pktcdvd.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698
  1. /*
  2. * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
  3. * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
  4. *
  5. * May be copied or modified under the terms of the GNU General Public
  6. * License. See linux/COPYING for more information.
  7. *
  8. * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  9. * DVD-RAM devices.
  10. *
  11. * Theory of operation:
  12. *
  13. * At the lowest level, there is the standard driver for the CD/DVD device,
  14. * typically ide-cd.c or sr.c. This driver can handle read and write requests,
  15. * but it doesn't know anything about the special restrictions that apply to
  16. * packet writing. One restriction is that write requests must be aligned to
  17. * packet boundaries on the physical media, and the size of a write request
  18. * must be equal to the packet size. Another restriction is that a
  19. * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  20. * command, if the previous command was a write.
  21. *
  22. * The purpose of the packet writing driver is to hide these restrictions from
  23. * higher layers, such as file systems, and present a block device that can be
  24. * randomly read and written using 2kB-sized blocks.
  25. *
  26. * The lowest layer in the packet writing driver is the packet I/O scheduler.
  27. * Its data is defined by the struct packet_iosched and includes two bio
  28. * queues with pending read and write requests. These queues are processed
  29. * by the pkt_iosched_process_queue() function. The write requests in this
  30. * queue are already properly aligned and sized. This layer is responsible for
  31. * issuing the flush cache commands and scheduling the I/O in a good order.
  32. *
  33. * The next layer transforms unaligned write requests to aligned writes. This
  34. * transformation requires reading missing pieces of data from the underlying
  35. * block device, assembling the pieces to full packets and queuing them to the
  36. * packet I/O scheduler.
  37. *
  38. * At the top layer there is a custom make_request_fn function that forwards
  39. * read requests directly to the iosched queue and puts write requests in the
  40. * unaligned write queue. A kernel thread performs the necessary read
  41. * gathering to convert the unaligned writes to aligned writes and then feeds
  42. * them to the packet I/O scheduler.
  43. *
  44. *************************************************************************/
  45. #define VERSION_CODE "v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com"
  46. #include <linux/pktcdvd.h>
  47. #include <linux/config.h>
  48. #include <linux/module.h>
  49. #include <linux/types.h>
  50. #include <linux/kernel.h>
  51. #include <linux/kthread.h>
  52. #include <linux/errno.h>
  53. #include <linux/spinlock.h>
  54. #include <linux/file.h>
  55. #include <linux/proc_fs.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/miscdevice.h>
  58. #include <linux/suspend.h>
  59. #include <scsi/scsi_cmnd.h>
  60. #include <scsi/scsi_ioctl.h>
  61. #include <asm/uaccess.h>
  62. #if PACKET_DEBUG
  63. #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  64. #else
  65. #define DPRINTK(fmt, args...)
  66. #endif
  67. #if PACKET_DEBUG > 1
  68. #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  69. #else
  70. #define VPRINTK(fmt, args...)
  71. #endif
  72. #define MAX_SPEED 0xffff
  73. #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
  74. static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  75. static struct proc_dir_entry *pkt_proc;
  76. static int pkt_major;
  77. static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
  78. static mempool_t *psd_pool;
  79. static void pkt_bio_finished(struct pktcdvd_device *pd)
  80. {
  81. BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
  82. if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
  83. VPRINTK("pktcdvd: queue empty\n");
  84. atomic_set(&pd->iosched.attention, 1);
  85. wake_up(&pd->wqueue);
  86. }
  87. }
  88. static void pkt_bio_destructor(struct bio *bio)
  89. {
  90. kfree(bio->bi_io_vec);
  91. kfree(bio);
  92. }
  93. static struct bio *pkt_bio_alloc(int nr_iovecs)
  94. {
  95. struct bio_vec *bvl = NULL;
  96. struct bio *bio;
  97. bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
  98. if (!bio)
  99. goto no_bio;
  100. bio_init(bio);
  101. bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
  102. if (!bvl)
  103. goto no_bvl;
  104. bio->bi_max_vecs = nr_iovecs;
  105. bio->bi_io_vec = bvl;
  106. bio->bi_destructor = pkt_bio_destructor;
  107. return bio;
  108. no_bvl:
  109. kfree(bio);
  110. no_bio:
  111. return NULL;
  112. }
  113. /*
  114. * Allocate a packet_data struct
  115. */
  116. static struct packet_data *pkt_alloc_packet_data(void)
  117. {
  118. int i;
  119. struct packet_data *pkt;
  120. pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
  121. if (!pkt)
  122. goto no_pkt;
  123. pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
  124. if (!pkt->w_bio)
  125. goto no_bio;
  126. for (i = 0; i < PAGES_PER_PACKET; i++) {
  127. pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
  128. if (!pkt->pages[i])
  129. goto no_page;
  130. }
  131. spin_lock_init(&pkt->lock);
  132. for (i = 0; i < PACKET_MAX_SIZE; i++) {
  133. struct bio *bio = pkt_bio_alloc(1);
  134. if (!bio)
  135. goto no_rd_bio;
  136. pkt->r_bios[i] = bio;
  137. }
  138. return pkt;
  139. no_rd_bio:
  140. for (i = 0; i < PACKET_MAX_SIZE; i++) {
  141. struct bio *bio = pkt->r_bios[i];
  142. if (bio)
  143. bio_put(bio);
  144. }
  145. no_page:
  146. for (i = 0; i < PAGES_PER_PACKET; i++)
  147. if (pkt->pages[i])
  148. __free_page(pkt->pages[i]);
  149. bio_put(pkt->w_bio);
  150. no_bio:
  151. kfree(pkt);
  152. no_pkt:
  153. return NULL;
  154. }
  155. /*
  156. * Free a packet_data struct
  157. */
  158. static void pkt_free_packet_data(struct packet_data *pkt)
  159. {
  160. int i;
  161. for (i = 0; i < PACKET_MAX_SIZE; i++) {
  162. struct bio *bio = pkt->r_bios[i];
  163. if (bio)
  164. bio_put(bio);
  165. }
  166. for (i = 0; i < PAGES_PER_PACKET; i++)
  167. __free_page(pkt->pages[i]);
  168. bio_put(pkt->w_bio);
  169. kfree(pkt);
  170. }
  171. static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
  172. {
  173. struct packet_data *pkt, *next;
  174. BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
  175. list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
  176. pkt_free_packet_data(pkt);
  177. }
  178. }
  179. static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
  180. {
  181. struct packet_data *pkt;
  182. INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
  183. INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
  184. spin_lock_init(&pd->cdrw.active_list_lock);
  185. while (nr_packets > 0) {
  186. pkt = pkt_alloc_packet_data();
  187. if (!pkt) {
  188. pkt_shrink_pktlist(pd);
  189. return 0;
  190. }
  191. pkt->id = nr_packets;
  192. pkt->pd = pd;
  193. list_add(&pkt->list, &pd->cdrw.pkt_free_list);
  194. nr_packets--;
  195. }
  196. return 1;
  197. }
  198. static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
  199. {
  200. return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
  201. }
  202. static void pkt_rb_free(void *ptr, void *data)
  203. {
  204. kfree(ptr);
  205. }
  206. static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
  207. {
  208. struct rb_node *n = rb_next(&node->rb_node);
  209. if (!n)
  210. return NULL;
  211. return rb_entry(n, struct pkt_rb_node, rb_node);
  212. }
  213. static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
  214. {
  215. rb_erase(&node->rb_node, &pd->bio_queue);
  216. mempool_free(node, pd->rb_pool);
  217. pd->bio_queue_size--;
  218. BUG_ON(pd->bio_queue_size < 0);
  219. }
  220. /*
  221. * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
  222. */
  223. static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
  224. {
  225. struct rb_node *n = pd->bio_queue.rb_node;
  226. struct rb_node *next;
  227. struct pkt_rb_node *tmp;
  228. if (!n) {
  229. BUG_ON(pd->bio_queue_size > 0);
  230. return NULL;
  231. }
  232. for (;;) {
  233. tmp = rb_entry(n, struct pkt_rb_node, rb_node);
  234. if (s <= tmp->bio->bi_sector)
  235. next = n->rb_left;
  236. else
  237. next = n->rb_right;
  238. if (!next)
  239. break;
  240. n = next;
  241. }
  242. if (s > tmp->bio->bi_sector) {
  243. tmp = pkt_rbtree_next(tmp);
  244. if (!tmp)
  245. return NULL;
  246. }
  247. BUG_ON(s > tmp->bio->bi_sector);
  248. return tmp;
  249. }
  250. /*
  251. * Insert a node into the pd->bio_queue rb tree.
  252. */
  253. static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
  254. {
  255. struct rb_node **p = &pd->bio_queue.rb_node;
  256. struct rb_node *parent = NULL;
  257. sector_t s = node->bio->bi_sector;
  258. struct pkt_rb_node *tmp;
  259. while (*p) {
  260. parent = *p;
  261. tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
  262. if (s < tmp->bio->bi_sector)
  263. p = &(*p)->rb_left;
  264. else
  265. p = &(*p)->rb_right;
  266. }
  267. rb_link_node(&node->rb_node, parent, p);
  268. rb_insert_color(&node->rb_node, &pd->bio_queue);
  269. pd->bio_queue_size++;
  270. }
  271. /*
  272. * Add a bio to a single linked list defined by its head and tail pointers.
  273. */
  274. static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
  275. {
  276. bio->bi_next = NULL;
  277. if (*list_tail) {
  278. BUG_ON((*list_head) == NULL);
  279. (*list_tail)->bi_next = bio;
  280. (*list_tail) = bio;
  281. } else {
  282. BUG_ON((*list_head) != NULL);
  283. (*list_head) = bio;
  284. (*list_tail) = bio;
  285. }
  286. }
  287. /*
  288. * Remove and return the first bio from a single linked list defined by its
  289. * head and tail pointers.
  290. */
  291. static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
  292. {
  293. struct bio *bio;
  294. if (*list_head == NULL)
  295. return NULL;
  296. bio = *list_head;
  297. *list_head = bio->bi_next;
  298. if (*list_head == NULL)
  299. *list_tail = NULL;
  300. bio->bi_next = NULL;
  301. return bio;
  302. }
  303. /*
  304. * Send a packet_command to the underlying block device and
  305. * wait for completion.
  306. */
  307. static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
  308. {
  309. char sense[SCSI_SENSE_BUFFERSIZE];
  310. request_queue_t *q;
  311. struct request *rq;
  312. DECLARE_COMPLETION(wait);
  313. int err = 0;
  314. q = bdev_get_queue(pd->bdev);
  315. rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
  316. __GFP_WAIT);
  317. rq->errors = 0;
  318. rq->rq_disk = pd->bdev->bd_disk;
  319. rq->bio = NULL;
  320. rq->buffer = NULL;
  321. rq->timeout = 60*HZ;
  322. rq->data = cgc->buffer;
  323. rq->data_len = cgc->buflen;
  324. rq->sense = sense;
  325. memset(sense, 0, sizeof(sense));
  326. rq->sense_len = 0;
  327. rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
  328. if (cgc->quiet)
  329. rq->flags |= REQ_QUIET;
  330. memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
  331. if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
  332. memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
  333. rq->ref_count++;
  334. rq->flags |= REQ_NOMERGE;
  335. rq->waiting = &wait;
  336. rq->end_io = blk_end_sync_rq;
  337. elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  338. generic_unplug_device(q);
  339. wait_for_completion(&wait);
  340. if (rq->errors)
  341. err = -EIO;
  342. blk_put_request(rq);
  343. return err;
  344. }
  345. /*
  346. * A generic sense dump / resolve mechanism should be implemented across
  347. * all ATAPI + SCSI devices.
  348. */
  349. static void pkt_dump_sense(struct packet_command *cgc)
  350. {
  351. static char *info[9] = { "No sense", "Recovered error", "Not ready",
  352. "Medium error", "Hardware error", "Illegal request",
  353. "Unit attention", "Data protect", "Blank check" };
  354. int i;
  355. struct request_sense *sense = cgc->sense;
  356. printk("pktcdvd:");
  357. for (i = 0; i < CDROM_PACKET_SIZE; i++)
  358. printk(" %02x", cgc->cmd[i]);
  359. printk(" - ");
  360. if (sense == NULL) {
  361. printk("no sense\n");
  362. return;
  363. }
  364. printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
  365. if (sense->sense_key > 8) {
  366. printk(" (INVALID)\n");
  367. return;
  368. }
  369. printk(" (%s)\n", info[sense->sense_key]);
  370. }
  371. /*
  372. * flush the drive cache to media
  373. */
  374. static int pkt_flush_cache(struct pktcdvd_device *pd)
  375. {
  376. struct packet_command cgc;
  377. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  378. cgc.cmd[0] = GPCMD_FLUSH_CACHE;
  379. cgc.quiet = 1;
  380. /*
  381. * the IMMED bit -- we default to not setting it, although that
  382. * would allow a much faster close, this is safer
  383. */
  384. #if 0
  385. cgc.cmd[1] = 1 << 1;
  386. #endif
  387. return pkt_generic_packet(pd, &cgc);
  388. }
  389. /*
  390. * speed is given as the normal factor, e.g. 4 for 4x
  391. */
  392. static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
  393. {
  394. struct packet_command cgc;
  395. struct request_sense sense;
  396. int ret;
  397. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  398. cgc.sense = &sense;
  399. cgc.cmd[0] = GPCMD_SET_SPEED;
  400. cgc.cmd[2] = (read_speed >> 8) & 0xff;
  401. cgc.cmd[3] = read_speed & 0xff;
  402. cgc.cmd[4] = (write_speed >> 8) & 0xff;
  403. cgc.cmd[5] = write_speed & 0xff;
  404. if ((ret = pkt_generic_packet(pd, &cgc)))
  405. pkt_dump_sense(&cgc);
  406. return ret;
  407. }
  408. /*
  409. * Queue a bio for processing by the low-level CD device. Must be called
  410. * from process context.
  411. */
  412. static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
  413. {
  414. spin_lock(&pd->iosched.lock);
  415. if (bio_data_dir(bio) == READ) {
  416. pkt_add_list_last(bio, &pd->iosched.read_queue,
  417. &pd->iosched.read_queue_tail);
  418. } else {
  419. pkt_add_list_last(bio, &pd->iosched.write_queue,
  420. &pd->iosched.write_queue_tail);
  421. }
  422. spin_unlock(&pd->iosched.lock);
  423. atomic_set(&pd->iosched.attention, 1);
  424. wake_up(&pd->wqueue);
  425. }
  426. /*
  427. * Process the queued read/write requests. This function handles special
  428. * requirements for CDRW drives:
  429. * - A cache flush command must be inserted before a read request if the
  430. * previous request was a write.
  431. * - Switching between reading and writing is slow, so don't do it more often
  432. * than necessary.
  433. * - Optimize for throughput at the expense of latency. This means that streaming
  434. * writes will never be interrupted by a read, but if the drive has to seek
  435. * before the next write, switch to reading instead if there are any pending
  436. * read requests.
  437. * - Set the read speed according to current usage pattern. When only reading
  438. * from the device, it's best to use the highest possible read speed, but
  439. * when switching often between reading and writing, it's better to have the
  440. * same read and write speeds.
  441. */
  442. static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
  443. {
  444. if (atomic_read(&pd->iosched.attention) == 0)
  445. return;
  446. atomic_set(&pd->iosched.attention, 0);
  447. for (;;) {
  448. struct bio *bio;
  449. int reads_queued, writes_queued;
  450. spin_lock(&pd->iosched.lock);
  451. reads_queued = (pd->iosched.read_queue != NULL);
  452. writes_queued = (pd->iosched.write_queue != NULL);
  453. spin_unlock(&pd->iosched.lock);
  454. if (!reads_queued && !writes_queued)
  455. break;
  456. if (pd->iosched.writing) {
  457. int need_write_seek = 1;
  458. spin_lock(&pd->iosched.lock);
  459. bio = pd->iosched.write_queue;
  460. spin_unlock(&pd->iosched.lock);
  461. if (bio && (bio->bi_sector == pd->iosched.last_write))
  462. need_write_seek = 0;
  463. if (need_write_seek && reads_queued) {
  464. if (atomic_read(&pd->cdrw.pending_bios) > 0) {
  465. VPRINTK("pktcdvd: write, waiting\n");
  466. break;
  467. }
  468. pkt_flush_cache(pd);
  469. pd->iosched.writing = 0;
  470. }
  471. } else {
  472. if (!reads_queued && writes_queued) {
  473. if (atomic_read(&pd->cdrw.pending_bios) > 0) {
  474. VPRINTK("pktcdvd: read, waiting\n");
  475. break;
  476. }
  477. pd->iosched.writing = 1;
  478. }
  479. }
  480. spin_lock(&pd->iosched.lock);
  481. if (pd->iosched.writing) {
  482. bio = pkt_get_list_first(&pd->iosched.write_queue,
  483. &pd->iosched.write_queue_tail);
  484. } else {
  485. bio = pkt_get_list_first(&pd->iosched.read_queue,
  486. &pd->iosched.read_queue_tail);
  487. }
  488. spin_unlock(&pd->iosched.lock);
  489. if (!bio)
  490. continue;
  491. if (bio_data_dir(bio) == READ)
  492. pd->iosched.successive_reads += bio->bi_size >> 10;
  493. else {
  494. pd->iosched.successive_reads = 0;
  495. pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
  496. }
  497. if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
  498. if (pd->read_speed == pd->write_speed) {
  499. pd->read_speed = MAX_SPEED;
  500. pkt_set_speed(pd, pd->write_speed, pd->read_speed);
  501. }
  502. } else {
  503. if (pd->read_speed != pd->write_speed) {
  504. pd->read_speed = pd->write_speed;
  505. pkt_set_speed(pd, pd->write_speed, pd->read_speed);
  506. }
  507. }
  508. atomic_inc(&pd->cdrw.pending_bios);
  509. generic_make_request(bio);
  510. }
  511. }
  512. /*
  513. * Special care is needed if the underlying block device has a small
  514. * max_phys_segments value.
  515. */
  516. static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
  517. {
  518. if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
  519. /*
  520. * The cdrom device can handle one segment/frame
  521. */
  522. clear_bit(PACKET_MERGE_SEGS, &pd->flags);
  523. return 0;
  524. } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
  525. /*
  526. * We can handle this case at the expense of some extra memory
  527. * copies during write operations
  528. */
  529. set_bit(PACKET_MERGE_SEGS, &pd->flags);
  530. return 0;
  531. } else {
  532. printk("pktcdvd: cdrom max_phys_segments too small\n");
  533. return -EIO;
  534. }
  535. }
  536. /*
  537. * Copy CD_FRAMESIZE bytes from src_bio into a destination page
  538. */
  539. static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
  540. {
  541. unsigned int copy_size = CD_FRAMESIZE;
  542. while (copy_size > 0) {
  543. struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
  544. void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
  545. src_bvl->bv_offset + offs;
  546. void *vto = page_address(dst_page) + dst_offs;
  547. int len = min_t(int, copy_size, src_bvl->bv_len - offs);
  548. BUG_ON(len < 0);
  549. memcpy(vto, vfrom, len);
  550. kunmap_atomic(vfrom, KM_USER0);
  551. seg++;
  552. offs = 0;
  553. dst_offs += len;
  554. copy_size -= len;
  555. }
  556. }
  557. /*
  558. * Copy all data for this packet to pkt->pages[], so that
  559. * a) The number of required segments for the write bio is minimized, which
  560. * is necessary for some scsi controllers.
  561. * b) The data can be used as cache to avoid read requests if we receive a
  562. * new write request for the same zone.
  563. */
  564. static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
  565. {
  566. int f, p, offs;
  567. /* Copy all data to pkt->pages[] */
  568. p = 0;
  569. offs = 0;
  570. for (f = 0; f < pkt->frames; f++) {
  571. if (pages[f] != pkt->pages[p]) {
  572. void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
  573. void *vto = page_address(pkt->pages[p]) + offs;
  574. memcpy(vto, vfrom, CD_FRAMESIZE);
  575. kunmap_atomic(vfrom, KM_USER0);
  576. pages[f] = pkt->pages[p];
  577. offsets[f] = offs;
  578. } else {
  579. BUG_ON(offsets[f] != offs);
  580. }
  581. offs += CD_FRAMESIZE;
  582. if (offs >= PAGE_SIZE) {
  583. offs = 0;
  584. p++;
  585. }
  586. }
  587. }
  588. static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
  589. {
  590. struct packet_data *pkt = bio->bi_private;
  591. struct pktcdvd_device *pd = pkt->pd;
  592. BUG_ON(!pd);
  593. if (bio->bi_size)
  594. return 1;
  595. VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
  596. (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
  597. if (err)
  598. atomic_inc(&pkt->io_errors);
  599. if (atomic_dec_and_test(&pkt->io_wait)) {
  600. atomic_inc(&pkt->run_sm);
  601. wake_up(&pd->wqueue);
  602. }
  603. pkt_bio_finished(pd);
  604. return 0;
  605. }
  606. static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
  607. {
  608. struct packet_data *pkt = bio->bi_private;
  609. struct pktcdvd_device *pd = pkt->pd;
  610. BUG_ON(!pd);
  611. if (bio->bi_size)
  612. return 1;
  613. VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
  614. pd->stats.pkt_ended++;
  615. pkt_bio_finished(pd);
  616. atomic_dec(&pkt->io_wait);
  617. atomic_inc(&pkt->run_sm);
  618. wake_up(&pd->wqueue);
  619. return 0;
  620. }
  621. /*
  622. * Schedule reads for the holes in a packet
  623. */
  624. static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
  625. {
  626. int frames_read = 0;
  627. struct bio *bio;
  628. int f;
  629. char written[PACKET_MAX_SIZE];
  630. BUG_ON(!pkt->orig_bios);
  631. atomic_set(&pkt->io_wait, 0);
  632. atomic_set(&pkt->io_errors, 0);
  633. /*
  634. * Figure out which frames we need to read before we can write.
  635. */
  636. memset(written, 0, sizeof(written));
  637. spin_lock(&pkt->lock);
  638. for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
  639. int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
  640. int num_frames = bio->bi_size / CD_FRAMESIZE;
  641. pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
  642. BUG_ON(first_frame < 0);
  643. BUG_ON(first_frame + num_frames > pkt->frames);
  644. for (f = first_frame; f < first_frame + num_frames; f++)
  645. written[f] = 1;
  646. }
  647. spin_unlock(&pkt->lock);
  648. if (pkt->cache_valid) {
  649. VPRINTK("pkt_gather_data: zone %llx cached\n",
  650. (unsigned long long)pkt->sector);
  651. goto out_account;
  652. }
  653. /*
  654. * Schedule reads for missing parts of the packet.
  655. */
  656. for (f = 0; f < pkt->frames; f++) {
  657. int p, offset;
  658. if (written[f])
  659. continue;
  660. bio = pkt->r_bios[f];
  661. bio_init(bio);
  662. bio->bi_max_vecs = 1;
  663. bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
  664. bio->bi_bdev = pd->bdev;
  665. bio->bi_end_io = pkt_end_io_read;
  666. bio->bi_private = pkt;
  667. p = (f * CD_FRAMESIZE) / PAGE_SIZE;
  668. offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
  669. VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
  670. f, pkt->pages[p], offset);
  671. if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
  672. BUG();
  673. atomic_inc(&pkt->io_wait);
  674. bio->bi_rw = READ;
  675. pkt_queue_bio(pd, bio);
  676. frames_read++;
  677. }
  678. out_account:
  679. VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
  680. frames_read, (unsigned long long)pkt->sector);
  681. pd->stats.pkt_started++;
  682. pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
  683. }
  684. /*
  685. * Find a packet matching zone, or the least recently used packet if
  686. * there is no match.
  687. */
  688. static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
  689. {
  690. struct packet_data *pkt;
  691. list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
  692. if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
  693. list_del_init(&pkt->list);
  694. if (pkt->sector != zone)
  695. pkt->cache_valid = 0;
  696. return pkt;
  697. }
  698. }
  699. BUG();
  700. return NULL;
  701. }
  702. static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
  703. {
  704. if (pkt->cache_valid) {
  705. list_add(&pkt->list, &pd->cdrw.pkt_free_list);
  706. } else {
  707. list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
  708. }
  709. }
  710. /*
  711. * recover a failed write, query for relocation if possible
  712. *
  713. * returns 1 if recovery is possible, or 0 if not
  714. *
  715. */
  716. static int pkt_start_recovery(struct packet_data *pkt)
  717. {
  718. /*
  719. * FIXME. We need help from the file system to implement
  720. * recovery handling.
  721. */
  722. return 0;
  723. #if 0
  724. struct request *rq = pkt->rq;
  725. struct pktcdvd_device *pd = rq->rq_disk->private_data;
  726. struct block_device *pkt_bdev;
  727. struct super_block *sb = NULL;
  728. unsigned long old_block, new_block;
  729. sector_t new_sector;
  730. pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
  731. if (pkt_bdev) {
  732. sb = get_super(pkt_bdev);
  733. bdput(pkt_bdev);
  734. }
  735. if (!sb)
  736. return 0;
  737. if (!sb->s_op || !sb->s_op->relocate_blocks)
  738. goto out;
  739. old_block = pkt->sector / (CD_FRAMESIZE >> 9);
  740. if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
  741. goto out;
  742. new_sector = new_block * (CD_FRAMESIZE >> 9);
  743. pkt->sector = new_sector;
  744. pkt->bio->bi_sector = new_sector;
  745. pkt->bio->bi_next = NULL;
  746. pkt->bio->bi_flags = 1 << BIO_UPTODATE;
  747. pkt->bio->bi_idx = 0;
  748. BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
  749. BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
  750. BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
  751. BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
  752. BUG_ON(pkt->bio->bi_private != pkt);
  753. drop_super(sb);
  754. return 1;
  755. out:
  756. drop_super(sb);
  757. return 0;
  758. #endif
  759. }
  760. static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
  761. {
  762. #if PACKET_DEBUG > 1
  763. static const char *state_name[] = {
  764. "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
  765. };
  766. enum packet_data_state old_state = pkt->state;
  767. VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
  768. state_name[old_state], state_name[state]);
  769. #endif
  770. pkt->state = state;
  771. }
  772. /*
  773. * Scan the work queue to see if we can start a new packet.
  774. * returns non-zero if any work was done.
  775. */
  776. static int pkt_handle_queue(struct pktcdvd_device *pd)
  777. {
  778. struct packet_data *pkt, *p;
  779. struct bio *bio = NULL;
  780. sector_t zone = 0; /* Suppress gcc warning */
  781. struct pkt_rb_node *node, *first_node;
  782. struct rb_node *n;
  783. VPRINTK("handle_queue\n");
  784. atomic_set(&pd->scan_queue, 0);
  785. if (list_empty(&pd->cdrw.pkt_free_list)) {
  786. VPRINTK("handle_queue: no pkt\n");
  787. return 0;
  788. }
  789. /*
  790. * Try to find a zone we are not already working on.
  791. */
  792. spin_lock(&pd->lock);
  793. first_node = pkt_rbtree_find(pd, pd->current_sector);
  794. if (!first_node) {
  795. n = rb_first(&pd->bio_queue);
  796. if (n)
  797. first_node = rb_entry(n, struct pkt_rb_node, rb_node);
  798. }
  799. node = first_node;
  800. while (node) {
  801. bio = node->bio;
  802. zone = ZONE(bio->bi_sector, pd);
  803. list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
  804. if (p->sector == zone) {
  805. bio = NULL;
  806. goto try_next_bio;
  807. }
  808. }
  809. break;
  810. try_next_bio:
  811. node = pkt_rbtree_next(node);
  812. if (!node) {
  813. n = rb_first(&pd->bio_queue);
  814. if (n)
  815. node = rb_entry(n, struct pkt_rb_node, rb_node);
  816. }
  817. if (node == first_node)
  818. node = NULL;
  819. }
  820. spin_unlock(&pd->lock);
  821. if (!bio) {
  822. VPRINTK("handle_queue: no bio\n");
  823. return 0;
  824. }
  825. pkt = pkt_get_packet_data(pd, zone);
  826. pd->current_sector = zone + pd->settings.size;
  827. pkt->sector = zone;
  828. pkt->frames = pd->settings.size >> 2;
  829. pkt->write_size = 0;
  830. /*
  831. * Scan work queue for bios in the same zone and link them
  832. * to this packet.
  833. */
  834. spin_lock(&pd->lock);
  835. VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
  836. while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
  837. bio = node->bio;
  838. VPRINTK("pkt_handle_queue: found zone=%llx\n",
  839. (unsigned long long)ZONE(bio->bi_sector, pd));
  840. if (ZONE(bio->bi_sector, pd) != zone)
  841. break;
  842. pkt_rbtree_erase(pd, node);
  843. spin_lock(&pkt->lock);
  844. pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
  845. pkt->write_size += bio->bi_size / CD_FRAMESIZE;
  846. spin_unlock(&pkt->lock);
  847. }
  848. spin_unlock(&pd->lock);
  849. pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
  850. pkt_set_state(pkt, PACKET_WAITING_STATE);
  851. atomic_set(&pkt->run_sm, 1);
  852. spin_lock(&pd->cdrw.active_list_lock);
  853. list_add(&pkt->list, &pd->cdrw.pkt_active_list);
  854. spin_unlock(&pd->cdrw.active_list_lock);
  855. return 1;
  856. }
  857. /*
  858. * Assemble a bio to write one packet and queue the bio for processing
  859. * by the underlying block device.
  860. */
  861. static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
  862. {
  863. struct bio *bio;
  864. struct page *pages[PACKET_MAX_SIZE];
  865. int offsets[PACKET_MAX_SIZE];
  866. int f;
  867. int frames_write;
  868. for (f = 0; f < pkt->frames; f++) {
  869. pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
  870. offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
  871. }
  872. /*
  873. * Fill-in pages[] and offsets[] with data from orig_bios.
  874. */
  875. frames_write = 0;
  876. spin_lock(&pkt->lock);
  877. for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
  878. int segment = bio->bi_idx;
  879. int src_offs = 0;
  880. int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
  881. int num_frames = bio->bi_size / CD_FRAMESIZE;
  882. BUG_ON(first_frame < 0);
  883. BUG_ON(first_frame + num_frames > pkt->frames);
  884. for (f = first_frame; f < first_frame + num_frames; f++) {
  885. struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
  886. while (src_offs >= src_bvl->bv_len) {
  887. src_offs -= src_bvl->bv_len;
  888. segment++;
  889. BUG_ON(segment >= bio->bi_vcnt);
  890. src_bvl = bio_iovec_idx(bio, segment);
  891. }
  892. if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
  893. pages[f] = src_bvl->bv_page;
  894. offsets[f] = src_bvl->bv_offset + src_offs;
  895. } else {
  896. pkt_copy_bio_data(bio, segment, src_offs,
  897. pages[f], offsets[f]);
  898. }
  899. src_offs += CD_FRAMESIZE;
  900. frames_write++;
  901. }
  902. }
  903. pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
  904. spin_unlock(&pkt->lock);
  905. VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
  906. frames_write, (unsigned long long)pkt->sector);
  907. BUG_ON(frames_write != pkt->write_size);
  908. if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
  909. pkt_make_local_copy(pkt, pages, offsets);
  910. pkt->cache_valid = 1;
  911. } else {
  912. pkt->cache_valid = 0;
  913. }
  914. /* Start the write request */
  915. bio_init(pkt->w_bio);
  916. pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
  917. pkt->w_bio->bi_sector = pkt->sector;
  918. pkt->w_bio->bi_bdev = pd->bdev;
  919. pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
  920. pkt->w_bio->bi_private = pkt;
  921. for (f = 0; f < pkt->frames; f++) {
  922. if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
  923. (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
  924. if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
  925. BUG();
  926. f++;
  927. } else {
  928. if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
  929. BUG();
  930. }
  931. }
  932. VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
  933. atomic_set(&pkt->io_wait, 1);
  934. pkt->w_bio->bi_rw = WRITE;
  935. pkt_queue_bio(pd, pkt->w_bio);
  936. }
  937. static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
  938. {
  939. struct bio *bio, *next;
  940. if (!uptodate)
  941. pkt->cache_valid = 0;
  942. /* Finish all bios corresponding to this packet */
  943. bio = pkt->orig_bios;
  944. while (bio) {
  945. next = bio->bi_next;
  946. bio->bi_next = NULL;
  947. bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
  948. bio = next;
  949. }
  950. pkt->orig_bios = pkt->orig_bios_tail = NULL;
  951. }
  952. static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
  953. {
  954. int uptodate;
  955. VPRINTK("run_state_machine: pkt %d\n", pkt->id);
  956. for (;;) {
  957. switch (pkt->state) {
  958. case PACKET_WAITING_STATE:
  959. if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
  960. return;
  961. pkt->sleep_time = 0;
  962. pkt_gather_data(pd, pkt);
  963. pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
  964. break;
  965. case PACKET_READ_WAIT_STATE:
  966. if (atomic_read(&pkt->io_wait) > 0)
  967. return;
  968. if (atomic_read(&pkt->io_errors) > 0) {
  969. pkt_set_state(pkt, PACKET_RECOVERY_STATE);
  970. } else {
  971. pkt_start_write(pd, pkt);
  972. }
  973. break;
  974. case PACKET_WRITE_WAIT_STATE:
  975. if (atomic_read(&pkt->io_wait) > 0)
  976. return;
  977. if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
  978. pkt_set_state(pkt, PACKET_FINISHED_STATE);
  979. } else {
  980. pkt_set_state(pkt, PACKET_RECOVERY_STATE);
  981. }
  982. break;
  983. case PACKET_RECOVERY_STATE:
  984. if (pkt_start_recovery(pkt)) {
  985. pkt_start_write(pd, pkt);
  986. } else {
  987. VPRINTK("No recovery possible\n");
  988. pkt_set_state(pkt, PACKET_FINISHED_STATE);
  989. }
  990. break;
  991. case PACKET_FINISHED_STATE:
  992. uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
  993. pkt_finish_packet(pkt, uptodate);
  994. return;
  995. default:
  996. BUG();
  997. break;
  998. }
  999. }
  1000. }
  1001. static void pkt_handle_packets(struct pktcdvd_device *pd)
  1002. {
  1003. struct packet_data *pkt, *next;
  1004. VPRINTK("pkt_handle_packets\n");
  1005. /*
  1006. * Run state machine for active packets
  1007. */
  1008. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1009. if (atomic_read(&pkt->run_sm) > 0) {
  1010. atomic_set(&pkt->run_sm, 0);
  1011. pkt_run_state_machine(pd, pkt);
  1012. }
  1013. }
  1014. /*
  1015. * Move no longer active packets to the free list
  1016. */
  1017. spin_lock(&pd->cdrw.active_list_lock);
  1018. list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
  1019. if (pkt->state == PACKET_FINISHED_STATE) {
  1020. list_del(&pkt->list);
  1021. pkt_put_packet_data(pd, pkt);
  1022. pkt_set_state(pkt, PACKET_IDLE_STATE);
  1023. atomic_set(&pd->scan_queue, 1);
  1024. }
  1025. }
  1026. spin_unlock(&pd->cdrw.active_list_lock);
  1027. }
  1028. static void pkt_count_states(struct pktcdvd_device *pd, int *states)
  1029. {
  1030. struct packet_data *pkt;
  1031. int i;
  1032. for (i = 0; i <= PACKET_NUM_STATES; i++)
  1033. states[i] = 0;
  1034. spin_lock(&pd->cdrw.active_list_lock);
  1035. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1036. states[pkt->state]++;
  1037. }
  1038. spin_unlock(&pd->cdrw.active_list_lock);
  1039. }
  1040. /*
  1041. * kcdrwd is woken up when writes have been queued for one of our
  1042. * registered devices
  1043. */
  1044. static int kcdrwd(void *foobar)
  1045. {
  1046. struct pktcdvd_device *pd = foobar;
  1047. struct packet_data *pkt;
  1048. long min_sleep_time, residue;
  1049. set_user_nice(current, -20);
  1050. for (;;) {
  1051. DECLARE_WAITQUEUE(wait, current);
  1052. /*
  1053. * Wait until there is something to do
  1054. */
  1055. add_wait_queue(&pd->wqueue, &wait);
  1056. for (;;) {
  1057. set_current_state(TASK_INTERRUPTIBLE);
  1058. /* Check if we need to run pkt_handle_queue */
  1059. if (atomic_read(&pd->scan_queue) > 0)
  1060. goto work_to_do;
  1061. /* Check if we need to run the state machine for some packet */
  1062. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1063. if (atomic_read(&pkt->run_sm) > 0)
  1064. goto work_to_do;
  1065. }
  1066. /* Check if we need to process the iosched queues */
  1067. if (atomic_read(&pd->iosched.attention) != 0)
  1068. goto work_to_do;
  1069. /* Otherwise, go to sleep */
  1070. if (PACKET_DEBUG > 1) {
  1071. int states[PACKET_NUM_STATES];
  1072. pkt_count_states(pd, states);
  1073. VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
  1074. states[0], states[1], states[2], states[3],
  1075. states[4], states[5]);
  1076. }
  1077. min_sleep_time = MAX_SCHEDULE_TIMEOUT;
  1078. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1079. if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
  1080. min_sleep_time = pkt->sleep_time;
  1081. }
  1082. generic_unplug_device(bdev_get_queue(pd->bdev));
  1083. VPRINTK("kcdrwd: sleeping\n");
  1084. residue = schedule_timeout(min_sleep_time);
  1085. VPRINTK("kcdrwd: wake up\n");
  1086. /* make swsusp happy with our thread */
  1087. try_to_freeze();
  1088. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1089. if (!pkt->sleep_time)
  1090. continue;
  1091. pkt->sleep_time -= min_sleep_time - residue;
  1092. if (pkt->sleep_time <= 0) {
  1093. pkt->sleep_time = 0;
  1094. atomic_inc(&pkt->run_sm);
  1095. }
  1096. }
  1097. if (signal_pending(current)) {
  1098. flush_signals(current);
  1099. }
  1100. if (kthread_should_stop())
  1101. break;
  1102. }
  1103. work_to_do:
  1104. set_current_state(TASK_RUNNING);
  1105. remove_wait_queue(&pd->wqueue, &wait);
  1106. if (kthread_should_stop())
  1107. break;
  1108. /*
  1109. * if pkt_handle_queue returns true, we can queue
  1110. * another request.
  1111. */
  1112. while (pkt_handle_queue(pd))
  1113. ;
  1114. /*
  1115. * Handle packet state machine
  1116. */
  1117. pkt_handle_packets(pd);
  1118. /*
  1119. * Handle iosched queues
  1120. */
  1121. pkt_iosched_process_queue(pd);
  1122. }
  1123. return 0;
  1124. }
  1125. static void pkt_print_settings(struct pktcdvd_device *pd)
  1126. {
  1127. printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
  1128. printk("%u blocks, ", pd->settings.size >> 2);
  1129. printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
  1130. }
  1131. static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
  1132. {
  1133. memset(cgc->cmd, 0, sizeof(cgc->cmd));
  1134. cgc->cmd[0] = GPCMD_MODE_SENSE_10;
  1135. cgc->cmd[2] = page_code | (page_control << 6);
  1136. cgc->cmd[7] = cgc->buflen >> 8;
  1137. cgc->cmd[8] = cgc->buflen & 0xff;
  1138. cgc->data_direction = CGC_DATA_READ;
  1139. return pkt_generic_packet(pd, cgc);
  1140. }
  1141. static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
  1142. {
  1143. memset(cgc->cmd, 0, sizeof(cgc->cmd));
  1144. memset(cgc->buffer, 0, 2);
  1145. cgc->cmd[0] = GPCMD_MODE_SELECT_10;
  1146. cgc->cmd[1] = 0x10; /* PF */
  1147. cgc->cmd[7] = cgc->buflen >> 8;
  1148. cgc->cmd[8] = cgc->buflen & 0xff;
  1149. cgc->data_direction = CGC_DATA_WRITE;
  1150. return pkt_generic_packet(pd, cgc);
  1151. }
  1152. static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
  1153. {
  1154. struct packet_command cgc;
  1155. int ret;
  1156. /* set up command and get the disc info */
  1157. init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
  1158. cgc.cmd[0] = GPCMD_READ_DISC_INFO;
  1159. cgc.cmd[8] = cgc.buflen = 2;
  1160. cgc.quiet = 1;
  1161. if ((ret = pkt_generic_packet(pd, &cgc)))
  1162. return ret;
  1163. /* not all drives have the same disc_info length, so requeue
  1164. * packet with the length the drive tells us it can supply
  1165. */
  1166. cgc.buflen = be16_to_cpu(di->disc_information_length) +
  1167. sizeof(di->disc_information_length);
  1168. if (cgc.buflen > sizeof(disc_information))
  1169. cgc.buflen = sizeof(disc_information);
  1170. cgc.cmd[8] = cgc.buflen;
  1171. return pkt_generic_packet(pd, &cgc);
  1172. }
  1173. static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
  1174. {
  1175. struct packet_command cgc;
  1176. int ret;
  1177. init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
  1178. cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
  1179. cgc.cmd[1] = type & 3;
  1180. cgc.cmd[4] = (track & 0xff00) >> 8;
  1181. cgc.cmd[5] = track & 0xff;
  1182. cgc.cmd[8] = 8;
  1183. cgc.quiet = 1;
  1184. if ((ret = pkt_generic_packet(pd, &cgc)))
  1185. return ret;
  1186. cgc.buflen = be16_to_cpu(ti->track_information_length) +
  1187. sizeof(ti->track_information_length);
  1188. if (cgc.buflen > sizeof(track_information))
  1189. cgc.buflen = sizeof(track_information);
  1190. cgc.cmd[8] = cgc.buflen;
  1191. return pkt_generic_packet(pd, &cgc);
  1192. }
  1193. static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
  1194. {
  1195. disc_information di;
  1196. track_information ti;
  1197. __u32 last_track;
  1198. int ret = -1;
  1199. if ((ret = pkt_get_disc_info(pd, &di)))
  1200. return ret;
  1201. last_track = (di.last_track_msb << 8) | di.last_track_lsb;
  1202. if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
  1203. return ret;
  1204. /* if this track is blank, try the previous. */
  1205. if (ti.blank) {
  1206. last_track--;
  1207. if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
  1208. return ret;
  1209. }
  1210. /* if last recorded field is valid, return it. */
  1211. if (ti.lra_v) {
  1212. *last_written = be32_to_cpu(ti.last_rec_address);
  1213. } else {
  1214. /* make it up instead */
  1215. *last_written = be32_to_cpu(ti.track_start) +
  1216. be32_to_cpu(ti.track_size);
  1217. if (ti.free_blocks)
  1218. *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
  1219. }
  1220. return 0;
  1221. }
  1222. /*
  1223. * write mode select package based on pd->settings
  1224. */
  1225. static int pkt_set_write_settings(struct pktcdvd_device *pd)
  1226. {
  1227. struct packet_command cgc;
  1228. struct request_sense sense;
  1229. write_param_page *wp;
  1230. char buffer[128];
  1231. int ret, size;
  1232. /* doesn't apply to DVD+RW or DVD-RAM */
  1233. if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
  1234. return 0;
  1235. memset(buffer, 0, sizeof(buffer));
  1236. init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
  1237. cgc.sense = &sense;
  1238. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
  1239. pkt_dump_sense(&cgc);
  1240. return ret;
  1241. }
  1242. size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
  1243. pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
  1244. if (size > sizeof(buffer))
  1245. size = sizeof(buffer);
  1246. /*
  1247. * now get it all
  1248. */
  1249. init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
  1250. cgc.sense = &sense;
  1251. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
  1252. pkt_dump_sense(&cgc);
  1253. return ret;
  1254. }
  1255. /*
  1256. * write page is offset header + block descriptor length
  1257. */
  1258. wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
  1259. wp->fp = pd->settings.fp;
  1260. wp->track_mode = pd->settings.track_mode;
  1261. wp->write_type = pd->settings.write_type;
  1262. wp->data_block_type = pd->settings.block_mode;
  1263. wp->multi_session = 0;
  1264. #ifdef PACKET_USE_LS
  1265. wp->link_size = 7;
  1266. wp->ls_v = 1;
  1267. #endif
  1268. if (wp->data_block_type == PACKET_BLOCK_MODE1) {
  1269. wp->session_format = 0;
  1270. wp->subhdr2 = 0x20;
  1271. } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
  1272. wp->session_format = 0x20;
  1273. wp->subhdr2 = 8;
  1274. #if 0
  1275. wp->mcn[0] = 0x80;
  1276. memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
  1277. #endif
  1278. } else {
  1279. /*
  1280. * paranoia
  1281. */
  1282. printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
  1283. return 1;
  1284. }
  1285. wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
  1286. cgc.buflen = cgc.cmd[8] = size;
  1287. if ((ret = pkt_mode_select(pd, &cgc))) {
  1288. pkt_dump_sense(&cgc);
  1289. return ret;
  1290. }
  1291. pkt_print_settings(pd);
  1292. return 0;
  1293. }
  1294. /*
  1295. * 0 -- we can write to this track, 1 -- we can't
  1296. */
  1297. static int pkt_good_track(track_information *ti)
  1298. {
  1299. /*
  1300. * only good for CD-RW at the moment, not DVD-RW
  1301. */
  1302. /*
  1303. * FIXME: only for FP
  1304. */
  1305. if (ti->fp == 0)
  1306. return 0;
  1307. /*
  1308. * "good" settings as per Mt Fuji.
  1309. */
  1310. if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
  1311. return 0;
  1312. if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
  1313. return 0;
  1314. if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
  1315. return 0;
  1316. printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
  1317. return 1;
  1318. }
  1319. /*
  1320. * 0 -- we can write to this disc, 1 -- we can't
  1321. */
  1322. static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
  1323. {
  1324. switch (pd->mmc3_profile) {
  1325. case 0x0a: /* CD-RW */
  1326. case 0xffff: /* MMC3 not supported */
  1327. break;
  1328. case 0x1a: /* DVD+RW */
  1329. case 0x13: /* DVD-RW */
  1330. case 0x12: /* DVD-RAM */
  1331. return 0;
  1332. default:
  1333. printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
  1334. return 1;
  1335. }
  1336. /*
  1337. * for disc type 0xff we should probably reserve a new track.
  1338. * but i'm not sure, should we leave this to user apps? probably.
  1339. */
  1340. if (di->disc_type == 0xff) {
  1341. printk("pktcdvd: Unknown disc. No track?\n");
  1342. return 1;
  1343. }
  1344. if (di->disc_type != 0x20 && di->disc_type != 0) {
  1345. printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
  1346. return 1;
  1347. }
  1348. if (di->erasable == 0) {
  1349. printk("pktcdvd: Disc not erasable\n");
  1350. return 1;
  1351. }
  1352. if (di->border_status == PACKET_SESSION_RESERVED) {
  1353. printk("pktcdvd: Can't write to last track (reserved)\n");
  1354. return 1;
  1355. }
  1356. return 0;
  1357. }
  1358. static int pkt_probe_settings(struct pktcdvd_device *pd)
  1359. {
  1360. struct packet_command cgc;
  1361. unsigned char buf[12];
  1362. disc_information di;
  1363. track_information ti;
  1364. int ret, track;
  1365. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
  1366. cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
  1367. cgc.cmd[8] = 8;
  1368. ret = pkt_generic_packet(pd, &cgc);
  1369. pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
  1370. memset(&di, 0, sizeof(disc_information));
  1371. memset(&ti, 0, sizeof(track_information));
  1372. if ((ret = pkt_get_disc_info(pd, &di))) {
  1373. printk("failed get_disc\n");
  1374. return ret;
  1375. }
  1376. if (pkt_good_disc(pd, &di))
  1377. return -ENXIO;
  1378. switch (pd->mmc3_profile) {
  1379. case 0x1a: /* DVD+RW */
  1380. printk("pktcdvd: inserted media is DVD+RW\n");
  1381. break;
  1382. case 0x13: /* DVD-RW */
  1383. printk("pktcdvd: inserted media is DVD-RW\n");
  1384. break;
  1385. case 0x12: /* DVD-RAM */
  1386. printk("pktcdvd: inserted media is DVD-RAM\n");
  1387. break;
  1388. default:
  1389. printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
  1390. break;
  1391. }
  1392. pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
  1393. track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
  1394. if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
  1395. printk("pktcdvd: failed get_track\n");
  1396. return ret;
  1397. }
  1398. if (pkt_good_track(&ti)) {
  1399. printk("pktcdvd: can't write to this track\n");
  1400. return -ENXIO;
  1401. }
  1402. /*
  1403. * we keep packet size in 512 byte units, makes it easier to
  1404. * deal with request calculations.
  1405. */
  1406. pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
  1407. if (pd->settings.size == 0) {
  1408. printk("pktcdvd: detected zero packet size!\n");
  1409. pd->settings.size = 128;
  1410. }
  1411. if (pd->settings.size > PACKET_MAX_SECTORS) {
  1412. printk("pktcdvd: packet size is too big\n");
  1413. return -ENXIO;
  1414. }
  1415. pd->settings.fp = ti.fp;
  1416. pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
  1417. if (ti.nwa_v) {
  1418. pd->nwa = be32_to_cpu(ti.next_writable);
  1419. set_bit(PACKET_NWA_VALID, &pd->flags);
  1420. }
  1421. /*
  1422. * in theory we could use lra on -RW media as well and just zero
  1423. * blocks that haven't been written yet, but in practice that
  1424. * is just a no-go. we'll use that for -R, naturally.
  1425. */
  1426. if (ti.lra_v) {
  1427. pd->lra = be32_to_cpu(ti.last_rec_address);
  1428. set_bit(PACKET_LRA_VALID, &pd->flags);
  1429. } else {
  1430. pd->lra = 0xffffffff;
  1431. set_bit(PACKET_LRA_VALID, &pd->flags);
  1432. }
  1433. /*
  1434. * fine for now
  1435. */
  1436. pd->settings.link_loss = 7;
  1437. pd->settings.write_type = 0; /* packet */
  1438. pd->settings.track_mode = ti.track_mode;
  1439. /*
  1440. * mode1 or mode2 disc
  1441. */
  1442. switch (ti.data_mode) {
  1443. case PACKET_MODE1:
  1444. pd->settings.block_mode = PACKET_BLOCK_MODE1;
  1445. break;
  1446. case PACKET_MODE2:
  1447. pd->settings.block_mode = PACKET_BLOCK_MODE2;
  1448. break;
  1449. default:
  1450. printk("pktcdvd: unknown data mode\n");
  1451. return 1;
  1452. }
  1453. return 0;
  1454. }
  1455. /*
  1456. * enable/disable write caching on drive
  1457. */
  1458. static int pkt_write_caching(struct pktcdvd_device *pd, int set)
  1459. {
  1460. struct packet_command cgc;
  1461. struct request_sense sense;
  1462. unsigned char buf[64];
  1463. int ret;
  1464. memset(buf, 0, sizeof(buf));
  1465. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
  1466. cgc.sense = &sense;
  1467. cgc.buflen = pd->mode_offset + 12;
  1468. /*
  1469. * caching mode page might not be there, so quiet this command
  1470. */
  1471. cgc.quiet = 1;
  1472. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
  1473. return ret;
  1474. buf[pd->mode_offset + 10] |= (!!set << 2);
  1475. cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
  1476. ret = pkt_mode_select(pd, &cgc);
  1477. if (ret) {
  1478. printk("pktcdvd: write caching control failed\n");
  1479. pkt_dump_sense(&cgc);
  1480. } else if (!ret && set)
  1481. printk("pktcdvd: enabled write caching on %s\n", pd->name);
  1482. return ret;
  1483. }
  1484. static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
  1485. {
  1486. struct packet_command cgc;
  1487. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  1488. cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
  1489. cgc.cmd[4] = lockflag ? 1 : 0;
  1490. return pkt_generic_packet(pd, &cgc);
  1491. }
  1492. /*
  1493. * Returns drive maximum write speed
  1494. */
  1495. static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
  1496. {
  1497. struct packet_command cgc;
  1498. struct request_sense sense;
  1499. unsigned char buf[256+18];
  1500. unsigned char *cap_buf;
  1501. int ret, offset;
  1502. memset(buf, 0, sizeof(buf));
  1503. cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
  1504. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
  1505. cgc.sense = &sense;
  1506. ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
  1507. if (ret) {
  1508. cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
  1509. sizeof(struct mode_page_header);
  1510. ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
  1511. if (ret) {
  1512. pkt_dump_sense(&cgc);
  1513. return ret;
  1514. }
  1515. }
  1516. offset = 20; /* Obsoleted field, used by older drives */
  1517. if (cap_buf[1] >= 28)
  1518. offset = 28; /* Current write speed selected */
  1519. if (cap_buf[1] >= 30) {
  1520. /* If the drive reports at least one "Logical Unit Write
  1521. * Speed Performance Descriptor Block", use the information
  1522. * in the first block. (contains the highest speed)
  1523. */
  1524. int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
  1525. if (num_spdb > 0)
  1526. offset = 34;
  1527. }
  1528. *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
  1529. return 0;
  1530. }
  1531. /* These tables from cdrecord - I don't have orange book */
  1532. /* standard speed CD-RW (1-4x) */
  1533. static char clv_to_speed[16] = {
  1534. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1535. 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  1536. };
  1537. /* high speed CD-RW (-10x) */
  1538. static char hs_clv_to_speed[16] = {
  1539. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1540. 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  1541. };
  1542. /* ultra high speed CD-RW */
  1543. static char us_clv_to_speed[16] = {
  1544. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1545. 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
  1546. };
  1547. /*
  1548. * reads the maximum media speed from ATIP
  1549. */
  1550. static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
  1551. {
  1552. struct packet_command cgc;
  1553. struct request_sense sense;
  1554. unsigned char buf[64];
  1555. unsigned int size, st, sp;
  1556. int ret;
  1557. init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
  1558. cgc.sense = &sense;
  1559. cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
  1560. cgc.cmd[1] = 2;
  1561. cgc.cmd[2] = 4; /* READ ATIP */
  1562. cgc.cmd[8] = 2;
  1563. ret = pkt_generic_packet(pd, &cgc);
  1564. if (ret) {
  1565. pkt_dump_sense(&cgc);
  1566. return ret;
  1567. }
  1568. size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
  1569. if (size > sizeof(buf))
  1570. size = sizeof(buf);
  1571. init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
  1572. cgc.sense = &sense;
  1573. cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
  1574. cgc.cmd[1] = 2;
  1575. cgc.cmd[2] = 4;
  1576. cgc.cmd[8] = size;
  1577. ret = pkt_generic_packet(pd, &cgc);
  1578. if (ret) {
  1579. pkt_dump_sense(&cgc);
  1580. return ret;
  1581. }
  1582. if (!buf[6] & 0x40) {
  1583. printk("pktcdvd: Disc type is not CD-RW\n");
  1584. return 1;
  1585. }
  1586. if (!buf[6] & 0x4) {
  1587. printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
  1588. return 1;
  1589. }
  1590. st = (buf[6] >> 3) & 0x7; /* disc sub-type */
  1591. sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
  1592. /* Info from cdrecord */
  1593. switch (st) {
  1594. case 0: /* standard speed */
  1595. *speed = clv_to_speed[sp];
  1596. break;
  1597. case 1: /* high speed */
  1598. *speed = hs_clv_to_speed[sp];
  1599. break;
  1600. case 2: /* ultra high speed */
  1601. *speed = us_clv_to_speed[sp];
  1602. break;
  1603. default:
  1604. printk("pktcdvd: Unknown disc sub-type %d\n",st);
  1605. return 1;
  1606. }
  1607. if (*speed) {
  1608. printk("pktcdvd: Max. media speed: %d\n",*speed);
  1609. return 0;
  1610. } else {
  1611. printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
  1612. return 1;
  1613. }
  1614. }
  1615. static int pkt_perform_opc(struct pktcdvd_device *pd)
  1616. {
  1617. struct packet_command cgc;
  1618. struct request_sense sense;
  1619. int ret;
  1620. VPRINTK("pktcdvd: Performing OPC\n");
  1621. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  1622. cgc.sense = &sense;
  1623. cgc.timeout = 60*HZ;
  1624. cgc.cmd[0] = GPCMD_SEND_OPC;
  1625. cgc.cmd[1] = 1;
  1626. if ((ret = pkt_generic_packet(pd, &cgc)))
  1627. pkt_dump_sense(&cgc);
  1628. return ret;
  1629. }
  1630. static int pkt_open_write(struct pktcdvd_device *pd)
  1631. {
  1632. int ret;
  1633. unsigned int write_speed, media_write_speed, read_speed;
  1634. if ((ret = pkt_probe_settings(pd))) {
  1635. DPRINTK("pktcdvd: %s failed probe\n", pd->name);
  1636. return -EIO;
  1637. }
  1638. if ((ret = pkt_set_write_settings(pd))) {
  1639. DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
  1640. return -EIO;
  1641. }
  1642. pkt_write_caching(pd, USE_WCACHING);
  1643. if ((ret = pkt_get_max_speed(pd, &write_speed)))
  1644. write_speed = 16 * 177;
  1645. switch (pd->mmc3_profile) {
  1646. case 0x13: /* DVD-RW */
  1647. case 0x1a: /* DVD+RW */
  1648. case 0x12: /* DVD-RAM */
  1649. DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
  1650. break;
  1651. default:
  1652. if ((ret = pkt_media_speed(pd, &media_write_speed)))
  1653. media_write_speed = 16;
  1654. write_speed = min(write_speed, media_write_speed * 177);
  1655. DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
  1656. break;
  1657. }
  1658. read_speed = write_speed;
  1659. if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
  1660. DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
  1661. return -EIO;
  1662. }
  1663. pd->write_speed = write_speed;
  1664. pd->read_speed = read_speed;
  1665. if ((ret = pkt_perform_opc(pd))) {
  1666. DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
  1667. }
  1668. return 0;
  1669. }
  1670. /*
  1671. * called at open time.
  1672. */
  1673. static int pkt_open_dev(struct pktcdvd_device *pd, int write)
  1674. {
  1675. int ret;
  1676. long lba;
  1677. request_queue_t *q;
  1678. /*
  1679. * We need to re-open the cdrom device without O_NONBLOCK to be able
  1680. * to read/write from/to it. It is already opened in O_NONBLOCK mode
  1681. * so bdget() can't fail.
  1682. */
  1683. bdget(pd->bdev->bd_dev);
  1684. if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
  1685. goto out;
  1686. if ((ret = pkt_get_last_written(pd, &lba))) {
  1687. printk("pktcdvd: pkt_get_last_written failed\n");
  1688. goto out_putdev;
  1689. }
  1690. set_capacity(pd->disk, lba << 2);
  1691. set_capacity(pd->bdev->bd_disk, lba << 2);
  1692. bd_set_size(pd->bdev, (loff_t)lba << 11);
  1693. q = bdev_get_queue(pd->bdev);
  1694. if (write) {
  1695. if ((ret = pkt_open_write(pd)))
  1696. goto out_putdev;
  1697. /*
  1698. * Some CDRW drives can not handle writes larger than one packet,
  1699. * even if the size is a multiple of the packet size.
  1700. */
  1701. spin_lock_irq(q->queue_lock);
  1702. blk_queue_max_sectors(q, pd->settings.size);
  1703. spin_unlock_irq(q->queue_lock);
  1704. set_bit(PACKET_WRITABLE, &pd->flags);
  1705. } else {
  1706. pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
  1707. clear_bit(PACKET_WRITABLE, &pd->flags);
  1708. }
  1709. if ((ret = pkt_set_segment_merging(pd, q)))
  1710. goto out_putdev;
  1711. if (write)
  1712. printk("pktcdvd: %lukB available on disc\n", lba << 1);
  1713. return 0;
  1714. out_putdev:
  1715. blkdev_put(pd->bdev);
  1716. out:
  1717. return ret;
  1718. }
  1719. /*
  1720. * called when the device is closed. makes sure that the device flushes
  1721. * the internal cache before we close.
  1722. */
  1723. static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
  1724. {
  1725. if (flush && pkt_flush_cache(pd))
  1726. DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
  1727. pkt_lock_door(pd, 0);
  1728. pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
  1729. blkdev_put(pd->bdev);
  1730. }
  1731. static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
  1732. {
  1733. if (dev_minor >= MAX_WRITERS)
  1734. return NULL;
  1735. return pkt_devs[dev_minor];
  1736. }
  1737. static int pkt_open(struct inode *inode, struct file *file)
  1738. {
  1739. struct pktcdvd_device *pd = NULL;
  1740. int ret;
  1741. VPRINTK("pktcdvd: entering open\n");
  1742. down(&ctl_mutex);
  1743. pd = pkt_find_dev_from_minor(iminor(inode));
  1744. if (!pd) {
  1745. ret = -ENODEV;
  1746. goto out;
  1747. }
  1748. BUG_ON(pd->refcnt < 0);
  1749. pd->refcnt++;
  1750. if (pd->refcnt > 1) {
  1751. if ((file->f_mode & FMODE_WRITE) &&
  1752. !test_bit(PACKET_WRITABLE, &pd->flags)) {
  1753. ret = -EBUSY;
  1754. goto out_dec;
  1755. }
  1756. } else {
  1757. if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
  1758. ret = -EIO;
  1759. goto out_dec;
  1760. }
  1761. /*
  1762. * needed here as well, since ext2 (among others) may change
  1763. * the blocksize at mount time
  1764. */
  1765. set_blocksize(inode->i_bdev, CD_FRAMESIZE);
  1766. }
  1767. up(&ctl_mutex);
  1768. return 0;
  1769. out_dec:
  1770. pd->refcnt--;
  1771. out:
  1772. VPRINTK("pktcdvd: failed open (%d)\n", ret);
  1773. up(&ctl_mutex);
  1774. return ret;
  1775. }
  1776. static int pkt_close(struct inode *inode, struct file *file)
  1777. {
  1778. struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
  1779. int ret = 0;
  1780. down(&ctl_mutex);
  1781. pd->refcnt--;
  1782. BUG_ON(pd->refcnt < 0);
  1783. if (pd->refcnt == 0) {
  1784. int flush = test_bit(PACKET_WRITABLE, &pd->flags);
  1785. pkt_release_dev(pd, flush);
  1786. }
  1787. up(&ctl_mutex);
  1788. return ret;
  1789. }
  1790. static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
  1791. {
  1792. return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
  1793. }
  1794. static void psd_pool_free(void *ptr, void *data)
  1795. {
  1796. kfree(ptr);
  1797. }
  1798. static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
  1799. {
  1800. struct packet_stacked_data *psd = bio->bi_private;
  1801. struct pktcdvd_device *pd = psd->pd;
  1802. if (bio->bi_size)
  1803. return 1;
  1804. bio_put(bio);
  1805. bio_endio(psd->bio, psd->bio->bi_size, err);
  1806. mempool_free(psd, psd_pool);
  1807. pkt_bio_finished(pd);
  1808. return 0;
  1809. }
  1810. static int pkt_make_request(request_queue_t *q, struct bio *bio)
  1811. {
  1812. struct pktcdvd_device *pd;
  1813. char b[BDEVNAME_SIZE];
  1814. sector_t zone;
  1815. struct packet_data *pkt;
  1816. int was_empty, blocked_bio;
  1817. struct pkt_rb_node *node;
  1818. pd = q->queuedata;
  1819. if (!pd) {
  1820. printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
  1821. goto end_io;
  1822. }
  1823. /*
  1824. * Clone READ bios so we can have our own bi_end_io callback.
  1825. */
  1826. if (bio_data_dir(bio) == READ) {
  1827. struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
  1828. struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
  1829. psd->pd = pd;
  1830. psd->bio = bio;
  1831. cloned_bio->bi_bdev = pd->bdev;
  1832. cloned_bio->bi_private = psd;
  1833. cloned_bio->bi_end_io = pkt_end_io_read_cloned;
  1834. pd->stats.secs_r += bio->bi_size >> 9;
  1835. pkt_queue_bio(pd, cloned_bio);
  1836. return 0;
  1837. }
  1838. if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
  1839. printk("pktcdvd: WRITE for ro device %s (%llu)\n",
  1840. pd->name, (unsigned long long)bio->bi_sector);
  1841. goto end_io;
  1842. }
  1843. if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
  1844. printk("pktcdvd: wrong bio size\n");
  1845. goto end_io;
  1846. }
  1847. blk_queue_bounce(q, &bio);
  1848. zone = ZONE(bio->bi_sector, pd);
  1849. VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
  1850. (unsigned long long)bio->bi_sector,
  1851. (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
  1852. /* Check if we have to split the bio */
  1853. {
  1854. struct bio_pair *bp;
  1855. sector_t last_zone;
  1856. int first_sectors;
  1857. last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
  1858. if (last_zone != zone) {
  1859. BUG_ON(last_zone != zone + pd->settings.size);
  1860. first_sectors = last_zone - bio->bi_sector;
  1861. bp = bio_split(bio, bio_split_pool, first_sectors);
  1862. BUG_ON(!bp);
  1863. pkt_make_request(q, &bp->bio1);
  1864. pkt_make_request(q, &bp->bio2);
  1865. bio_pair_release(bp);
  1866. return 0;
  1867. }
  1868. }
  1869. /*
  1870. * If we find a matching packet in state WAITING or READ_WAIT, we can
  1871. * just append this bio to that packet.
  1872. */
  1873. spin_lock(&pd->cdrw.active_list_lock);
  1874. blocked_bio = 0;
  1875. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1876. if (pkt->sector == zone) {
  1877. spin_lock(&pkt->lock);
  1878. if ((pkt->state == PACKET_WAITING_STATE) ||
  1879. (pkt->state == PACKET_READ_WAIT_STATE)) {
  1880. pkt_add_list_last(bio, &pkt->orig_bios,
  1881. &pkt->orig_bios_tail);
  1882. pkt->write_size += bio->bi_size / CD_FRAMESIZE;
  1883. if ((pkt->write_size >= pkt->frames) &&
  1884. (pkt->state == PACKET_WAITING_STATE)) {
  1885. atomic_inc(&pkt->run_sm);
  1886. wake_up(&pd->wqueue);
  1887. }
  1888. spin_unlock(&pkt->lock);
  1889. spin_unlock(&pd->cdrw.active_list_lock);
  1890. return 0;
  1891. } else {
  1892. blocked_bio = 1;
  1893. }
  1894. spin_unlock(&pkt->lock);
  1895. }
  1896. }
  1897. spin_unlock(&pd->cdrw.active_list_lock);
  1898. /*
  1899. * No matching packet found. Store the bio in the work queue.
  1900. */
  1901. node = mempool_alloc(pd->rb_pool, GFP_NOIO);
  1902. node->bio = bio;
  1903. spin_lock(&pd->lock);
  1904. BUG_ON(pd->bio_queue_size < 0);
  1905. was_empty = (pd->bio_queue_size == 0);
  1906. pkt_rbtree_insert(pd, node);
  1907. spin_unlock(&pd->lock);
  1908. /*
  1909. * Wake up the worker thread.
  1910. */
  1911. atomic_set(&pd->scan_queue, 1);
  1912. if (was_empty) {
  1913. /* This wake_up is required for correct operation */
  1914. wake_up(&pd->wqueue);
  1915. } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
  1916. /*
  1917. * This wake up is not required for correct operation,
  1918. * but improves performance in some cases.
  1919. */
  1920. wake_up(&pd->wqueue);
  1921. }
  1922. return 0;
  1923. end_io:
  1924. bio_io_error(bio, bio->bi_size);
  1925. return 0;
  1926. }
  1927. static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
  1928. {
  1929. struct pktcdvd_device *pd = q->queuedata;
  1930. sector_t zone = ZONE(bio->bi_sector, pd);
  1931. int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
  1932. int remaining = (pd->settings.size << 9) - used;
  1933. int remaining2;
  1934. /*
  1935. * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
  1936. * boundary, pkt_make_request() will split the bio.
  1937. */
  1938. remaining2 = PAGE_SIZE - bio->bi_size;
  1939. remaining = max(remaining, remaining2);
  1940. BUG_ON(remaining < 0);
  1941. return remaining;
  1942. }
  1943. static void pkt_init_queue(struct pktcdvd_device *pd)
  1944. {
  1945. request_queue_t *q = pd->disk->queue;
  1946. blk_queue_make_request(q, pkt_make_request);
  1947. blk_queue_hardsect_size(q, CD_FRAMESIZE);
  1948. blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
  1949. blk_queue_merge_bvec(q, pkt_merge_bvec);
  1950. q->queuedata = pd;
  1951. }
  1952. static int pkt_seq_show(struct seq_file *m, void *p)
  1953. {
  1954. struct pktcdvd_device *pd = m->private;
  1955. char *msg;
  1956. char bdev_buf[BDEVNAME_SIZE];
  1957. int states[PACKET_NUM_STATES];
  1958. seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
  1959. bdevname(pd->bdev, bdev_buf));
  1960. seq_printf(m, "\nSettings:\n");
  1961. seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
  1962. if (pd->settings.write_type == 0)
  1963. msg = "Packet";
  1964. else
  1965. msg = "Unknown";
  1966. seq_printf(m, "\twrite type:\t\t%s\n", msg);
  1967. seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
  1968. seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
  1969. seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
  1970. if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
  1971. msg = "Mode 1";
  1972. else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
  1973. msg = "Mode 2";
  1974. else
  1975. msg = "Unknown";
  1976. seq_printf(m, "\tblock mode:\t\t%s\n", msg);
  1977. seq_printf(m, "\nStatistics:\n");
  1978. seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
  1979. seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
  1980. seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
  1981. seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
  1982. seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
  1983. seq_printf(m, "\nMisc:\n");
  1984. seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
  1985. seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
  1986. seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
  1987. seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
  1988. seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
  1989. seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
  1990. seq_printf(m, "\nQueue state:\n");
  1991. seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
  1992. seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
  1993. seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
  1994. pkt_count_states(pd, states);
  1995. seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
  1996. states[0], states[1], states[2], states[3], states[4], states[5]);
  1997. return 0;
  1998. }
  1999. static int pkt_seq_open(struct inode *inode, struct file *file)
  2000. {
  2001. return single_open(file, pkt_seq_show, PDE(inode)->data);
  2002. }
  2003. static struct file_operations pkt_proc_fops = {
  2004. .open = pkt_seq_open,
  2005. .read = seq_read,
  2006. .llseek = seq_lseek,
  2007. .release = single_release
  2008. };
  2009. static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
  2010. {
  2011. int i;
  2012. int ret = 0;
  2013. char b[BDEVNAME_SIZE];
  2014. struct proc_dir_entry *proc;
  2015. struct block_device *bdev;
  2016. if (pd->pkt_dev == dev) {
  2017. printk("pktcdvd: Recursive setup not allowed\n");
  2018. return -EBUSY;
  2019. }
  2020. for (i = 0; i < MAX_WRITERS; i++) {
  2021. struct pktcdvd_device *pd2 = pkt_devs[i];
  2022. if (!pd2)
  2023. continue;
  2024. if (pd2->bdev->bd_dev == dev) {
  2025. printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
  2026. return -EBUSY;
  2027. }
  2028. if (pd2->pkt_dev == dev) {
  2029. printk("pktcdvd: Can't chain pktcdvd devices\n");
  2030. return -EBUSY;
  2031. }
  2032. }
  2033. bdev = bdget(dev);
  2034. if (!bdev)
  2035. return -ENOMEM;
  2036. ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
  2037. if (ret)
  2038. return ret;
  2039. /* This is safe, since we have a reference from open(). */
  2040. __module_get(THIS_MODULE);
  2041. if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
  2042. printk("pktcdvd: not enough memory for buffers\n");
  2043. ret = -ENOMEM;
  2044. goto out_mem;
  2045. }
  2046. pd->bdev = bdev;
  2047. set_blocksize(bdev, CD_FRAMESIZE);
  2048. pkt_init_queue(pd);
  2049. atomic_set(&pd->cdrw.pending_bios, 0);
  2050. pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
  2051. if (IS_ERR(pd->cdrw.thread)) {
  2052. printk("pktcdvd: can't start kernel thread\n");
  2053. ret = -ENOMEM;
  2054. goto out_thread;
  2055. }
  2056. proc = create_proc_entry(pd->name, 0, pkt_proc);
  2057. if (proc) {
  2058. proc->data = pd;
  2059. proc->proc_fops = &pkt_proc_fops;
  2060. }
  2061. DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
  2062. return 0;
  2063. out_thread:
  2064. pkt_shrink_pktlist(pd);
  2065. out_mem:
  2066. blkdev_put(bdev);
  2067. /* This is safe: open() is still holding a reference. */
  2068. module_put(THIS_MODULE);
  2069. return ret;
  2070. }
  2071. static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2072. {
  2073. struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
  2074. VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
  2075. switch (cmd) {
  2076. /*
  2077. * forward selected CDROM ioctls to CD-ROM, for UDF
  2078. */
  2079. case CDROMMULTISESSION:
  2080. case CDROMREADTOCENTRY:
  2081. case CDROM_LAST_WRITTEN:
  2082. case CDROM_SEND_PACKET:
  2083. case SCSI_IOCTL_SEND_COMMAND:
  2084. return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
  2085. case CDROMEJECT:
  2086. /*
  2087. * The door gets locked when the device is opened, so we
  2088. * have to unlock it or else the eject command fails.
  2089. */
  2090. pkt_lock_door(pd, 0);
  2091. return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
  2092. default:
  2093. printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
  2094. return -ENOTTY;
  2095. }
  2096. return 0;
  2097. }
  2098. static int pkt_media_changed(struct gendisk *disk)
  2099. {
  2100. struct pktcdvd_device *pd = disk->private_data;
  2101. struct gendisk *attached_disk;
  2102. if (!pd)
  2103. return 0;
  2104. if (!pd->bdev)
  2105. return 0;
  2106. attached_disk = pd->bdev->bd_disk;
  2107. if (!attached_disk)
  2108. return 0;
  2109. return attached_disk->fops->media_changed(attached_disk);
  2110. }
  2111. static struct block_device_operations pktcdvd_ops = {
  2112. .owner = THIS_MODULE,
  2113. .open = pkt_open,
  2114. .release = pkt_close,
  2115. .ioctl = pkt_ioctl,
  2116. .media_changed = pkt_media_changed,
  2117. };
  2118. /*
  2119. * Set up mapping from pktcdvd device to CD-ROM device.
  2120. */
  2121. static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
  2122. {
  2123. int idx;
  2124. int ret = -ENOMEM;
  2125. struct pktcdvd_device *pd;
  2126. struct gendisk *disk;
  2127. dev_t dev = new_decode_dev(ctrl_cmd->dev);
  2128. for (idx = 0; idx < MAX_WRITERS; idx++)
  2129. if (!pkt_devs[idx])
  2130. break;
  2131. if (idx == MAX_WRITERS) {
  2132. printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
  2133. return -EBUSY;
  2134. }
  2135. pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
  2136. if (!pd)
  2137. return ret;
  2138. pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
  2139. if (!pd->rb_pool)
  2140. goto out_mem;
  2141. disk = alloc_disk(1);
  2142. if (!disk)
  2143. goto out_mem;
  2144. pd->disk = disk;
  2145. spin_lock_init(&pd->lock);
  2146. spin_lock_init(&pd->iosched.lock);
  2147. sprintf(pd->name, "pktcdvd%d", idx);
  2148. init_waitqueue_head(&pd->wqueue);
  2149. pd->bio_queue = RB_ROOT;
  2150. disk->major = pkt_major;
  2151. disk->first_minor = idx;
  2152. disk->fops = &pktcdvd_ops;
  2153. disk->flags = GENHD_FL_REMOVABLE;
  2154. sprintf(disk->disk_name, "pktcdvd%d", idx);
  2155. disk->private_data = pd;
  2156. disk->queue = blk_alloc_queue(GFP_KERNEL);
  2157. if (!disk->queue)
  2158. goto out_mem2;
  2159. pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
  2160. ret = pkt_new_dev(pd, dev);
  2161. if (ret)
  2162. goto out_new_dev;
  2163. add_disk(disk);
  2164. pkt_devs[idx] = pd;
  2165. ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
  2166. return 0;
  2167. out_new_dev:
  2168. blk_put_queue(disk->queue);
  2169. out_mem2:
  2170. put_disk(disk);
  2171. out_mem:
  2172. if (pd->rb_pool)
  2173. mempool_destroy(pd->rb_pool);
  2174. kfree(pd);
  2175. return ret;
  2176. }
  2177. /*
  2178. * Tear down mapping from pktcdvd device to CD-ROM device.
  2179. */
  2180. static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
  2181. {
  2182. struct pktcdvd_device *pd;
  2183. int idx;
  2184. dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
  2185. for (idx = 0; idx < MAX_WRITERS; idx++) {
  2186. pd = pkt_devs[idx];
  2187. if (pd && (pd->pkt_dev == pkt_dev))
  2188. break;
  2189. }
  2190. if (idx == MAX_WRITERS) {
  2191. DPRINTK("pktcdvd: dev not setup\n");
  2192. return -ENXIO;
  2193. }
  2194. if (pd->refcnt > 0)
  2195. return -EBUSY;
  2196. if (!IS_ERR(pd->cdrw.thread))
  2197. kthread_stop(pd->cdrw.thread);
  2198. blkdev_put(pd->bdev);
  2199. pkt_shrink_pktlist(pd);
  2200. remove_proc_entry(pd->name, pkt_proc);
  2201. DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
  2202. del_gendisk(pd->disk);
  2203. blk_put_queue(pd->disk->queue);
  2204. put_disk(pd->disk);
  2205. pkt_devs[idx] = NULL;
  2206. mempool_destroy(pd->rb_pool);
  2207. kfree(pd);
  2208. /* This is safe: open() is still holding a reference. */
  2209. module_put(THIS_MODULE);
  2210. return 0;
  2211. }
  2212. static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
  2213. {
  2214. struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
  2215. if (pd) {
  2216. ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
  2217. ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
  2218. } else {
  2219. ctrl_cmd->dev = 0;
  2220. ctrl_cmd->pkt_dev = 0;
  2221. }
  2222. ctrl_cmd->num_devices = MAX_WRITERS;
  2223. }
  2224. static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2225. {
  2226. void __user *argp = (void __user *)arg;
  2227. struct pkt_ctrl_command ctrl_cmd;
  2228. int ret = 0;
  2229. if (cmd != PACKET_CTRL_CMD)
  2230. return -ENOTTY;
  2231. if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
  2232. return -EFAULT;
  2233. switch (ctrl_cmd.command) {
  2234. case PKT_CTRL_CMD_SETUP:
  2235. if (!capable(CAP_SYS_ADMIN))
  2236. return -EPERM;
  2237. down(&ctl_mutex);
  2238. ret = pkt_setup_dev(&ctrl_cmd);
  2239. up(&ctl_mutex);
  2240. break;
  2241. case PKT_CTRL_CMD_TEARDOWN:
  2242. if (!capable(CAP_SYS_ADMIN))
  2243. return -EPERM;
  2244. down(&ctl_mutex);
  2245. ret = pkt_remove_dev(&ctrl_cmd);
  2246. up(&ctl_mutex);
  2247. break;
  2248. case PKT_CTRL_CMD_STATUS:
  2249. down(&ctl_mutex);
  2250. pkt_get_status(&ctrl_cmd);
  2251. up(&ctl_mutex);
  2252. break;
  2253. default:
  2254. return -ENOTTY;
  2255. }
  2256. if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
  2257. return -EFAULT;
  2258. return ret;
  2259. }
  2260. static struct file_operations pkt_ctl_fops = {
  2261. .ioctl = pkt_ctl_ioctl,
  2262. .owner = THIS_MODULE,
  2263. };
  2264. static struct miscdevice pkt_misc = {
  2265. .minor = MISC_DYNAMIC_MINOR,
  2266. .name = "pktcdvd",
  2267. .devfs_name = "pktcdvd/control",
  2268. .fops = &pkt_ctl_fops
  2269. };
  2270. static int __init pkt_init(void)
  2271. {
  2272. int ret;
  2273. psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
  2274. if (!psd_pool)
  2275. return -ENOMEM;
  2276. ret = register_blkdev(pkt_major, "pktcdvd");
  2277. if (ret < 0) {
  2278. printk("pktcdvd: Unable to register block device\n");
  2279. goto out2;
  2280. }
  2281. if (!pkt_major)
  2282. pkt_major = ret;
  2283. ret = misc_register(&pkt_misc);
  2284. if (ret) {
  2285. printk("pktcdvd: Unable to register misc device\n");
  2286. goto out;
  2287. }
  2288. init_MUTEX(&ctl_mutex);
  2289. pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
  2290. DPRINTK("pktcdvd: %s\n", VERSION_CODE);
  2291. return 0;
  2292. out:
  2293. unregister_blkdev(pkt_major, "pktcdvd");
  2294. out2:
  2295. mempool_destroy(psd_pool);
  2296. return ret;
  2297. }
  2298. static void __exit pkt_exit(void)
  2299. {
  2300. remove_proc_entry("pktcdvd", proc_root_driver);
  2301. misc_deregister(&pkt_misc);
  2302. unregister_blkdev(pkt_major, "pktcdvd");
  2303. mempool_destroy(psd_pool);
  2304. }
  2305. MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
  2306. MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
  2307. MODULE_LICENSE("GPL");
  2308. module_init(pkt_init);
  2309. module_exit(pkt_exit);