigned long) to + done,
  190. &empty_zero_page, size, 1);
  191. done += size;
  192. if (ret)
  193. return ret + n - done;
  194. } while (done < n);
  195. return 0;
  196. }
  197. static size_t strnlen_user_pt(size_t count, const char __user *src)
  198. {
  199. char *addr;
  200. unsigned long uaddr = (unsigned long) src;
  201. struct mm_struct *mm = current->mm;
  202. unsigned long offset, pfn, done, len;
  203. pte_t *pte;
  204. size_t len_str;
  205. if (segment_eq(get_fs(), KERNEL_DS))
  206. return strnlen((const char __kernel __force *) src, count) + 1;
  207. done = 0;
  208. retry:
  209. spin_lock(&mm->page_table_lock);
  210. do {
  211. pte = follow_table(mm, uaddr);
  212. if (!pte || !pte_present(*pte))
  213. goto fault;
  214. pfn = pte_pfn(*pte);
  215. if (!pfn_valid(pfn)) {
  216. done = -1;
  217. goto out;
  218. }
  219. offset = uaddr & (PAGE_SIZE-1);
  220. addr = (char *)(pfn << PAGE_SHIFT) + offset;
  221. len = min(count - done, PAGE_SIZE - offset);
  222. len_str = strnlen(addr, len);
  223. done += len_str;
  224. uaddr += len_str;
  225. } while ((len_str == len) && (done < count));
  226. out:
  227. spin_unlock(&mm->page_table_lock);
  228. return done + 1;
  229. fault:
  230. spin_unlock(&mm->page_table_lock);
  231. if (__handle_fault(mm, uaddr, 0)) {
  232. return 0;
  233. }
  234. goto retry;
  235. }
  236. static size_t strncpy_from_user_pt(size_t count, const char __user *src,
  237. char *dst)
  238. {
  239. size_t n = strnlen_user_pt(count, src);
  240. if (!n)
  241. return -EFAULT;
  242. if (n > count)
  243. n = count;
  244. if (segment_eq(get_fs(), KERNEL_DS)) {
  245. memcpy(dst, (const char __kernel __force *) src, n);
  246. if (dst[n-1] == '\0')
  247. return n-1;
  248. else
  249. return n;
  250. }
  251. if (__user_copy_pt((unsigned long) src, dst, n, 0))
  252. return -EFAULT;
  253. if (dst[n-1] == '\0')
  254. return n-1;
  255. else
  256. return n;
  257. }
  258. static size_t copy_in_user_pt(size_t n, void __user *to,
  259. const void __user *from)
  260. {
  261. struct mm_struct *mm = current->mm;
  262. unsigned long offset_from, offset_to, offset_max, pfn_from, pfn_to,
  263. uaddr, done, size;
  264. unsigned long uaddr_from = (unsigned long) from;
  265. unsigned long uaddr_to = (unsigned long) to;
  266. pte_t *pte_from, *pte_to;
  267. int write_user;
  268. done = 0;
  269. retry:
  270. spin_lock(&mm->page_table_lock);
  271. do {
  272. pte_from = follow_table(mm, uaddr_from);
  273. if (!pte_from || !pte_present(*pte_from)) {
  274. uaddr = uaddr_from;
  275. write_user = 0;
  276. goto fault;
  277. }
  278. pte_to = follow_table(mm, uaddr_to);
  279. if (!pte_to || !pte_present(*pte_to) || !pte_write(*pte_to)) {
  280. uaddr = uaddr_to;
  281. write_user = 1;
  282. goto fault;
  283. }
  284. pfn_from = pte_pfn(*pte_from);
  285. if (!pfn_valid(pfn_from))
  286. goto out;
  287. pfn_to = pte_pfn(*pte_to);
  288. if (!pfn_valid(pfn_to))
  289. goto out;
  290. offset_from = uaddr_from & (PAGE_SIZE-1);
  291. offset_to = uaddr_from & (PAGE_SIZE-1);
  292. offset_max = max(offset_from, offset_to);
  293. size = min(n - done, PAGE_SIZE - offset_max);
  294. memcpy((void *)(pfn_to << PAGE_SHIFT) + offset_to,
  295. (void *)(pfn_from << PAGE_SHIFT) + offset_from, size);
  296. done += size;
  297. uaddr_from += size;
  298. uaddr_to += size;
  299. } while (done < n);
  300. out:
  301. spin_unlock(&mm->page_table_lock);
  302. return n - done;
  303. fault:
  304. spin_unlock(&mm->page_table_lock);
  305. if (__handle_fault(mm, uaddr, write_user))
  306. return n - done;
  307. goto retry;
  308. }
  309. #define __futex_atomic_op(insn, ret, oldval, newval, uaddr, oparg) \
  310. asm volatile("0: l %1,0(%6)\n" \
  311. "1: " insn \
  312. "2: cs %1,%2,0(%6)\n" \
  313. "3: jl 1b\n" \
  314. " lhi %0,0\n" \
  315. "4:\n" \
  316. EX_TABLE(0b,4b) EX_TABLE(2b,4b) EX_TABLE(3b,4b) \
  317. : "=d" (ret), "=&d" (oldval), "=&d" (newval), \
  318. "=m" (*uaddr) \
  319. : "0" (-EFAULT), "d" (oparg), "a" (uaddr), \
  320. "m" (*uaddr) : "cc" );
  321. int futex_atomic_op_pt(int op, int __user *uaddr, int oparg, int *old)
  322. {
  323. int oldval = 0, newval, ret;
  324. spin_lock(&current->mm->page_table_lock);
  325. uaddr = (int __user *) __dat_user_addr((unsigned long) uaddr);
  326. if (!uaddr) {
  327. spin_unlock(&current->mm->page_table_lock);
  328. return -EFAULT;
  329. }
  330. get_page(virt_to_page(uaddr));
  331. spin_unlock(&current->mm->page_table_lock);
  332. switch (op) {
  333. case FUTEX_OP_SET:
  334. __futex_atomic_op("lr %2,%5\n",
  335. ret, oldval, newval, uaddr, oparg);
  336. break;
  337. case FUTEX_OP_ADD:
  338. __futex_atomic_op("lr %2,%1\nar %2,%5\n",
  339. ret, oldval, newval, uaddr, oparg);
  340. break;
  341. case FUTEX_OP_OR:
  342. __futex_atomic_op("lr %2,%1\nor %2,%5\n",
  343. ret, oldval, newval, uaddr, oparg);
  344. break;
  345. case FUTEX_OP_ANDN:
  346. __futex_atomic_op("lr %2,%1\nnr %2,%5\n",
  347. ret, oldval, newval, uaddr, oparg);
  348. break;
  349. case FUTEX_OP_XOR:
  350. __futex_atomic_op("lr %2,%1\nxr %2,%5\n",
  351. ret, oldval, newval, uaddr, oparg);
  352. break;
  353. default:
  354. ret = -ENOSYS;
  355. }
  356. put_page(virt_to_page(uaddr));
  357. *old = oldval;
  358. return ret;
  359. }
  360. int futex_atomic_cmpxchg_pt(int __user *uaddr, int oldval, int newval)
  361. {
  362. int ret;
  363. spin_lock(&current->mm->page_table_lock);
  364. uaddr = (int __user *) __dat_user_addr((unsigned long) uaddr);
  365. if (!uaddr) {
  366. spin_unlock(&current->mm->page_table_lock);
  367. return -EFAULT;
  368. }
  369. get_page(virt_to_page(uaddr));
  370. spin_unlock(&current->mm->page_table_lock);
  371. asm volatile(" cs %1,%4,0(%5)\n"
  372. "0: lr %0,%1\n"
  373. "1:\n"
  374. EX_TABLE(0b,1b)
  375. : "=d" (ret), "+d" (oldval), "=m" (*uaddr)
  376. : "0" (-EFAULT), "d" (newval), "a" (uaddr), "m" (*uaddr)
  377. : "cc", "memory" );
  378. put_page(virt_to_page(uaddr));
  379. return ret;
  380. }
  381. struct uaccess_ops uaccess_pt = {
  382. .copy_from_user = copy_from_user_pt,
  383. .copy_from_user_small = copy_from_user_pt,
  384. .copy_to_user = copy_to_user_pt,
  385. .copy_to_user_small = copy_to_user_pt,
  386. .copy_in_user = copy_in_user_pt,
  387. .clear_user = clear_user_pt,
  388. .strnlen_user = strnlen_user_pt,
  389. .strncpy_from_user = strncpy_from_user_pt,
  390. .futex_atomic_op = futex_atomic_op_pt,
  391. .futex_atomic_cmpxchg = futex_atomic_cmpxchg_pt,
  392. };