sched.c 228 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. unsigned int nr_spread_over;
  273. #ifdef CONFIG_FAIR_GROUP_SCHED
  274. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  275. /*
  276. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  277. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  278. * (like users, containers etc.)
  279. *
  280. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  281. * list is used during load balance.
  282. */
  283. int on_list;
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * Maintaining per-cpu shares distribution for group scheduling
  300. *
  301. * load_stamp is the last time we updated the load average
  302. * load_last is the last time we updated the load average and saw load
  303. * load_unacc_exec_time is currently unaccounted execution time
  304. */
  305. u64 load_avg;
  306. u64 load_period;
  307. u64 load_stamp, load_last, load_unacc_exec_time;
  308. unsigned long load_contribution;
  309. #endif
  310. #endif
  311. };
  312. /* Real-Time classes' related field in a runqueue: */
  313. struct rt_rq {
  314. struct rt_prio_array active;
  315. unsigned long rt_nr_running;
  316. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  317. struct {
  318. int curr; /* highest queued rt task prio */
  319. #ifdef CONFIG_SMP
  320. int next; /* next highest */
  321. #endif
  322. } highest_prio;
  323. #endif
  324. #ifdef CONFIG_SMP
  325. unsigned long rt_nr_migratory;
  326. unsigned long rt_nr_total;
  327. int overloaded;
  328. struct plist_head pushable_tasks;
  329. #endif
  330. int rt_throttled;
  331. u64 rt_time;
  332. u64 rt_runtime;
  333. /* Nests inside the rq lock: */
  334. raw_spinlock_t rt_runtime_lock;
  335. #ifdef CONFIG_RT_GROUP_SCHED
  336. unsigned long rt_nr_boosted;
  337. struct rq *rq;
  338. struct list_head leaf_rt_rq_list;
  339. struct task_group *tg;
  340. #endif
  341. };
  342. #ifdef CONFIG_SMP
  343. /*
  344. * We add the notion of a root-domain which will be used to define per-domain
  345. * variables. Each exclusive cpuset essentially defines an island domain by
  346. * fully partitioning the member cpus from any other cpuset. Whenever a new
  347. * exclusive cpuset is created, we also create and attach a new root-domain
  348. * object.
  349. *
  350. */
  351. struct root_domain {
  352. atomic_t refcount;
  353. cpumask_var_t span;
  354. cpumask_var_t online;
  355. /*
  356. * The "RT overload" flag: it gets set if a CPU has more than
  357. * one runnable RT task.
  358. */
  359. cpumask_var_t rto_mask;
  360. atomic_t rto_count;
  361. struct cpupri cpupri;
  362. };
  363. /*
  364. * By default the system creates a single root-domain with all cpus as
  365. * members (mimicking the global state we have today).
  366. */
  367. static struct root_domain def_root_domain;
  368. #endif /* CONFIG_SMP */
  369. /*
  370. * This is the main, per-CPU runqueue data structure.
  371. *
  372. * Locking rule: those places that want to lock multiple runqueues
  373. * (such as the load balancing or the thread migration code), lock
  374. * acquire operations must be ordered by ascending &runqueue.
  375. */
  376. struct rq {
  377. /* runqueue lock: */
  378. raw_spinlock_t lock;
  379. /*
  380. * nr_running and cpu_load should be in the same cacheline because
  381. * remote CPUs use both these fields when doing load calculation.
  382. */
  383. unsigned long nr_running;
  384. #define CPU_LOAD_IDX_MAX 5
  385. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  386. unsigned long last_load_update_tick;
  387. #ifdef CONFIG_NO_HZ
  388. u64 nohz_stamp;
  389. unsigned char nohz_balance_kick;
  390. #endif
  391. unsigned int skip_clock_update;
  392. /* capture load from *all* tasks on this cpu: */
  393. struct load_weight load;
  394. unsigned long nr_load_updates;
  395. u64 nr_switches;
  396. struct cfs_rq cfs;
  397. struct rt_rq rt;
  398. #ifdef CONFIG_FAIR_GROUP_SCHED
  399. /* list of leaf cfs_rq on this cpu: */
  400. struct list_head leaf_cfs_rq_list;
  401. #endif
  402. #ifdef CONFIG_RT_GROUP_SCHED
  403. struct list_head leaf_rt_rq_list;
  404. #endif
  405. /*
  406. * This is part of a global counter where only the total sum
  407. * over all CPUs matters. A task can increase this counter on
  408. * one CPU and if it got migrated afterwards it may decrease
  409. * it on another CPU. Always updated under the runqueue lock:
  410. */
  411. unsigned long nr_uninterruptible;
  412. struct task_struct *curr, *idle, *stop;
  413. unsigned long next_balance;
  414. struct mm_struct *prev_mm;
  415. u64 clock;
  416. u64 clock_task;
  417. atomic_t nr_iowait;
  418. #ifdef CONFIG_SMP
  419. struct root_domain *rd;
  420. struct sched_domain *sd;
  421. unsigned long cpu_power;
  422. unsigned char idle_at_tick;
  423. /* For active balancing */
  424. int post_schedule;
  425. int active_balance;
  426. int push_cpu;
  427. struct cpu_stop_work active_balance_work;
  428. /* cpu of this runqueue: */
  429. int cpu;
  430. int online;
  431. unsigned long avg_load_per_task;
  432. u64 rt_avg;
  433. u64 age_stamp;
  434. u64 idle_stamp;
  435. u64 avg_idle;
  436. #endif
  437. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  438. u64 prev_irq_time;
  439. #endif
  440. /* calc_load related fields */
  441. unsigned long calc_load_update;
  442. long calc_load_active;
  443. #ifdef CONFIG_SCHED_HRTICK
  444. #ifdef CONFIG_SMP
  445. int hrtick_csd_pending;
  446. struct call_single_data hrtick_csd;
  447. #endif
  448. struct hrtimer hrtick_timer;
  449. #endif
  450. #ifdef CONFIG_SCHEDSTATS
  451. /* latency stats */
  452. struct sched_info rq_sched_info;
  453. unsigned long long rq_cpu_time;
  454. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  455. /* sys_sched_yield() stats */
  456. unsigned int yld_count;
  457. /* schedule() stats */
  458. unsigned int sched_switch;
  459. unsigned int sched_count;
  460. unsigned int sched_goidle;
  461. /* try_to_wake_up() stats */
  462. unsigned int ttwu_count;
  463. unsigned int ttwu_local;
  464. #endif
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  468. static inline int cpu_of(struct rq *rq)
  469. {
  470. #ifdef CONFIG_SMP
  471. return rq->cpu;
  472. #else
  473. return 0;
  474. #endif
  475. }
  476. #define rcu_dereference_check_sched_domain(p) \
  477. rcu_dereference_check((p), \
  478. rcu_read_lock_sched_held() || \
  479. lockdep_is_held(&sched_domains_mutex))
  480. /*
  481. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  482. * See detach_destroy_domains: synchronize_sched for details.
  483. *
  484. * The domain tree of any CPU may only be accessed from within
  485. * preempt-disabled sections.
  486. */
  487. #define for_each_domain(cpu, __sd) \
  488. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  489. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  490. #define this_rq() (&__get_cpu_var(runqueues))
  491. #define task_rq(p) cpu_rq(task_cpu(p))
  492. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  493. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  494. #ifdef CONFIG_CGROUP_SCHED
  495. /*
  496. * Return the group to which this tasks belongs.
  497. *
  498. * We use task_subsys_state_check() and extend the RCU verification
  499. * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
  500. * holds that lock for each task it moves into the cgroup. Therefore
  501. * by holding that lock, we pin the task to the current cgroup.
  502. */
  503. static inline struct task_group *task_group(struct task_struct *p)
  504. {
  505. struct task_group *tg;
  506. struct cgroup_subsys_state *css;
  507. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  508. lockdep_is_held(&p->pi_lock));
  509. tg = container_of(css, struct task_group, css);
  510. return autogroup_task_group(p, tg);
  511. }
  512. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  513. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  514. {
  515. #ifdef CONFIG_FAIR_GROUP_SCHED
  516. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  517. p->se.parent = task_group(p)->se[cpu];
  518. #endif
  519. #ifdef CONFIG_RT_GROUP_SCHED
  520. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  521. p->rt.parent = task_group(p)->rt_se[cpu];
  522. #endif
  523. }
  524. #else /* CONFIG_CGROUP_SCHED */
  525. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  526. static inline struct task_group *task_group(struct task_struct *p)
  527. {
  528. return NULL;
  529. }
  530. #endif /* CONFIG_CGROUP_SCHED */
  531. static void update_rq_clock_task(struct rq *rq, s64 delta);
  532. static void update_rq_clock(struct rq *rq)
  533. {
  534. s64 delta;
  535. if (rq->skip_clock_update)
  536. return;
  537. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  538. rq->clock += delta;
  539. update_rq_clock_task(rq, delta);
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  551. * @cpu: the processor in question.
  552. *
  553. * This interface allows printk to be called with the runqueue lock
  554. * held and know whether or not it is OK to wake up the klogd.
  555. */
  556. int runqueue_is_locked(int cpu)
  557. {
  558. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  559. }
  560. /*
  561. * Debugging: various feature bits
  562. */
  563. #define SCHED_FEAT(name, enabled) \
  564. __SCHED_FEAT_##name ,
  565. enum {
  566. #include "sched_features.h"
  567. };
  568. #undef SCHED_FEAT
  569. #define SCHED_FEAT(name, enabled) \
  570. (1UL << __SCHED_FEAT_##name) * enabled |
  571. const_debug unsigned int sysctl_sched_features =
  572. #include "sched_features.h"
  573. 0;
  574. #undef SCHED_FEAT
  575. #ifdef CONFIG_SCHED_DEBUG
  576. #define SCHED_FEAT(name, enabled) \
  577. #name ,
  578. static __read_mostly char *sched_feat_names[] = {
  579. #include "sched_features.h"
  580. NULL
  581. };
  582. #undef SCHED_FEAT
  583. static int sched_feat_show(struct seq_file *m, void *v)
  584. {
  585. int i;
  586. for (i = 0; sched_feat_names[i]; i++) {
  587. if (!(sysctl_sched_features & (1UL << i)))
  588. seq_puts(m, "NO_");
  589. seq_printf(m, "%s ", sched_feat_names[i]);
  590. }
  591. seq_puts(m, "\n");
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_write(struct file *filp, const char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char buf[64];
  599. char *cmp;
  600. int neg = 0;
  601. int i;
  602. if (cnt > 63)
  603. cnt = 63;
  604. if (copy_from_user(&buf, ubuf, cnt))
  605. return -EFAULT;
  606. buf[cnt] = 0;
  607. cmp = strstrip(buf);
  608. if (strncmp(cmp, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  614. if (neg)
  615. sysctl_sched_features &= ~(1UL << i);
  616. else
  617. sysctl_sched_features |= (1UL << i);
  618. break;
  619. }
  620. }
  621. if (!sched_feat_names[i])
  622. return -EINVAL;
  623. *ppos += cnt;
  624. return cnt;
  625. }
  626. static int sched_feat_open(struct inode *inode, struct file *filp)
  627. {
  628. return single_open(filp, sched_feat_show, NULL);
  629. }
  630. static const struct file_operations sched_feat_fops = {
  631. .open = sched_feat_open,
  632. .write = sched_feat_write,
  633. .read = seq_read,
  634. .llseek = seq_lseek,
  635. .release = single_release,
  636. };
  637. static __init int sched_init_debug(void)
  638. {
  639. debugfs_create_file("sched_features", 0644, NULL, NULL,
  640. &sched_feat_fops);
  641. return 0;
  642. }
  643. late_initcall(sched_init_debug);
  644. #endif
  645. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  646. /*
  647. * Number of tasks to iterate in a single balance run.
  648. * Limited because this is done with IRQs disabled.
  649. */
  650. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  651. /*
  652. * period over which we average the RT time consumption, measured
  653. * in ms.
  654. *
  655. * default: 1s
  656. */
  657. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  658. /*
  659. * period over which we measure -rt task cpu usage in us.
  660. * default: 1s
  661. */
  662. unsigned int sysctl_sched_rt_period = 1000000;
  663. static __read_mostly int scheduler_running;
  664. /*
  665. * part of the period that we allow rt tasks to run in us.
  666. * default: 0.95s
  667. */
  668. int sysctl_sched_rt_runtime = 950000;
  669. static inline u64 global_rt_period(void)
  670. {
  671. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  672. }
  673. static inline u64 global_rt_runtime(void)
  674. {
  675. if (sysctl_sched_rt_runtime < 0)
  676. return RUNTIME_INF;
  677. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  678. }
  679. #ifndef prepare_arch_switch
  680. # define prepare_arch_switch(next) do { } while (0)
  681. #endif
  682. #ifndef finish_arch_switch
  683. # define finish_arch_switch(prev) do { } while (0)
  684. #endif
  685. static inline int task_current(struct rq *rq, struct task_struct *p)
  686. {
  687. return rq->curr == p;
  688. }
  689. static inline int task_running(struct rq *rq, struct task_struct *p)
  690. {
  691. #ifdef CONFIG_SMP
  692. return p->on_cpu;
  693. #else
  694. return task_current(rq, p);
  695. #endif
  696. }
  697. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  698. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  699. {
  700. #ifdef CONFIG_SMP
  701. /*
  702. * We can optimise this out completely for !SMP, because the
  703. * SMP rebalancing from interrupt is the only thing that cares
  704. * here.
  705. */
  706. next->on_cpu = 1;
  707. #endif
  708. }
  709. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  710. {
  711. #ifdef CONFIG_SMP
  712. /*
  713. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  714. * We must ensure this doesn't happen until the switch is completely
  715. * finished.
  716. */
  717. smp_wmb();
  718. prev->on_cpu = 0;
  719. #endif
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. raw_spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->on_cpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->on_cpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * __task_rq_lock - lock the rq @p resides on.
  767. */
  768. static inline struct rq *__task_rq_lock(struct task_struct *p)
  769. __acquires(rq->lock)
  770. {
  771. struct rq *rq;
  772. lockdep_assert_held(&p->pi_lock);
  773. for (;;) {
  774. rq = task_rq(p);
  775. raw_spin_lock(&rq->lock);
  776. if (likely(rq == task_rq(p)))
  777. return rq;
  778. raw_spin_unlock(&rq->lock);
  779. }
  780. }
  781. /*
  782. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  783. */
  784. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  785. __acquires(p->pi_lock)
  786. __acquires(rq->lock)
  787. {
  788. struct rq *rq;
  789. for (;;) {
  790. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  791. rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  797. }
  798. }
  799. static void __task_rq_unlock(struct rq *rq)
  800. __releases(rq->lock)
  801. {
  802. raw_spin_unlock(&rq->lock);
  803. }
  804. static inline void
  805. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  806. __releases(rq->lock)
  807. __releases(p->pi_lock)
  808. {
  809. raw_spin_unlock(&rq->lock);
  810. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  811. }
  812. /*
  813. * this_rq_lock - lock this runqueue and disable interrupts.
  814. */
  815. static struct rq *this_rq_lock(void)
  816. __acquires(rq->lock)
  817. {
  818. struct rq *rq;
  819. local_irq_disable();
  820. rq = this_rq();
  821. raw_spin_lock(&rq->lock);
  822. return rq;
  823. }
  824. #ifdef CONFIG_SCHED_HRTICK
  825. /*
  826. * Use HR-timers to deliver accurate preemption points.
  827. *
  828. * Its all a bit involved since we cannot program an hrt while holding the
  829. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  830. * reschedule event.
  831. *
  832. * When we get rescheduled we reprogram the hrtick_timer outside of the
  833. * rq->lock.
  834. */
  835. /*
  836. * Use hrtick when:
  837. * - enabled by features
  838. * - hrtimer is actually high res
  839. */
  840. static inline int hrtick_enabled(struct rq *rq)
  841. {
  842. if (!sched_feat(HRTICK))
  843. return 0;
  844. if (!cpu_active(cpu_of(rq)))
  845. return 0;
  846. return hrtimer_is_hres_active(&rq->hrtick_timer);
  847. }
  848. static void hrtick_clear(struct rq *rq)
  849. {
  850. if (hrtimer_active(&rq->hrtick_timer))
  851. hrtimer_cancel(&rq->hrtick_timer);
  852. }
  853. /*
  854. * High-resolution timer tick.
  855. * Runs from hardirq context with interrupts disabled.
  856. */
  857. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  858. {
  859. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  860. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  861. raw_spin_lock(&rq->lock);
  862. update_rq_clock(rq);
  863. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  864. raw_spin_unlock(&rq->lock);
  865. return HRTIMER_NORESTART;
  866. }
  867. #ifdef CONFIG_SMP
  868. /*
  869. * called from hardirq (IPI) context
  870. */
  871. static void __hrtick_start(void *arg)
  872. {
  873. struct rq *rq = arg;
  874. raw_spin_lock(&rq->lock);
  875. hrtimer_restart(&rq->hrtick_timer);
  876. rq->hrtick_csd_pending = 0;
  877. raw_spin_unlock(&rq->lock);
  878. }
  879. /*
  880. * Called to set the hrtick timer state.
  881. *
  882. * called with rq->lock held and irqs disabled
  883. */
  884. static void hrtick_start(struct rq *rq, u64 delay)
  885. {
  886. struct hrtimer *timer = &rq->hrtick_timer;
  887. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  888. hrtimer_set_expires(timer, time);
  889. if (rq == this_rq()) {
  890. hrtimer_restart(timer);
  891. } else if (!rq->hrtick_csd_pending) {
  892. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  893. rq->hrtick_csd_pending = 1;
  894. }
  895. }
  896. static int
  897. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  898. {
  899. int cpu = (int)(long)hcpu;
  900. switch (action) {
  901. case CPU_UP_CANCELED:
  902. case CPU_UP_CANCELED_FROZEN:
  903. case CPU_DOWN_PREPARE:
  904. case CPU_DOWN_PREPARE_FROZEN:
  905. case CPU_DEAD:
  906. case CPU_DEAD_FROZEN:
  907. hrtick_clear(cpu_rq(cpu));
  908. return NOTIFY_OK;
  909. }
  910. return NOTIFY_DONE;
  911. }
  912. static __init void init_hrtick(void)
  913. {
  914. hotcpu_notifier(hotplug_hrtick, 0);
  915. }
  916. #else
  917. /*
  918. * Called to set the hrtick timer state.
  919. *
  920. * called with rq->lock held and irqs disabled
  921. */
  922. static void hrtick_start(struct rq *rq, u64 delay)
  923. {
  924. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  925. HRTIMER_MODE_REL_PINNED, 0);
  926. }
  927. static inline void init_hrtick(void)
  928. {
  929. }
  930. #endif /* CONFIG_SMP */
  931. static void init_rq_hrtick(struct rq *rq)
  932. {
  933. #ifdef CONFIG_SMP
  934. rq->hrtick_csd_pending = 0;
  935. rq->hrtick_csd.flags = 0;
  936. rq->hrtick_csd.func = __hrtick_start;
  937. rq->hrtick_csd.info = rq;
  938. #endif
  939. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  940. rq->hrtick_timer.function = hrtick;
  941. }
  942. #else /* CONFIG_SCHED_HRTICK */
  943. static inline void hrtick_clear(struct rq *rq)
  944. {
  945. }
  946. static inline void init_rq_hrtick(struct rq *rq)
  947. {
  948. }
  949. static inline void init_hrtick(void)
  950. {
  951. }
  952. #endif /* CONFIG_SCHED_HRTICK */
  953. /*
  954. * resched_task - mark a task 'to be rescheduled now'.
  955. *
  956. * On UP this means the setting of the need_resched flag, on SMP it
  957. * might also involve a cross-CPU call to trigger the scheduler on
  958. * the target CPU.
  959. */
  960. #ifdef CONFIG_SMP
  961. #ifndef tsk_is_polling
  962. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  963. #endif
  964. static void resched_task(struct task_struct *p)
  965. {
  966. int cpu;
  967. assert_raw_spin_locked(&task_rq(p)->lock);
  968. if (test_tsk_need_resched(p))
  969. return;
  970. set_tsk_need_resched(p);
  971. cpu = task_cpu(p);
  972. if (cpu == smp_processor_id())
  973. return;
  974. /* NEED_RESCHED must be visible before we test polling */
  975. smp_mb();
  976. if (!tsk_is_polling(p))
  977. smp_send_reschedule(cpu);
  978. }
  979. static void resched_cpu(int cpu)
  980. {
  981. struct rq *rq = cpu_rq(cpu);
  982. unsigned long flags;
  983. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  984. return;
  985. resched_task(cpu_curr(cpu));
  986. raw_spin_unlock_irqrestore(&rq->lock, flags);
  987. }
  988. #ifdef CONFIG_NO_HZ
  989. /*
  990. * In the semi idle case, use the nearest busy cpu for migrating timers
  991. * from an idle cpu. This is good for power-savings.
  992. *
  993. * We don't do similar optimization for completely idle system, as
  994. * selecting an idle cpu will add more delays to the timers than intended
  995. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  996. */
  997. int get_nohz_timer_target(void)
  998. {
  999. int cpu = smp_processor_id();
  1000. int i;
  1001. struct sched_domain *sd;
  1002. for_each_domain(cpu, sd) {
  1003. for_each_cpu(i, sched_domain_span(sd))
  1004. if (!idle_cpu(i))
  1005. return i;
  1006. }
  1007. return cpu;
  1008. }
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. /*
  1054. * Inline assembly required to prevent the compiler
  1055. * optimising this loop into a divmod call.
  1056. * See __iter_div_u64_rem() for another example of this.
  1057. */
  1058. asm("" : "+rm" (rq->age_stamp));
  1059. rq->age_stamp += period;
  1060. rq->rt_avg /= 2;
  1061. }
  1062. }
  1063. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1064. {
  1065. rq->rt_avg += rt_delta;
  1066. sched_avg_update(rq);
  1067. }
  1068. #else /* !CONFIG_SMP */
  1069. static void resched_task(struct task_struct *p)
  1070. {
  1071. assert_raw_spin_locked(&task_rq(p)->lock);
  1072. set_tsk_need_resched(p);
  1073. }
  1074. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1075. {
  1076. }
  1077. static void sched_avg_update(struct rq *rq)
  1078. {
  1079. }
  1080. #endif /* CONFIG_SMP */
  1081. #if BITS_PER_LONG == 32
  1082. # define WMULT_CONST (~0UL)
  1083. #else
  1084. # define WMULT_CONST (1UL << 32)
  1085. #endif
  1086. #define WMULT_SHIFT 32
  1087. /*
  1088. * Shift right and round:
  1089. */
  1090. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1091. /*
  1092. * delta *= weight / lw
  1093. */
  1094. static unsigned long
  1095. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1096. struct load_weight *lw)
  1097. {
  1098. u64 tmp;
  1099. if (!lw->inv_weight) {
  1100. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1101. lw->inv_weight = 1;
  1102. else
  1103. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1104. / (lw->weight+1);
  1105. }
  1106. tmp = (u64)delta_exec * weight;
  1107. /*
  1108. * Check whether we'd overflow the 64-bit multiplication:
  1109. */
  1110. if (unlikely(tmp > WMULT_CONST))
  1111. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1112. WMULT_SHIFT/2);
  1113. else
  1114. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1115. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1116. }
  1117. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1118. {
  1119. lw->weight += inc;
  1120. lw->inv_weight = 0;
  1121. }
  1122. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1123. {
  1124. lw->weight -= dec;
  1125. lw->inv_weight = 0;
  1126. }
  1127. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1128. {
  1129. lw->weight = w;
  1130. lw->inv_weight = 0;
  1131. }
  1132. /*
  1133. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1134. * of tasks with abnormal "nice" values across CPUs the contribution that
  1135. * each task makes to its run queue's load is weighted according to its
  1136. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1137. * scaled version of the new time slice allocation that they receive on time
  1138. * slice expiry etc.
  1139. */
  1140. #define WEIGHT_IDLEPRIO 3
  1141. #define WMULT_IDLEPRIO 1431655765
  1142. /*
  1143. * Nice levels are multiplicative, with a gentle 10% change for every
  1144. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1145. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1146. * that remained on nice 0.
  1147. *
  1148. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1149. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1150. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1151. * If a task goes up by ~10% and another task goes down by ~10% then
  1152. * the relative distance between them is ~25%.)
  1153. */
  1154. static const int prio_to_weight[40] = {
  1155. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1156. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1157. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1158. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1159. /* 0 */ 1024, 820, 655, 526, 423,
  1160. /* 5 */ 335, 272, 215, 172, 137,
  1161. /* 10 */ 110, 87, 70, 56, 45,
  1162. /* 15 */ 36, 29, 23, 18, 15,
  1163. };
  1164. /*
  1165. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1166. *
  1167. * In cases where the weight does not change often, we can use the
  1168. * precalculated inverse to speed up arithmetics by turning divisions
  1169. * into multiplications:
  1170. */
  1171. static const u32 prio_to_wmult[40] = {
  1172. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1173. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1174. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1175. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1176. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1177. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1178. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1179. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1180. };
  1181. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1182. enum cpuacct_stat_index {
  1183. CPUACCT_STAT_USER, /* ... user mode */
  1184. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1185. CPUACCT_STAT_NSTATS,
  1186. };
  1187. #ifdef CONFIG_CGROUP_CPUACCT
  1188. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1189. static void cpuacct_update_stats(struct task_struct *tsk,
  1190. enum cpuacct_stat_index idx, cputime_t val);
  1191. #else
  1192. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1193. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1194. enum cpuacct_stat_index idx, cputime_t val) {}
  1195. #endif
  1196. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_add(&rq->load, load);
  1199. }
  1200. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_sub(&rq->load, load);
  1203. }
  1204. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1205. typedef int (*tg_visitor)(struct task_group *, void *);
  1206. /*
  1207. * Iterate the full tree, calling @down when first entering a node and @up when
  1208. * leaving it for the final time.
  1209. */
  1210. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1211. {
  1212. struct task_group *parent, *child;
  1213. int ret;
  1214. rcu_read_lock();
  1215. parent = &root_task_group;
  1216. down:
  1217. ret = (*down)(parent, data);
  1218. if (ret)
  1219. goto out_unlock;
  1220. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1221. parent = child;
  1222. goto down;
  1223. up:
  1224. continue;
  1225. }
  1226. ret = (*up)(parent, data);
  1227. if (ret)
  1228. goto out_unlock;
  1229. child = parent;
  1230. parent = parent->parent;
  1231. if (parent)
  1232. goto up;
  1233. out_unlock:
  1234. rcu_read_unlock();
  1235. return ret;
  1236. }
  1237. static int tg_nop(struct task_group *tg, void *data)
  1238. {
  1239. return 0;
  1240. }
  1241. #endif
  1242. #ifdef CONFIG_SMP
  1243. /* Used instead of source_load when we know the type == 0 */
  1244. static unsigned long weighted_cpuload(const int cpu)
  1245. {
  1246. return cpu_rq(cpu)->load.weight;
  1247. }
  1248. /*
  1249. * Return a low guess at the load of a migration-source cpu weighted
  1250. * according to the scheduling class and "nice" value.
  1251. *
  1252. * We want to under-estimate the load of migration sources, to
  1253. * balance conservatively.
  1254. */
  1255. static unsigned long source_load(int cpu, int type)
  1256. {
  1257. struct rq *rq = cpu_rq(cpu);
  1258. unsigned long total = weighted_cpuload(cpu);
  1259. if (type == 0 || !sched_feat(LB_BIAS))
  1260. return total;
  1261. return min(rq->cpu_load[type-1], total);
  1262. }
  1263. /*
  1264. * Return a high guess at the load of a migration-target cpu weighted
  1265. * according to the scheduling class and "nice" value.
  1266. */
  1267. static unsigned long target_load(int cpu, int type)
  1268. {
  1269. struct rq *rq = cpu_rq(cpu);
  1270. unsigned long total = weighted_cpuload(cpu);
  1271. if (type == 0 || !sched_feat(LB_BIAS))
  1272. return total;
  1273. return max(rq->cpu_load[type-1], total);
  1274. }
  1275. static unsigned long power_of(int cpu)
  1276. {
  1277. return cpu_rq(cpu)->cpu_power;
  1278. }
  1279. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1280. static unsigned long cpu_avg_load_per_task(int cpu)
  1281. {
  1282. struct rq *rq = cpu_rq(cpu);
  1283. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1284. if (nr_running)
  1285. rq->avg_load_per_task = rq->load.weight / nr_running;
  1286. else
  1287. rq->avg_load_per_task = 0;
  1288. return rq->avg_load_per_task;
  1289. }
  1290. #ifdef CONFIG_FAIR_GROUP_SCHED
  1291. /*
  1292. * Compute the cpu's hierarchical load factor for each task group.
  1293. * This needs to be done in a top-down fashion because the load of a child
  1294. * group is a fraction of its parents load.
  1295. */
  1296. static int tg_load_down(struct task_group *tg, void *data)
  1297. {
  1298. unsigned long load;
  1299. long cpu = (long)data;
  1300. if (!tg->parent) {
  1301. load = cpu_rq(cpu)->load.weight;
  1302. } else {
  1303. load = tg->parent->cfs_rq[cpu]->h_load;
  1304. load *= tg->se[cpu]->load.weight;
  1305. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1306. }
  1307. tg->cfs_rq[cpu]->h_load = load;
  1308. return 0;
  1309. }
  1310. static void update_h_load(long cpu)
  1311. {
  1312. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1313. }
  1314. #endif
  1315. #ifdef CONFIG_PREEMPT
  1316. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1317. /*
  1318. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1319. * way at the expense of forcing extra atomic operations in all
  1320. * invocations. This assures that the double_lock is acquired using the
  1321. * same underlying policy as the spinlock_t on this architecture, which
  1322. * reduces latency compared to the unfair variant below. However, it
  1323. * also adds more overhead and therefore may reduce throughput.
  1324. */
  1325. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1326. __releases(this_rq->lock)
  1327. __acquires(busiest->lock)
  1328. __acquires(this_rq->lock)
  1329. {
  1330. raw_spin_unlock(&this_rq->lock);
  1331. double_rq_lock(this_rq, busiest);
  1332. return 1;
  1333. }
  1334. #else
  1335. /*
  1336. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1337. * latency by eliminating extra atomic operations when the locks are
  1338. * already in proper order on entry. This favors lower cpu-ids and will
  1339. * grant the double lock to lower cpus over higher ids under contention,
  1340. * regardless of entry order into the function.
  1341. */
  1342. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1343. __releases(this_rq->lock)
  1344. __acquires(busiest->lock)
  1345. __acquires(this_rq->lock)
  1346. {
  1347. int ret = 0;
  1348. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1349. if (busiest < this_rq) {
  1350. raw_spin_unlock(&this_rq->lock);
  1351. raw_spin_lock(&busiest->lock);
  1352. raw_spin_lock_nested(&this_rq->lock,
  1353. SINGLE_DEPTH_NESTING);
  1354. ret = 1;
  1355. } else
  1356. raw_spin_lock_nested(&busiest->lock,
  1357. SINGLE_DEPTH_NESTING);
  1358. }
  1359. return ret;
  1360. }
  1361. #endif /* CONFIG_PREEMPT */
  1362. /*
  1363. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1364. */
  1365. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1366. {
  1367. if (unlikely(!irqs_disabled())) {
  1368. /* printk() doesn't work good under rq->lock */
  1369. raw_spin_unlock(&this_rq->lock);
  1370. BUG_ON(1);
  1371. }
  1372. return _double_lock_balance(this_rq, busiest);
  1373. }
  1374. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1375. __releases(busiest->lock)
  1376. {
  1377. raw_spin_unlock(&busiest->lock);
  1378. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1379. }
  1380. /*
  1381. * double_rq_lock - safely lock two runqueues
  1382. *
  1383. * Note this does not disable interrupts like task_rq_lock,
  1384. * you need to do so manually before calling.
  1385. */
  1386. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1387. __acquires(rq1->lock)
  1388. __acquires(rq2->lock)
  1389. {
  1390. BUG_ON(!irqs_disabled());
  1391. if (rq1 == rq2) {
  1392. raw_spin_lock(&rq1->lock);
  1393. __acquire(rq2->lock); /* Fake it out ;) */
  1394. } else {
  1395. if (rq1 < rq2) {
  1396. raw_spin_lock(&rq1->lock);
  1397. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1398. } else {
  1399. raw_spin_lock(&rq2->lock);
  1400. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1401. }
  1402. }
  1403. }
  1404. /*
  1405. * double_rq_unlock - safely unlock two runqueues
  1406. *
  1407. * Note this does not restore interrupts like task_rq_unlock,
  1408. * you need to do so manually after calling.
  1409. */
  1410. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1411. __releases(rq1->lock)
  1412. __releases(rq2->lock)
  1413. {
  1414. raw_spin_unlock(&rq1->lock);
  1415. if (rq1 != rq2)
  1416. raw_spin_unlock(&rq2->lock);
  1417. else
  1418. __release(rq2->lock);
  1419. }
  1420. #else /* CONFIG_SMP */
  1421. /*
  1422. * double_rq_lock - safely lock two runqueues
  1423. *
  1424. * Note this does not disable interrupts like task_rq_lock,
  1425. * you need to do so manually before calling.
  1426. */
  1427. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1428. __acquires(rq1->lock)
  1429. __acquires(rq2->lock)
  1430. {
  1431. BUG_ON(!irqs_disabled());
  1432. BUG_ON(rq1 != rq2);
  1433. raw_spin_lock(&rq1->lock);
  1434. __acquire(rq2->lock); /* Fake it out ;) */
  1435. }
  1436. /*
  1437. * double_rq_unlock - safely unlock two runqueues
  1438. *
  1439. * Note this does not restore interrupts like task_rq_unlock,
  1440. * you need to do so manually after calling.
  1441. */
  1442. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1443. __releases(rq1->lock)
  1444. __releases(rq2->lock)
  1445. {
  1446. BUG_ON(rq1 != rq2);
  1447. raw_spin_unlock(&rq1->lock);
  1448. __release(rq2->lock);
  1449. }
  1450. #endif
  1451. static void calc_load_account_idle(struct rq *this_rq);
  1452. static void update_sysctl(void);
  1453. static int get_update_sysctl_factor(void);
  1454. static void update_cpu_load(struct rq *this_rq);
  1455. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1456. {
  1457. set_task_rq(p, cpu);
  1458. #ifdef CONFIG_SMP
  1459. /*
  1460. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1461. * successfuly executed on another CPU. We must ensure that updates of
  1462. * per-task data have been completed by this moment.
  1463. */
  1464. smp_wmb();
  1465. task_thread_info(p)->cpu = cpu;
  1466. #endif
  1467. }
  1468. static const struct sched_class rt_sched_class;
  1469. #define sched_class_highest (&stop_sched_class)
  1470. #define for_each_class(class) \
  1471. for (class = sched_class_highest; class; class = class->next)
  1472. #include "sched_stats.h"
  1473. static void inc_nr_running(struct rq *rq)
  1474. {
  1475. rq->nr_running++;
  1476. }
  1477. static void dec_nr_running(struct rq *rq)
  1478. {
  1479. rq->nr_running--;
  1480. }
  1481. static void set_load_weight(struct task_struct *p)
  1482. {
  1483. /*
  1484. * SCHED_IDLE tasks get minimal weight:
  1485. */
  1486. if (p->policy == SCHED_IDLE) {
  1487. p->se.load.weight = WEIGHT_IDLEPRIO;
  1488. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1489. return;
  1490. }
  1491. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1492. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1493. }
  1494. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1495. {
  1496. update_rq_clock(rq);
  1497. sched_info_queued(p);
  1498. p->sched_class->enqueue_task(rq, p, flags);
  1499. }
  1500. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1501. {
  1502. update_rq_clock(rq);
  1503. sched_info_dequeued(p);
  1504. p->sched_class->dequeue_task(rq, p, flags);
  1505. }
  1506. /*
  1507. * activate_task - move a task to the runqueue.
  1508. */
  1509. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1510. {
  1511. if (task_contributes_to_load(p))
  1512. rq->nr_uninterruptible--;
  1513. enqueue_task(rq, p, flags);
  1514. inc_nr_running(rq);
  1515. }
  1516. /*
  1517. * deactivate_task - remove a task from the runqueue.
  1518. */
  1519. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1520. {
  1521. if (task_contributes_to_load(p))
  1522. rq->nr_uninterruptible++;
  1523. dequeue_task(rq, p, flags);
  1524. dec_nr_running(rq);
  1525. }
  1526. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1527. /*
  1528. * There are no locks covering percpu hardirq/softirq time.
  1529. * They are only modified in account_system_vtime, on corresponding CPU
  1530. * with interrupts disabled. So, writes are safe.
  1531. * They are read and saved off onto struct rq in update_rq_clock().
  1532. * This may result in other CPU reading this CPU's irq time and can
  1533. * race with irq/account_system_vtime on this CPU. We would either get old
  1534. * or new value with a side effect of accounting a slice of irq time to wrong
  1535. * task when irq is in progress while we read rq->clock. That is a worthy
  1536. * compromise in place of having locks on each irq in account_system_time.
  1537. */
  1538. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1539. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1540. static DEFINE_PER_CPU(u64, irq_start_time);
  1541. static int sched_clock_irqtime;
  1542. void enable_sched_clock_irqtime(void)
  1543. {
  1544. sched_clock_irqtime = 1;
  1545. }
  1546. void disable_sched_clock_irqtime(void)
  1547. {
  1548. sched_clock_irqtime = 0;
  1549. }
  1550. #ifndef CONFIG_64BIT
  1551. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1552. static inline void irq_time_write_begin(void)
  1553. {
  1554. __this_cpu_inc(irq_time_seq.sequence);
  1555. smp_wmb();
  1556. }
  1557. static inline void irq_time_write_end(void)
  1558. {
  1559. smp_wmb();
  1560. __this_cpu_inc(irq_time_seq.sequence);
  1561. }
  1562. static inline u64 irq_time_read(int cpu)
  1563. {
  1564. u64 irq_time;
  1565. unsigned seq;
  1566. do {
  1567. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1568. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1569. per_cpu(cpu_hardirq_time, cpu);
  1570. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1571. return irq_time;
  1572. }
  1573. #else /* CONFIG_64BIT */
  1574. static inline void irq_time_write_begin(void)
  1575. {
  1576. }
  1577. static inline void irq_time_write_end(void)
  1578. {
  1579. }
  1580. static inline u64 irq_time_read(int cpu)
  1581. {
  1582. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1583. }
  1584. #endif /* CONFIG_64BIT */
  1585. /*
  1586. * Called before incrementing preempt_count on {soft,}irq_enter
  1587. * and before decrementing preempt_count on {soft,}irq_exit.
  1588. */
  1589. void account_system_vtime(struct task_struct *curr)
  1590. {
  1591. unsigned long flags;
  1592. s64 delta;
  1593. int cpu;
  1594. if (!sched_clock_irqtime)
  1595. return;
  1596. local_irq_save(flags);
  1597. cpu = smp_processor_id();
  1598. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1599. __this_cpu_add(irq_start_time, delta);
  1600. irq_time_write_begin();
  1601. /*
  1602. * We do not account for softirq time from ksoftirqd here.
  1603. * We want to continue accounting softirq time to ksoftirqd thread
  1604. * in that case, so as not to confuse scheduler with a special task
  1605. * that do not consume any time, but still wants to run.
  1606. */
  1607. if (hardirq_count())
  1608. __this_cpu_add(cpu_hardirq_time, delta);
  1609. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1610. __this_cpu_add(cpu_softirq_time, delta);
  1611. irq_time_write_end();
  1612. local_irq_restore(flags);
  1613. }
  1614. EXPORT_SYMBOL_GPL(account_system_vtime);
  1615. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1616. {
  1617. s64 irq_delta;
  1618. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1619. /*
  1620. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1621. * this case when a previous update_rq_clock() happened inside a
  1622. * {soft,}irq region.
  1623. *
  1624. * When this happens, we stop ->clock_task and only update the
  1625. * prev_irq_time stamp to account for the part that fit, so that a next
  1626. * update will consume the rest. This ensures ->clock_task is
  1627. * monotonic.
  1628. *
  1629. * It does however cause some slight miss-attribution of {soft,}irq
  1630. * time, a more accurate solution would be to update the irq_time using
  1631. * the current rq->clock timestamp, except that would require using
  1632. * atomic ops.
  1633. */
  1634. if (irq_delta > delta)
  1635. irq_delta = delta;
  1636. rq->prev_irq_time += irq_delta;
  1637. delta -= irq_delta;
  1638. rq->clock_task += delta;
  1639. if (irq_delta && sched_feat(NONIRQ_POWER))
  1640. sched_rt_avg_update(rq, irq_delta);
  1641. }
  1642. static int irqtime_account_hi_update(void)
  1643. {
  1644. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1645. unsigned long flags;
  1646. u64 latest_ns;
  1647. int ret = 0;
  1648. local_irq_save(flags);
  1649. latest_ns = this_cpu_read(cpu_hardirq_time);
  1650. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1651. ret = 1;
  1652. local_irq_restore(flags);
  1653. return ret;
  1654. }
  1655. static int irqtime_account_si_update(void)
  1656. {
  1657. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1658. unsigned long flags;
  1659. u64 latest_ns;
  1660. int ret = 0;
  1661. local_irq_save(flags);
  1662. latest_ns = this_cpu_read(cpu_softirq_time);
  1663. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1664. ret = 1;
  1665. local_irq_restore(flags);
  1666. return ret;
  1667. }
  1668. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1669. #define sched_clock_irqtime (0)
  1670. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1671. {
  1672. rq->clock_task += delta;
  1673. }
  1674. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1675. #include "sched_idletask.c"
  1676. #include "sched_fair.c"
  1677. #include "sched_rt.c"
  1678. #include "sched_autogroup.c"
  1679. #include "sched_stoptask.c"
  1680. #ifdef CONFIG_SCHED_DEBUG
  1681. # include "sched_debug.c"
  1682. #endif
  1683. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1684. {
  1685. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1686. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1687. if (stop) {
  1688. /*
  1689. * Make it appear like a SCHED_FIFO task, its something
  1690. * userspace knows about and won't get confused about.
  1691. *
  1692. * Also, it will make PI more or less work without too
  1693. * much confusion -- but then, stop work should not
  1694. * rely on PI working anyway.
  1695. */
  1696. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1697. stop->sched_class = &stop_sched_class;
  1698. }
  1699. cpu_rq(cpu)->stop = stop;
  1700. if (old_stop) {
  1701. /*
  1702. * Reset it back to a normal scheduling class so that
  1703. * it can die in pieces.
  1704. */
  1705. old_stop->sched_class = &rt_sched_class;
  1706. }
  1707. }
  1708. /*
  1709. * __normal_prio - return the priority that is based on the static prio
  1710. */
  1711. static inline int __normal_prio(struct task_struct *p)
  1712. {
  1713. return p->static_prio;
  1714. }
  1715. /*
  1716. * Calculate the expected normal priority: i.e. priority
  1717. * without taking RT-inheritance into account. Might be
  1718. * boosted by interactivity modifiers. Changes upon fork,
  1719. * setprio syscalls, and whenever the interactivity
  1720. * estimator recalculates.
  1721. */
  1722. static inline int normal_prio(struct task_struct *p)
  1723. {
  1724. int prio;
  1725. if (task_has_rt_policy(p))
  1726. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1727. else
  1728. prio = __normal_prio(p);
  1729. return prio;
  1730. }
  1731. /*
  1732. * Calculate the current priority, i.e. the priority
  1733. * taken into account by the scheduler. This value might
  1734. * be boosted by RT tasks, or might be boosted by
  1735. * interactivity modifiers. Will be RT if the task got
  1736. * RT-boosted. If not then it returns p->normal_prio.
  1737. */
  1738. static int effective_prio(struct task_struct *p)
  1739. {
  1740. p->normal_prio = normal_prio(p);
  1741. /*
  1742. * If we are RT tasks or we were boosted to RT priority,
  1743. * keep the priority unchanged. Otherwise, update priority
  1744. * to the normal priority:
  1745. */
  1746. if (!rt_prio(p->prio))
  1747. return p->normal_prio;
  1748. return p->prio;
  1749. }
  1750. /**
  1751. * task_curr - is this task currently executing on a CPU?
  1752. * @p: the task in question.
  1753. */
  1754. inline int task_curr(const struct task_struct *p)
  1755. {
  1756. return cpu_curr(task_cpu(p)) == p;
  1757. }
  1758. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1759. const struct sched_class *prev_class,
  1760. int oldprio)
  1761. {
  1762. if (prev_class != p->sched_class) {
  1763. if (prev_class->switched_from)
  1764. prev_class->switched_from(rq, p);
  1765. p->sched_class->switched_to(rq, p);
  1766. } else if (oldprio != p->prio)
  1767. p->sched_class->prio_changed(rq, p, oldprio);
  1768. }
  1769. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1770. {
  1771. const struct sched_class *class;
  1772. if (p->sched_class == rq->curr->sched_class) {
  1773. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1774. } else {
  1775. for_each_class(class) {
  1776. if (class == rq->curr->sched_class)
  1777. break;
  1778. if (class == p->sched_class) {
  1779. resched_task(rq->curr);
  1780. break;
  1781. }
  1782. }
  1783. }
  1784. /*
  1785. * A queue event has occurred, and we're going to schedule. In
  1786. * this case, we can save a useless back to back clock update.
  1787. */
  1788. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1789. rq->skip_clock_update = 1;
  1790. }
  1791. #ifdef CONFIG_SMP
  1792. /*
  1793. * Is this task likely cache-hot:
  1794. */
  1795. static int
  1796. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1797. {
  1798. s64 delta;
  1799. if (p->sched_class != &fair_sched_class)
  1800. return 0;
  1801. if (unlikely(p->policy == SCHED_IDLE))
  1802. return 0;
  1803. /*
  1804. * Buddy candidates are cache hot:
  1805. */
  1806. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1807. (&p->se == cfs_rq_of(&p->se)->next ||
  1808. &p->se == cfs_rq_of(&p->se)->last))
  1809. return 1;
  1810. if (sysctl_sched_migration_cost == -1)
  1811. return 1;
  1812. if (sysctl_sched_migration_cost == 0)
  1813. return 0;
  1814. delta = now - p->se.exec_start;
  1815. return delta < (s64)sysctl_sched_migration_cost;
  1816. }
  1817. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1818. {
  1819. #ifdef CONFIG_SCHED_DEBUG
  1820. /*
  1821. * We should never call set_task_cpu() on a blocked task,
  1822. * ttwu() will sort out the placement.
  1823. */
  1824. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1825. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1826. #ifdef CONFIG_LOCKDEP
  1827. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1828. lockdep_is_held(&task_rq(p)->lock)));
  1829. #endif
  1830. #endif
  1831. trace_sched_migrate_task(p, new_cpu);
  1832. if (task_cpu(p) != new_cpu) {
  1833. p->se.nr_migrations++;
  1834. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1835. }
  1836. __set_task_cpu(p, new_cpu);
  1837. }
  1838. struct migration_arg {
  1839. struct task_struct *task;
  1840. int dest_cpu;
  1841. };
  1842. static int migration_cpu_stop(void *data);
  1843. /*
  1844. * The task's runqueue lock must be held.
  1845. * Returns true if you have to wait for migration thread.
  1846. */
  1847. static bool need_migrate_task(struct task_struct *p)
  1848. {
  1849. /*
  1850. * If the task is not on a runqueue (and not running), then
  1851. * the next wake-up will properly place the task.
  1852. */
  1853. bool running = p->on_rq || p->on_cpu;
  1854. smp_rmb(); /* finish_lock_switch() */
  1855. return running;
  1856. }
  1857. /*
  1858. * wait_task_inactive - wait for a thread to unschedule.
  1859. *
  1860. * If @match_state is nonzero, it's the @p->state value just checked and
  1861. * not expected to change. If it changes, i.e. @p might have woken up,
  1862. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1863. * we return a positive number (its total switch count). If a second call
  1864. * a short while later returns the same number, the caller can be sure that
  1865. * @p has remained unscheduled the whole time.
  1866. *
  1867. * The caller must ensure that the task *will* unschedule sometime soon,
  1868. * else this function might spin for a *long* time. This function can't
  1869. * be called with interrupts off, or it may introduce deadlock with
  1870. * smp_call_function() if an IPI is sent by the same process we are
  1871. * waiting to become inactive.
  1872. */
  1873. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1874. {
  1875. unsigned long flags;
  1876. int running, on_rq;
  1877. unsigned long ncsw;
  1878. struct rq *rq;
  1879. for (;;) {
  1880. /*
  1881. * We do the initial early heuristics without holding
  1882. * any task-queue locks at all. We'll only try to get
  1883. * the runqueue lock when things look like they will
  1884. * work out!
  1885. */
  1886. rq = task_rq(p);
  1887. /*
  1888. * If the task is actively running on another CPU
  1889. * still, just relax and busy-wait without holding
  1890. * any locks.
  1891. *
  1892. * NOTE! Since we don't hold any locks, it's not
  1893. * even sure that "rq" stays as the right runqueue!
  1894. * But we don't care, since "task_running()" will
  1895. * return false if the runqueue has changed and p
  1896. * is actually now running somewhere else!
  1897. */
  1898. while (task_running(rq, p)) {
  1899. if (match_state && unlikely(p->state != match_state))
  1900. return 0;
  1901. cpu_relax();
  1902. }
  1903. /*
  1904. * Ok, time to look more closely! We need the rq
  1905. * lock now, to be *sure*. If we're wrong, we'll
  1906. * just go back and repeat.
  1907. */
  1908. rq = task_rq_lock(p, &flags);
  1909. trace_sched_wait_task(p);
  1910. running = task_running(rq, p);
  1911. on_rq = p->on_rq;
  1912. ncsw = 0;
  1913. if (!match_state || p->state == match_state)
  1914. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1915. task_rq_unlock(rq, p, &flags);
  1916. /*
  1917. * If it changed from the expected state, bail out now.
  1918. */
  1919. if (unlikely(!ncsw))
  1920. break;
  1921. /*
  1922. * Was it really running after all now that we
  1923. * checked with the proper locks actually held?
  1924. *
  1925. * Oops. Go back and try again..
  1926. */
  1927. if (unlikely(running)) {
  1928. cpu_relax();
  1929. continue;
  1930. }
  1931. /*
  1932. * It's not enough that it's not actively running,
  1933. * it must be off the runqueue _entirely_, and not
  1934. * preempted!
  1935. *
  1936. * So if it was still runnable (but just not actively
  1937. * running right now), it's preempted, and we should
  1938. * yield - it could be a while.
  1939. */
  1940. if (unlikely(on_rq)) {
  1941. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1942. set_current_state(TASK_UNINTERRUPTIBLE);
  1943. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1944. continue;
  1945. }
  1946. /*
  1947. * Ahh, all good. It wasn't running, and it wasn't
  1948. * runnable, which means that it will never become
  1949. * running in the future either. We're all done!
  1950. */
  1951. break;
  1952. }
  1953. return ncsw;
  1954. }
  1955. /***
  1956. * kick_process - kick a running thread to enter/exit the kernel
  1957. * @p: the to-be-kicked thread
  1958. *
  1959. * Cause a process which is running on another CPU to enter
  1960. * kernel-mode, without any delay. (to get signals handled.)
  1961. *
  1962. * NOTE: this function doesn't have to take the runqueue lock,
  1963. * because all it wants to ensure is that the remote task enters
  1964. * the kernel. If the IPI races and the task has been migrated
  1965. * to another CPU then no harm is done and the purpose has been
  1966. * achieved as well.
  1967. */
  1968. void kick_process(struct task_struct *p)
  1969. {
  1970. int cpu;
  1971. preempt_disable();
  1972. cpu = task_cpu(p);
  1973. if ((cpu != smp_processor_id()) && task_curr(p))
  1974. smp_send_reschedule(cpu);
  1975. preempt_enable();
  1976. }
  1977. EXPORT_SYMBOL_GPL(kick_process);
  1978. #endif /* CONFIG_SMP */
  1979. #ifdef CONFIG_SMP
  1980. /*
  1981. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1982. */
  1983. static int select_fallback_rq(int cpu, struct task_struct *p)
  1984. {
  1985. int dest_cpu;
  1986. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1987. /* Look for allowed, online CPU in same node. */
  1988. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1989. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1990. return dest_cpu;
  1991. /* Any allowed, online CPU? */
  1992. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1993. if (dest_cpu < nr_cpu_ids)
  1994. return dest_cpu;
  1995. /* No more Mr. Nice Guy. */
  1996. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1997. /*
  1998. * Don't tell them about moving exiting tasks or
  1999. * kernel threads (both mm NULL), since they never
  2000. * leave kernel.
  2001. */
  2002. if (p->mm && printk_ratelimit()) {
  2003. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2004. task_pid_nr(p), p->comm, cpu);
  2005. }
  2006. return dest_cpu;
  2007. }
  2008. /*
  2009. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2010. */
  2011. static inline
  2012. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2013. {
  2014. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2015. /*
  2016. * In order not to call set_task_cpu() on a blocking task we need
  2017. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2018. * cpu.
  2019. *
  2020. * Since this is common to all placement strategies, this lives here.
  2021. *
  2022. * [ this allows ->select_task() to simply return task_cpu(p) and
  2023. * not worry about this generic constraint ]
  2024. */
  2025. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2026. !cpu_online(cpu)))
  2027. cpu = select_fallback_rq(task_cpu(p), p);
  2028. return cpu;
  2029. }
  2030. static void update_avg(u64 *avg, u64 sample)
  2031. {
  2032. s64 diff = sample - *avg;
  2033. *avg += diff >> 3;
  2034. }
  2035. #endif
  2036. static void
  2037. ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
  2038. {
  2039. #ifdef CONFIG_SCHEDSTATS
  2040. #ifdef CONFIG_SMP
  2041. int this_cpu = smp_processor_id();
  2042. if (cpu == this_cpu) {
  2043. schedstat_inc(rq, ttwu_local);
  2044. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2045. } else {
  2046. struct sched_domain *sd;
  2047. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2048. for_each_domain(this_cpu, sd) {
  2049. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2050. schedstat_inc(sd, ttwu_wake_remote);
  2051. break;
  2052. }
  2053. }
  2054. }
  2055. #endif /* CONFIG_SMP */
  2056. schedstat_inc(rq, ttwu_count);
  2057. schedstat_inc(p, se.statistics.nr_wakeups);
  2058. if (wake_flags & WF_SYNC)
  2059. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2060. if (cpu != task_cpu(p))
  2061. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2062. #endif /* CONFIG_SCHEDSTATS */
  2063. }
  2064. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2065. {
  2066. activate_task(rq, p, en_flags);
  2067. p->on_rq = 1;
  2068. /* if a worker is waking up, notify workqueue */
  2069. if (p->flags & PF_WQ_WORKER)
  2070. wq_worker_waking_up(p, cpu_of(rq));
  2071. }
  2072. static void
  2073. ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
  2074. {
  2075. trace_sched_wakeup(p, true);
  2076. check_preempt_curr(rq, p, wake_flags);
  2077. p->state = TASK_RUNNING;
  2078. #ifdef CONFIG_SMP
  2079. if (p->sched_class->task_woken)
  2080. p->sched_class->task_woken(rq, p);
  2081. if (unlikely(rq->idle_stamp)) {
  2082. u64 delta = rq->clock - rq->idle_stamp;
  2083. u64 max = 2*sysctl_sched_migration_cost;
  2084. if (delta > max)
  2085. rq->avg_idle = max;
  2086. else
  2087. update_avg(&rq->avg_idle, delta);
  2088. rq->idle_stamp = 0;
  2089. }
  2090. #endif
  2091. }
  2092. /**
  2093. * try_to_wake_up - wake up a thread
  2094. * @p: the thread to be awakened
  2095. * @state: the mask of task states that can be woken
  2096. * @wake_flags: wake modifier flags (WF_*)
  2097. *
  2098. * Put it on the run-queue if it's not already there. The "current"
  2099. * thread is always on the run-queue (except when the actual
  2100. * re-schedule is in progress), and as such you're allowed to do
  2101. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2102. * runnable without the overhead of this.
  2103. *
  2104. * Returns %true if @p was woken up, %false if it was already running
  2105. * or @state didn't match @p's state.
  2106. */
  2107. static int
  2108. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2109. {
  2110. int cpu, this_cpu, success = 0;
  2111. unsigned long flags;
  2112. struct rq *rq;
  2113. this_cpu = get_cpu();
  2114. smp_wmb();
  2115. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2116. if (!(p->state & state))
  2117. goto out;
  2118. cpu = task_cpu(p);
  2119. if (p->on_rq) {
  2120. rq = __task_rq_lock(p);
  2121. if (p->on_rq)
  2122. goto out_running;
  2123. __task_rq_unlock(rq);
  2124. }
  2125. #ifdef CONFIG_SMP
  2126. while (p->on_cpu) {
  2127. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2128. /*
  2129. * If called from interrupt context we could have landed in the
  2130. * middle of schedule(), in this case we should take care not
  2131. * to spin on ->on_cpu if p is current, since that would
  2132. * deadlock.
  2133. */
  2134. if (p == current)
  2135. goto out_activate;
  2136. #endif
  2137. cpu_relax();
  2138. }
  2139. /*
  2140. * Pairs with the smp_wmb() in finish_lock_switch().
  2141. */
  2142. smp_rmb();
  2143. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2144. p->state = TASK_WAKING;
  2145. if (p->sched_class->task_waking)
  2146. p->sched_class->task_waking(p);
  2147. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2148. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2149. out_activate:
  2150. #endif
  2151. #endif /* CONFIG_SMP */
  2152. rq = cpu_rq(cpu);
  2153. raw_spin_lock(&rq->lock);
  2154. #ifdef CONFIG_SMP
  2155. if (cpu != task_cpu(p))
  2156. set_task_cpu(p, cpu);
  2157. if (p->sched_contributes_to_load)
  2158. rq->nr_uninterruptible--;
  2159. #endif
  2160. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2161. out_running:
  2162. ttwu_post_activation(p, rq, wake_flags);
  2163. ttwu_stat(rq, p, cpu, wake_flags);
  2164. success = 1;
  2165. __task_rq_unlock(rq);
  2166. out:
  2167. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2168. put_cpu();
  2169. return success;
  2170. }
  2171. /**
  2172. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2173. * @p: the thread to be awakened
  2174. *
  2175. * Put @p on the run-queue if it's not already there. The caller must
  2176. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2177. * the current task.
  2178. */
  2179. static void try_to_wake_up_local(struct task_struct *p)
  2180. {
  2181. struct rq *rq = task_rq(p);
  2182. BUG_ON(rq != this_rq());
  2183. BUG_ON(p == current);
  2184. lockdep_assert_held(&rq->lock);
  2185. if (!raw_spin_trylock(&p->pi_lock)) {
  2186. raw_spin_unlock(&rq->lock);
  2187. raw_spin_lock(&p->pi_lock);
  2188. raw_spin_lock(&rq->lock);
  2189. }
  2190. if (!(p->state & TASK_NORMAL))
  2191. goto out;
  2192. if (!p->on_rq)
  2193. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2194. ttwu_post_activation(p, rq, 0);
  2195. ttwu_stat(rq, p, smp_processor_id(), 0);
  2196. out:
  2197. raw_spin_unlock(&p->pi_lock);
  2198. }
  2199. /**
  2200. * wake_up_process - Wake up a specific process
  2201. * @p: The process to be woken up.
  2202. *
  2203. * Attempt to wake up the nominated process and move it to the set of runnable
  2204. * processes. Returns 1 if the process was woken up, 0 if it was already
  2205. * running.
  2206. *
  2207. * It may be assumed that this function implies a write memory barrier before
  2208. * changing the task state if and only if any tasks are woken up.
  2209. */
  2210. int wake_up_process(struct task_struct *p)
  2211. {
  2212. return try_to_wake_up(p, TASK_ALL, 0);
  2213. }
  2214. EXPORT_SYMBOL(wake_up_process);
  2215. int wake_up_state(struct task_struct *p, unsigned int state)
  2216. {
  2217. return try_to_wake_up(p, state, 0);
  2218. }
  2219. /*
  2220. * Perform scheduler related setup for a newly forked process p.
  2221. * p is forked by current.
  2222. *
  2223. * __sched_fork() is basic setup used by init_idle() too:
  2224. */
  2225. static void __sched_fork(struct task_struct *p)
  2226. {
  2227. p->on_rq = 0;
  2228. p->se.on_rq = 0;
  2229. p->se.exec_start = 0;
  2230. p->se.sum_exec_runtime = 0;
  2231. p->se.prev_sum_exec_runtime = 0;
  2232. p->se.nr_migrations = 0;
  2233. p->se.vruntime = 0;
  2234. INIT_LIST_HEAD(&p->se.group_node);
  2235. #ifdef CONFIG_SCHEDSTATS
  2236. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2237. #endif
  2238. INIT_LIST_HEAD(&p->rt.run_list);
  2239. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2240. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2241. #endif
  2242. }
  2243. /*
  2244. * fork()/clone()-time setup:
  2245. */
  2246. void sched_fork(struct task_struct *p, int clone_flags)
  2247. {
  2248. unsigned long flags;
  2249. int cpu = get_cpu();
  2250. __sched_fork(p);
  2251. /*
  2252. * We mark the process as running here. This guarantees that
  2253. * nobody will actually run it, and a signal or other external
  2254. * event cannot wake it up and insert it on the runqueue either.
  2255. */
  2256. p->state = TASK_RUNNING;
  2257. /*
  2258. * Revert to default priority/policy on fork if requested.
  2259. */
  2260. if (unlikely(p->sched_reset_on_fork)) {
  2261. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2262. p->policy = SCHED_NORMAL;
  2263. p->normal_prio = p->static_prio;
  2264. }
  2265. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2266. p->static_prio = NICE_TO_PRIO(0);
  2267. p->normal_prio = p->static_prio;
  2268. set_load_weight(p);
  2269. }
  2270. /*
  2271. * We don't need the reset flag anymore after the fork. It has
  2272. * fulfilled its duty:
  2273. */
  2274. p->sched_reset_on_fork = 0;
  2275. }
  2276. /*
  2277. * Make sure we do not leak PI boosting priority to the child.
  2278. */
  2279. p->prio = current->normal_prio;
  2280. if (!rt_prio(p->prio))
  2281. p->sched_class = &fair_sched_class;
  2282. if (p->sched_class->task_fork)
  2283. p->sched_class->task_fork(p);
  2284. /*
  2285. * The child is not yet in the pid-hash so no cgroup attach races,
  2286. * and the cgroup is pinned to this child due to cgroup_fork()
  2287. * is ran before sched_fork().
  2288. *
  2289. * Silence PROVE_RCU.
  2290. */
  2291. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2292. set_task_cpu(p, cpu);
  2293. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2294. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2295. if (likely(sched_info_on()))
  2296. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2297. #endif
  2298. #if defined(CONFIG_SMP)
  2299. p->on_cpu = 0;
  2300. #endif
  2301. #ifdef CONFIG_PREEMPT
  2302. /* Want to start with kernel preemption disabled. */
  2303. task_thread_info(p)->preempt_count = 1;
  2304. #endif
  2305. #ifdef CONFIG_SMP
  2306. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2307. #endif
  2308. put_cpu();
  2309. }
  2310. /*
  2311. * wake_up_new_task - wake up a newly created task for the first time.
  2312. *
  2313. * This function will do some initial scheduler statistics housekeeping
  2314. * that must be done for every newly created context, then puts the task
  2315. * on the runqueue and wakes it.
  2316. */
  2317. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2318. {
  2319. unsigned long flags;
  2320. struct rq *rq;
  2321. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2322. #ifdef CONFIG_SMP
  2323. /*
  2324. * Fork balancing, do it here and not earlier because:
  2325. * - cpus_allowed can change in the fork path
  2326. * - any previously selected cpu might disappear through hotplug
  2327. */
  2328. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2329. #endif
  2330. rq = __task_rq_lock(p);
  2331. activate_task(rq, p, 0);
  2332. p->on_rq = 1;
  2333. trace_sched_wakeup_new(p, true);
  2334. check_preempt_curr(rq, p, WF_FORK);
  2335. #ifdef CONFIG_SMP
  2336. if (p->sched_class->task_woken)
  2337. p->sched_class->task_woken(rq, p);
  2338. #endif
  2339. task_rq_unlock(rq, p, &flags);
  2340. }
  2341. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2342. /**
  2343. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2344. * @notifier: notifier struct to register
  2345. */
  2346. void preempt_notifier_register(struct preempt_notifier *notifier)
  2347. {
  2348. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2349. }
  2350. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2351. /**
  2352. * preempt_notifier_unregister - no longer interested in preemption notifications
  2353. * @notifier: notifier struct to unregister
  2354. *
  2355. * This is safe to call from within a preemption notifier.
  2356. */
  2357. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2358. {
  2359. hlist_del(&notifier->link);
  2360. }
  2361. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2362. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2363. {
  2364. struct preempt_notifier *notifier;
  2365. struct hlist_node *node;
  2366. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2367. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2368. }
  2369. static void
  2370. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2371. struct task_struct *next)
  2372. {
  2373. struct preempt_notifier *notifier;
  2374. struct hlist_node *node;
  2375. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2376. notifier->ops->sched_out(notifier, next);
  2377. }
  2378. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2379. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2380. {
  2381. }
  2382. static void
  2383. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2384. struct task_struct *next)
  2385. {
  2386. }
  2387. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2388. /**
  2389. * prepare_task_switch - prepare to switch tasks
  2390. * @rq: the runqueue preparing to switch
  2391. * @prev: the current task that is being switched out
  2392. * @next: the task we are going to switch to.
  2393. *
  2394. * This is called with the rq lock held and interrupts off. It must
  2395. * be paired with a subsequent finish_task_switch after the context
  2396. * switch.
  2397. *
  2398. * prepare_task_switch sets up locking and calls architecture specific
  2399. * hooks.
  2400. */
  2401. static inline void
  2402. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2403. struct task_struct *next)
  2404. {
  2405. sched_info_switch(prev, next);
  2406. perf_event_task_sched_out(prev, next);
  2407. fire_sched_out_preempt_notifiers(prev, next);
  2408. prepare_lock_switch(rq, next);
  2409. prepare_arch_switch(next);
  2410. trace_sched_switch(prev, next);
  2411. }
  2412. /**
  2413. * finish_task_switch - clean up after a task-switch
  2414. * @rq: runqueue associated with task-switch
  2415. * @prev: the thread we just switched away from.
  2416. *
  2417. * finish_task_switch must be called after the context switch, paired
  2418. * with a prepare_task_switch call before the context switch.
  2419. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2420. * and do any other architecture-specific cleanup actions.
  2421. *
  2422. * Note that we may have delayed dropping an mm in context_switch(). If
  2423. * so, we finish that here outside of the runqueue lock. (Doing it
  2424. * with the lock held can cause deadlocks; see schedule() for
  2425. * details.)
  2426. */
  2427. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2428. __releases(rq->lock)
  2429. {
  2430. struct mm_struct *mm = rq->prev_mm;
  2431. long prev_state;
  2432. rq->prev_mm = NULL;
  2433. /*
  2434. * A task struct has one reference for the use as "current".
  2435. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2436. * schedule one last time. The schedule call will never return, and
  2437. * the scheduled task must drop that reference.
  2438. * The test for TASK_DEAD must occur while the runqueue locks are
  2439. * still held, otherwise prev could be scheduled on another cpu, die
  2440. * there before we look at prev->state, and then the reference would
  2441. * be dropped twice.
  2442. * Manfred Spraul <manfred@colorfullife.com>
  2443. */
  2444. prev_state = prev->state;
  2445. finish_arch_switch(prev);
  2446. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2447. local_irq_disable();
  2448. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2449. perf_event_task_sched_in(current);
  2450. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2451. local_irq_enable();
  2452. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2453. finish_lock_switch(rq, prev);
  2454. fire_sched_in_preempt_notifiers(current);
  2455. if (mm)
  2456. mmdrop(mm);
  2457. if (unlikely(prev_state == TASK_DEAD)) {
  2458. /*
  2459. * Remove function-return probe instances associated with this
  2460. * task and put them back on the free list.
  2461. */
  2462. kprobe_flush_task(prev);
  2463. put_task_struct(prev);
  2464. }
  2465. }
  2466. #ifdef CONFIG_SMP
  2467. /* assumes rq->lock is held */
  2468. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2469. {
  2470. if (prev->sched_class->pre_schedule)
  2471. prev->sched_class->pre_schedule(rq, prev);
  2472. }
  2473. /* rq->lock is NOT held, but preemption is disabled */
  2474. static inline void post_schedule(struct rq *rq)
  2475. {
  2476. if (rq->post_schedule) {
  2477. unsigned long flags;
  2478. raw_spin_lock_irqsave(&rq->lock, flags);
  2479. if (rq->curr->sched_class->post_schedule)
  2480. rq->curr->sched_class->post_schedule(rq);
  2481. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2482. rq->post_schedule = 0;
  2483. }
  2484. }
  2485. #else
  2486. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2487. {
  2488. }
  2489. static inline void post_schedule(struct rq *rq)
  2490. {
  2491. }
  2492. #endif
  2493. /**
  2494. * schedule_tail - first thing a freshly forked thread must call.
  2495. * @prev: the thread we just switched away from.
  2496. */
  2497. asmlinkage void schedule_tail(struct task_struct *prev)
  2498. __releases(rq->lock)
  2499. {
  2500. struct rq *rq = this_rq();
  2501. finish_task_switch(rq, prev);
  2502. /*
  2503. * FIXME: do we need to worry about rq being invalidated by the
  2504. * task_switch?
  2505. */
  2506. post_schedule(rq);
  2507. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2508. /* In this case, finish_task_switch does not reenable preemption */
  2509. preempt_enable();
  2510. #endif
  2511. if (current->set_child_tid)
  2512. put_user(task_pid_vnr(current), current->set_child_tid);
  2513. }
  2514. /*
  2515. * context_switch - switch to the new MM and the new
  2516. * thread's register state.
  2517. */
  2518. static inline void
  2519. context_switch(struct rq *rq, struct task_struct *prev,
  2520. struct task_struct *next)
  2521. {
  2522. struct mm_struct *mm, *oldmm;
  2523. prepare_task_switch(rq, prev, next);
  2524. mm = next->mm;
  2525. oldmm = prev->active_mm;
  2526. /*
  2527. * For paravirt, this is coupled with an exit in switch_to to
  2528. * combine the page table reload and the switch backend into
  2529. * one hypercall.
  2530. */
  2531. arch_start_context_switch(prev);
  2532. if (!mm) {
  2533. next->active_mm = oldmm;
  2534. atomic_inc(&oldmm->mm_count);
  2535. enter_lazy_tlb(oldmm, next);
  2536. } else
  2537. switch_mm(oldmm, mm, next);
  2538. if (!prev->mm) {
  2539. prev->active_mm = NULL;
  2540. rq->prev_mm = oldmm;
  2541. }
  2542. /*
  2543. * Since the runqueue lock will be released by the next
  2544. * task (which is an invalid locking op but in the case
  2545. * of the scheduler it's an obvious special-case), so we
  2546. * do an early lockdep release here:
  2547. */
  2548. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2549. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2550. #endif
  2551. /* Here we just switch the register state and the stack. */
  2552. switch_to(prev, next, prev);
  2553. barrier();
  2554. /*
  2555. * this_rq must be evaluated again because prev may have moved
  2556. * CPUs since it called schedule(), thus the 'rq' on its stack
  2557. * frame will be invalid.
  2558. */
  2559. finish_task_switch(this_rq(), prev);
  2560. }
  2561. /*
  2562. * nr_running, nr_uninterruptible and nr_context_switches:
  2563. *
  2564. * externally visible scheduler statistics: current number of runnable
  2565. * threads, current number of uninterruptible-sleeping threads, total
  2566. * number of context switches performed since bootup.
  2567. */
  2568. unsigned long nr_running(void)
  2569. {
  2570. unsigned long i, sum = 0;
  2571. for_each_online_cpu(i)
  2572. sum += cpu_rq(i)->nr_running;
  2573. return sum;
  2574. }
  2575. unsigned long nr_uninterruptible(void)
  2576. {
  2577. unsigned long i, sum = 0;
  2578. for_each_possible_cpu(i)
  2579. sum += cpu_rq(i)->nr_uninterruptible;
  2580. /*
  2581. * Since we read the counters lockless, it might be slightly
  2582. * inaccurate. Do not allow it to go below zero though:
  2583. */
  2584. if (unlikely((long)sum < 0))
  2585. sum = 0;
  2586. return sum;
  2587. }
  2588. unsigned long long nr_context_switches(void)
  2589. {
  2590. int i;
  2591. unsigned long long sum = 0;
  2592. for_each_possible_cpu(i)
  2593. sum += cpu_rq(i)->nr_switches;
  2594. return sum;
  2595. }
  2596. unsigned long nr_iowait(void)
  2597. {
  2598. unsigned long i, sum = 0;
  2599. for_each_possible_cpu(i)
  2600. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2601. return sum;
  2602. }
  2603. unsigned long nr_iowait_cpu(int cpu)
  2604. {
  2605. struct rq *this = cpu_rq(cpu);
  2606. return atomic_read(&this->nr_iowait);
  2607. }
  2608. unsigned long this_cpu_load(void)
  2609. {
  2610. struct rq *this = this_rq();
  2611. return this->cpu_load[0];
  2612. }
  2613. /* Variables and functions for calc_load */
  2614. static atomic_long_t calc_load_tasks;
  2615. static unsigned long calc_load_update;
  2616. unsigned long avenrun[3];
  2617. EXPORT_SYMBOL(avenrun);
  2618. static long calc_load_fold_active(struct rq *this_rq)
  2619. {
  2620. long nr_active, delta = 0;
  2621. nr_active = this_rq->nr_running;
  2622. nr_active += (long) this_rq->nr_uninterruptible;
  2623. if (nr_active != this_rq->calc_load_active) {
  2624. delta = nr_active - this_rq->calc_load_active;
  2625. this_rq->calc_load_active = nr_active;
  2626. }
  2627. return delta;
  2628. }
  2629. static unsigned long
  2630. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2631. {
  2632. load *= exp;
  2633. load += active * (FIXED_1 - exp);
  2634. load += 1UL << (FSHIFT - 1);
  2635. return load >> FSHIFT;
  2636. }
  2637. #ifdef CONFIG_NO_HZ
  2638. /*
  2639. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2640. *
  2641. * When making the ILB scale, we should try to pull this in as well.
  2642. */
  2643. static atomic_long_t calc_load_tasks_idle;
  2644. static void calc_load_account_idle(struct rq *this_rq)
  2645. {
  2646. long delta;
  2647. delta = calc_load_fold_active(this_rq);
  2648. if (delta)
  2649. atomic_long_add(delta, &calc_load_tasks_idle);
  2650. }
  2651. static long calc_load_fold_idle(void)
  2652. {
  2653. long delta = 0;
  2654. /*
  2655. * Its got a race, we don't care...
  2656. */
  2657. if (atomic_long_read(&calc_load_tasks_idle))
  2658. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2659. return delta;
  2660. }
  2661. /**
  2662. * fixed_power_int - compute: x^n, in O(log n) time
  2663. *
  2664. * @x: base of the power
  2665. * @frac_bits: fractional bits of @x
  2666. * @n: power to raise @x to.
  2667. *
  2668. * By exploiting the relation between the definition of the natural power
  2669. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2670. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2671. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2672. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2673. * of course trivially computable in O(log_2 n), the length of our binary
  2674. * vector.
  2675. */
  2676. static unsigned long
  2677. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2678. {
  2679. unsigned long result = 1UL << frac_bits;
  2680. if (n) for (;;) {
  2681. if (n & 1) {
  2682. result *= x;
  2683. result += 1UL << (frac_bits - 1);
  2684. result >>= frac_bits;
  2685. }
  2686. n >>= 1;
  2687. if (!n)
  2688. break;
  2689. x *= x;
  2690. x += 1UL << (frac_bits - 1);
  2691. x >>= frac_bits;
  2692. }
  2693. return result;
  2694. }
  2695. /*
  2696. * a1 = a0 * e + a * (1 - e)
  2697. *
  2698. * a2 = a1 * e + a * (1 - e)
  2699. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2700. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2701. *
  2702. * a3 = a2 * e + a * (1 - e)
  2703. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2704. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2705. *
  2706. * ...
  2707. *
  2708. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2709. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2710. * = a0 * e^n + a * (1 - e^n)
  2711. *
  2712. * [1] application of the geometric series:
  2713. *
  2714. * n 1 - x^(n+1)
  2715. * S_n := \Sum x^i = -------------
  2716. * i=0 1 - x
  2717. */
  2718. static unsigned long
  2719. calc_load_n(unsigned long load, unsigned long exp,
  2720. unsigned long active, unsigned int n)
  2721. {
  2722. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2723. }
  2724. /*
  2725. * NO_HZ can leave us missing all per-cpu ticks calling
  2726. * calc_load_account_active(), but since an idle CPU folds its delta into
  2727. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2728. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2729. *
  2730. * Once we've updated the global active value, we need to apply the exponential
  2731. * weights adjusted to the number of cycles missed.
  2732. */
  2733. static void calc_global_nohz(unsigned long ticks)
  2734. {
  2735. long delta, active, n;
  2736. if (time_before(jiffies, calc_load_update))
  2737. return;
  2738. /*
  2739. * If we crossed a calc_load_update boundary, make sure to fold
  2740. * any pending idle changes, the respective CPUs might have
  2741. * missed the tick driven calc_load_account_active() update
  2742. * due to NO_HZ.
  2743. */
  2744. delta = calc_load_fold_idle();
  2745. if (delta)
  2746. atomic_long_add(delta, &calc_load_tasks);
  2747. /*
  2748. * If we were idle for multiple load cycles, apply them.
  2749. */
  2750. if (ticks >= LOAD_FREQ) {
  2751. n = ticks / LOAD_FREQ;
  2752. active = atomic_long_read(&calc_load_tasks);
  2753. active = active > 0 ? active * FIXED_1 : 0;
  2754. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2755. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2756. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2757. calc_load_update += n * LOAD_FREQ;
  2758. }
  2759. /*
  2760. * Its possible the remainder of the above division also crosses
  2761. * a LOAD_FREQ period, the regular check in calc_global_load()
  2762. * which comes after this will take care of that.
  2763. *
  2764. * Consider us being 11 ticks before a cycle completion, and us
  2765. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2766. * age us 4 cycles, and the test in calc_global_load() will
  2767. * pick up the final one.
  2768. */
  2769. }
  2770. #else
  2771. static void calc_load_account_idle(struct rq *this_rq)
  2772. {
  2773. }
  2774. static inline long calc_load_fold_idle(void)
  2775. {
  2776. return 0;
  2777. }
  2778. static void calc_global_nohz(unsigned long ticks)
  2779. {
  2780. }
  2781. #endif
  2782. /**
  2783. * get_avenrun - get the load average array
  2784. * @loads: pointer to dest load array
  2785. * @offset: offset to add
  2786. * @shift: shift count to shift the result left
  2787. *
  2788. * These values are estimates at best, so no need for locking.
  2789. */
  2790. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2791. {
  2792. loads[0] = (avenrun[0] + offset) << shift;
  2793. loads[1] = (avenrun[1] + offset) << shift;
  2794. loads[2] = (avenrun[2] + offset) << shift;
  2795. }
  2796. /*
  2797. * calc_load - update the avenrun load estimates 10 ticks after the
  2798. * CPUs have updated calc_load_tasks.
  2799. */
  2800. void calc_global_load(unsigned long ticks)
  2801. {
  2802. long active;
  2803. calc_global_nohz(ticks);
  2804. if (time_before(jiffies, calc_load_update + 10))
  2805. return;
  2806. active = atomic_long_read(&calc_load_tasks);
  2807. active = active > 0 ? active * FIXED_1 : 0;
  2808. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2809. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2810. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2811. calc_load_update += LOAD_FREQ;
  2812. }
  2813. /*
  2814. * Called from update_cpu_load() to periodically update this CPU's
  2815. * active count.
  2816. */
  2817. static void calc_load_account_active(struct rq *this_rq)
  2818. {
  2819. long delta;
  2820. if (time_before(jiffies, this_rq->calc_load_update))
  2821. return;
  2822. delta = calc_load_fold_active(this_rq);
  2823. delta += calc_load_fold_idle();
  2824. if (delta)
  2825. atomic_long_add(delta, &calc_load_tasks);
  2826. this_rq->calc_load_update += LOAD_FREQ;
  2827. }
  2828. /*
  2829. * The exact cpuload at various idx values, calculated at every tick would be
  2830. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2831. *
  2832. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2833. * on nth tick when cpu may be busy, then we have:
  2834. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2835. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2836. *
  2837. * decay_load_missed() below does efficient calculation of
  2838. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2839. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2840. *
  2841. * The calculation is approximated on a 128 point scale.
  2842. * degrade_zero_ticks is the number of ticks after which load at any
  2843. * particular idx is approximated to be zero.
  2844. * degrade_factor is a precomputed table, a row for each load idx.
  2845. * Each column corresponds to degradation factor for a power of two ticks,
  2846. * based on 128 point scale.
  2847. * Example:
  2848. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2849. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2850. *
  2851. * With this power of 2 load factors, we can degrade the load n times
  2852. * by looking at 1 bits in n and doing as many mult/shift instead of
  2853. * n mult/shifts needed by the exact degradation.
  2854. */
  2855. #define DEGRADE_SHIFT 7
  2856. static const unsigned char
  2857. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2858. static const unsigned char
  2859. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2860. {0, 0, 0, 0, 0, 0, 0, 0},
  2861. {64, 32, 8, 0, 0, 0, 0, 0},
  2862. {96, 72, 40, 12, 1, 0, 0},
  2863. {112, 98, 75, 43, 15, 1, 0},
  2864. {120, 112, 98, 76, 45, 16, 2} };
  2865. /*
  2866. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2867. * would be when CPU is idle and so we just decay the old load without
  2868. * adding any new load.
  2869. */
  2870. static unsigned long
  2871. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2872. {
  2873. int j = 0;
  2874. if (!missed_updates)
  2875. return load;
  2876. if (missed_updates >= degrade_zero_ticks[idx])
  2877. return 0;
  2878. if (idx == 1)
  2879. return load >> missed_updates;
  2880. while (missed_updates) {
  2881. if (missed_updates % 2)
  2882. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2883. missed_updates >>= 1;
  2884. j++;
  2885. }
  2886. return load;
  2887. }
  2888. /*
  2889. * Update rq->cpu_load[] statistics. This function is usually called every
  2890. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2891. * every tick. We fix it up based on jiffies.
  2892. */
  2893. static void update_cpu_load(struct rq *this_rq)
  2894. {
  2895. unsigned long this_load = this_rq->load.weight;
  2896. unsigned long curr_jiffies = jiffies;
  2897. unsigned long pending_updates;
  2898. int i, scale;
  2899. this_rq->nr_load_updates++;
  2900. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2901. if (curr_jiffies == this_rq->last_load_update_tick)
  2902. return;
  2903. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2904. this_rq->last_load_update_tick = curr_jiffies;
  2905. /* Update our load: */
  2906. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2907. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2908. unsigned long old_load, new_load;
  2909. /* scale is effectively 1 << i now, and >> i divides by scale */
  2910. old_load = this_rq->cpu_load[i];
  2911. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2912. new_load = this_load;
  2913. /*
  2914. * Round up the averaging division if load is increasing. This
  2915. * prevents us from getting stuck on 9 if the load is 10, for
  2916. * example.
  2917. */
  2918. if (new_load > old_load)
  2919. new_load += scale - 1;
  2920. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2921. }
  2922. sched_avg_update(this_rq);
  2923. }
  2924. static void update_cpu_load_active(struct rq *this_rq)
  2925. {
  2926. update_cpu_load(this_rq);
  2927. calc_load_account_active(this_rq);
  2928. }
  2929. #ifdef CONFIG_SMP
  2930. /*
  2931. * sched_exec - execve() is a valuable balancing opportunity, because at
  2932. * this point the task has the smallest effective memory and cache footprint.
  2933. */
  2934. void sched_exec(void)
  2935. {
  2936. struct task_struct *p = current;
  2937. unsigned long flags;
  2938. int dest_cpu;
  2939. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2940. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2941. if (dest_cpu == smp_processor_id())
  2942. goto unlock;
  2943. if (likely(cpu_active(dest_cpu))) {
  2944. struct migration_arg arg = { p, dest_cpu };
  2945. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2946. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2947. return;
  2948. }
  2949. unlock:
  2950. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2951. }
  2952. #endif
  2953. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2954. EXPORT_PER_CPU_SYMBOL(kstat);
  2955. /*
  2956. * Return any ns on the sched_clock that have not yet been accounted in
  2957. * @p in case that task is currently running.
  2958. *
  2959. * Called with task_rq_lock() held on @rq.
  2960. */
  2961. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2962. {
  2963. u64 ns = 0;
  2964. if (task_current(rq, p)) {
  2965. update_rq_clock(rq);
  2966. ns = rq->clock_task - p->se.exec_start;
  2967. if ((s64)ns < 0)
  2968. ns = 0;
  2969. }
  2970. return ns;
  2971. }
  2972. unsigned long long task_delta_exec(struct task_struct *p)
  2973. {
  2974. unsigned long flags;
  2975. struct rq *rq;
  2976. u64 ns = 0;
  2977. rq = task_rq_lock(p, &flags);
  2978. ns = do_task_delta_exec(p, rq);
  2979. task_rq_unlock(rq, p, &flags);
  2980. return ns;
  2981. }
  2982. /*
  2983. * Return accounted runtime for the task.
  2984. * In case the task is currently running, return the runtime plus current's
  2985. * pending runtime that have not been accounted yet.
  2986. */
  2987. unsigned long long task_sched_runtime(struct task_struct *p)
  2988. {
  2989. unsigned long flags;
  2990. struct rq *rq;
  2991. u64 ns = 0;
  2992. rq = task_rq_lock(p, &flags);
  2993. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2994. task_rq_unlock(rq, p, &flags);
  2995. return ns;
  2996. }
  2997. /*
  2998. * Return sum_exec_runtime for the thread group.
  2999. * In case the task is currently running, return the sum plus current's
  3000. * pending runtime that have not been accounted yet.
  3001. *
  3002. * Note that the thread group might have other running tasks as well,
  3003. * so the return value not includes other pending runtime that other
  3004. * running tasks might have.
  3005. */
  3006. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3007. {
  3008. struct task_cputime totals;
  3009. unsigned long flags;
  3010. struct rq *rq;
  3011. u64 ns;
  3012. rq = task_rq_lock(p, &flags);
  3013. thread_group_cputime(p, &totals);
  3014. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3015. task_rq_unlock(rq, p, &flags);
  3016. return ns;
  3017. }
  3018. /*
  3019. * Account user cpu time to a process.
  3020. * @p: the process that the cpu time gets accounted to
  3021. * @cputime: the cpu time spent in user space since the last update
  3022. * @cputime_scaled: cputime scaled by cpu frequency
  3023. */
  3024. void account_user_time(struct task_struct *p, cputime_t cputime,
  3025. cputime_t cputime_scaled)
  3026. {
  3027. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3028. cputime64_t tmp;
  3029. /* Add user time to process. */
  3030. p->utime = cputime_add(p->utime, cputime);
  3031. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3032. account_group_user_time(p, cputime);
  3033. /* Add user time to cpustat. */
  3034. tmp = cputime_to_cputime64(cputime);
  3035. if (TASK_NICE(p) > 0)
  3036. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3037. else
  3038. cpustat->user = cputime64_add(cpustat->user, tmp);
  3039. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3040. /* Account for user time used */
  3041. acct_update_integrals(p);
  3042. }
  3043. /*
  3044. * Account guest cpu time to a process.
  3045. * @p: the process that the cpu time gets accounted to
  3046. * @cputime: the cpu time spent in virtual machine since the last update
  3047. * @cputime_scaled: cputime scaled by cpu frequency
  3048. */
  3049. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3050. cputime_t cputime_scaled)
  3051. {
  3052. cputime64_t tmp;
  3053. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3054. tmp = cputime_to_cputime64(cputime);
  3055. /* Add guest time to process. */
  3056. p->utime = cputime_add(p->utime, cputime);
  3057. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3058. account_group_user_time(p, cputime);
  3059. p->gtime = cputime_add(p->gtime, cputime);
  3060. /* Add guest time to cpustat. */
  3061. if (TASK_NICE(p) > 0) {
  3062. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3063. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3064. } else {
  3065. cpustat->user = cputime64_add(cpustat->user, tmp);
  3066. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3067. }
  3068. }
  3069. /*
  3070. * Account system cpu time to a process and desired cpustat field
  3071. * @p: the process that the cpu time gets accounted to
  3072. * @cputime: the cpu time spent in kernel space since the last update
  3073. * @cputime_scaled: cputime scaled by cpu frequency
  3074. * @target_cputime64: pointer to cpustat field that has to be updated
  3075. */
  3076. static inline
  3077. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3078. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3079. {
  3080. cputime64_t tmp = cputime_to_cputime64(cputime);
  3081. /* Add system time to process. */
  3082. p->stime = cputime_add(p->stime, cputime);
  3083. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3084. account_group_system_time(p, cputime);
  3085. /* Add system time to cpustat. */
  3086. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3087. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3088. /* Account for system time used */
  3089. acct_update_integrals(p);
  3090. }
  3091. /*
  3092. * Account system cpu time to a process.
  3093. * @p: the process that the cpu time gets accounted to
  3094. * @hardirq_offset: the offset to subtract from hardirq_count()
  3095. * @cputime: the cpu time spent in kernel space since the last update
  3096. * @cputime_scaled: cputime scaled by cpu frequency
  3097. */
  3098. void account_system_time(struct task_struct *p, int hardirq_offset,
  3099. cputime_t cputime, cputime_t cputime_scaled)
  3100. {
  3101. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3102. cputime64_t *target_cputime64;
  3103. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3104. account_guest_time(p, cputime, cputime_scaled);
  3105. return;
  3106. }
  3107. if (hardirq_count() - hardirq_offset)
  3108. target_cputime64 = &cpustat->irq;
  3109. else if (in_serving_softirq())
  3110. target_cputime64 = &cpustat->softirq;
  3111. else
  3112. target_cputime64 = &cpustat->system;
  3113. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3114. }
  3115. /*
  3116. * Account for involuntary wait time.
  3117. * @cputime: the cpu time spent in involuntary wait
  3118. */
  3119. void account_steal_time(cputime_t cputime)
  3120. {
  3121. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3122. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3123. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3124. }
  3125. /*
  3126. * Account for idle time.
  3127. * @cputime: the cpu time spent in idle wait
  3128. */
  3129. void account_idle_time(cputime_t cputime)
  3130. {
  3131. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3132. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3133. struct rq *rq = this_rq();
  3134. if (atomic_read(&rq->nr_iowait) > 0)
  3135. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3136. else
  3137. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3138. }
  3139. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3140. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3141. /*
  3142. * Account a tick to a process and cpustat
  3143. * @p: the process that the cpu time gets accounted to
  3144. * @user_tick: is the tick from userspace
  3145. * @rq: the pointer to rq
  3146. *
  3147. * Tick demultiplexing follows the order
  3148. * - pending hardirq update
  3149. * - pending softirq update
  3150. * - user_time
  3151. * - idle_time
  3152. * - system time
  3153. * - check for guest_time
  3154. * - else account as system_time
  3155. *
  3156. * Check for hardirq is done both for system and user time as there is
  3157. * no timer going off while we are on hardirq and hence we may never get an
  3158. * opportunity to update it solely in system time.
  3159. * p->stime and friends are only updated on system time and not on irq
  3160. * softirq as those do not count in task exec_runtime any more.
  3161. */
  3162. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3163. struct rq *rq)
  3164. {
  3165. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3166. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3167. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3168. if (irqtime_account_hi_update()) {
  3169. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3170. } else if (irqtime_account_si_update()) {
  3171. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3172. } else if (this_cpu_ksoftirqd() == p) {
  3173. /*
  3174. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3175. * So, we have to handle it separately here.
  3176. * Also, p->stime needs to be updated for ksoftirqd.
  3177. */
  3178. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3179. &cpustat->softirq);
  3180. } else if (user_tick) {
  3181. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3182. } else if (p == rq->idle) {
  3183. account_idle_time(cputime_one_jiffy);
  3184. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3185. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3186. } else {
  3187. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3188. &cpustat->system);
  3189. }
  3190. }
  3191. static void irqtime_account_idle_ticks(int ticks)
  3192. {
  3193. int i;
  3194. struct rq *rq = this_rq();
  3195. for (i = 0; i < ticks; i++)
  3196. irqtime_account_process_tick(current, 0, rq);
  3197. }
  3198. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3199. static void irqtime_account_idle_ticks(int ticks) {}
  3200. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3201. struct rq *rq) {}
  3202. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3203. /*
  3204. * Account a single tick of cpu time.
  3205. * @p: the process that the cpu time gets accounted to
  3206. * @user_tick: indicates if the tick is a user or a system tick
  3207. */
  3208. void account_process_tick(struct task_struct *p, int user_tick)
  3209. {
  3210. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3211. struct rq *rq = this_rq();
  3212. if (sched_clock_irqtime) {
  3213. irqtime_account_process_tick(p, user_tick, rq);
  3214. return;
  3215. }
  3216. if (user_tick)
  3217. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3218. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3219. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3220. one_jiffy_scaled);
  3221. else
  3222. account_idle_time(cputime_one_jiffy);
  3223. }
  3224. /*
  3225. * Account multiple ticks of steal time.
  3226. * @p: the process from which the cpu time has been stolen
  3227. * @ticks: number of stolen ticks
  3228. */
  3229. void account_steal_ticks(unsigned long ticks)
  3230. {
  3231. account_steal_time(jiffies_to_cputime(ticks));
  3232. }
  3233. /*
  3234. * Account multiple ticks of idle time.
  3235. * @ticks: number of stolen ticks
  3236. */
  3237. void account_idle_ticks(unsigned long ticks)
  3238. {
  3239. if (sched_clock_irqtime) {
  3240. irqtime_account_idle_ticks(ticks);
  3241. return;
  3242. }
  3243. account_idle_time(jiffies_to_cputime(ticks));
  3244. }
  3245. #endif
  3246. /*
  3247. * Use precise platform statistics if available:
  3248. */
  3249. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3250. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3251. {
  3252. *ut = p->utime;
  3253. *st = p->stime;
  3254. }
  3255. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3256. {
  3257. struct task_cputime cputime;
  3258. thread_group_cputime(p, &cputime);
  3259. *ut = cputime.utime;
  3260. *st = cputime.stime;
  3261. }
  3262. #else
  3263. #ifndef nsecs_to_cputime
  3264. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3265. #endif
  3266. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3267. {
  3268. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3269. /*
  3270. * Use CFS's precise accounting:
  3271. */
  3272. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3273. if (total) {
  3274. u64 temp = rtime;
  3275. temp *= utime;
  3276. do_div(temp, total);
  3277. utime = (cputime_t)temp;
  3278. } else
  3279. utime = rtime;
  3280. /*
  3281. * Compare with previous values, to keep monotonicity:
  3282. */
  3283. p->prev_utime = max(p->prev_utime, utime);
  3284. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3285. *ut = p->prev_utime;
  3286. *st = p->prev_stime;
  3287. }
  3288. /*
  3289. * Must be called with siglock held.
  3290. */
  3291. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3292. {
  3293. struct signal_struct *sig = p->signal;
  3294. struct task_cputime cputime;
  3295. cputime_t rtime, utime, total;
  3296. thread_group_cputime(p, &cputime);
  3297. total = cputime_add(cputime.utime, cputime.stime);
  3298. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3299. if (total) {
  3300. u64 temp = rtime;
  3301. temp *= cputime.utime;
  3302. do_div(temp, total);
  3303. utime = (cputime_t)temp;
  3304. } else
  3305. utime = rtime;
  3306. sig->prev_utime = max(sig->prev_utime, utime);
  3307. sig->prev_stime = max(sig->prev_stime,
  3308. cputime_sub(rtime, sig->prev_utime));
  3309. *ut = sig->prev_utime;
  3310. *st = sig->prev_stime;
  3311. }
  3312. #endif
  3313. /*
  3314. * This function gets called by the timer code, with HZ frequency.
  3315. * We call it with interrupts disabled.
  3316. *
  3317. * It also gets called by the fork code, when changing the parent's
  3318. * timeslices.
  3319. */
  3320. void scheduler_tick(void)
  3321. {
  3322. int cpu = smp_processor_id();
  3323. struct rq *rq = cpu_rq(cpu);
  3324. struct task_struct *curr = rq->curr;
  3325. sched_clock_tick();
  3326. raw_spin_lock(&rq->lock);
  3327. update_rq_clock(rq);
  3328. update_cpu_load_active(rq);
  3329. curr->sched_class->task_tick(rq, curr, 0);
  3330. raw_spin_unlock(&rq->lock);
  3331. perf_event_task_tick();
  3332. #ifdef CONFIG_SMP
  3333. rq->idle_at_tick = idle_cpu(cpu);
  3334. trigger_load_balance(rq, cpu);
  3335. #endif
  3336. }
  3337. notrace unsigned long get_parent_ip(unsigned long addr)
  3338. {
  3339. if (in_lock_functions(addr)) {
  3340. addr = CALLER_ADDR2;
  3341. if (in_lock_functions(addr))
  3342. addr = CALLER_ADDR3;
  3343. }
  3344. return addr;
  3345. }
  3346. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3347. defined(CONFIG_PREEMPT_TRACER))
  3348. void __kprobes add_preempt_count(int val)
  3349. {
  3350. #ifdef CONFIG_DEBUG_PREEMPT
  3351. /*
  3352. * Underflow?
  3353. */
  3354. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3355. return;
  3356. #endif
  3357. preempt_count() += val;
  3358. #ifdef CONFIG_DEBUG_PREEMPT
  3359. /*
  3360. * Spinlock count overflowing soon?
  3361. */
  3362. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3363. PREEMPT_MASK - 10);
  3364. #endif
  3365. if (preempt_count() == val)
  3366. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3367. }
  3368. EXPORT_SYMBOL(add_preempt_count);
  3369. void __kprobes sub_preempt_count(int val)
  3370. {
  3371. #ifdef CONFIG_DEBUG_PREEMPT
  3372. /*
  3373. * Underflow?
  3374. */
  3375. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3376. return;
  3377. /*
  3378. * Is the spinlock portion underflowing?
  3379. */
  3380. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3381. !(preempt_count() & PREEMPT_MASK)))
  3382. return;
  3383. #endif
  3384. if (preempt_count() == val)
  3385. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3386. preempt_count() -= val;
  3387. }
  3388. EXPORT_SYMBOL(sub_preempt_count);
  3389. #endif
  3390. /*
  3391. * Print scheduling while atomic bug:
  3392. */
  3393. static noinline void __schedule_bug(struct task_struct *prev)
  3394. {
  3395. struct pt_regs *regs = get_irq_regs();
  3396. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3397. prev->comm, prev->pid, preempt_count());
  3398. debug_show_held_locks(prev);
  3399. print_modules();
  3400. if (irqs_disabled())
  3401. print_irqtrace_events(prev);
  3402. if (regs)
  3403. show_regs(regs);
  3404. else
  3405. dump_stack();
  3406. }
  3407. /*
  3408. * Various schedule()-time debugging checks and statistics:
  3409. */
  3410. static inline void schedule_debug(struct task_struct *prev)
  3411. {
  3412. /*
  3413. * Test if we are atomic. Since do_exit() needs to call into
  3414. * schedule() atomically, we ignore that path for now.
  3415. * Otherwise, whine if we are scheduling when we should not be.
  3416. */
  3417. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3418. __schedule_bug(prev);
  3419. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3420. schedstat_inc(this_rq(), sched_count);
  3421. #ifdef CONFIG_SCHEDSTATS
  3422. if (unlikely(prev->lock_depth >= 0)) {
  3423. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3424. schedstat_inc(prev, sched_info.bkl_count);
  3425. }
  3426. #endif
  3427. }
  3428. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3429. {
  3430. if (prev->on_rq)
  3431. update_rq_clock(rq);
  3432. prev->sched_class->put_prev_task(rq, prev);
  3433. }
  3434. /*
  3435. * Pick up the highest-prio task:
  3436. */
  3437. static inline struct task_struct *
  3438. pick_next_task(struct rq *rq)
  3439. {
  3440. const struct sched_class *class;
  3441. struct task_struct *p;
  3442. /*
  3443. * Optimization: we know that if all tasks are in
  3444. * the fair class we can call that function directly:
  3445. */
  3446. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3447. p = fair_sched_class.pick_next_task(rq);
  3448. if (likely(p))
  3449. return p;
  3450. }
  3451. for_each_class(class) {
  3452. p = class->pick_next_task(rq);
  3453. if (p)
  3454. return p;
  3455. }
  3456. BUG(); /* the idle class will always have a runnable task */
  3457. }
  3458. /*
  3459. * schedule() is the main scheduler function.
  3460. */
  3461. asmlinkage void __sched schedule(void)
  3462. {
  3463. struct task_struct *prev, *next;
  3464. unsigned long *switch_count;
  3465. struct rq *rq;
  3466. int cpu;
  3467. need_resched:
  3468. preempt_disable();
  3469. cpu = smp_processor_id();
  3470. rq = cpu_rq(cpu);
  3471. rcu_note_context_switch(cpu);
  3472. prev = rq->curr;
  3473. schedule_debug(prev);
  3474. if (sched_feat(HRTICK))
  3475. hrtick_clear(rq);
  3476. raw_spin_lock_irq(&rq->lock);
  3477. switch_count = &prev->nivcsw;
  3478. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3479. if (unlikely(signal_pending_state(prev->state, prev))) {
  3480. prev->state = TASK_RUNNING;
  3481. } else {
  3482. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3483. prev->on_rq = 0;
  3484. /*
  3485. * If a worker went to sleep, notify and ask workqueue
  3486. * whether it wants to wake up a task to maintain
  3487. * concurrency.
  3488. */
  3489. if (prev->flags & PF_WQ_WORKER) {
  3490. struct task_struct *to_wakeup;
  3491. to_wakeup = wq_worker_sleeping(prev, cpu);
  3492. if (to_wakeup)
  3493. try_to_wake_up_local(to_wakeup);
  3494. }
  3495. /*
  3496. * If we are going to sleep and we have plugged IO
  3497. * queued, make sure to submit it to avoid deadlocks.
  3498. */
  3499. if (blk_needs_flush_plug(prev)) {
  3500. raw_spin_unlock(&rq->lock);
  3501. blk_flush_plug(prev);
  3502. raw_spin_lock(&rq->lock);
  3503. }
  3504. }
  3505. switch_count = &prev->nvcsw;
  3506. }
  3507. pre_schedule(rq, prev);
  3508. if (unlikely(!rq->nr_running))
  3509. idle_balance(cpu, rq);
  3510. put_prev_task(rq, prev);
  3511. next = pick_next_task(rq);
  3512. clear_tsk_need_resched(prev);
  3513. rq->skip_clock_update = 0;
  3514. if (likely(prev != next)) {
  3515. rq->nr_switches++;
  3516. rq->curr = next;
  3517. ++*switch_count;
  3518. context_switch(rq, prev, next); /* unlocks the rq */
  3519. /*
  3520. * The context switch have flipped the stack from under us
  3521. * and restored the local variables which were saved when
  3522. * this task called schedule() in the past. prev == current
  3523. * is still correct, but it can be moved to another cpu/rq.
  3524. */
  3525. cpu = smp_processor_id();
  3526. rq = cpu_rq(cpu);
  3527. } else
  3528. raw_spin_unlock_irq(&rq->lock);
  3529. post_schedule(rq);
  3530. preempt_enable_no_resched();
  3531. if (need_resched())
  3532. goto need_resched;
  3533. }
  3534. EXPORT_SYMBOL(schedule);
  3535. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3536. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3537. {
  3538. bool ret = false;
  3539. rcu_read_lock();
  3540. if (lock->owner != owner)
  3541. goto fail;
  3542. /*
  3543. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3544. * lock->owner still matches owner, if that fails, owner might
  3545. * point to free()d memory, if it still matches, the rcu_read_lock()
  3546. * ensures the memory stays valid.
  3547. */
  3548. barrier();
  3549. ret = owner->on_cpu;
  3550. fail:
  3551. rcu_read_unlock();
  3552. return ret;
  3553. }
  3554. /*
  3555. * Look out! "owner" is an entirely speculative pointer
  3556. * access and not reliable.
  3557. */
  3558. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3559. {
  3560. if (!sched_feat(OWNER_SPIN))
  3561. return 0;
  3562. while (owner_running(lock, owner)) {
  3563. if (need_resched())
  3564. return 0;
  3565. arch_mutex_cpu_relax();
  3566. }
  3567. /*
  3568. * If the owner changed to another task there is likely
  3569. * heavy contention, stop spinning.
  3570. */
  3571. if (lock->owner)
  3572. return 0;
  3573. return 1;
  3574. }
  3575. #endif
  3576. #ifdef CONFIG_PREEMPT
  3577. /*
  3578. * this is the entry point to schedule() from in-kernel preemption
  3579. * off of preempt_enable. Kernel preemptions off return from interrupt
  3580. * occur there and call schedule directly.
  3581. */
  3582. asmlinkage void __sched notrace preempt_schedule(void)
  3583. {
  3584. struct thread_info *ti = current_thread_info();
  3585. /*
  3586. * If there is a non-zero preempt_count or interrupts are disabled,
  3587. * we do not want to preempt the current task. Just return..
  3588. */
  3589. if (likely(ti->preempt_count || irqs_disabled()))
  3590. return;
  3591. do {
  3592. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3593. schedule();
  3594. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3595. /*
  3596. * Check again in case we missed a preemption opportunity
  3597. * between schedule and now.
  3598. */
  3599. barrier();
  3600. } while (need_resched());
  3601. }
  3602. EXPORT_SYMBOL(preempt_schedule);
  3603. /*
  3604. * this is the entry point to schedule() from kernel preemption
  3605. * off of irq context.
  3606. * Note, that this is called and return with irqs disabled. This will
  3607. * protect us against recursive calling from irq.
  3608. */
  3609. asmlinkage void __sched preempt_schedule_irq(void)
  3610. {
  3611. struct thread_info *ti = current_thread_info();
  3612. /* Catch callers which need to be fixed */
  3613. BUG_ON(ti->preempt_count || !irqs_disabled());
  3614. do {
  3615. add_preempt_count(PREEMPT_ACTIVE);
  3616. local_irq_enable();
  3617. schedule();
  3618. local_irq_disable();
  3619. sub_preempt_count(PREEMPT_ACTIVE);
  3620. /*
  3621. * Check again in case we missed a preemption opportunity
  3622. * between schedule and now.
  3623. */
  3624. barrier();
  3625. } while (need_resched());
  3626. }
  3627. #endif /* CONFIG_PREEMPT */
  3628. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3629. void *key)
  3630. {
  3631. return try_to_wake_up(curr->private, mode, wake_flags);
  3632. }
  3633. EXPORT_SYMBOL(default_wake_function);
  3634. /*
  3635. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3636. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3637. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3638. *
  3639. * There are circumstances in which we can try to wake a task which has already
  3640. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3641. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3642. */
  3643. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3644. int nr_exclusive, int wake_flags, void *key)
  3645. {
  3646. wait_queue_t *curr, *next;
  3647. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3648. unsigned flags = curr->flags;
  3649. if (curr->func(curr, mode, wake_flags, key) &&
  3650. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3651. break;
  3652. }
  3653. }
  3654. /**
  3655. * __wake_up - wake up threads blocked on a waitqueue.
  3656. * @q: the waitqueue
  3657. * @mode: which threads
  3658. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3659. * @key: is directly passed to the wakeup function
  3660. *
  3661. * It may be assumed that this function implies a write memory barrier before
  3662. * changing the task state if and only if any tasks are woken up.
  3663. */
  3664. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3665. int nr_exclusive, void *key)
  3666. {
  3667. unsigned long flags;
  3668. spin_lock_irqsave(&q->lock, flags);
  3669. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3670. spin_unlock_irqrestore(&q->lock, flags);
  3671. }
  3672. EXPORT_SYMBOL(__wake_up);
  3673. /*
  3674. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3675. */
  3676. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3677. {
  3678. __wake_up_common(q, mode, 1, 0, NULL);
  3679. }
  3680. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3681. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3682. {
  3683. __wake_up_common(q, mode, 1, 0, key);
  3684. }
  3685. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3686. /**
  3687. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3688. * @q: the waitqueue
  3689. * @mode: which threads
  3690. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3691. * @key: opaque value to be passed to wakeup targets
  3692. *
  3693. * The sync wakeup differs that the waker knows that it will schedule
  3694. * away soon, so while the target thread will be woken up, it will not
  3695. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3696. * with each other. This can prevent needless bouncing between CPUs.
  3697. *
  3698. * On UP it can prevent extra preemption.
  3699. *
  3700. * It may be assumed that this function implies a write memory barrier before
  3701. * changing the task state if and only if any tasks are woken up.
  3702. */
  3703. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3704. int nr_exclusive, void *key)
  3705. {
  3706. unsigned long flags;
  3707. int wake_flags = WF_SYNC;
  3708. if (unlikely(!q))
  3709. return;
  3710. if (unlikely(!nr_exclusive))
  3711. wake_flags = 0;
  3712. spin_lock_irqsave(&q->lock, flags);
  3713. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3714. spin_unlock_irqrestore(&q->lock, flags);
  3715. }
  3716. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3717. /*
  3718. * __wake_up_sync - see __wake_up_sync_key()
  3719. */
  3720. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3721. {
  3722. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3723. }
  3724. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3725. /**
  3726. * complete: - signals a single thread waiting on this completion
  3727. * @x: holds the state of this particular completion
  3728. *
  3729. * This will wake up a single thread waiting on this completion. Threads will be
  3730. * awakened in the same order in which they were queued.
  3731. *
  3732. * See also complete_all(), wait_for_completion() and related routines.
  3733. *
  3734. * It may be assumed that this function implies a write memory barrier before
  3735. * changing the task state if and only if any tasks are woken up.
  3736. */
  3737. void complete(struct completion *x)
  3738. {
  3739. unsigned long flags;
  3740. spin_lock_irqsave(&x->wait.lock, flags);
  3741. x->done++;
  3742. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3743. spin_unlock_irqrestore(&x->wait.lock, flags);
  3744. }
  3745. EXPORT_SYMBOL(complete);
  3746. /**
  3747. * complete_all: - signals all threads waiting on this completion
  3748. * @x: holds the state of this particular completion
  3749. *
  3750. * This will wake up all threads waiting on this particular completion event.
  3751. *
  3752. * It may be assumed that this function implies a write memory barrier before
  3753. * changing the task state if and only if any tasks are woken up.
  3754. */
  3755. void complete_all(struct completion *x)
  3756. {
  3757. unsigned long flags;
  3758. spin_lock_irqsave(&x->wait.lock, flags);
  3759. x->done += UINT_MAX/2;
  3760. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3761. spin_unlock_irqrestore(&x->wait.lock, flags);
  3762. }
  3763. EXPORT_SYMBOL(complete_all);
  3764. static inline long __sched
  3765. do_wait_for_common(struct completion *x, long timeout, int state)
  3766. {
  3767. if (!x->done) {
  3768. DECLARE_WAITQUEUE(wait, current);
  3769. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3770. do {
  3771. if (signal_pending_state(state, current)) {
  3772. timeout = -ERESTARTSYS;
  3773. break;
  3774. }
  3775. __set_current_state(state);
  3776. spin_unlock_irq(&x->wait.lock);
  3777. timeout = schedule_timeout(timeout);
  3778. spin_lock_irq(&x->wait.lock);
  3779. } while (!x->done && timeout);
  3780. __remove_wait_queue(&x->wait, &wait);
  3781. if (!x->done)
  3782. return timeout;
  3783. }
  3784. x->done--;
  3785. return timeout ?: 1;
  3786. }
  3787. static long __sched
  3788. wait_for_common(struct completion *x, long timeout, int state)
  3789. {
  3790. might_sleep();
  3791. spin_lock_irq(&x->wait.lock);
  3792. timeout = do_wait_for_common(x, timeout, state);
  3793. spin_unlock_irq(&x->wait.lock);
  3794. return timeout;
  3795. }
  3796. /**
  3797. * wait_for_completion: - waits for completion of a task
  3798. * @x: holds the state of this particular completion
  3799. *
  3800. * This waits to be signaled for completion of a specific task. It is NOT
  3801. * interruptible and there is no timeout.
  3802. *
  3803. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3804. * and interrupt capability. Also see complete().
  3805. */
  3806. void __sched wait_for_completion(struct completion *x)
  3807. {
  3808. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3809. }
  3810. EXPORT_SYMBOL(wait_for_completion);
  3811. /**
  3812. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3813. * @x: holds the state of this particular completion
  3814. * @timeout: timeout value in jiffies
  3815. *
  3816. * This waits for either a completion of a specific task to be signaled or for a
  3817. * specified timeout to expire. The timeout is in jiffies. It is not
  3818. * interruptible.
  3819. */
  3820. unsigned long __sched
  3821. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3822. {
  3823. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3824. }
  3825. EXPORT_SYMBOL(wait_for_completion_timeout);
  3826. /**
  3827. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3828. * @x: holds the state of this particular completion
  3829. *
  3830. * This waits for completion of a specific task to be signaled. It is
  3831. * interruptible.
  3832. */
  3833. int __sched wait_for_completion_interruptible(struct completion *x)
  3834. {
  3835. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3836. if (t == -ERESTARTSYS)
  3837. return t;
  3838. return 0;
  3839. }
  3840. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3841. /**
  3842. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3843. * @x: holds the state of this particular completion
  3844. * @timeout: timeout value in jiffies
  3845. *
  3846. * This waits for either a completion of a specific task to be signaled or for a
  3847. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3848. */
  3849. long __sched
  3850. wait_for_completion_interruptible_timeout(struct completion *x,
  3851. unsigned long timeout)
  3852. {
  3853. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3854. }
  3855. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3856. /**
  3857. * wait_for_completion_killable: - waits for completion of a task (killable)
  3858. * @x: holds the state of this particular completion
  3859. *
  3860. * This waits to be signaled for completion of a specific task. It can be
  3861. * interrupted by a kill signal.
  3862. */
  3863. int __sched wait_for_completion_killable(struct completion *x)
  3864. {
  3865. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3866. if (t == -ERESTARTSYS)
  3867. return t;
  3868. return 0;
  3869. }
  3870. EXPORT_SYMBOL(wait_for_completion_killable);
  3871. /**
  3872. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3873. * @x: holds the state of this particular completion
  3874. * @timeout: timeout value in jiffies
  3875. *
  3876. * This waits for either a completion of a specific task to be
  3877. * signaled or for a specified timeout to expire. It can be
  3878. * interrupted by a kill signal. The timeout is in jiffies.
  3879. */
  3880. long __sched
  3881. wait_for_completion_killable_timeout(struct completion *x,
  3882. unsigned long timeout)
  3883. {
  3884. return wait_for_common(x, timeout, TASK_KILLABLE);
  3885. }
  3886. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3887. /**
  3888. * try_wait_for_completion - try to decrement a completion without blocking
  3889. * @x: completion structure
  3890. *
  3891. * Returns: 0 if a decrement cannot be done without blocking
  3892. * 1 if a decrement succeeded.
  3893. *
  3894. * If a completion is being used as a counting completion,
  3895. * attempt to decrement the counter without blocking. This
  3896. * enables us to avoid waiting if the resource the completion
  3897. * is protecting is not available.
  3898. */
  3899. bool try_wait_for_completion(struct completion *x)
  3900. {
  3901. unsigned long flags;
  3902. int ret = 1;
  3903. spin_lock_irqsave(&x->wait.lock, flags);
  3904. if (!x->done)
  3905. ret = 0;
  3906. else
  3907. x->done--;
  3908. spin_unlock_irqrestore(&x->wait.lock, flags);
  3909. return ret;
  3910. }
  3911. EXPORT_SYMBOL(try_wait_for_completion);
  3912. /**
  3913. * completion_done - Test to see if a completion has any waiters
  3914. * @x: completion structure
  3915. *
  3916. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3917. * 1 if there are no waiters.
  3918. *
  3919. */
  3920. bool completion_done(struct completion *x)
  3921. {
  3922. unsigned long flags;
  3923. int ret = 1;
  3924. spin_lock_irqsave(&x->wait.lock, flags);
  3925. if (!x->done)
  3926. ret = 0;
  3927. spin_unlock_irqrestore(&x->wait.lock, flags);
  3928. return ret;
  3929. }
  3930. EXPORT_SYMBOL(completion_done);
  3931. static long __sched
  3932. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3933. {
  3934. unsigned long flags;
  3935. wait_queue_t wait;
  3936. init_waitqueue_entry(&wait, current);
  3937. __set_current_state(state);
  3938. spin_lock_irqsave(&q->lock, flags);
  3939. __add_wait_queue(q, &wait);
  3940. spin_unlock(&q->lock);
  3941. timeout = schedule_timeout(timeout);
  3942. spin_lock_irq(&q->lock);
  3943. __remove_wait_queue(q, &wait);
  3944. spin_unlock_irqrestore(&q->lock, flags);
  3945. return timeout;
  3946. }
  3947. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3948. {
  3949. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3950. }
  3951. EXPORT_SYMBOL(interruptible_sleep_on);
  3952. long __sched
  3953. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3954. {
  3955. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3956. }
  3957. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3958. void __sched sleep_on(wait_queue_head_t *q)
  3959. {
  3960. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3961. }
  3962. EXPORT_SYMBOL(sleep_on);
  3963. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3964. {
  3965. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3966. }
  3967. EXPORT_SYMBOL(sleep_on_timeout);
  3968. #ifdef CONFIG_RT_MUTEXES
  3969. /*
  3970. * rt_mutex_setprio - set the current priority of a task
  3971. * @p: task
  3972. * @prio: prio value (kernel-internal form)
  3973. *
  3974. * This function changes the 'effective' priority of a task. It does
  3975. * not touch ->normal_prio like __setscheduler().
  3976. *
  3977. * Used by the rt_mutex code to implement priority inheritance logic.
  3978. */
  3979. void rt_mutex_setprio(struct task_struct *p, int prio)
  3980. {
  3981. int oldprio, on_rq, running;
  3982. struct rq *rq;
  3983. const struct sched_class *prev_class;
  3984. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3985. rq = __task_rq_lock(p);
  3986. trace_sched_pi_setprio(p, prio);
  3987. oldprio = p->prio;
  3988. prev_class = p->sched_class;
  3989. on_rq = p->on_rq;
  3990. running = task_current(rq, p);
  3991. if (on_rq)
  3992. dequeue_task(rq, p, 0);
  3993. if (running)
  3994. p->sched_class->put_prev_task(rq, p);
  3995. if (rt_prio(prio))
  3996. p->sched_class = &rt_sched_class;
  3997. else
  3998. p->sched_class = &fair_sched_class;
  3999. p->prio = prio;
  4000. if (running)
  4001. p->sched_class->set_curr_task(rq);
  4002. if (on_rq)
  4003. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4004. check_class_changed(rq, p, prev_class, oldprio);
  4005. __task_rq_unlock(rq);
  4006. }
  4007. #endif
  4008. void set_user_nice(struct task_struct *p, long nice)
  4009. {
  4010. int old_prio, delta, on_rq;
  4011. unsigned long flags;
  4012. struct rq *rq;
  4013. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4014. return;
  4015. /*
  4016. * We have to be careful, if called from sys_setpriority(),
  4017. * the task might be in the middle of scheduling on another CPU.
  4018. */
  4019. rq = task_rq_lock(p, &flags);
  4020. /*
  4021. * The RT priorities are set via sched_setscheduler(), but we still
  4022. * allow the 'normal' nice value to be set - but as expected
  4023. * it wont have any effect on scheduling until the task is
  4024. * SCHED_FIFO/SCHED_RR:
  4025. */
  4026. if (task_has_rt_policy(p)) {
  4027. p->static_prio = NICE_TO_PRIO(nice);
  4028. goto out_unlock;
  4029. }
  4030. on_rq = p->on_rq;
  4031. if (on_rq)
  4032. dequeue_task(rq, p, 0);
  4033. p->static_prio = NICE_TO_PRIO(nice);
  4034. set_load_weight(p);
  4035. old_prio = p->prio;
  4036. p->prio = effective_prio(p);
  4037. delta = p->prio - old_prio;
  4038. if (on_rq) {
  4039. enqueue_task(rq, p, 0);
  4040. /*
  4041. * If the task increased its priority or is running and
  4042. * lowered its priority, then reschedule its CPU:
  4043. */
  4044. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4045. resched_task(rq->curr);
  4046. }
  4047. out_unlock:
  4048. task_rq_unlock(rq, p, &flags);
  4049. }
  4050. EXPORT_SYMBOL(set_user_nice);
  4051. /*
  4052. * can_nice - check if a task can reduce its nice value
  4053. * @p: task
  4054. * @nice: nice value
  4055. */
  4056. int can_nice(const struct task_struct *p, const int nice)
  4057. {
  4058. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4059. int nice_rlim = 20 - nice;
  4060. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4061. capable(CAP_SYS_NICE));
  4062. }
  4063. #ifdef __ARCH_WANT_SYS_NICE
  4064. /*
  4065. * sys_nice - change the priority of the current process.
  4066. * @increment: priority increment
  4067. *
  4068. * sys_setpriority is a more generic, but much slower function that
  4069. * does similar things.
  4070. */
  4071. SYSCALL_DEFINE1(nice, int, increment)
  4072. {
  4073. long nice, retval;
  4074. /*
  4075. * Setpriority might change our priority at the same moment.
  4076. * We don't have to worry. Conceptually one call occurs first
  4077. * and we have a single winner.
  4078. */
  4079. if (increment < -40)
  4080. increment = -40;
  4081. if (increment > 40)
  4082. increment = 40;
  4083. nice = TASK_NICE(current) + increment;
  4084. if (nice < -20)
  4085. nice = -20;
  4086. if (nice > 19)
  4087. nice = 19;
  4088. if (increment < 0 && !can_nice(current, nice))
  4089. return -EPERM;
  4090. retval = security_task_setnice(current, nice);
  4091. if (retval)
  4092. return retval;
  4093. set_user_nice(current, nice);
  4094. return 0;
  4095. }
  4096. #endif
  4097. /**
  4098. * task_prio - return the priority value of a given task.
  4099. * @p: the task in question.
  4100. *
  4101. * This is the priority value as seen by users in /proc.
  4102. * RT tasks are offset by -200. Normal tasks are centered
  4103. * around 0, value goes from -16 to +15.
  4104. */
  4105. int task_prio(const struct task_struct *p)
  4106. {
  4107. return p->prio - MAX_RT_PRIO;
  4108. }
  4109. /**
  4110. * task_nice - return the nice value of a given task.
  4111. * @p: the task in question.
  4112. */
  4113. int task_nice(const struct task_struct *p)
  4114. {
  4115. return TASK_NICE(p);
  4116. }
  4117. EXPORT_SYMBOL(task_nice);
  4118. /**
  4119. * idle_cpu - is a given cpu idle currently?
  4120. * @cpu: the processor in question.
  4121. */
  4122. int idle_cpu(int cpu)
  4123. {
  4124. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4125. }
  4126. /**
  4127. * idle_task - return the idle task for a given cpu.
  4128. * @cpu: the processor in question.
  4129. */
  4130. struct task_struct *idle_task(int cpu)
  4131. {
  4132. return cpu_rq(cpu)->idle;
  4133. }
  4134. /**
  4135. * find_process_by_pid - find a process with a matching PID value.
  4136. * @pid: the pid in question.
  4137. */
  4138. static struct task_struct *find_process_by_pid(pid_t pid)
  4139. {
  4140. return pid ? find_task_by_vpid(pid) : current;
  4141. }
  4142. /* Actually do priority change: must hold rq lock. */
  4143. static void
  4144. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4145. {
  4146. p->policy = policy;
  4147. p->rt_priority = prio;
  4148. p->normal_prio = normal_prio(p);
  4149. /* we are holding p->pi_lock already */
  4150. p->prio = rt_mutex_getprio(p);
  4151. if (rt_prio(p->prio))
  4152. p->sched_class = &rt_sched_class;
  4153. else
  4154. p->sched_class = &fair_sched_class;
  4155. set_load_weight(p);
  4156. }
  4157. /*
  4158. * check the target process has a UID that matches the current process's
  4159. */
  4160. static bool check_same_owner(struct task_struct *p)
  4161. {
  4162. const struct cred *cred = current_cred(), *pcred;
  4163. bool match;
  4164. rcu_read_lock();
  4165. pcred = __task_cred(p);
  4166. if (cred->user->user_ns == pcred->user->user_ns)
  4167. match = (cred->euid == pcred->euid ||
  4168. cred->euid == pcred->uid);
  4169. else
  4170. match = false;
  4171. rcu_read_unlock();
  4172. return match;
  4173. }
  4174. static int __sched_setscheduler(struct task_struct *p, int policy,
  4175. const struct sched_param *param, bool user)
  4176. {
  4177. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4178. unsigned long flags;
  4179. const struct sched_class *prev_class;
  4180. struct rq *rq;
  4181. int reset_on_fork;
  4182. /* may grab non-irq protected spin_locks */
  4183. BUG_ON(in_interrupt());
  4184. recheck:
  4185. /* double check policy once rq lock held */
  4186. if (policy < 0) {
  4187. reset_on_fork = p->sched_reset_on_fork;
  4188. policy = oldpolicy = p->policy;
  4189. } else {
  4190. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4191. policy &= ~SCHED_RESET_ON_FORK;
  4192. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4193. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4194. policy != SCHED_IDLE)
  4195. return -EINVAL;
  4196. }
  4197. /*
  4198. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4199. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4200. * SCHED_BATCH and SCHED_IDLE is 0.
  4201. */
  4202. if (param->sched_priority < 0 ||
  4203. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4204. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4205. return -EINVAL;
  4206. if (rt_policy(policy) != (param->sched_priority != 0))
  4207. return -EINVAL;
  4208. /*
  4209. * Allow unprivileged RT tasks to decrease priority:
  4210. */
  4211. if (user && !capable(CAP_SYS_NICE)) {
  4212. if (rt_policy(policy)) {
  4213. unsigned long rlim_rtprio =
  4214. task_rlimit(p, RLIMIT_RTPRIO);
  4215. /* can't set/change the rt policy */
  4216. if (policy != p->policy && !rlim_rtprio)
  4217. return -EPERM;
  4218. /* can't increase priority */
  4219. if (param->sched_priority > p->rt_priority &&
  4220. param->sched_priority > rlim_rtprio)
  4221. return -EPERM;
  4222. }
  4223. /*
  4224. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4225. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4226. */
  4227. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4228. if (!can_nice(p, TASK_NICE(p)))
  4229. return -EPERM;
  4230. }
  4231. /* can't change other user's priorities */
  4232. if (!check_same_owner(p))
  4233. return -EPERM;
  4234. /* Normal users shall not reset the sched_reset_on_fork flag */
  4235. if (p->sched_reset_on_fork && !reset_on_fork)
  4236. return -EPERM;
  4237. }
  4238. if (user) {
  4239. retval = security_task_setscheduler(p);
  4240. if (retval)
  4241. return retval;
  4242. }
  4243. /*
  4244. * make sure no PI-waiters arrive (or leave) while we are
  4245. * changing the priority of the task:
  4246. *
  4247. * To be able to change p->policy safely, the appropriate
  4248. * runqueue lock must be held.
  4249. */
  4250. rq = task_rq_lock(p, &flags);
  4251. /*
  4252. * Changing the policy of the stop threads its a very bad idea
  4253. */
  4254. if (p == rq->stop) {
  4255. task_rq_unlock(rq, p, &flags);
  4256. return -EINVAL;
  4257. }
  4258. /*
  4259. * If not changing anything there's no need to proceed further:
  4260. */
  4261. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4262. param->sched_priority == p->rt_priority))) {
  4263. __task_rq_unlock(rq);
  4264. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4265. return 0;
  4266. }
  4267. #ifdef CONFIG_RT_GROUP_SCHED
  4268. if (user) {
  4269. /*
  4270. * Do not allow realtime tasks into groups that have no runtime
  4271. * assigned.
  4272. */
  4273. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4274. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4275. !task_group_is_autogroup(task_group(p))) {
  4276. task_rq_unlock(rq, p, &flags);
  4277. return -EPERM;
  4278. }
  4279. }
  4280. #endif
  4281. /* recheck policy now with rq lock held */
  4282. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4283. policy = oldpolicy = -1;
  4284. task_rq_unlock(rq, p, &flags);
  4285. goto recheck;
  4286. }
  4287. on_rq = p->on_rq;
  4288. running = task_current(rq, p);
  4289. if (on_rq)
  4290. deactivate_task(rq, p, 0);
  4291. if (running)
  4292. p->sched_class->put_prev_task(rq, p);
  4293. p->sched_reset_on_fork = reset_on_fork;
  4294. oldprio = p->prio;
  4295. prev_class = p->sched_class;
  4296. __setscheduler(rq, p, policy, param->sched_priority);
  4297. if (running)
  4298. p->sched_class->set_curr_task(rq);
  4299. if (on_rq)
  4300. activate_task(rq, p, 0);
  4301. check_class_changed(rq, p, prev_class, oldprio);
  4302. task_rq_unlock(rq, p, &flags);
  4303. rt_mutex_adjust_pi(p);
  4304. return 0;
  4305. }
  4306. /**
  4307. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4308. * @p: the task in question.
  4309. * @policy: new policy.
  4310. * @param: structure containing the new RT priority.
  4311. *
  4312. * NOTE that the task may be already dead.
  4313. */
  4314. int sched_setscheduler(struct task_struct *p, int policy,
  4315. const struct sched_param *param)
  4316. {
  4317. return __sched_setscheduler(p, policy, param, true);
  4318. }
  4319. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4320. /**
  4321. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4322. * @p: the task in question.
  4323. * @policy: new policy.
  4324. * @param: structure containing the new RT priority.
  4325. *
  4326. * Just like sched_setscheduler, only don't bother checking if the
  4327. * current context has permission. For example, this is needed in
  4328. * stop_machine(): we create temporary high priority worker threads,
  4329. * but our caller might not have that capability.
  4330. */
  4331. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4332. const struct sched_param *param)
  4333. {
  4334. return __sched_setscheduler(p, policy, param, false);
  4335. }
  4336. static int
  4337. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4338. {
  4339. struct sched_param lparam;
  4340. struct task_struct *p;
  4341. int retval;
  4342. if (!param || pid < 0)
  4343. return -EINVAL;
  4344. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4345. return -EFAULT;
  4346. rcu_read_lock();
  4347. retval = -ESRCH;
  4348. p = find_process_by_pid(pid);
  4349. if (p != NULL)
  4350. retval = sched_setscheduler(p, policy, &lparam);
  4351. rcu_read_unlock();
  4352. return retval;
  4353. }
  4354. /**
  4355. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4356. * @pid: the pid in question.
  4357. * @policy: new policy.
  4358. * @param: structure containing the new RT priority.
  4359. */
  4360. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4361. struct sched_param __user *, param)
  4362. {
  4363. /* negative values for policy are not valid */
  4364. if (policy < 0)
  4365. return -EINVAL;
  4366. return do_sched_setscheduler(pid, policy, param);
  4367. }
  4368. /**
  4369. * sys_sched_setparam - set/change the RT priority of a thread
  4370. * @pid: the pid in question.
  4371. * @param: structure containing the new RT priority.
  4372. */
  4373. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4374. {
  4375. return do_sched_setscheduler(pid, -1, param);
  4376. }
  4377. /**
  4378. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4379. * @pid: the pid in question.
  4380. */
  4381. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4382. {
  4383. struct task_struct *p;
  4384. int retval;
  4385. if (pid < 0)
  4386. return -EINVAL;
  4387. retval = -ESRCH;
  4388. rcu_read_lock();
  4389. p = find_process_by_pid(pid);
  4390. if (p) {
  4391. retval = security_task_getscheduler(p);
  4392. if (!retval)
  4393. retval = p->policy
  4394. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4395. }
  4396. rcu_read_unlock();
  4397. return retval;
  4398. }
  4399. /**
  4400. * sys_sched_getparam - get the RT priority of a thread
  4401. * @pid: the pid in question.
  4402. * @param: structure containing the RT priority.
  4403. */
  4404. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4405. {
  4406. struct sched_param lp;
  4407. struct task_struct *p;
  4408. int retval;
  4409. if (!param || pid < 0)
  4410. return -EINVAL;
  4411. rcu_read_lock();
  4412. p = find_process_by_pid(pid);
  4413. retval = -ESRCH;
  4414. if (!p)
  4415. goto out_unlock;
  4416. retval = security_task_getscheduler(p);
  4417. if (retval)
  4418. goto out_unlock;
  4419. lp.sched_priority = p->rt_priority;
  4420. rcu_read_unlock();
  4421. /*
  4422. * This one might sleep, we cannot do it with a spinlock held ...
  4423. */
  4424. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4425. return retval;
  4426. out_unlock:
  4427. rcu_read_unlock();
  4428. return retval;
  4429. }
  4430. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4431. {
  4432. cpumask_var_t cpus_allowed, new_mask;
  4433. struct task_struct *p;
  4434. int retval;
  4435. get_online_cpus();
  4436. rcu_read_lock();
  4437. p = find_process_by_pid(pid);
  4438. if (!p) {
  4439. rcu_read_unlock();
  4440. put_online_cpus();
  4441. return -ESRCH;
  4442. }
  4443. /* Prevent p going away */
  4444. get_task_struct(p);
  4445. rcu_read_unlock();
  4446. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4447. retval = -ENOMEM;
  4448. goto out_put_task;
  4449. }
  4450. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4451. retval = -ENOMEM;
  4452. goto out_free_cpus_allowed;
  4453. }
  4454. retval = -EPERM;
  4455. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4456. goto out_unlock;
  4457. retval = security_task_setscheduler(p);
  4458. if (retval)
  4459. goto out_unlock;
  4460. cpuset_cpus_allowed(p, cpus_allowed);
  4461. cpumask_and(new_mask, in_mask, cpus_allowed);
  4462. again:
  4463. retval = set_cpus_allowed_ptr(p, new_mask);
  4464. if (!retval) {
  4465. cpuset_cpus_allowed(p, cpus_allowed);
  4466. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4467. /*
  4468. * We must have raced with a concurrent cpuset
  4469. * update. Just reset the cpus_allowed to the
  4470. * cpuset's cpus_allowed
  4471. */
  4472. cpumask_copy(new_mask, cpus_allowed);
  4473. goto again;
  4474. }
  4475. }
  4476. out_unlock:
  4477. free_cpumask_var(new_mask);
  4478. out_free_cpus_allowed:
  4479. free_cpumask_var(cpus_allowed);
  4480. out_put_task:
  4481. put_task_struct(p);
  4482. put_online_cpus();
  4483. return retval;
  4484. }
  4485. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4486. struct cpumask *new_mask)
  4487. {
  4488. if (len < cpumask_size())
  4489. cpumask_clear(new_mask);
  4490. else if (len > cpumask_size())
  4491. len = cpumask_size();
  4492. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4493. }
  4494. /**
  4495. * sys_sched_setaffinity - set the cpu affinity of a process
  4496. * @pid: pid of the process
  4497. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4498. * @user_mask_ptr: user-space pointer to the new cpu mask
  4499. */
  4500. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4501. unsigned long __user *, user_mask_ptr)
  4502. {
  4503. cpumask_var_t new_mask;
  4504. int retval;
  4505. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4506. return -ENOMEM;
  4507. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4508. if (retval == 0)
  4509. retval = sched_setaffinity(pid, new_mask);
  4510. free_cpumask_var(new_mask);
  4511. return retval;
  4512. }
  4513. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4514. {
  4515. struct task_struct *p;
  4516. unsigned long flags;
  4517. int retval;
  4518. get_online_cpus();
  4519. rcu_read_lock();
  4520. retval = -ESRCH;
  4521. p = find_process_by_pid(pid);
  4522. if (!p)
  4523. goto out_unlock;
  4524. retval = security_task_getscheduler(p);
  4525. if (retval)
  4526. goto out_unlock;
  4527. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4528. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4529. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4530. out_unlock:
  4531. rcu_read_unlock();
  4532. put_online_cpus();
  4533. return retval;
  4534. }
  4535. /**
  4536. * sys_sched_getaffinity - get the cpu affinity of a process
  4537. * @pid: pid of the process
  4538. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4539. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4540. */
  4541. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4542. unsigned long __user *, user_mask_ptr)
  4543. {
  4544. int ret;
  4545. cpumask_var_t mask;
  4546. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4547. return -EINVAL;
  4548. if (len & (sizeof(unsigned long)-1))
  4549. return -EINVAL;
  4550. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4551. return -ENOMEM;
  4552. ret = sched_getaffinity(pid, mask);
  4553. if (ret == 0) {
  4554. size_t retlen = min_t(size_t, len, cpumask_size());
  4555. if (copy_to_user(user_mask_ptr, mask, retlen))
  4556. ret = -EFAULT;
  4557. else
  4558. ret = retlen;
  4559. }
  4560. free_cpumask_var(mask);
  4561. return ret;
  4562. }
  4563. /**
  4564. * sys_sched_yield - yield the current processor to other threads.
  4565. *
  4566. * This function yields the current CPU to other tasks. If there are no
  4567. * other threads running on this CPU then this function will return.
  4568. */
  4569. SYSCALL_DEFINE0(sched_yield)
  4570. {
  4571. struct rq *rq = this_rq_lock();
  4572. schedstat_inc(rq, yld_count);
  4573. current->sched_class->yield_task(rq);
  4574. /*
  4575. * Since we are going to call schedule() anyway, there's
  4576. * no need to preempt or enable interrupts:
  4577. */
  4578. __release(rq->lock);
  4579. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4580. do_raw_spin_unlock(&rq->lock);
  4581. preempt_enable_no_resched();
  4582. schedule();
  4583. return 0;
  4584. }
  4585. static inline int should_resched(void)
  4586. {
  4587. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4588. }
  4589. static void __cond_resched(void)
  4590. {
  4591. add_preempt_count(PREEMPT_ACTIVE);
  4592. schedule();
  4593. sub_preempt_count(PREEMPT_ACTIVE);
  4594. }
  4595. int __sched _cond_resched(void)
  4596. {
  4597. if (should_resched()) {
  4598. __cond_resched();
  4599. return 1;
  4600. }
  4601. return 0;
  4602. }
  4603. EXPORT_SYMBOL(_cond_resched);
  4604. /*
  4605. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4606. * call schedule, and on return reacquire the lock.
  4607. *
  4608. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4609. * operations here to prevent schedule() from being called twice (once via
  4610. * spin_unlock(), once by hand).
  4611. */
  4612. int __cond_resched_lock(spinlock_t *lock)
  4613. {
  4614. int resched = should_resched();
  4615. int ret = 0;
  4616. lockdep_assert_held(lock);
  4617. if (spin_needbreak(lock) || resched) {
  4618. spin_unlock(lock);
  4619. if (resched)
  4620. __cond_resched();
  4621. else
  4622. cpu_relax();
  4623. ret = 1;
  4624. spin_lock(lock);
  4625. }
  4626. return ret;
  4627. }
  4628. EXPORT_SYMBOL(__cond_resched_lock);
  4629. int __sched __cond_resched_softirq(void)
  4630. {
  4631. BUG_ON(!in_softirq());
  4632. if (should_resched()) {
  4633. local_bh_enable();
  4634. __cond_resched();
  4635. local_bh_disable();
  4636. return 1;
  4637. }
  4638. return 0;
  4639. }
  4640. EXPORT_SYMBOL(__cond_resched_softirq);
  4641. /**
  4642. * yield - yield the current processor to other threads.
  4643. *
  4644. * This is a shortcut for kernel-space yielding - it marks the
  4645. * thread runnable and calls sys_sched_yield().
  4646. */
  4647. void __sched yield(void)
  4648. {
  4649. set_current_state(TASK_RUNNING);
  4650. sys_sched_yield();
  4651. }
  4652. EXPORT_SYMBOL(yield);
  4653. /**
  4654. * yield_to - yield the current processor to another thread in
  4655. * your thread group, or accelerate that thread toward the
  4656. * processor it's on.
  4657. * @p: target task
  4658. * @preempt: whether task preemption is allowed or not
  4659. *
  4660. * It's the caller's job to ensure that the target task struct
  4661. * can't go away on us before we can do any checks.
  4662. *
  4663. * Returns true if we indeed boosted the target task.
  4664. */
  4665. bool __sched yield_to(struct task_struct *p, bool preempt)
  4666. {
  4667. struct task_struct *curr = current;
  4668. struct rq *rq, *p_rq;
  4669. unsigned long flags;
  4670. bool yielded = 0;
  4671. local_irq_save(flags);
  4672. rq = this_rq();
  4673. again:
  4674. p_rq = task_rq(p);
  4675. double_rq_lock(rq, p_rq);
  4676. while (task_rq(p) != p_rq) {
  4677. double_rq_unlock(rq, p_rq);
  4678. goto again;
  4679. }
  4680. if (!curr->sched_class->yield_to_task)
  4681. goto out;
  4682. if (curr->sched_class != p->sched_class)
  4683. goto out;
  4684. if (task_running(p_rq, p) || p->state)
  4685. goto out;
  4686. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4687. if (yielded) {
  4688. schedstat_inc(rq, yld_count);
  4689. /*
  4690. * Make p's CPU reschedule; pick_next_entity takes care of
  4691. * fairness.
  4692. */
  4693. if (preempt && rq != p_rq)
  4694. resched_task(p_rq->curr);
  4695. }
  4696. out:
  4697. double_rq_unlock(rq, p_rq);
  4698. local_irq_restore(flags);
  4699. if (yielded)
  4700. schedule();
  4701. return yielded;
  4702. }
  4703. EXPORT_SYMBOL_GPL(yield_to);
  4704. /*
  4705. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4706. * that process accounting knows that this is a task in IO wait state.
  4707. */
  4708. void __sched io_schedule(void)
  4709. {
  4710. struct rq *rq = raw_rq();
  4711. delayacct_blkio_start();
  4712. atomic_inc(&rq->nr_iowait);
  4713. blk_flush_plug(current);
  4714. current->in_iowait = 1;
  4715. schedule();
  4716. current->in_iowait = 0;
  4717. atomic_dec(&rq->nr_iowait);
  4718. delayacct_blkio_end();
  4719. }
  4720. EXPORT_SYMBOL(io_schedule);
  4721. long __sched io_schedule_timeout(long timeout)
  4722. {
  4723. struct rq *rq = raw_rq();
  4724. long ret;
  4725. delayacct_blkio_start();
  4726. atomic_inc(&rq->nr_iowait);
  4727. blk_flush_plug(current);
  4728. current->in_iowait = 1;
  4729. ret = schedule_timeout(timeout);
  4730. current->in_iowait = 0;
  4731. atomic_dec(&rq->nr_iowait);
  4732. delayacct_blkio_end();
  4733. return ret;
  4734. }
  4735. /**
  4736. * sys_sched_get_priority_max - return maximum RT priority.
  4737. * @policy: scheduling class.
  4738. *
  4739. * this syscall returns the maximum rt_priority that can be used
  4740. * by a given scheduling class.
  4741. */
  4742. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4743. {
  4744. int ret = -EINVAL;
  4745. switch (policy) {
  4746. case SCHED_FIFO:
  4747. case SCHED_RR:
  4748. ret = MAX_USER_RT_PRIO-1;
  4749. break;
  4750. case SCHED_NORMAL:
  4751. case SCHED_BATCH:
  4752. case SCHED_IDLE:
  4753. ret = 0;
  4754. break;
  4755. }
  4756. return ret;
  4757. }
  4758. /**
  4759. * sys_sched_get_priority_min - return minimum RT priority.
  4760. * @policy: scheduling class.
  4761. *
  4762. * this syscall returns the minimum rt_priority that can be used
  4763. * by a given scheduling class.
  4764. */
  4765. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4766. {
  4767. int ret = -EINVAL;
  4768. switch (policy) {
  4769. case SCHED_FIFO:
  4770. case SCHED_RR:
  4771. ret = 1;
  4772. break;
  4773. case SCHED_NORMAL:
  4774. case SCHED_BATCH:
  4775. case SCHED_IDLE:
  4776. ret = 0;
  4777. }
  4778. return ret;
  4779. }
  4780. /**
  4781. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4782. * @pid: pid of the process.
  4783. * @interval: userspace pointer to the timeslice value.
  4784. *
  4785. * this syscall writes the default timeslice value of a given process
  4786. * into the user-space timespec buffer. A value of '0' means infinity.
  4787. */
  4788. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4789. struct timespec __user *, interval)
  4790. {
  4791. struct task_struct *p;
  4792. unsigned int time_slice;
  4793. unsigned long flags;
  4794. struct rq *rq;
  4795. int retval;
  4796. struct timespec t;
  4797. if (pid < 0)
  4798. return -EINVAL;
  4799. retval = -ESRCH;
  4800. rcu_read_lock();
  4801. p = find_process_by_pid(pid);
  4802. if (!p)
  4803. goto out_unlock;
  4804. retval = security_task_getscheduler(p);
  4805. if (retval)
  4806. goto out_unlock;
  4807. rq = task_rq_lock(p, &flags);
  4808. time_slice = p->sched_class->get_rr_interval(rq, p);
  4809. task_rq_unlock(rq, p, &flags);
  4810. rcu_read_unlock();
  4811. jiffies_to_timespec(time_slice, &t);
  4812. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4813. return retval;
  4814. out_unlock:
  4815. rcu_read_unlock();
  4816. return retval;
  4817. }
  4818. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4819. void sched_show_task(struct task_struct *p)
  4820. {
  4821. unsigned long free = 0;
  4822. unsigned state;
  4823. state = p->state ? __ffs(p->state) + 1 : 0;
  4824. printk(KERN_INFO "%-15.15s %c", p->comm,
  4825. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4826. #if BITS_PER_LONG == 32
  4827. if (state == TASK_RUNNING)
  4828. printk(KERN_CONT " running ");
  4829. else
  4830. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4831. #else
  4832. if (state == TASK_RUNNING)
  4833. printk(KERN_CONT " running task ");
  4834. else
  4835. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4836. #endif
  4837. #ifdef CONFIG_DEBUG_STACK_USAGE
  4838. free = stack_not_used(p);
  4839. #endif
  4840. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4841. task_pid_nr(p), task_pid_nr(p->real_parent),
  4842. (unsigned long)task_thread_info(p)->flags);
  4843. show_stack(p, NULL);
  4844. }
  4845. void show_state_filter(unsigned long state_filter)
  4846. {
  4847. struct task_struct *g, *p;
  4848. #if BITS_PER_LONG == 32
  4849. printk(KERN_INFO
  4850. " task PC stack pid father\n");
  4851. #else
  4852. printk(KERN_INFO
  4853. " task PC stack pid father\n");
  4854. #endif
  4855. read_lock(&tasklist_lock);
  4856. do_each_thread(g, p) {
  4857. /*
  4858. * reset the NMI-timeout, listing all files on a slow
  4859. * console might take a lot of time:
  4860. */
  4861. touch_nmi_watchdog();
  4862. if (!state_filter || (p->state & state_filter))
  4863. sched_show_task(p);
  4864. } while_each_thread(g, p);
  4865. touch_all_softlockup_watchdogs();
  4866. #ifdef CONFIG_SCHED_DEBUG
  4867. sysrq_sched_debug_show();
  4868. #endif
  4869. read_unlock(&tasklist_lock);
  4870. /*
  4871. * Only show locks if all tasks are dumped:
  4872. */
  4873. if (!state_filter)
  4874. debug_show_all_locks();
  4875. }
  4876. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4877. {
  4878. idle->sched_class = &idle_sched_class;
  4879. }
  4880. /**
  4881. * init_idle - set up an idle thread for a given CPU
  4882. * @idle: task in question
  4883. * @cpu: cpu the idle task belongs to
  4884. *
  4885. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4886. * flag, to make booting more robust.
  4887. */
  4888. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4889. {
  4890. struct rq *rq = cpu_rq(cpu);
  4891. unsigned long flags;
  4892. raw_spin_lock_irqsave(&rq->lock, flags);
  4893. __sched_fork(idle);
  4894. idle->state = TASK_RUNNING;
  4895. idle->se.exec_start = sched_clock();
  4896. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4897. /*
  4898. * We're having a chicken and egg problem, even though we are
  4899. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4900. * lockdep check in task_group() will fail.
  4901. *
  4902. * Similar case to sched_fork(). / Alternatively we could
  4903. * use task_rq_lock() here and obtain the other rq->lock.
  4904. *
  4905. * Silence PROVE_RCU
  4906. */
  4907. rcu_read_lock();
  4908. __set_task_cpu(idle, cpu);
  4909. rcu_read_unlock();
  4910. rq->curr = rq->idle = idle;
  4911. #if defined(CONFIG_SMP)
  4912. idle->on_cpu = 1;
  4913. #endif
  4914. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4915. /* Set the preempt count _outside_ the spinlocks! */
  4916. #if defined(CONFIG_PREEMPT)
  4917. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4918. #else
  4919. task_thread_info(idle)->preempt_count = 0;
  4920. #endif
  4921. /*
  4922. * The idle tasks have their own, simple scheduling class:
  4923. */
  4924. idle->sched_class = &idle_sched_class;
  4925. ftrace_graph_init_idle_task(idle, cpu);
  4926. }
  4927. /*
  4928. * In a system that switches off the HZ timer nohz_cpu_mask
  4929. * indicates which cpus entered this state. This is used
  4930. * in the rcu update to wait only for active cpus. For system
  4931. * which do not switch off the HZ timer nohz_cpu_mask should
  4932. * always be CPU_BITS_NONE.
  4933. */
  4934. cpumask_var_t nohz_cpu_mask;
  4935. /*
  4936. * Increase the granularity value when there are more CPUs,
  4937. * because with more CPUs the 'effective latency' as visible
  4938. * to users decreases. But the relationship is not linear,
  4939. * so pick a second-best guess by going with the log2 of the
  4940. * number of CPUs.
  4941. *
  4942. * This idea comes from the SD scheduler of Con Kolivas:
  4943. */
  4944. static int get_update_sysctl_factor(void)
  4945. {
  4946. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4947. unsigned int factor;
  4948. switch (sysctl_sched_tunable_scaling) {
  4949. case SCHED_TUNABLESCALING_NONE:
  4950. factor = 1;
  4951. break;
  4952. case SCHED_TUNABLESCALING_LINEAR:
  4953. factor = cpus;
  4954. break;
  4955. case SCHED_TUNABLESCALING_LOG:
  4956. default:
  4957. factor = 1 + ilog2(cpus);
  4958. break;
  4959. }
  4960. return factor;
  4961. }
  4962. static void update_sysctl(void)
  4963. {
  4964. unsigned int factor = get_update_sysctl_factor();
  4965. #define SET_SYSCTL(name) \
  4966. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4967. SET_SYSCTL(sched_min_granularity);
  4968. SET_SYSCTL(sched_latency);
  4969. SET_SYSCTL(sched_wakeup_granularity);
  4970. #undef SET_SYSCTL
  4971. }
  4972. static inline void sched_init_granularity(void)
  4973. {
  4974. update_sysctl();
  4975. }
  4976. #ifdef CONFIG_SMP
  4977. /*
  4978. * This is how migration works:
  4979. *
  4980. * 1) we invoke migration_cpu_stop() on the target CPU using
  4981. * stop_one_cpu().
  4982. * 2) stopper starts to run (implicitly forcing the migrated thread
  4983. * off the CPU)
  4984. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4985. * 4) if it's in the wrong runqueue then the migration thread removes
  4986. * it and puts it into the right queue.
  4987. * 5) stopper completes and stop_one_cpu() returns and the migration
  4988. * is done.
  4989. */
  4990. /*
  4991. * Change a given task's CPU affinity. Migrate the thread to a
  4992. * proper CPU and schedule it away if the CPU it's executing on
  4993. * is removed from the allowed bitmask.
  4994. *
  4995. * NOTE: the caller must have a valid reference to the task, the
  4996. * task must not exit() & deallocate itself prematurely. The
  4997. * call is not atomic; no spinlocks may be held.
  4998. */
  4999. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5000. {
  5001. unsigned long flags;
  5002. struct rq *rq;
  5003. unsigned int dest_cpu;
  5004. int ret = 0;
  5005. rq = task_rq_lock(p, &flags);
  5006. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5007. ret = -EINVAL;
  5008. goto out;
  5009. }
  5010. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5011. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5012. ret = -EINVAL;
  5013. goto out;
  5014. }
  5015. if (p->sched_class->set_cpus_allowed)
  5016. p->sched_class->set_cpus_allowed(p, new_mask);
  5017. else {
  5018. cpumask_copy(&p->cpus_allowed, new_mask);
  5019. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5020. }
  5021. /* Can the task run on the task's current CPU? If so, we're done */
  5022. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5023. goto out;
  5024. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5025. if (need_migrate_task(p)) {
  5026. struct migration_arg arg = { p, dest_cpu };
  5027. /* Need help from migration thread: drop lock and wait. */
  5028. task_rq_unlock(rq, p, &flags);
  5029. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5030. tlb_migrate_finish(p->mm);
  5031. return 0;
  5032. }
  5033. out:
  5034. task_rq_unlock(rq, p, &flags);
  5035. return ret;
  5036. }
  5037. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5038. /*
  5039. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5040. * this because either it can't run here any more (set_cpus_allowed()
  5041. * away from this CPU, or CPU going down), or because we're
  5042. * attempting to rebalance this task on exec (sched_exec).
  5043. *
  5044. * So we race with normal scheduler movements, but that's OK, as long
  5045. * as the task is no longer on this CPU.
  5046. *
  5047. * Returns non-zero if task was successfully migrated.
  5048. */
  5049. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5050. {
  5051. struct rq *rq_dest, *rq_src;
  5052. int ret = 0;
  5053. if (unlikely(!cpu_active(dest_cpu)))
  5054. return ret;
  5055. rq_src = cpu_rq(src_cpu);
  5056. rq_dest = cpu_rq(dest_cpu);
  5057. raw_spin_lock(&p->pi_lock);
  5058. double_rq_lock(rq_src, rq_dest);
  5059. /* Already moved. */
  5060. if (task_cpu(p) != src_cpu)
  5061. goto done;
  5062. /* Affinity changed (again). */
  5063. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5064. goto fail;
  5065. /*
  5066. * If we're not on a rq, the next wake-up will ensure we're
  5067. * placed properly.
  5068. */
  5069. if (p->on_rq) {
  5070. deactivate_task(rq_src, p, 0);
  5071. set_task_cpu(p, dest_cpu);
  5072. activate_task(rq_dest, p, 0);
  5073. check_preempt_curr(rq_dest, p, 0);
  5074. }
  5075. done:
  5076. ret = 1;
  5077. fail:
  5078. double_rq_unlock(rq_src, rq_dest);
  5079. raw_spin_unlock(&p->pi_lock);
  5080. return ret;
  5081. }
  5082. /*
  5083. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5084. * and performs thread migration by bumping thread off CPU then
  5085. * 'pushing' onto another runqueue.
  5086. */
  5087. static int migration_cpu_stop(void *data)
  5088. {
  5089. struct migration_arg *arg = data;
  5090. /*
  5091. * The original target cpu might have gone down and we might
  5092. * be on another cpu but it doesn't matter.
  5093. */
  5094. local_irq_disable();
  5095. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5096. local_irq_enable();
  5097. return 0;
  5098. }
  5099. #ifdef CONFIG_HOTPLUG_CPU
  5100. /*
  5101. * Ensures that the idle task is using init_mm right before its cpu goes
  5102. * offline.
  5103. */
  5104. void idle_task_exit(void)
  5105. {
  5106. struct mm_struct *mm = current->active_mm;
  5107. BUG_ON(cpu_online(smp_processor_id()));
  5108. if (mm != &init_mm)
  5109. switch_mm(mm, &init_mm, current);
  5110. mmdrop(mm);
  5111. }
  5112. /*
  5113. * While a dead CPU has no uninterruptible tasks queued at this point,
  5114. * it might still have a nonzero ->nr_uninterruptible counter, because
  5115. * for performance reasons the counter is not stricly tracking tasks to
  5116. * their home CPUs. So we just add the counter to another CPU's counter,
  5117. * to keep the global sum constant after CPU-down:
  5118. */
  5119. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5120. {
  5121. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5122. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5123. rq_src->nr_uninterruptible = 0;
  5124. }
  5125. /*
  5126. * remove the tasks which were accounted by rq from calc_load_tasks.
  5127. */
  5128. static void calc_global_load_remove(struct rq *rq)
  5129. {
  5130. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5131. rq->calc_load_active = 0;
  5132. }
  5133. /*
  5134. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5135. * try_to_wake_up()->select_task_rq().
  5136. *
  5137. * Called with rq->lock held even though we'er in stop_machine() and
  5138. * there's no concurrency possible, we hold the required locks anyway
  5139. * because of lock validation efforts.
  5140. */
  5141. static void migrate_tasks(unsigned int dead_cpu)
  5142. {
  5143. struct rq *rq = cpu_rq(dead_cpu);
  5144. struct task_struct *next, *stop = rq->stop;
  5145. int dest_cpu;
  5146. /*
  5147. * Fudge the rq selection such that the below task selection loop
  5148. * doesn't get stuck on the currently eligible stop task.
  5149. *
  5150. * We're currently inside stop_machine() and the rq is either stuck
  5151. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5152. * either way we should never end up calling schedule() until we're
  5153. * done here.
  5154. */
  5155. rq->stop = NULL;
  5156. for ( ; ; ) {
  5157. /*
  5158. * There's this thread running, bail when that's the only
  5159. * remaining thread.
  5160. */
  5161. if (rq->nr_running == 1)
  5162. break;
  5163. next = pick_next_task(rq);
  5164. BUG_ON(!next);
  5165. next->sched_class->put_prev_task(rq, next);
  5166. /* Find suitable destination for @next, with force if needed. */
  5167. dest_cpu = select_fallback_rq(dead_cpu, next);
  5168. raw_spin_unlock(&rq->lock);
  5169. __migrate_task(next, dead_cpu, dest_cpu);
  5170. raw_spin_lock(&rq->lock);
  5171. }
  5172. rq->stop = stop;
  5173. }
  5174. #endif /* CONFIG_HOTPLUG_CPU */
  5175. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5176. static struct ctl_table sd_ctl_dir[] = {
  5177. {
  5178. .procname = "sched_domain",
  5179. .mode = 0555,
  5180. },
  5181. {}
  5182. };
  5183. static struct ctl_table sd_ctl_root[] = {
  5184. {
  5185. .procname = "kernel",
  5186. .mode = 0555,
  5187. .child = sd_ctl_dir,
  5188. },
  5189. {}
  5190. };
  5191. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5192. {
  5193. struct ctl_table *entry =
  5194. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5195. return entry;
  5196. }
  5197. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5198. {
  5199. struct ctl_table *entry;
  5200. /*
  5201. * In the intermediate directories, both the child directory and
  5202. * procname are dynamically allocated and could fail but the mode
  5203. * will always be set. In the lowest directory the names are
  5204. * static strings and all have proc handlers.
  5205. */
  5206. for (entry = *tablep; entry->mode; entry++) {
  5207. if (entry->child)
  5208. sd_free_ctl_entry(&entry->child);
  5209. if (entry->proc_handler == NULL)
  5210. kfree(entry->procname);
  5211. }
  5212. kfree(*tablep);
  5213. *tablep = NULL;
  5214. }
  5215. static void
  5216. set_table_entry(struct ctl_table *entry,
  5217. const char *procname, void *data, int maxlen,
  5218. mode_t mode, proc_handler *proc_handler)
  5219. {
  5220. entry->procname = procname;
  5221. entry->data = data;
  5222. entry->maxlen = maxlen;
  5223. entry->mode = mode;
  5224. entry->proc_handler = proc_handler;
  5225. }
  5226. static struct ctl_table *
  5227. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5228. {
  5229. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5230. if (table == NULL)
  5231. return NULL;
  5232. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5233. sizeof(long), 0644, proc_doulongvec_minmax);
  5234. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5235. sizeof(long), 0644, proc_doulongvec_minmax);
  5236. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5237. sizeof(int), 0644, proc_dointvec_minmax);
  5238. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5239. sizeof(int), 0644, proc_dointvec_minmax);
  5240. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5241. sizeof(int), 0644, proc_dointvec_minmax);
  5242. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5243. sizeof(int), 0644, proc_dointvec_minmax);
  5244. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5245. sizeof(int), 0644, proc_dointvec_minmax);
  5246. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5247. sizeof(int), 0644, proc_dointvec_minmax);
  5248. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5249. sizeof(int), 0644, proc_dointvec_minmax);
  5250. set_table_entry(&table[9], "cache_nice_tries",
  5251. &sd->cache_nice_tries,
  5252. sizeof(int), 0644, proc_dointvec_minmax);
  5253. set_table_entry(&table[10], "flags", &sd->flags,
  5254. sizeof(int), 0644, proc_dointvec_minmax);
  5255. set_table_entry(&table[11], "name", sd->name,
  5256. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5257. /* &table[12] is terminator */
  5258. return table;
  5259. }
  5260. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5261. {
  5262. struct ctl_table *entry, *table;
  5263. struct sched_domain *sd;
  5264. int domain_num = 0, i;
  5265. char buf[32];
  5266. for_each_domain(cpu, sd)
  5267. domain_num++;
  5268. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5269. if (table == NULL)
  5270. return NULL;
  5271. i = 0;
  5272. for_each_domain(cpu, sd) {
  5273. snprintf(buf, 32, "domain%d", i);
  5274. entry->procname = kstrdup(buf, GFP_KERNEL);
  5275. entry->mode = 0555;
  5276. entry->child = sd_alloc_ctl_domain_table(sd);
  5277. entry++;
  5278. i++;
  5279. }
  5280. return table;
  5281. }
  5282. static struct ctl_table_header *sd_sysctl_header;
  5283. static void register_sched_domain_sysctl(void)
  5284. {
  5285. int i, cpu_num = num_possible_cpus();
  5286. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5287. char buf[32];
  5288. WARN_ON(sd_ctl_dir[0].child);
  5289. sd_ctl_dir[0].child = entry;
  5290. if (entry == NULL)
  5291. return;
  5292. for_each_possible_cpu(i) {
  5293. snprintf(buf, 32, "cpu%d", i);
  5294. entry->procname = kstrdup(buf, GFP_KERNEL);
  5295. entry->mode = 0555;
  5296. entry->child = sd_alloc_ctl_cpu_table(i);
  5297. entry++;
  5298. }
  5299. WARN_ON(sd_sysctl_header);
  5300. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5301. }
  5302. /* may be called multiple times per register */
  5303. static void unregister_sched_domain_sysctl(void)
  5304. {
  5305. if (sd_sysctl_header)
  5306. unregister_sysctl_table(sd_sysctl_header);
  5307. sd_sysctl_header = NULL;
  5308. if (sd_ctl_dir[0].child)
  5309. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5310. }
  5311. #else
  5312. static void register_sched_domain_sysctl(void)
  5313. {
  5314. }
  5315. static void unregister_sched_domain_sysctl(void)
  5316. {
  5317. }
  5318. #endif
  5319. static void set_rq_online(struct rq *rq)
  5320. {
  5321. if (!rq->online) {
  5322. const struct sched_class *class;
  5323. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5324. rq->online = 1;
  5325. for_each_class(class) {
  5326. if (class->rq_online)
  5327. class->rq_online(rq);
  5328. }
  5329. }
  5330. }
  5331. static void set_rq_offline(struct rq *rq)
  5332. {
  5333. if (rq->online) {
  5334. const struct sched_class *class;
  5335. for_each_class(class) {
  5336. if (class->rq_offline)
  5337. class->rq_offline(rq);
  5338. }
  5339. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5340. rq->online = 0;
  5341. }
  5342. }
  5343. /*
  5344. * migration_call - callback that gets triggered when a CPU is added.
  5345. * Here we can start up the necessary migration thread for the new CPU.
  5346. */
  5347. static int __cpuinit
  5348. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5349. {
  5350. int cpu = (long)hcpu;
  5351. unsigned long flags;
  5352. struct rq *rq = cpu_rq(cpu);
  5353. switch (action & ~CPU_TASKS_FROZEN) {
  5354. case CPU_UP_PREPARE:
  5355. rq->calc_load_update = calc_load_update;
  5356. break;
  5357. case CPU_ONLINE:
  5358. /* Update our root-domain */
  5359. raw_spin_lock_irqsave(&rq->lock, flags);
  5360. if (rq->rd) {
  5361. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5362. set_rq_online(rq);
  5363. }
  5364. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5365. break;
  5366. #ifdef CONFIG_HOTPLUG_CPU
  5367. case CPU_DYING:
  5368. /* Update our root-domain */
  5369. raw_spin_lock_irqsave(&rq->lock, flags);
  5370. if (rq->rd) {
  5371. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5372. set_rq_offline(rq);
  5373. }
  5374. migrate_tasks(cpu);
  5375. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5376. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5377. migrate_nr_uninterruptible(rq);
  5378. calc_global_load_remove(rq);
  5379. break;
  5380. #endif
  5381. }
  5382. update_max_interval();
  5383. return NOTIFY_OK;
  5384. }
  5385. /*
  5386. * Register at high priority so that task migration (migrate_all_tasks)
  5387. * happens before everything else. This has to be lower priority than
  5388. * the notifier in the perf_event subsystem, though.
  5389. */
  5390. static struct notifier_block __cpuinitdata migration_notifier = {
  5391. .notifier_call = migration_call,
  5392. .priority = CPU_PRI_MIGRATION,
  5393. };
  5394. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5395. unsigned long action, void *hcpu)
  5396. {
  5397. switch (action & ~CPU_TASKS_FROZEN) {
  5398. case CPU_ONLINE:
  5399. case CPU_DOWN_FAILED:
  5400. set_cpu_active((long)hcpu, true);
  5401. return NOTIFY_OK;
  5402. default:
  5403. return NOTIFY_DONE;
  5404. }
  5405. }
  5406. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5407. unsigned long action, void *hcpu)
  5408. {
  5409. switch (action & ~CPU_TASKS_FROZEN) {
  5410. case CPU_DOWN_PREPARE:
  5411. set_cpu_active((long)hcpu, false);
  5412. return NOTIFY_OK;
  5413. default:
  5414. return NOTIFY_DONE;
  5415. }
  5416. }
  5417. static int __init migration_init(void)
  5418. {
  5419. void *cpu = (void *)(long)smp_processor_id();
  5420. int err;
  5421. /* Initialize migration for the boot CPU */
  5422. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5423. BUG_ON(err == NOTIFY_BAD);
  5424. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5425. register_cpu_notifier(&migration_notifier);
  5426. /* Register cpu active notifiers */
  5427. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5428. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5429. return 0;
  5430. }
  5431. early_initcall(migration_init);
  5432. #endif
  5433. #ifdef CONFIG_SMP
  5434. #ifdef CONFIG_SCHED_DEBUG
  5435. static __read_mostly int sched_domain_debug_enabled;
  5436. static int __init sched_domain_debug_setup(char *str)
  5437. {
  5438. sched_domain_debug_enabled = 1;
  5439. return 0;
  5440. }
  5441. early_param("sched_debug", sched_domain_debug_setup);
  5442. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5443. struct cpumask *groupmask)
  5444. {
  5445. struct sched_group *group = sd->groups;
  5446. char str[256];
  5447. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5448. cpumask_clear(groupmask);
  5449. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5450. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5451. printk("does not load-balance\n");
  5452. if (sd->parent)
  5453. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5454. " has parent");
  5455. return -1;
  5456. }
  5457. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5458. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5459. printk(KERN_ERR "ERROR: domain->span does not contain "
  5460. "CPU%d\n", cpu);
  5461. }
  5462. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5463. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5464. " CPU%d\n", cpu);
  5465. }
  5466. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5467. do {
  5468. if (!group) {
  5469. printk("\n");
  5470. printk(KERN_ERR "ERROR: group is NULL\n");
  5471. break;
  5472. }
  5473. if (!group->cpu_power) {
  5474. printk(KERN_CONT "\n");
  5475. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5476. "set\n");
  5477. break;
  5478. }
  5479. if (!cpumask_weight(sched_group_cpus(group))) {
  5480. printk(KERN_CONT "\n");
  5481. printk(KERN_ERR "ERROR: empty group\n");
  5482. break;
  5483. }
  5484. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5485. printk(KERN_CONT "\n");
  5486. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5487. break;
  5488. }
  5489. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5490. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5491. printk(KERN_CONT " %s", str);
  5492. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5493. printk(KERN_CONT " (cpu_power = %d)",
  5494. group->cpu_power);
  5495. }
  5496. group = group->next;
  5497. } while (group != sd->groups);
  5498. printk(KERN_CONT "\n");
  5499. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5500. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5501. if (sd->parent &&
  5502. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5503. printk(KERN_ERR "ERROR: parent span is not a superset "
  5504. "of domain->span\n");
  5505. return 0;
  5506. }
  5507. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5508. {
  5509. cpumask_var_t groupmask;
  5510. int level = 0;
  5511. if (!sched_domain_debug_enabled)
  5512. return;
  5513. if (!sd) {
  5514. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5515. return;
  5516. }
  5517. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5518. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5519. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5520. return;
  5521. }
  5522. for (;;) {
  5523. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5524. break;
  5525. level++;
  5526. sd = sd->parent;
  5527. if (!sd)
  5528. break;
  5529. }
  5530. free_cpumask_var(groupmask);
  5531. }
  5532. #else /* !CONFIG_SCHED_DEBUG */
  5533. # define sched_domain_debug(sd, cpu) do { } while (0)
  5534. #endif /* CONFIG_SCHED_DEBUG */
  5535. static int sd_degenerate(struct sched_domain *sd)
  5536. {
  5537. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5538. return 1;
  5539. /* Following flags need at least 2 groups */
  5540. if (sd->flags & (SD_LOAD_BALANCE |
  5541. SD_BALANCE_NEWIDLE |
  5542. SD_BALANCE_FORK |
  5543. SD_BALANCE_EXEC |
  5544. SD_SHARE_CPUPOWER |
  5545. SD_SHARE_PKG_RESOURCES)) {
  5546. if (sd->groups != sd->groups->next)
  5547. return 0;
  5548. }
  5549. /* Following flags don't use groups */
  5550. if (sd->flags & (SD_WAKE_AFFINE))
  5551. return 0;
  5552. return 1;
  5553. }
  5554. static int
  5555. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5556. {
  5557. unsigned long cflags = sd->flags, pflags = parent->flags;
  5558. if (sd_degenerate(parent))
  5559. return 1;
  5560. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5561. return 0;
  5562. /* Flags needing groups don't count if only 1 group in parent */
  5563. if (parent->groups == parent->groups->next) {
  5564. pflags &= ~(SD_LOAD_BALANCE |
  5565. SD_BALANCE_NEWIDLE |
  5566. SD_BALANCE_FORK |
  5567. SD_BALANCE_EXEC |
  5568. SD_SHARE_CPUPOWER |
  5569. SD_SHARE_PKG_RESOURCES);
  5570. if (nr_node_ids == 1)
  5571. pflags &= ~SD_SERIALIZE;
  5572. }
  5573. if (~cflags & pflags)
  5574. return 0;
  5575. return 1;
  5576. }
  5577. static void free_rootdomain(struct root_domain *rd)
  5578. {
  5579. synchronize_sched();
  5580. cpupri_cleanup(&rd->cpupri);
  5581. free_cpumask_var(rd->rto_mask);
  5582. free_cpumask_var(rd->online);
  5583. free_cpumask_var(rd->span);
  5584. kfree(rd);
  5585. }
  5586. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5587. {
  5588. struct root_domain *old_rd = NULL;
  5589. unsigned long flags;
  5590. raw_spin_lock_irqsave(&rq->lock, flags);
  5591. if (rq->rd) {
  5592. old_rd = rq->rd;
  5593. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5594. set_rq_offline(rq);
  5595. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5596. /*
  5597. * If we dont want to free the old_rt yet then
  5598. * set old_rd to NULL to skip the freeing later
  5599. * in this function:
  5600. */
  5601. if (!atomic_dec_and_test(&old_rd->refcount))
  5602. old_rd = NULL;
  5603. }
  5604. atomic_inc(&rd->refcount);
  5605. rq->rd = rd;
  5606. cpumask_set_cpu(rq->cpu, rd->span);
  5607. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5608. set_rq_online(rq);
  5609. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5610. if (old_rd)
  5611. free_rootdomain(old_rd);
  5612. }
  5613. static int init_rootdomain(struct root_domain *rd)
  5614. {
  5615. memset(rd, 0, sizeof(*rd));
  5616. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5617. goto out;
  5618. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5619. goto free_span;
  5620. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5621. goto free_online;
  5622. if (cpupri_init(&rd->cpupri) != 0)
  5623. goto free_rto_mask;
  5624. return 0;
  5625. free_rto_mask:
  5626. free_cpumask_var(rd->rto_mask);
  5627. free_online:
  5628. free_cpumask_var(rd->online);
  5629. free_span:
  5630. free_cpumask_var(rd->span);
  5631. out:
  5632. return -ENOMEM;
  5633. }
  5634. static void init_defrootdomain(void)
  5635. {
  5636. init_rootdomain(&def_root_domain);
  5637. atomic_set(&def_root_domain.refcount, 1);
  5638. }
  5639. static struct root_domain *alloc_rootdomain(void)
  5640. {
  5641. struct root_domain *rd;
  5642. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5643. if (!rd)
  5644. return NULL;
  5645. if (init_rootdomain(rd) != 0) {
  5646. kfree(rd);
  5647. return NULL;
  5648. }
  5649. return rd;
  5650. }
  5651. /*
  5652. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5653. * hold the hotplug lock.
  5654. */
  5655. static void
  5656. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5657. {
  5658. struct rq *rq = cpu_rq(cpu);
  5659. struct sched_domain *tmp;
  5660. for (tmp = sd; tmp; tmp = tmp->parent)
  5661. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5662. /* Remove the sched domains which do not contribute to scheduling. */
  5663. for (tmp = sd; tmp; ) {
  5664. struct sched_domain *parent = tmp->parent;
  5665. if (!parent)
  5666. break;
  5667. if (sd_parent_degenerate(tmp, parent)) {
  5668. tmp->parent = parent->parent;
  5669. if (parent->parent)
  5670. parent->parent->child = tmp;
  5671. } else
  5672. tmp = tmp->parent;
  5673. }
  5674. if (sd && sd_degenerate(sd)) {
  5675. sd = sd->parent;
  5676. if (sd)
  5677. sd->child = NULL;
  5678. }
  5679. sched_domain_debug(sd, cpu);
  5680. rq_attach_root(rq, rd);
  5681. rcu_assign_pointer(rq->sd, sd);
  5682. }
  5683. /* cpus with isolated domains */
  5684. static cpumask_var_t cpu_isolated_map;
  5685. /* Setup the mask of cpus configured for isolated domains */
  5686. static int __init isolated_cpu_setup(char *str)
  5687. {
  5688. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5689. cpulist_parse(str, cpu_isolated_map);
  5690. return 1;
  5691. }
  5692. __setup("isolcpus=", isolated_cpu_setup);
  5693. /*
  5694. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5695. * to a function which identifies what group(along with sched group) a CPU
  5696. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5697. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5698. *
  5699. * init_sched_build_groups will build a circular linked list of the groups
  5700. * covered by the given span, and will set each group's ->cpumask correctly,
  5701. * and ->cpu_power to 0.
  5702. */
  5703. static void
  5704. init_sched_build_groups(const struct cpumask *span,
  5705. const struct cpumask *cpu_map,
  5706. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5707. struct sched_group **sg,
  5708. struct cpumask *tmpmask),
  5709. struct cpumask *covered, struct cpumask *tmpmask)
  5710. {
  5711. struct sched_group *first = NULL, *last = NULL;
  5712. int i;
  5713. cpumask_clear(covered);
  5714. for_each_cpu(i, span) {
  5715. struct sched_group *sg;
  5716. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5717. int j;
  5718. if (cpumask_test_cpu(i, covered))
  5719. continue;
  5720. cpumask_clear(sched_group_cpus(sg));
  5721. sg->cpu_power = 0;
  5722. for_each_cpu(j, span) {
  5723. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5724. continue;
  5725. cpumask_set_cpu(j, covered);
  5726. cpumask_set_cpu(j, sched_group_cpus(sg));
  5727. }
  5728. if (!first)
  5729. first = sg;
  5730. if (last)
  5731. last->next = sg;
  5732. last = sg;
  5733. }
  5734. last->next = first;
  5735. }
  5736. #define SD_NODES_PER_DOMAIN 16
  5737. #ifdef CONFIG_NUMA
  5738. /**
  5739. * find_next_best_node - find the next node to include in a sched_domain
  5740. * @node: node whose sched_domain we're building
  5741. * @used_nodes: nodes already in the sched_domain
  5742. *
  5743. * Find the next node to include in a given scheduling domain. Simply
  5744. * finds the closest node not already in the @used_nodes map.
  5745. *
  5746. * Should use nodemask_t.
  5747. */
  5748. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5749. {
  5750. int i, n, val, min_val, best_node = 0;
  5751. min_val = INT_MAX;
  5752. for (i = 0; i < nr_node_ids; i++) {
  5753. /* Start at @node */
  5754. n = (node + i) % nr_node_ids;
  5755. if (!nr_cpus_node(n))
  5756. continue;
  5757. /* Skip already used nodes */
  5758. if (node_isset(n, *used_nodes))
  5759. continue;
  5760. /* Simple min distance search */
  5761. val = node_distance(node, n);
  5762. if (val < min_val) {
  5763. min_val = val;
  5764. best_node = n;
  5765. }
  5766. }
  5767. node_set(best_node, *used_nodes);
  5768. return best_node;
  5769. }
  5770. /**
  5771. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5772. * @node: node whose cpumask we're constructing
  5773. * @span: resulting cpumask
  5774. *
  5775. * Given a node, construct a good cpumask for its sched_domain to span. It
  5776. * should be one that prevents unnecessary balancing, but also spreads tasks
  5777. * out optimally.
  5778. */
  5779. static void sched_domain_node_span(int node, struct cpumask *span)
  5780. {
  5781. nodemask_t used_nodes;
  5782. int i;
  5783. cpumask_clear(span);
  5784. nodes_clear(used_nodes);
  5785. cpumask_or(span, span, cpumask_of_node(node));
  5786. node_set(node, used_nodes);
  5787. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5788. int next_node = find_next_best_node(node, &used_nodes);
  5789. cpumask_or(span, span, cpumask_of_node(next_node));
  5790. }
  5791. }
  5792. #endif /* CONFIG_NUMA */
  5793. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5794. /*
  5795. * The cpus mask in sched_group and sched_domain hangs off the end.
  5796. *
  5797. * ( See the the comments in include/linux/sched.h:struct sched_group
  5798. * and struct sched_domain. )
  5799. */
  5800. struct static_sched_group {
  5801. struct sched_group sg;
  5802. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5803. };
  5804. struct static_sched_domain {
  5805. struct sched_domain sd;
  5806. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5807. };
  5808. struct s_data {
  5809. #ifdef CONFIG_NUMA
  5810. int sd_allnodes;
  5811. cpumask_var_t domainspan;
  5812. cpumask_var_t covered;
  5813. cpumask_var_t notcovered;
  5814. #endif
  5815. cpumask_var_t nodemask;
  5816. cpumask_var_t this_sibling_map;
  5817. cpumask_var_t this_core_map;
  5818. cpumask_var_t this_book_map;
  5819. cpumask_var_t send_covered;
  5820. cpumask_var_t tmpmask;
  5821. struct sched_group **sched_group_nodes;
  5822. struct root_domain *rd;
  5823. };
  5824. enum s_alloc {
  5825. sa_sched_groups = 0,
  5826. sa_rootdomain,
  5827. sa_tmpmask,
  5828. sa_send_covered,
  5829. sa_this_book_map,
  5830. sa_this_core_map,
  5831. sa_this_sibling_map,
  5832. sa_nodemask,
  5833. sa_sched_group_nodes,
  5834. #ifdef CONFIG_NUMA
  5835. sa_notcovered,
  5836. sa_covered,
  5837. sa_domainspan,
  5838. #endif
  5839. sa_none,
  5840. };
  5841. /*
  5842. * SMT sched-domains:
  5843. */
  5844. #ifdef CONFIG_SCHED_SMT
  5845. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5846. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5847. static int
  5848. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5849. struct sched_group **sg, struct cpumask *unused)
  5850. {
  5851. if (sg)
  5852. *sg = &per_cpu(sched_groups, cpu).sg;
  5853. return cpu;
  5854. }
  5855. #endif /* CONFIG_SCHED_SMT */
  5856. /*
  5857. * multi-core sched-domains:
  5858. */
  5859. #ifdef CONFIG_SCHED_MC
  5860. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5861. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5862. static int
  5863. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5864. struct sched_group **sg, struct cpumask *mask)
  5865. {
  5866. int group;
  5867. #ifdef CONFIG_SCHED_SMT
  5868. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5869. group = cpumask_first(mask);
  5870. #else
  5871. group = cpu;
  5872. #endif
  5873. if (sg)
  5874. *sg = &per_cpu(sched_group_core, group).sg;
  5875. return group;
  5876. }
  5877. #endif /* CONFIG_SCHED_MC */
  5878. /*
  5879. * book sched-domains:
  5880. */
  5881. #ifdef CONFIG_SCHED_BOOK
  5882. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5883. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5884. static int
  5885. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5886. struct sched_group **sg, struct cpumask *mask)
  5887. {
  5888. int group = cpu;
  5889. #ifdef CONFIG_SCHED_MC
  5890. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5891. group = cpumask_first(mask);
  5892. #elif defined(CONFIG_SCHED_SMT)
  5893. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5894. group = cpumask_first(mask);
  5895. #endif
  5896. if (sg)
  5897. *sg = &per_cpu(sched_group_book, group).sg;
  5898. return group;
  5899. }
  5900. #endif /* CONFIG_SCHED_BOOK */
  5901. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5902. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5903. static int
  5904. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5905. struct sched_group **sg, struct cpumask *mask)
  5906. {
  5907. int group;
  5908. #ifdef CONFIG_SCHED_BOOK
  5909. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5910. group = cpumask_first(mask);
  5911. #elif defined(CONFIG_SCHED_MC)
  5912. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5913. group = cpumask_first(mask);
  5914. #elif defined(CONFIG_SCHED_SMT)
  5915. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5916. group = cpumask_first(mask);
  5917. #else
  5918. group = cpu;
  5919. #endif
  5920. if (sg)
  5921. *sg = &per_cpu(sched_group_phys, group).sg;
  5922. return group;
  5923. }
  5924. #ifdef CONFIG_NUMA
  5925. /*
  5926. * The init_sched_build_groups can't handle what we want to do with node
  5927. * groups, so roll our own. Now each node has its own list of groups which
  5928. * gets dynamically allocated.
  5929. */
  5930. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5931. static struct sched_group ***sched_group_nodes_bycpu;
  5932. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5933. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5934. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5935. struct sched_group **sg,
  5936. struct cpumask *nodemask)
  5937. {
  5938. int group;
  5939. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5940. group = cpumask_first(nodemask);
  5941. if (sg)
  5942. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5943. return group;
  5944. }
  5945. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5946. {
  5947. struct sched_group *sg = group_head;
  5948. int j;
  5949. if (!sg)
  5950. return;
  5951. do {
  5952. for_each_cpu(j, sched_group_cpus(sg)) {
  5953. struct sched_domain *sd;
  5954. sd = &per_cpu(phys_domains, j).sd;
  5955. if (j != group_first_cpu(sd->groups)) {
  5956. /*
  5957. * Only add "power" once for each
  5958. * physical package.
  5959. */
  5960. continue;
  5961. }
  5962. sg->cpu_power += sd->groups->cpu_power;
  5963. }
  5964. sg = sg->next;
  5965. } while (sg != group_head);
  5966. }
  5967. static int build_numa_sched_groups(struct s_data *d,
  5968. const struct cpumask *cpu_map, int num)
  5969. {
  5970. struct sched_domain *sd;
  5971. struct sched_group *sg, *prev;
  5972. int n, j;
  5973. cpumask_clear(d->covered);
  5974. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5975. if (cpumask_empty(d->nodemask)) {
  5976. d->sched_group_nodes[num] = NULL;
  5977. goto out;
  5978. }
  5979. sched_domain_node_span(num, d->domainspan);
  5980. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5981. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5982. GFP_KERNEL, num);
  5983. if (!sg) {
  5984. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5985. num);
  5986. return -ENOMEM;
  5987. }
  5988. d->sched_group_nodes[num] = sg;
  5989. for_each_cpu(j, d->nodemask) {
  5990. sd = &per_cpu(node_domains, j).sd;
  5991. sd->groups = sg;
  5992. }
  5993. sg->cpu_power = 0;
  5994. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5995. sg->next = sg;
  5996. cpumask_or(d->covered, d->covered, d->nodemask);
  5997. prev = sg;
  5998. for (j = 0; j < nr_node_ids; j++) {
  5999. n = (num + j) % nr_node_ids;
  6000. cpumask_complement(d->notcovered, d->covered);
  6001. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6002. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6003. if (cpumask_empty(d->tmpmask))
  6004. break;
  6005. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6006. if (cpumask_empty(d->tmpmask))
  6007. continue;
  6008. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6009. GFP_KERNEL, num);
  6010. if (!sg) {
  6011. printk(KERN_WARNING
  6012. "Can not alloc domain group for node %d\n", j);
  6013. return -ENOMEM;
  6014. }
  6015. sg->cpu_power = 0;
  6016. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6017. sg->next = prev->next;
  6018. cpumask_or(d->covered, d->covered, d->tmpmask);
  6019. prev->next = sg;
  6020. prev = sg;
  6021. }
  6022. out:
  6023. return 0;
  6024. }
  6025. #endif /* CONFIG_NUMA */
  6026. #ifdef CONFIG_NUMA
  6027. /* Free memory allocated for various sched_group structures */
  6028. static void free_sched_groups(const struct cpumask *cpu_map,
  6029. struct cpumask *nodemask)
  6030. {
  6031. int cpu, i;
  6032. for_each_cpu(cpu, cpu_map) {
  6033. struct sched_group **sched_group_nodes
  6034. = sched_group_nodes_bycpu[cpu];
  6035. if (!sched_group_nodes)
  6036. continue;
  6037. for (i = 0; i < nr_node_ids; i++) {
  6038. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6039. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6040. if (cpumask_empty(nodemask))
  6041. continue;
  6042. if (sg == NULL)
  6043. continue;
  6044. sg = sg->next;
  6045. next_sg:
  6046. oldsg = sg;
  6047. sg = sg->next;
  6048. kfree(oldsg);
  6049. if (oldsg != sched_group_nodes[i])
  6050. goto next_sg;
  6051. }
  6052. kfree(sched_group_nodes);
  6053. sched_group_nodes_bycpu[cpu] = NULL;
  6054. }
  6055. }
  6056. #else /* !CONFIG_NUMA */
  6057. static void free_sched_groups(const struct cpumask *cpu_map,
  6058. struct cpumask *nodemask)
  6059. {
  6060. }
  6061. #endif /* CONFIG_NUMA */
  6062. /*
  6063. * Initialize sched groups cpu_power.
  6064. *
  6065. * cpu_power indicates the capacity of sched group, which is used while
  6066. * distributing the load between different sched groups in a sched domain.
  6067. * Typically cpu_power for all the groups in a sched domain will be same unless
  6068. * there are asymmetries in the topology. If there are asymmetries, group
  6069. * having more cpu_power will pickup more load compared to the group having
  6070. * less cpu_power.
  6071. */
  6072. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6073. {
  6074. struct sched_domain *child;
  6075. struct sched_group *group;
  6076. long power;
  6077. int weight;
  6078. WARN_ON(!sd || !sd->groups);
  6079. if (cpu != group_first_cpu(sd->groups))
  6080. return;
  6081. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6082. child = sd->child;
  6083. sd->groups->cpu_power = 0;
  6084. if (!child) {
  6085. power = SCHED_LOAD_SCALE;
  6086. weight = cpumask_weight(sched_domain_span(sd));
  6087. /*
  6088. * SMT siblings share the power of a single core.
  6089. * Usually multiple threads get a better yield out of
  6090. * that one core than a single thread would have,
  6091. * reflect that in sd->smt_gain.
  6092. */
  6093. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6094. power *= sd->smt_gain;
  6095. power /= weight;
  6096. power >>= SCHED_LOAD_SHIFT;
  6097. }
  6098. sd->groups->cpu_power += power;
  6099. return;
  6100. }
  6101. /*
  6102. * Add cpu_power of each child group to this groups cpu_power.
  6103. */
  6104. group = child->groups;
  6105. do {
  6106. sd->groups->cpu_power += group->cpu_power;
  6107. group = group->next;
  6108. } while (group != child->groups);
  6109. }
  6110. /*
  6111. * Initializers for schedule domains
  6112. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6113. */
  6114. #ifdef CONFIG_SCHED_DEBUG
  6115. # define SD_INIT_NAME(sd, type) sd->name = #type
  6116. #else
  6117. # define SD_INIT_NAME(sd, type) do { } while (0)
  6118. #endif
  6119. #define SD_INIT(sd, type) sd_init_##type(sd)
  6120. #define SD_INIT_FUNC(type) \
  6121. static noinline void sd_init_##type(struct sched_domain *sd) \
  6122. { \
  6123. memset(sd, 0, sizeof(*sd)); \
  6124. *sd = SD_##type##_INIT; \
  6125. sd->level = SD_LV_##type; \
  6126. SD_INIT_NAME(sd, type); \
  6127. }
  6128. SD_INIT_FUNC(CPU)
  6129. #ifdef CONFIG_NUMA
  6130. SD_INIT_FUNC(ALLNODES)
  6131. SD_INIT_FUNC(NODE)
  6132. #endif
  6133. #ifdef CONFIG_SCHED_SMT
  6134. SD_INIT_FUNC(SIBLING)
  6135. #endif
  6136. #ifdef CONFIG_SCHED_MC
  6137. SD_INIT_FUNC(MC)
  6138. #endif
  6139. #ifdef CONFIG_SCHED_BOOK
  6140. SD_INIT_FUNC(BOOK)
  6141. #endif
  6142. static int default_relax_domain_level = -1;
  6143. static int __init setup_relax_domain_level(char *str)
  6144. {
  6145. unsigned long val;
  6146. val = simple_strtoul(str, NULL, 0);
  6147. if (val < SD_LV_MAX)
  6148. default_relax_domain_level = val;
  6149. return 1;
  6150. }
  6151. __setup("relax_domain_level=", setup_relax_domain_level);
  6152. static void set_domain_attribute(struct sched_domain *sd,
  6153. struct sched_domain_attr *attr)
  6154. {
  6155. int request;
  6156. if (!attr || attr->relax_domain_level < 0) {
  6157. if (default_relax_domain_level < 0)
  6158. return;
  6159. else
  6160. request = default_relax_domain_level;
  6161. } else
  6162. request = attr->relax_domain_level;
  6163. if (request < sd->level) {
  6164. /* turn off idle balance on this domain */
  6165. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6166. } else {
  6167. /* turn on idle balance on this domain */
  6168. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6169. }
  6170. }
  6171. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6172. const struct cpumask *cpu_map)
  6173. {
  6174. switch (what) {
  6175. case sa_sched_groups:
  6176. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6177. d->sched_group_nodes = NULL;
  6178. case sa_rootdomain:
  6179. free_rootdomain(d->rd); /* fall through */
  6180. case sa_tmpmask:
  6181. free_cpumask_var(d->tmpmask); /* fall through */
  6182. case sa_send_covered:
  6183. free_cpumask_var(d->send_covered); /* fall through */
  6184. case sa_this_book_map:
  6185. free_cpumask_var(d->this_book_map); /* fall through */
  6186. case sa_this_core_map:
  6187. free_cpumask_var(d->this_core_map); /* fall through */
  6188. case sa_this_sibling_map:
  6189. free_cpumask_var(d->this_sibling_map); /* fall through */
  6190. case sa_nodemask:
  6191. free_cpumask_var(d->nodemask); /* fall through */
  6192. case sa_sched_group_nodes:
  6193. #ifdef CONFIG_NUMA
  6194. kfree(d->sched_group_nodes); /* fall through */
  6195. case sa_notcovered:
  6196. free_cpumask_var(d->notcovered); /* fall through */
  6197. case sa_covered:
  6198. free_cpumask_var(d->covered); /* fall through */
  6199. case sa_domainspan:
  6200. free_cpumask_var(d->domainspan); /* fall through */
  6201. #endif
  6202. case sa_none:
  6203. break;
  6204. }
  6205. }
  6206. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6207. const struct cpumask *cpu_map)
  6208. {
  6209. #ifdef CONFIG_NUMA
  6210. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6211. return sa_none;
  6212. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6213. return sa_domainspan;
  6214. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6215. return sa_covered;
  6216. /* Allocate the per-node list of sched groups */
  6217. d->sched_group_nodes = kcalloc(nr_node_ids,
  6218. sizeof(struct sched_group *), GFP_KERNEL);
  6219. if (!d->sched_group_nodes) {
  6220. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6221. return sa_notcovered;
  6222. }
  6223. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6224. #endif
  6225. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6226. return sa_sched_group_nodes;
  6227. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6228. return sa_nodemask;
  6229. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6230. return sa_this_sibling_map;
  6231. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6232. return sa_this_core_map;
  6233. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6234. return sa_this_book_map;
  6235. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6236. return sa_send_covered;
  6237. d->rd = alloc_rootdomain();
  6238. if (!d->rd) {
  6239. printk(KERN_WARNING "Cannot alloc root domain\n");
  6240. return sa_tmpmask;
  6241. }
  6242. return sa_rootdomain;
  6243. }
  6244. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6245. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6246. {
  6247. struct sched_domain *sd = NULL;
  6248. #ifdef CONFIG_NUMA
  6249. struct sched_domain *parent;
  6250. d->sd_allnodes = 0;
  6251. if (cpumask_weight(cpu_map) >
  6252. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6253. sd = &per_cpu(allnodes_domains, i).sd;
  6254. SD_INIT(sd, ALLNODES);
  6255. set_domain_attribute(sd, attr);
  6256. cpumask_copy(sched_domain_span(sd), cpu_map);
  6257. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6258. d->sd_allnodes = 1;
  6259. }
  6260. parent = sd;
  6261. sd = &per_cpu(node_domains, i).sd;
  6262. SD_INIT(sd, NODE);
  6263. set_domain_attribute(sd, attr);
  6264. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6265. sd->parent = parent;
  6266. if (parent)
  6267. parent->child = sd;
  6268. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6269. #endif
  6270. return sd;
  6271. }
  6272. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6273. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6274. struct sched_domain *parent, int i)
  6275. {
  6276. struct sched_domain *sd;
  6277. sd = &per_cpu(phys_domains, i).sd;
  6278. SD_INIT(sd, CPU);
  6279. set_domain_attribute(sd, attr);
  6280. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6281. sd->parent = parent;
  6282. if (parent)
  6283. parent->child = sd;
  6284. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6285. return sd;
  6286. }
  6287. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6288. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6289. struct sched_domain *parent, int i)
  6290. {
  6291. struct sched_domain *sd = parent;
  6292. #ifdef CONFIG_SCHED_BOOK
  6293. sd = &per_cpu(book_domains, i).sd;
  6294. SD_INIT(sd, BOOK);
  6295. set_domain_attribute(sd, attr);
  6296. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6297. sd->parent = parent;
  6298. parent->child = sd;
  6299. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6300. #endif
  6301. return sd;
  6302. }
  6303. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6304. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6305. struct sched_domain *parent, int i)
  6306. {
  6307. struct sched_domain *sd = parent;
  6308. #ifdef CONFIG_SCHED_MC
  6309. sd = &per_cpu(core_domains, i).sd;
  6310. SD_INIT(sd, MC);
  6311. set_domain_attribute(sd, attr);
  6312. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6313. sd->parent = parent;
  6314. parent->child = sd;
  6315. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6316. #endif
  6317. return sd;
  6318. }
  6319. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6320. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6321. struct sched_domain *parent, int i)
  6322. {
  6323. struct sched_domain *sd = parent;
  6324. #ifdef CONFIG_SCHED_SMT
  6325. sd = &per_cpu(cpu_domains, i).sd;
  6326. SD_INIT(sd, SIBLING);
  6327. set_domain_attribute(sd, attr);
  6328. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6329. sd->parent = parent;
  6330. parent->child = sd;
  6331. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6332. #endif
  6333. return sd;
  6334. }
  6335. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6336. const struct cpumask *cpu_map, int cpu)
  6337. {
  6338. switch (l) {
  6339. #ifdef CONFIG_SCHED_SMT
  6340. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6341. cpumask_and(d->this_sibling_map, cpu_map,
  6342. topology_thread_cpumask(cpu));
  6343. if (cpu == cpumask_first(d->this_sibling_map))
  6344. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6345. &cpu_to_cpu_group,
  6346. d->send_covered, d->tmpmask);
  6347. break;
  6348. #endif
  6349. #ifdef CONFIG_SCHED_MC
  6350. case SD_LV_MC: /* set up multi-core groups */
  6351. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6352. if (cpu == cpumask_first(d->this_core_map))
  6353. init_sched_build_groups(d->this_core_map, cpu_map,
  6354. &cpu_to_core_group,
  6355. d->send_covered, d->tmpmask);
  6356. break;
  6357. #endif
  6358. #ifdef CONFIG_SCHED_BOOK
  6359. case SD_LV_BOOK: /* set up book groups */
  6360. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6361. if (cpu == cpumask_first(d->this_book_map))
  6362. init_sched_build_groups(d->this_book_map, cpu_map,
  6363. &cpu_to_book_group,
  6364. d->send_covered, d->tmpmask);
  6365. break;
  6366. #endif
  6367. case SD_LV_CPU: /* set up physical groups */
  6368. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6369. if (!cpumask_empty(d->nodemask))
  6370. init_sched_build_groups(d->nodemask, cpu_map,
  6371. &cpu_to_phys_group,
  6372. d->send_covered, d->tmpmask);
  6373. break;
  6374. #ifdef CONFIG_NUMA
  6375. case SD_LV_ALLNODES:
  6376. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6377. d->send_covered, d->tmpmask);
  6378. break;
  6379. #endif
  6380. default:
  6381. break;
  6382. }
  6383. }
  6384. /*
  6385. * Build sched domains for a given set of cpus and attach the sched domains
  6386. * to the individual cpus
  6387. */
  6388. static int __build_sched_domains(const struct cpumask *cpu_map,
  6389. struct sched_domain_attr *attr)
  6390. {
  6391. enum s_alloc alloc_state = sa_none;
  6392. struct s_data d;
  6393. struct sched_domain *sd;
  6394. int i;
  6395. #ifdef CONFIG_NUMA
  6396. d.sd_allnodes = 0;
  6397. #endif
  6398. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6399. if (alloc_state != sa_rootdomain)
  6400. goto error;
  6401. alloc_state = sa_sched_groups;
  6402. /*
  6403. * Set up domains for cpus specified by the cpu_map.
  6404. */
  6405. for_each_cpu(i, cpu_map) {
  6406. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6407. cpu_map);
  6408. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6409. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6410. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6411. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6412. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6413. }
  6414. for_each_cpu(i, cpu_map) {
  6415. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6416. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6417. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6418. }
  6419. /* Set up physical groups */
  6420. for (i = 0; i < nr_node_ids; i++)
  6421. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6422. #ifdef CONFIG_NUMA
  6423. /* Set up node groups */
  6424. if (d.sd_allnodes)
  6425. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6426. for (i = 0; i < nr_node_ids; i++)
  6427. if (build_numa_sched_groups(&d, cpu_map, i))
  6428. goto error;
  6429. #endif
  6430. /* Calculate CPU power for physical packages and nodes */
  6431. #ifdef CONFIG_SCHED_SMT
  6432. for_each_cpu(i, cpu_map) {
  6433. sd = &per_cpu(cpu_domains, i).sd;
  6434. init_sched_groups_power(i, sd);
  6435. }
  6436. #endif
  6437. #ifdef CONFIG_SCHED_MC
  6438. for_each_cpu(i, cpu_map) {
  6439. sd = &per_cpu(core_domains, i).sd;
  6440. init_sched_groups_power(i, sd);
  6441. }
  6442. #endif
  6443. #ifdef CONFIG_SCHED_BOOK
  6444. for_each_cpu(i, cpu_map) {
  6445. sd = &per_cpu(book_domains, i).sd;
  6446. init_sched_groups_power(i, sd);
  6447. }
  6448. #endif
  6449. for_each_cpu(i, cpu_map) {
  6450. sd = &per_cpu(phys_domains, i).sd;
  6451. init_sched_groups_power(i, sd);
  6452. }
  6453. #ifdef CONFIG_NUMA
  6454. for (i = 0; i < nr_node_ids; i++)
  6455. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6456. if (d.sd_allnodes) {
  6457. struct sched_group *sg;
  6458. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6459. d.tmpmask);
  6460. init_numa_sched_groups_power(sg);
  6461. }
  6462. #endif
  6463. /* Attach the domains */
  6464. for_each_cpu(i, cpu_map) {
  6465. #ifdef CONFIG_SCHED_SMT
  6466. sd = &per_cpu(cpu_domains, i).sd;
  6467. #elif defined(CONFIG_SCHED_MC)
  6468. sd = &per_cpu(core_domains, i).sd;
  6469. #elif defined(CONFIG_SCHED_BOOK)
  6470. sd = &per_cpu(book_domains, i).sd;
  6471. #else
  6472. sd = &per_cpu(phys_domains, i).sd;
  6473. #endif
  6474. cpu_attach_domain(sd, d.rd, i);
  6475. }
  6476. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6477. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6478. return 0;
  6479. error:
  6480. __free_domain_allocs(&d, alloc_state, cpu_map);
  6481. return -ENOMEM;
  6482. }
  6483. static int build_sched_domains(const struct cpumask *cpu_map)
  6484. {
  6485. return __build_sched_domains(cpu_map, NULL);
  6486. }
  6487. static cpumask_var_t *doms_cur; /* current sched domains */
  6488. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6489. static struct sched_domain_attr *dattr_cur;
  6490. /* attribues of custom domains in 'doms_cur' */
  6491. /*
  6492. * Special case: If a kmalloc of a doms_cur partition (array of
  6493. * cpumask) fails, then fallback to a single sched domain,
  6494. * as determined by the single cpumask fallback_doms.
  6495. */
  6496. static cpumask_var_t fallback_doms;
  6497. /*
  6498. * arch_update_cpu_topology lets virtualized architectures update the
  6499. * cpu core maps. It is supposed to return 1 if the topology changed
  6500. * or 0 if it stayed the same.
  6501. */
  6502. int __attribute__((weak)) arch_update_cpu_topology(void)
  6503. {
  6504. return 0;
  6505. }
  6506. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6507. {
  6508. int i;
  6509. cpumask_var_t *doms;
  6510. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6511. if (!doms)
  6512. return NULL;
  6513. for (i = 0; i < ndoms; i++) {
  6514. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6515. free_sched_domains(doms, i);
  6516. return NULL;
  6517. }
  6518. }
  6519. return doms;
  6520. }
  6521. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6522. {
  6523. unsigned int i;
  6524. for (i = 0; i < ndoms; i++)
  6525. free_cpumask_var(doms[i]);
  6526. kfree(doms);
  6527. }
  6528. /*
  6529. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6530. * For now this just excludes isolated cpus, but could be used to
  6531. * exclude other special cases in the future.
  6532. */
  6533. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6534. {
  6535. int err;
  6536. arch_update_cpu_topology();
  6537. ndoms_cur = 1;
  6538. doms_cur = alloc_sched_domains(ndoms_cur);
  6539. if (!doms_cur)
  6540. doms_cur = &fallback_doms;
  6541. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6542. dattr_cur = NULL;
  6543. err = build_sched_domains(doms_cur[0]);
  6544. register_sched_domain_sysctl();
  6545. return err;
  6546. }
  6547. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6548. struct cpumask *tmpmask)
  6549. {
  6550. free_sched_groups(cpu_map, tmpmask);
  6551. }
  6552. /*
  6553. * Detach sched domains from a group of cpus specified in cpu_map
  6554. * These cpus will now be attached to the NULL domain
  6555. */
  6556. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6557. {
  6558. /* Save because hotplug lock held. */
  6559. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6560. int i;
  6561. for_each_cpu(i, cpu_map)
  6562. cpu_attach_domain(NULL, &def_root_domain, i);
  6563. synchronize_sched();
  6564. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6565. }
  6566. /* handle null as "default" */
  6567. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6568. struct sched_domain_attr *new, int idx_new)
  6569. {
  6570. struct sched_domain_attr tmp;
  6571. /* fast path */
  6572. if (!new && !cur)
  6573. return 1;
  6574. tmp = SD_ATTR_INIT;
  6575. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6576. new ? (new + idx_new) : &tmp,
  6577. sizeof(struct sched_domain_attr));
  6578. }
  6579. /*
  6580. * Partition sched domains as specified by the 'ndoms_new'
  6581. * cpumasks in the array doms_new[] of cpumasks. This compares
  6582. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6583. * It destroys each deleted domain and builds each new domain.
  6584. *
  6585. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6586. * The masks don't intersect (don't overlap.) We should setup one
  6587. * sched domain for each mask. CPUs not in any of the cpumasks will
  6588. * not be load balanced. If the same cpumask appears both in the
  6589. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6590. * it as it is.
  6591. *
  6592. * The passed in 'doms_new' should be allocated using
  6593. * alloc_sched_domains. This routine takes ownership of it and will
  6594. * free_sched_domains it when done with it. If the caller failed the
  6595. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6596. * and partition_sched_domains() will fallback to the single partition
  6597. * 'fallback_doms', it also forces the domains to be rebuilt.
  6598. *
  6599. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6600. * ndoms_new == 0 is a special case for destroying existing domains,
  6601. * and it will not create the default domain.
  6602. *
  6603. * Call with hotplug lock held
  6604. */
  6605. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6606. struct sched_domain_attr *dattr_new)
  6607. {
  6608. int i, j, n;
  6609. int new_topology;
  6610. mutex_lock(&sched_domains_mutex);
  6611. /* always unregister in case we don't destroy any domains */
  6612. unregister_sched_domain_sysctl();
  6613. /* Let architecture update cpu core mappings. */
  6614. new_topology = arch_update_cpu_topology();
  6615. n = doms_new ? ndoms_new : 0;
  6616. /* Destroy deleted domains */
  6617. for (i = 0; i < ndoms_cur; i++) {
  6618. for (j = 0; j < n && !new_topology; j++) {
  6619. if (cpumask_equal(doms_cur[i], doms_new[j])
  6620. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6621. goto match1;
  6622. }
  6623. /* no match - a current sched domain not in new doms_new[] */
  6624. detach_destroy_domains(doms_cur[i]);
  6625. match1:
  6626. ;
  6627. }
  6628. if (doms_new == NULL) {
  6629. ndoms_cur = 0;
  6630. doms_new = &fallback_doms;
  6631. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6632. WARN_ON_ONCE(dattr_new);
  6633. }
  6634. /* Build new domains */
  6635. for (i = 0; i < ndoms_new; i++) {
  6636. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6637. if (cpumask_equal(doms_new[i], doms_cur[j])
  6638. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6639. goto match2;
  6640. }
  6641. /* no match - add a new doms_new */
  6642. __build_sched_domains(doms_new[i],
  6643. dattr_new ? dattr_new + i : NULL);
  6644. match2:
  6645. ;
  6646. }
  6647. /* Remember the new sched domains */
  6648. if (doms_cur != &fallback_doms)
  6649. free_sched_domains(doms_cur, ndoms_cur);
  6650. kfree(dattr_cur); /* kfree(NULL) is safe */
  6651. doms_cur = doms_new;
  6652. dattr_cur = dattr_new;
  6653. ndoms_cur = ndoms_new;
  6654. register_sched_domain_sysctl();
  6655. mutex_unlock(&sched_domains_mutex);
  6656. }
  6657. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6658. static void arch_reinit_sched_domains(void)
  6659. {
  6660. get_online_cpus();
  6661. /* Destroy domains first to force the rebuild */
  6662. partition_sched_domains(0, NULL, NULL);
  6663. rebuild_sched_domains();
  6664. put_online_cpus();
  6665. }
  6666. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6667. {
  6668. unsigned int level = 0;
  6669. if (sscanf(buf, "%u", &level) != 1)
  6670. return -EINVAL;
  6671. /*
  6672. * level is always be positive so don't check for
  6673. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6674. * What happens on 0 or 1 byte write,
  6675. * need to check for count as well?
  6676. */
  6677. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6678. return -EINVAL;
  6679. if (smt)
  6680. sched_smt_power_savings = level;
  6681. else
  6682. sched_mc_power_savings = level;
  6683. arch_reinit_sched_domains();
  6684. return count;
  6685. }
  6686. #ifdef CONFIG_SCHED_MC
  6687. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6688. struct sysdev_class_attribute *attr,
  6689. char *page)
  6690. {
  6691. return sprintf(page, "%u\n", sched_mc_power_savings);
  6692. }
  6693. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6694. struct sysdev_class_attribute *attr,
  6695. const char *buf, size_t count)
  6696. {
  6697. return sched_power_savings_store(buf, count, 0);
  6698. }
  6699. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6700. sched_mc_power_savings_show,
  6701. sched_mc_power_savings_store);
  6702. #endif
  6703. #ifdef CONFIG_SCHED_SMT
  6704. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6705. struct sysdev_class_attribute *attr,
  6706. char *page)
  6707. {
  6708. return sprintf(page, "%u\n", sched_smt_power_savings);
  6709. }
  6710. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6711. struct sysdev_class_attribute *attr,
  6712. const char *buf, size_t count)
  6713. {
  6714. return sched_power_savings_store(buf, count, 1);
  6715. }
  6716. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6717. sched_smt_power_savings_show,
  6718. sched_smt_power_savings_store);
  6719. #endif
  6720. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6721. {
  6722. int err = 0;
  6723. #ifdef CONFIG_SCHED_SMT
  6724. if (smt_capable())
  6725. err = sysfs_create_file(&cls->kset.kobj,
  6726. &attr_sched_smt_power_savings.attr);
  6727. #endif
  6728. #ifdef CONFIG_SCHED_MC
  6729. if (!err && mc_capable())
  6730. err = sysfs_create_file(&cls->kset.kobj,
  6731. &attr_sched_mc_power_savings.attr);
  6732. #endif
  6733. return err;
  6734. }
  6735. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6736. /*
  6737. * Update cpusets according to cpu_active mask. If cpusets are
  6738. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6739. * around partition_sched_domains().
  6740. */
  6741. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6742. void *hcpu)
  6743. {
  6744. switch (action & ~CPU_TASKS_FROZEN) {
  6745. case CPU_ONLINE:
  6746. case CPU_DOWN_FAILED:
  6747. cpuset_update_active_cpus();
  6748. return NOTIFY_OK;
  6749. default:
  6750. return NOTIFY_DONE;
  6751. }
  6752. }
  6753. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6754. void *hcpu)
  6755. {
  6756. switch (action & ~CPU_TASKS_FROZEN) {
  6757. case CPU_DOWN_PREPARE:
  6758. cpuset_update_active_cpus();
  6759. return NOTIFY_OK;
  6760. default:
  6761. return NOTIFY_DONE;
  6762. }
  6763. }
  6764. static int update_runtime(struct notifier_block *nfb,
  6765. unsigned long action, void *hcpu)
  6766. {
  6767. int cpu = (int)(long)hcpu;
  6768. switch (action) {
  6769. case CPU_DOWN_PREPARE:
  6770. case CPU_DOWN_PREPARE_FROZEN:
  6771. disable_runtime(cpu_rq(cpu));
  6772. return NOTIFY_OK;
  6773. case CPU_DOWN_FAILED:
  6774. case CPU_DOWN_FAILED_FROZEN:
  6775. case CPU_ONLINE:
  6776. case CPU_ONLINE_FROZEN:
  6777. enable_runtime(cpu_rq(cpu));
  6778. return NOTIFY_OK;
  6779. default:
  6780. return NOTIFY_DONE;
  6781. }
  6782. }
  6783. void __init sched_init_smp(void)
  6784. {
  6785. cpumask_var_t non_isolated_cpus;
  6786. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6787. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6788. #if defined(CONFIG_NUMA)
  6789. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6790. GFP_KERNEL);
  6791. BUG_ON(sched_group_nodes_bycpu == NULL);
  6792. #endif
  6793. get_online_cpus();
  6794. mutex_lock(&sched_domains_mutex);
  6795. arch_init_sched_domains(cpu_active_mask);
  6796. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6797. if (cpumask_empty(non_isolated_cpus))
  6798. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6799. mutex_unlock(&sched_domains_mutex);
  6800. put_online_cpus();
  6801. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6802. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6803. /* RT runtime code needs to handle some hotplug events */
  6804. hotcpu_notifier(update_runtime, 0);
  6805. init_hrtick();
  6806. /* Move init over to a non-isolated CPU */
  6807. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6808. BUG();
  6809. sched_init_granularity();
  6810. free_cpumask_var(non_isolated_cpus);
  6811. init_sched_rt_class();
  6812. }
  6813. #else
  6814. void __init sched_init_smp(void)
  6815. {
  6816. sched_init_granularity();
  6817. }
  6818. #endif /* CONFIG_SMP */
  6819. const_debug unsigned int sysctl_timer_migration = 1;
  6820. int in_sched_functions(unsigned long addr)
  6821. {
  6822. return in_lock_functions(addr) ||
  6823. (addr >= (unsigned long)__sched_text_start
  6824. && addr < (unsigned long)__sched_text_end);
  6825. }
  6826. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6827. {
  6828. cfs_rq->tasks_timeline = RB_ROOT;
  6829. INIT_LIST_HEAD(&cfs_rq->tasks);
  6830. #ifdef CONFIG_FAIR_GROUP_SCHED
  6831. cfs_rq->rq = rq;
  6832. /* allow initial update_cfs_load() to truncate */
  6833. #ifdef CONFIG_SMP
  6834. cfs_rq->load_stamp = 1;
  6835. #endif
  6836. #endif
  6837. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6838. }
  6839. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6840. {
  6841. struct rt_prio_array *array;
  6842. int i;
  6843. array = &rt_rq->active;
  6844. for (i = 0; i < MAX_RT_PRIO; i++) {
  6845. INIT_LIST_HEAD(array->queue + i);
  6846. __clear_bit(i, array->bitmap);
  6847. }
  6848. /* delimiter for bitsearch: */
  6849. __set_bit(MAX_RT_PRIO, array->bitmap);
  6850. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6851. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6852. #ifdef CONFIG_SMP
  6853. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6854. #endif
  6855. #endif
  6856. #ifdef CONFIG_SMP
  6857. rt_rq->rt_nr_migratory = 0;
  6858. rt_rq->overloaded = 0;
  6859. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6860. #endif
  6861. rt_rq->rt_time = 0;
  6862. rt_rq->rt_throttled = 0;
  6863. rt_rq->rt_runtime = 0;
  6864. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6865. #ifdef CONFIG_RT_GROUP_SCHED
  6866. rt_rq->rt_nr_boosted = 0;
  6867. rt_rq->rq = rq;
  6868. #endif
  6869. }
  6870. #ifdef CONFIG_FAIR_GROUP_SCHED
  6871. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6872. struct sched_entity *se, int cpu,
  6873. struct sched_entity *parent)
  6874. {
  6875. struct rq *rq = cpu_rq(cpu);
  6876. tg->cfs_rq[cpu] = cfs_rq;
  6877. init_cfs_rq(cfs_rq, rq);
  6878. cfs_rq->tg = tg;
  6879. tg->se[cpu] = se;
  6880. /* se could be NULL for root_task_group */
  6881. if (!se)
  6882. return;
  6883. if (!parent)
  6884. se->cfs_rq = &rq->cfs;
  6885. else
  6886. se->cfs_rq = parent->my_q;
  6887. se->my_q = cfs_rq;
  6888. update_load_set(&se->load, 0);
  6889. se->parent = parent;
  6890. }
  6891. #endif
  6892. #ifdef CONFIG_RT_GROUP_SCHED
  6893. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6894. struct sched_rt_entity *rt_se, int cpu,
  6895. struct sched_rt_entity *parent)
  6896. {
  6897. struct rq *rq = cpu_rq(cpu);
  6898. tg->rt_rq[cpu] = rt_rq;
  6899. init_rt_rq(rt_rq, rq);
  6900. rt_rq->tg = tg;
  6901. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6902. tg->rt_se[cpu] = rt_se;
  6903. if (!rt_se)
  6904. return;
  6905. if (!parent)
  6906. rt_se->rt_rq = &rq->rt;
  6907. else
  6908. rt_se->rt_rq = parent->my_q;
  6909. rt_se->my_q = rt_rq;
  6910. rt_se->parent = parent;
  6911. INIT_LIST_HEAD(&rt_se->run_list);
  6912. }
  6913. #endif
  6914. void __init sched_init(void)
  6915. {
  6916. int i, j;
  6917. unsigned long alloc_size = 0, ptr;
  6918. #ifdef CONFIG_FAIR_GROUP_SCHED
  6919. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6920. #endif
  6921. #ifdef CONFIG_RT_GROUP_SCHED
  6922. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6923. #endif
  6924. #ifdef CONFIG_CPUMASK_OFFSTACK
  6925. alloc_size += num_possible_cpus() * cpumask_size();
  6926. #endif
  6927. if (alloc_size) {
  6928. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6929. #ifdef CONFIG_FAIR_GROUP_SCHED
  6930. root_task_group.se = (struct sched_entity **)ptr;
  6931. ptr += nr_cpu_ids * sizeof(void **);
  6932. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6933. ptr += nr_cpu_ids * sizeof(void **);
  6934. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6935. #ifdef CONFIG_RT_GROUP_SCHED
  6936. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6937. ptr += nr_cpu_ids * sizeof(void **);
  6938. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6939. ptr += nr_cpu_ids * sizeof(void **);
  6940. #endif /* CONFIG_RT_GROUP_SCHED */
  6941. #ifdef CONFIG_CPUMASK_OFFSTACK
  6942. for_each_possible_cpu(i) {
  6943. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6944. ptr += cpumask_size();
  6945. }
  6946. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6947. }
  6948. #ifdef CONFIG_SMP
  6949. init_defrootdomain();
  6950. #endif
  6951. init_rt_bandwidth(&def_rt_bandwidth,
  6952. global_rt_period(), global_rt_runtime());
  6953. #ifdef CONFIG_RT_GROUP_SCHED
  6954. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6955. global_rt_period(), global_rt_runtime());
  6956. #endif /* CONFIG_RT_GROUP_SCHED */
  6957. #ifdef CONFIG_CGROUP_SCHED
  6958. list_add(&root_task_group.list, &task_groups);
  6959. INIT_LIST_HEAD(&root_task_group.children);
  6960. autogroup_init(&init_task);
  6961. #endif /* CONFIG_CGROUP_SCHED */
  6962. for_each_possible_cpu(i) {
  6963. struct rq *rq;
  6964. rq = cpu_rq(i);
  6965. raw_spin_lock_init(&rq->lock);
  6966. rq->nr_running = 0;
  6967. rq->calc_load_active = 0;
  6968. rq->calc_load_update = jiffies + LOAD_FREQ;
  6969. init_cfs_rq(&rq->cfs, rq);
  6970. init_rt_rq(&rq->rt, rq);
  6971. #ifdef CONFIG_FAIR_GROUP_SCHED
  6972. root_task_group.shares = root_task_group_load;
  6973. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6974. /*
  6975. * How much cpu bandwidth does root_task_group get?
  6976. *
  6977. * In case of task-groups formed thr' the cgroup filesystem, it
  6978. * gets 100% of the cpu resources in the system. This overall
  6979. * system cpu resource is divided among the tasks of
  6980. * root_task_group and its child task-groups in a fair manner,
  6981. * based on each entity's (task or task-group's) weight
  6982. * (se->load.weight).
  6983. *
  6984. * In other words, if root_task_group has 10 tasks of weight
  6985. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6986. * then A0's share of the cpu resource is:
  6987. *
  6988. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6989. *
  6990. * We achieve this by letting root_task_group's tasks sit
  6991. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6992. */
  6993. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6994. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6995. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6996. #ifdef CONFIG_RT_GROUP_SCHED
  6997. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6998. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6999. #endif
  7000. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7001. rq->cpu_load[j] = 0;
  7002. rq->last_load_update_tick = jiffies;
  7003. #ifdef CONFIG_SMP
  7004. rq->sd = NULL;
  7005. rq->rd = NULL;
  7006. rq->cpu_power = SCHED_LOAD_SCALE;
  7007. rq->post_schedule = 0;
  7008. rq->active_balance = 0;
  7009. rq->next_balance = jiffies;
  7010. rq->push_cpu = 0;
  7011. rq->cpu = i;
  7012. rq->online = 0;
  7013. rq->idle_stamp = 0;
  7014. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7015. rq_attach_root(rq, &def_root_domain);
  7016. #ifdef CONFIG_NO_HZ
  7017. rq->nohz_balance_kick = 0;
  7018. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7019. #endif
  7020. #endif
  7021. init_rq_hrtick(rq);
  7022. atomic_set(&rq->nr_iowait, 0);
  7023. }
  7024. set_load_weight(&init_task);
  7025. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7026. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7027. #endif
  7028. #ifdef CONFIG_SMP
  7029. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7030. #endif
  7031. #ifdef CONFIG_RT_MUTEXES
  7032. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7033. #endif
  7034. /*
  7035. * The boot idle thread does lazy MMU switching as well:
  7036. */
  7037. atomic_inc(&init_mm.mm_count);
  7038. enter_lazy_tlb(&init_mm, current);
  7039. /*
  7040. * Make us the idle thread. Technically, schedule() should not be
  7041. * called from this thread, however somewhere below it might be,
  7042. * but because we are the idle thread, we just pick up running again
  7043. * when this runqueue becomes "idle".
  7044. */
  7045. init_idle(current, smp_processor_id());
  7046. calc_load_update = jiffies + LOAD_FREQ;
  7047. /*
  7048. * During early bootup we pretend to be a normal task:
  7049. */
  7050. current->sched_class = &fair_sched_class;
  7051. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7052. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7053. #ifdef CONFIG_SMP
  7054. #ifdef CONFIG_NO_HZ
  7055. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7056. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7057. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7058. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7059. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7060. #endif
  7061. /* May be allocated at isolcpus cmdline parse time */
  7062. if (cpu_isolated_map == NULL)
  7063. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7064. #endif /* SMP */
  7065. scheduler_running = 1;
  7066. }
  7067. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7068. static inline int preempt_count_equals(int preempt_offset)
  7069. {
  7070. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7071. return (nested == preempt_offset);
  7072. }
  7073. void __might_sleep(const char *file, int line, int preempt_offset)
  7074. {
  7075. #ifdef in_atomic
  7076. static unsigned long prev_jiffy; /* ratelimiting */
  7077. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7078. system_state != SYSTEM_RUNNING || oops_in_progress)
  7079. return;
  7080. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7081. return;
  7082. prev_jiffy = jiffies;
  7083. printk(KERN_ERR
  7084. "BUG: sleeping function called from invalid context at %s:%d\n",
  7085. file, line);
  7086. printk(KERN_ERR
  7087. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7088. in_atomic(), irqs_disabled(),
  7089. current->pid, current->comm);
  7090. debug_show_held_locks(current);
  7091. if (irqs_disabled())
  7092. print_irqtrace_events(current);
  7093. dump_stack();
  7094. #endif
  7095. }
  7096. EXPORT_SYMBOL(__might_sleep);
  7097. #endif
  7098. #ifdef CONFIG_MAGIC_SYSRQ
  7099. static void normalize_task(struct rq *rq, struct task_struct *p)
  7100. {
  7101. const struct sched_class *prev_class = p->sched_class;
  7102. int old_prio = p->prio;
  7103. int on_rq;
  7104. on_rq = p->on_rq;
  7105. if (on_rq)
  7106. deactivate_task(rq, p, 0);
  7107. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7108. if (on_rq) {
  7109. activate_task(rq, p, 0);
  7110. resched_task(rq->curr);
  7111. }
  7112. check_class_changed(rq, p, prev_class, old_prio);
  7113. }
  7114. void normalize_rt_tasks(void)
  7115. {
  7116. struct task_struct *g, *p;
  7117. unsigned long flags;
  7118. struct rq *rq;
  7119. read_lock_irqsave(&tasklist_lock, flags);
  7120. do_each_thread(g, p) {
  7121. /*
  7122. * Only normalize user tasks:
  7123. */
  7124. if (!p->mm)
  7125. continue;
  7126. p->se.exec_start = 0;
  7127. #ifdef CONFIG_SCHEDSTATS
  7128. p->se.statistics.wait_start = 0;
  7129. p->se.statistics.sleep_start = 0;
  7130. p->se.statistics.block_start = 0;
  7131. #endif
  7132. if (!rt_task(p)) {
  7133. /*
  7134. * Renice negative nice level userspace
  7135. * tasks back to 0:
  7136. */
  7137. if (TASK_NICE(p) < 0 && p->mm)
  7138. set_user_nice(p, 0);
  7139. continue;
  7140. }
  7141. raw_spin_lock(&p->pi_lock);
  7142. rq = __task_rq_lock(p);
  7143. normalize_task(rq, p);
  7144. __task_rq_unlock(rq);
  7145. raw_spin_unlock(&p->pi_lock);
  7146. } while_each_thread(g, p);
  7147. read_unlock_irqrestore(&tasklist_lock, flags);
  7148. }
  7149. #endif /* CONFIG_MAGIC_SYSRQ */
  7150. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7151. /*
  7152. * These functions are only useful for the IA64 MCA handling, or kdb.
  7153. *
  7154. * They can only be called when the whole system has been
  7155. * stopped - every CPU needs to be quiescent, and no scheduling
  7156. * activity can take place. Using them for anything else would
  7157. * be a serious bug, and as a result, they aren't even visible
  7158. * under any other configuration.
  7159. */
  7160. /**
  7161. * curr_task - return the current task for a given cpu.
  7162. * @cpu: the processor in question.
  7163. *
  7164. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7165. */
  7166. struct task_struct *curr_task(int cpu)
  7167. {
  7168. return cpu_curr(cpu);
  7169. }
  7170. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7171. #ifdef CONFIG_IA64
  7172. /**
  7173. * set_curr_task - set the current task for a given cpu.
  7174. * @cpu: the processor in question.
  7175. * @p: the task pointer to set.
  7176. *
  7177. * Description: This function must only be used when non-maskable interrupts
  7178. * are serviced on a separate stack. It allows the architecture to switch the
  7179. * notion of the current task on a cpu in a non-blocking manner. This function
  7180. * must be called with all CPU's synchronized, and interrupts disabled, the
  7181. * and caller must save the original value of the current task (see
  7182. * curr_task() above) and restore that value before reenabling interrupts and
  7183. * re-starting the system.
  7184. *
  7185. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7186. */
  7187. void set_curr_task(int cpu, struct task_struct *p)
  7188. {
  7189. cpu_curr(cpu) = p;
  7190. }
  7191. #endif
  7192. #ifdef CONFIG_FAIR_GROUP_SCHED
  7193. static void free_fair_sched_group(struct task_group *tg)
  7194. {
  7195. int i;
  7196. for_each_possible_cpu(i) {
  7197. if (tg->cfs_rq)
  7198. kfree(tg->cfs_rq[i]);
  7199. if (tg->se)
  7200. kfree(tg->se[i]);
  7201. }
  7202. kfree(tg->cfs_rq);
  7203. kfree(tg->se);
  7204. }
  7205. static
  7206. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7207. {
  7208. struct cfs_rq *cfs_rq;
  7209. struct sched_entity *se;
  7210. int i;
  7211. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7212. if (!tg->cfs_rq)
  7213. goto err;
  7214. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7215. if (!tg->se)
  7216. goto err;
  7217. tg->shares = NICE_0_LOAD;
  7218. for_each_possible_cpu(i) {
  7219. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7220. GFP_KERNEL, cpu_to_node(i));
  7221. if (!cfs_rq)
  7222. goto err;
  7223. se = kzalloc_node(sizeof(struct sched_entity),
  7224. GFP_KERNEL, cpu_to_node(i));
  7225. if (!se)
  7226. goto err_free_rq;
  7227. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7228. }
  7229. return 1;
  7230. err_free_rq:
  7231. kfree(cfs_rq);
  7232. err:
  7233. return 0;
  7234. }
  7235. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7236. {
  7237. struct rq *rq = cpu_rq(cpu);
  7238. unsigned long flags;
  7239. /*
  7240. * Only empty task groups can be destroyed; so we can speculatively
  7241. * check on_list without danger of it being re-added.
  7242. */
  7243. if (!tg->cfs_rq[cpu]->on_list)
  7244. return;
  7245. raw_spin_lock_irqsave(&rq->lock, flags);
  7246. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7247. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7248. }
  7249. #else /* !CONFG_FAIR_GROUP_SCHED */
  7250. static inline void free_fair_sched_group(struct task_group *tg)
  7251. {
  7252. }
  7253. static inline
  7254. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7255. {
  7256. return 1;
  7257. }
  7258. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7259. {
  7260. }
  7261. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7262. #ifdef CONFIG_RT_GROUP_SCHED
  7263. static void free_rt_sched_group(struct task_group *tg)
  7264. {
  7265. int i;
  7266. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7267. for_each_possible_cpu(i) {
  7268. if (tg->rt_rq)
  7269. kfree(tg->rt_rq[i]);
  7270. if (tg->rt_se)
  7271. kfree(tg->rt_se[i]);
  7272. }
  7273. kfree(tg->rt_rq);
  7274. kfree(tg->rt_se);
  7275. }
  7276. static
  7277. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7278. {
  7279. struct rt_rq *rt_rq;
  7280. struct sched_rt_entity *rt_se;
  7281. struct rq *rq;
  7282. int i;
  7283. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7284. if (!tg->rt_rq)
  7285. goto err;
  7286. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7287. if (!tg->rt_se)
  7288. goto err;
  7289. init_rt_bandwidth(&tg->rt_bandwidth,
  7290. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7291. for_each_possible_cpu(i) {
  7292. rq = cpu_rq(i);
  7293. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7294. GFP_KERNEL, cpu_to_node(i));
  7295. if (!rt_rq)
  7296. goto err;
  7297. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7298. GFP_KERNEL, cpu_to_node(i));
  7299. if (!rt_se)
  7300. goto err_free_rq;
  7301. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7302. }
  7303. return 1;
  7304. err_free_rq:
  7305. kfree(rt_rq);
  7306. err:
  7307. return 0;
  7308. }
  7309. #else /* !CONFIG_RT_GROUP_SCHED */
  7310. static inline void free_rt_sched_group(struct task_group *tg)
  7311. {
  7312. }
  7313. static inline
  7314. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7315. {
  7316. return 1;
  7317. }
  7318. #endif /* CONFIG_RT_GROUP_SCHED */
  7319. #ifdef CONFIG_CGROUP_SCHED
  7320. static void free_sched_group(struct task_group *tg)
  7321. {
  7322. free_fair_sched_group(tg);
  7323. free_rt_sched_group(tg);
  7324. autogroup_free(tg);
  7325. kfree(tg);
  7326. }
  7327. /* allocate runqueue etc for a new task group */
  7328. struct task_group *sched_create_group(struct task_group *parent)
  7329. {
  7330. struct task_group *tg;
  7331. unsigned long flags;
  7332. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7333. if (!tg)
  7334. return ERR_PTR(-ENOMEM);
  7335. if (!alloc_fair_sched_group(tg, parent))
  7336. goto err;
  7337. if (!alloc_rt_sched_group(tg, parent))
  7338. goto err;
  7339. spin_lock_irqsave(&task_group_lock, flags);
  7340. list_add_rcu(&tg->list, &task_groups);
  7341. WARN_ON(!parent); /* root should already exist */
  7342. tg->parent = parent;
  7343. INIT_LIST_HEAD(&tg->children);
  7344. list_add_rcu(&tg->siblings, &parent->children);
  7345. spin_unlock_irqrestore(&task_group_lock, flags);
  7346. return tg;
  7347. err:
  7348. free_sched_group(tg);
  7349. return ERR_PTR(-ENOMEM);
  7350. }
  7351. /* rcu callback to free various structures associated with a task group */
  7352. static void free_sched_group_rcu(struct rcu_head *rhp)
  7353. {
  7354. /* now it should be safe to free those cfs_rqs */
  7355. free_sched_group(container_of(rhp, struct task_group, rcu));
  7356. }
  7357. /* Destroy runqueue etc associated with a task group */
  7358. void sched_destroy_group(struct task_group *tg)
  7359. {
  7360. unsigned long flags;
  7361. int i;
  7362. /* end participation in shares distribution */
  7363. for_each_possible_cpu(i)
  7364. unregister_fair_sched_group(tg, i);
  7365. spin_lock_irqsave(&task_group_lock, flags);
  7366. list_del_rcu(&tg->list);
  7367. list_del_rcu(&tg->siblings);
  7368. spin_unlock_irqrestore(&task_group_lock, flags);
  7369. /* wait for possible concurrent references to cfs_rqs complete */
  7370. call_rcu(&tg->rcu, free_sched_group_rcu);
  7371. }
  7372. /* change task's runqueue when it moves between groups.
  7373. * The caller of this function should have put the task in its new group
  7374. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7375. * reflect its new group.
  7376. */
  7377. void sched_move_task(struct task_struct *tsk)
  7378. {
  7379. int on_rq, running;
  7380. unsigned long flags;
  7381. struct rq *rq;
  7382. rq = task_rq_lock(tsk, &flags);
  7383. running = task_current(rq, tsk);
  7384. on_rq = tsk->on_rq;
  7385. if (on_rq)
  7386. dequeue_task(rq, tsk, 0);
  7387. if (unlikely(running))
  7388. tsk->sched_class->put_prev_task(rq, tsk);
  7389. #ifdef CONFIG_FAIR_GROUP_SCHED
  7390. if (tsk->sched_class->task_move_group)
  7391. tsk->sched_class->task_move_group(tsk, on_rq);
  7392. else
  7393. #endif
  7394. set_task_rq(tsk, task_cpu(tsk));
  7395. if (unlikely(running))
  7396. tsk->sched_class->set_curr_task(rq);
  7397. if (on_rq)
  7398. enqueue_task(rq, tsk, 0);
  7399. task_rq_unlock(rq, tsk, &flags);
  7400. }
  7401. #endif /* CONFIG_CGROUP_SCHED */
  7402. #ifdef CONFIG_FAIR_GROUP_SCHED
  7403. static DEFINE_MUTEX(shares_mutex);
  7404. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7405. {
  7406. int i;
  7407. unsigned long flags;
  7408. /*
  7409. * We can't change the weight of the root cgroup.
  7410. */
  7411. if (!tg->se[0])
  7412. return -EINVAL;
  7413. if (shares < MIN_SHARES)
  7414. shares = MIN_SHARES;
  7415. else if (shares > MAX_SHARES)
  7416. shares = MAX_SHARES;
  7417. mutex_lock(&shares_mutex);
  7418. if (tg->shares == shares)
  7419. goto done;
  7420. tg->shares = shares;
  7421. for_each_possible_cpu(i) {
  7422. struct rq *rq = cpu_rq(i);
  7423. struct sched_entity *se;
  7424. se = tg->se[i];
  7425. /* Propagate contribution to hierarchy */
  7426. raw_spin_lock_irqsave(&rq->lock, flags);
  7427. for_each_sched_entity(se)
  7428. update_cfs_shares(group_cfs_rq(se));
  7429. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7430. }
  7431. done:
  7432. mutex_unlock(&shares_mutex);
  7433. return 0;
  7434. }
  7435. unsigned long sched_group_shares(struct task_group *tg)
  7436. {
  7437. return tg->shares;
  7438. }
  7439. #endif
  7440. #ifdef CONFIG_RT_GROUP_SCHED
  7441. /*
  7442. * Ensure that the real time constraints are schedulable.
  7443. */
  7444. static DEFINE_MUTEX(rt_constraints_mutex);
  7445. static unsigned long to_ratio(u64 period, u64 runtime)
  7446. {
  7447. if (runtime == RUNTIME_INF)
  7448. return 1ULL << 20;
  7449. return div64_u64(runtime << 20, period);
  7450. }
  7451. /* Must be called with tasklist_lock held */
  7452. static inline int tg_has_rt_tasks(struct task_group *tg)
  7453. {
  7454. struct task_struct *g, *p;
  7455. do_each_thread(g, p) {
  7456. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7457. return 1;
  7458. } while_each_thread(g, p);
  7459. return 0;
  7460. }
  7461. struct rt_schedulable_data {
  7462. struct task_group *tg;
  7463. u64 rt_period;
  7464. u64 rt_runtime;
  7465. };
  7466. static int tg_schedulable(struct task_group *tg, void *data)
  7467. {
  7468. struct rt_schedulable_data *d = data;
  7469. struct task_group *child;
  7470. unsigned long total, sum = 0;
  7471. u64 period, runtime;
  7472. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7473. runtime = tg->rt_bandwidth.rt_runtime;
  7474. if (tg == d->tg) {
  7475. period = d->rt_period;
  7476. runtime = d->rt_runtime;
  7477. }
  7478. /*
  7479. * Cannot have more runtime than the period.
  7480. */
  7481. if (runtime > period && runtime != RUNTIME_INF)
  7482. return -EINVAL;
  7483. /*
  7484. * Ensure we don't starve existing RT tasks.
  7485. */
  7486. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7487. return -EBUSY;
  7488. total = to_ratio(period, runtime);
  7489. /*
  7490. * Nobody can have more than the global setting allows.
  7491. */
  7492. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7493. return -EINVAL;
  7494. /*
  7495. * The sum of our children's runtime should not exceed our own.
  7496. */
  7497. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7498. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7499. runtime = child->rt_bandwidth.rt_runtime;
  7500. if (child == d->tg) {
  7501. period = d->rt_period;
  7502. runtime = d->rt_runtime;
  7503. }
  7504. sum += to_ratio(period, runtime);
  7505. }
  7506. if (sum > total)
  7507. return -EINVAL;
  7508. return 0;
  7509. }
  7510. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7511. {
  7512. struct rt_schedulable_data data = {
  7513. .tg = tg,
  7514. .rt_period = period,
  7515. .rt_runtime = runtime,
  7516. };
  7517. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7518. }
  7519. static int tg_set_bandwidth(struct task_group *tg,
  7520. u64 rt_period, u64 rt_runtime)
  7521. {
  7522. int i, err = 0;
  7523. mutex_lock(&rt_constraints_mutex);
  7524. read_lock(&tasklist_lock);
  7525. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7526. if (err)
  7527. goto unlock;
  7528. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7529. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7530. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7531. for_each_possible_cpu(i) {
  7532. struct rt_rq *rt_rq = tg->rt_rq[i];
  7533. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7534. rt_rq->rt_runtime = rt_runtime;
  7535. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7536. }
  7537. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7538. unlock:
  7539. read_unlock(&tasklist_lock);
  7540. mutex_unlock(&rt_constraints_mutex);
  7541. return err;
  7542. }
  7543. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7544. {
  7545. u64 rt_runtime, rt_period;
  7546. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7547. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7548. if (rt_runtime_us < 0)
  7549. rt_runtime = RUNTIME_INF;
  7550. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7551. }
  7552. long sched_group_rt_runtime(struct task_group *tg)
  7553. {
  7554. u64 rt_runtime_us;
  7555. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7556. return -1;
  7557. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7558. do_div(rt_runtime_us, NSEC_PER_USEC);
  7559. return rt_runtime_us;
  7560. }
  7561. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7562. {
  7563. u64 rt_runtime, rt_period;
  7564. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7565. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7566. if (rt_period == 0)
  7567. return -EINVAL;
  7568. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7569. }
  7570. long sched_group_rt_period(struct task_group *tg)
  7571. {
  7572. u64 rt_period_us;
  7573. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7574. do_div(rt_period_us, NSEC_PER_USEC);
  7575. return rt_period_us;
  7576. }
  7577. static int sched_rt_global_constraints(void)
  7578. {
  7579. u64 runtime, period;
  7580. int ret = 0;
  7581. if (sysctl_sched_rt_period <= 0)
  7582. return -EINVAL;
  7583. runtime = global_rt_runtime();
  7584. period = global_rt_period();
  7585. /*
  7586. * Sanity check on the sysctl variables.
  7587. */
  7588. if (runtime > period && runtime != RUNTIME_INF)
  7589. return -EINVAL;
  7590. mutex_lock(&rt_constraints_mutex);
  7591. read_lock(&tasklist_lock);
  7592. ret = __rt_schedulable(NULL, 0, 0);
  7593. read_unlock(&tasklist_lock);
  7594. mutex_unlock(&rt_constraints_mutex);
  7595. return ret;
  7596. }
  7597. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7598. {
  7599. /* Don't accept realtime tasks when there is no way for them to run */
  7600. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7601. return 0;
  7602. return 1;
  7603. }
  7604. #else /* !CONFIG_RT_GROUP_SCHED */
  7605. static int sched_rt_global_constraints(void)
  7606. {
  7607. unsigned long flags;
  7608. int i;
  7609. if (sysctl_sched_rt_period <= 0)
  7610. return -EINVAL;
  7611. /*
  7612. * There's always some RT tasks in the root group
  7613. * -- migration, kstopmachine etc..
  7614. */
  7615. if (sysctl_sched_rt_runtime == 0)
  7616. return -EBUSY;
  7617. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7618. for_each_possible_cpu(i) {
  7619. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7620. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7621. rt_rq->rt_runtime = global_rt_runtime();
  7622. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7623. }
  7624. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7625. return 0;
  7626. }
  7627. #endif /* CONFIG_RT_GROUP_SCHED */
  7628. int sched_rt_handler(struct ctl_table *table, int write,
  7629. void __user *buffer, size_t *lenp,
  7630. loff_t *ppos)
  7631. {
  7632. int ret;
  7633. int old_period, old_runtime;
  7634. static DEFINE_MUTEX(mutex);
  7635. mutex_lock(&mutex);
  7636. old_period = sysctl_sched_rt_period;
  7637. old_runtime = sysctl_sched_rt_runtime;
  7638. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7639. if (!ret && write) {
  7640. ret = sched_rt_global_constraints();
  7641. if (ret) {
  7642. sysctl_sched_rt_period = old_period;
  7643. sysctl_sched_rt_runtime = old_runtime;
  7644. } else {
  7645. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7646. def_rt_bandwidth.rt_period =
  7647. ns_to_ktime(global_rt_period());
  7648. }
  7649. }
  7650. mutex_unlock(&mutex);
  7651. return ret;
  7652. }
  7653. #ifdef CONFIG_CGROUP_SCHED
  7654. /* return corresponding task_group object of a cgroup */
  7655. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7656. {
  7657. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7658. struct task_group, css);
  7659. }
  7660. static struct cgroup_subsys_state *
  7661. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7662. {
  7663. struct task_group *tg, *parent;
  7664. if (!cgrp->parent) {
  7665. /* This is early initialization for the top cgroup */
  7666. return &root_task_group.css;
  7667. }
  7668. parent = cgroup_tg(cgrp->parent);
  7669. tg = sched_create_group(parent);
  7670. if (IS_ERR(tg))
  7671. return ERR_PTR(-ENOMEM);
  7672. return &tg->css;
  7673. }
  7674. static void
  7675. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7676. {
  7677. struct task_group *tg = cgroup_tg(cgrp);
  7678. sched_destroy_group(tg);
  7679. }
  7680. static int
  7681. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7682. {
  7683. #ifdef CONFIG_RT_GROUP_SCHED
  7684. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7685. return -EINVAL;
  7686. #else
  7687. /* We don't support RT-tasks being in separate groups */
  7688. if (tsk->sched_class != &fair_sched_class)
  7689. return -EINVAL;
  7690. #endif
  7691. return 0;
  7692. }
  7693. static int
  7694. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7695. struct task_struct *tsk, bool threadgroup)
  7696. {
  7697. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7698. if (retval)
  7699. return retval;
  7700. if (threadgroup) {
  7701. struct task_struct *c;
  7702. rcu_read_lock();
  7703. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7704. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7705. if (retval) {
  7706. rcu_read_unlock();
  7707. return retval;
  7708. }
  7709. }
  7710. rcu_read_unlock();
  7711. }
  7712. return 0;
  7713. }
  7714. static void
  7715. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7716. struct cgroup *old_cont, struct task_struct *tsk,
  7717. bool threadgroup)
  7718. {
  7719. sched_move_task(tsk);
  7720. if (threadgroup) {
  7721. struct task_struct *c;
  7722. rcu_read_lock();
  7723. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7724. sched_move_task(c);
  7725. }
  7726. rcu_read_unlock();
  7727. }
  7728. }
  7729. static void
  7730. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7731. struct cgroup *old_cgrp, struct task_struct *task)
  7732. {
  7733. /*
  7734. * cgroup_exit() is called in the copy_process() failure path.
  7735. * Ignore this case since the task hasn't ran yet, this avoids
  7736. * trying to poke a half freed task state from generic code.
  7737. */
  7738. if (!(task->flags & PF_EXITING))
  7739. return;
  7740. sched_move_task(task);
  7741. }
  7742. #ifdef CONFIG_FAIR_GROUP_SCHED
  7743. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7744. u64 shareval)
  7745. {
  7746. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7747. }
  7748. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7749. {
  7750. struct task_group *tg = cgroup_tg(cgrp);
  7751. return (u64) tg->shares;
  7752. }
  7753. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7754. #ifdef CONFIG_RT_GROUP_SCHED
  7755. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7756. s64 val)
  7757. {
  7758. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7759. }
  7760. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7761. {
  7762. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7763. }
  7764. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7765. u64 rt_period_us)
  7766. {
  7767. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7768. }
  7769. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7770. {
  7771. return sched_group_rt_period(cgroup_tg(cgrp));
  7772. }
  7773. #endif /* CONFIG_RT_GROUP_SCHED */
  7774. static struct cftype cpu_files[] = {
  7775. #ifdef CONFIG_FAIR_GROUP_SCHED
  7776. {
  7777. .name = "shares",
  7778. .read_u64 = cpu_shares_read_u64,
  7779. .write_u64 = cpu_shares_write_u64,
  7780. },
  7781. #endif
  7782. #ifdef CONFIG_RT_GROUP_SCHED
  7783. {
  7784. .name = "rt_runtime_us",
  7785. .read_s64 = cpu_rt_runtime_read,
  7786. .write_s64 = cpu_rt_runtime_write,
  7787. },
  7788. {
  7789. .name = "rt_period_us",
  7790. .read_u64 = cpu_rt_period_read_uint,
  7791. .write_u64 = cpu_rt_period_write_uint,
  7792. },
  7793. #endif
  7794. };
  7795. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7796. {
  7797. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7798. }
  7799. struct cgroup_subsys cpu_cgroup_subsys = {
  7800. .name = "cpu",
  7801. .create = cpu_cgroup_create,
  7802. .destroy = cpu_cgroup_destroy,
  7803. .can_attach = cpu_cgroup_can_attach,
  7804. .attach = cpu_cgroup_attach,
  7805. .exit = cpu_cgroup_exit,
  7806. .populate = cpu_cgroup_populate,
  7807. .subsys_id = cpu_cgroup_subsys_id,
  7808. .early_init = 1,
  7809. };
  7810. #endif /* CONFIG_CGROUP_SCHED */
  7811. #ifdef CONFIG_CGROUP_CPUACCT
  7812. /*
  7813. * CPU accounting code for task groups.
  7814. *
  7815. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7816. * (balbir@in.ibm.com).
  7817. */
  7818. /* track cpu usage of a group of tasks and its child groups */
  7819. struct cpuacct {
  7820. struct cgroup_subsys_state css;
  7821. /* cpuusage holds pointer to a u64-type object on every cpu */
  7822. u64 __percpu *cpuusage;
  7823. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7824. struct cpuacct *parent;
  7825. };
  7826. struct cgroup_subsys cpuacct_subsys;
  7827. /* return cpu accounting group corresponding to this container */
  7828. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7829. {
  7830. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7831. struct cpuacct, css);
  7832. }
  7833. /* return cpu accounting group to which this task belongs */
  7834. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7835. {
  7836. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7837. struct cpuacct, css);
  7838. }
  7839. /* create a new cpu accounting group */
  7840. static struct cgroup_subsys_state *cpuacct_create(
  7841. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7842. {
  7843. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7844. int i;
  7845. if (!ca)
  7846. goto out;
  7847. ca->cpuusage = alloc_percpu(u64);
  7848. if (!ca->cpuusage)
  7849. goto out_free_ca;
  7850. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7851. if (percpu_counter_init(&ca->cpustat[i], 0))
  7852. goto out_free_counters;
  7853. if (cgrp->parent)
  7854. ca->parent = cgroup_ca(cgrp->parent);
  7855. return &ca->css;
  7856. out_free_counters:
  7857. while (--i >= 0)
  7858. percpu_counter_destroy(&ca->cpustat[i]);
  7859. free_percpu(ca->cpuusage);
  7860. out_free_ca:
  7861. kfree(ca);
  7862. out:
  7863. return ERR_PTR(-ENOMEM);
  7864. }
  7865. /* destroy an existing cpu accounting group */
  7866. static void
  7867. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7868. {
  7869. struct cpuacct *ca = cgroup_ca(cgrp);
  7870. int i;
  7871. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7872. percpu_counter_destroy(&ca->cpustat[i]);
  7873. free_percpu(ca->cpuusage);
  7874. kfree(ca);
  7875. }
  7876. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7877. {
  7878. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7879. u64 data;
  7880. #ifndef CONFIG_64BIT
  7881. /*
  7882. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7883. */
  7884. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7885. data = *cpuusage;
  7886. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7887. #else
  7888. data = *cpuusage;
  7889. #endif
  7890. return data;
  7891. }
  7892. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7893. {
  7894. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7895. #ifndef CONFIG_64BIT
  7896. /*
  7897. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7898. */
  7899. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7900. *cpuusage = val;
  7901. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7902. #else
  7903. *cpuusage = val;
  7904. #endif
  7905. }
  7906. /* return total cpu usage (in nanoseconds) of a group */
  7907. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7908. {
  7909. struct cpuacct *ca = cgroup_ca(cgrp);
  7910. u64 totalcpuusage = 0;
  7911. int i;
  7912. for_each_present_cpu(i)
  7913. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7914. return totalcpuusage;
  7915. }
  7916. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7917. u64 reset)
  7918. {
  7919. struct cpuacct *ca = cgroup_ca(cgrp);
  7920. int err = 0;
  7921. int i;
  7922. if (reset) {
  7923. err = -EINVAL;
  7924. goto out;
  7925. }
  7926. for_each_present_cpu(i)
  7927. cpuacct_cpuusage_write(ca, i, 0);
  7928. out:
  7929. return err;
  7930. }
  7931. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7932. struct seq_file *m)
  7933. {
  7934. struct cpuacct *ca = cgroup_ca(cgroup);
  7935. u64 percpu;
  7936. int i;
  7937. for_each_present_cpu(i) {
  7938. percpu = cpuacct_cpuusage_read(ca, i);
  7939. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7940. }
  7941. seq_printf(m, "\n");
  7942. return 0;
  7943. }
  7944. static const char *cpuacct_stat_desc[] = {
  7945. [CPUACCT_STAT_USER] = "user",
  7946. [CPUACCT_STAT_SYSTEM] = "system",
  7947. };
  7948. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7949. struct cgroup_map_cb *cb)
  7950. {
  7951. struct cpuacct *ca = cgroup_ca(cgrp);
  7952. int i;
  7953. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7954. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7955. val = cputime64_to_clock_t(val);
  7956. cb->fill(cb, cpuacct_stat_desc[i], val);
  7957. }
  7958. return 0;
  7959. }
  7960. static struct cftype files[] = {
  7961. {
  7962. .name = "usage",
  7963. .read_u64 = cpuusage_read,
  7964. .write_u64 = cpuusage_write,
  7965. },
  7966. {
  7967. .name = "usage_percpu",
  7968. .read_seq_string = cpuacct_percpu_seq_read,
  7969. },
  7970. {
  7971. .name = "stat",
  7972. .read_map = cpuacct_stats_show,
  7973. },
  7974. };
  7975. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7976. {
  7977. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7978. }
  7979. /*
  7980. * charge this task's execution time to its accounting group.
  7981. *
  7982. * called with rq->lock held.
  7983. */
  7984. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7985. {
  7986. struct cpuacct *ca;
  7987. int cpu;
  7988. if (unlikely(!cpuacct_subsys.active))
  7989. return;
  7990. cpu = task_cpu(tsk);
  7991. rcu_read_lock();
  7992. ca = task_ca(tsk);
  7993. for (; ca; ca = ca->parent) {
  7994. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7995. *cpuusage += cputime;
  7996. }
  7997. rcu_read_unlock();
  7998. }
  7999. /*
  8000. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8001. * in cputime_t units. As a result, cpuacct_update_stats calls
  8002. * percpu_counter_add with values large enough to always overflow the
  8003. * per cpu batch limit causing bad SMP scalability.
  8004. *
  8005. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8006. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8007. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8008. */
  8009. #ifdef CONFIG_SMP
  8010. #define CPUACCT_BATCH \
  8011. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8012. #else
  8013. #define CPUACCT_BATCH 0
  8014. #endif
  8015. /*
  8016. * Charge the system/user time to the task's accounting group.
  8017. */
  8018. static void cpuacct_update_stats(struct task_struct *tsk,
  8019. enum cpuacct_stat_index idx, cputime_t val)
  8020. {
  8021. struct cpuacct *ca;
  8022. int batch = CPUACCT_BATCH;
  8023. if (unlikely(!cpuacct_subsys.active))
  8024. return;
  8025. rcu_read_lock();
  8026. ca = task_ca(tsk);
  8027. do {
  8028. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8029. ca = ca->parent;
  8030. } while (ca);
  8031. rcu_read_unlock();
  8032. }
  8033. struct cgroup_subsys cpuacct_subsys = {
  8034. .name = "cpuacct",
  8035. .create = cpuacct_create,
  8036. .destroy = cpuacct_destroy,
  8037. .populate = cpuacct_populate,
  8038. .subsys_id = cpuacct_subsys_id,
  8039. };
  8040. #endif /* CONFIG_CGROUP_CPUACCT */