pch_can.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. /*
  2. * Copyright (C) 1999 - 2010 Intel Corporation.
  3. * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  17. */
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/io.h>
  21. #include <linux/module.h>
  22. #include <linux/sched.h>
  23. #include <linux/pci.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/types.h>
  27. #include <linux/errno.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/can.h>
  31. #include <linux/can/dev.h>
  32. #include <linux/can/error.h>
  33. #define PCH_ENABLE 1 /* The enable flag */
  34. #define PCH_DISABLE 0 /* The disable flag */
  35. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  36. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  37. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  38. #define PCH_CTRL_CCE BIT(6)
  39. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  40. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  41. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  42. #define PCH_CMASK_RX_TX_SET 0x00f3
  43. #define PCH_CMASK_RX_TX_GET 0x0073
  44. #define PCH_CMASK_ALL 0xff
  45. #define PCH_CMASK_NEWDAT BIT(2)
  46. #define PCH_CMASK_CLRINTPND BIT(3)
  47. #define PCH_CMASK_CTRL BIT(4)
  48. #define PCH_CMASK_ARB BIT(5)
  49. #define PCH_CMASK_MASK BIT(6)
  50. #define PCH_CMASK_RDWR BIT(7)
  51. #define PCH_IF_MCONT_NEWDAT BIT(15)
  52. #define PCH_IF_MCONT_MSGLOST BIT(14)
  53. #define PCH_IF_MCONT_INTPND BIT(13)
  54. #define PCH_IF_MCONT_UMASK BIT(12)
  55. #define PCH_IF_MCONT_TXIE BIT(11)
  56. #define PCH_IF_MCONT_RXIE BIT(10)
  57. #define PCH_IF_MCONT_RMTEN BIT(9)
  58. #define PCH_IF_MCONT_TXRQXT BIT(8)
  59. #define PCH_IF_MCONT_EOB BIT(7)
  60. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  61. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  62. #define PCH_ID2_DIR BIT(13)
  63. #define PCH_ID2_XTD BIT(14)
  64. #define PCH_ID_MSGVAL BIT(15)
  65. #define PCH_IF_CREQ_BUSY BIT(15)
  66. #define PCH_STATUS_INT 0x8000
  67. #define PCH_REC 0x00007f00
  68. #define PCH_TEC 0x000000ff
  69. #define PCH_TX_OK BIT(3)
  70. #define PCH_RX_OK BIT(4)
  71. #define PCH_EPASSIV BIT(5)
  72. #define PCH_EWARN BIT(6)
  73. #define PCH_BUS_OFF BIT(7)
  74. /* bit position of certain controller bits. */
  75. #define PCH_BIT_BRP 0
  76. #define PCH_BIT_SJW 6
  77. #define PCH_BIT_TSEG1 8
  78. #define PCH_BIT_TSEG2 12
  79. #define PCH_BIT_BRPE_BRPE 6
  80. #define PCH_MSK_BITT_BRP 0x3f
  81. #define PCH_MSK_BRPE_BRPE 0x3c0
  82. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  83. #define PCH_COUNTER_LIMIT 10
  84. #define PCH_CAN_CLK 50000000 /* 50MHz */
  85. /* Define the number of message object.
  86. * PCH CAN communications are done via Message RAM.
  87. * The Message RAM consists of 32 message objects. */
  88. #define PCH_RX_OBJ_NUM 26
  89. #define PCH_TX_OBJ_NUM 6
  90. #define PCH_RX_OBJ_START 1
  91. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  92. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  93. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  94. #define PCH_FIFO_THRESH 16
  95. /* TxRqst2 show status of MsgObjNo.17~32 */
  96. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  97. (PCH_RX_OBJ_END - 16))
  98. enum pch_ifreg {
  99. PCH_RX_IFREG,
  100. PCH_TX_IFREG,
  101. };
  102. enum pch_can_err {
  103. PCH_STUF_ERR = 1,
  104. PCH_FORM_ERR,
  105. PCH_ACK_ERR,
  106. PCH_BIT1_ERR,
  107. PCH_BIT0_ERR,
  108. PCH_CRC_ERR,
  109. PCH_LEC_ALL,
  110. };
  111. enum pch_can_mode {
  112. PCH_CAN_ENABLE,
  113. PCH_CAN_DISABLE,
  114. PCH_CAN_ALL,
  115. PCH_CAN_NONE,
  116. PCH_CAN_STOP,
  117. PCH_CAN_RUN
  118. };
  119. struct pch_can_if_regs {
  120. u32 creq;
  121. u32 cmask;
  122. u32 mask1;
  123. u32 mask2;
  124. u32 id1;
  125. u32 id2;
  126. u32 mcont;
  127. u32 dataa1;
  128. u32 dataa2;
  129. u32 datab1;
  130. u32 datab2;
  131. u32 rsv[13];
  132. };
  133. struct pch_can_regs {
  134. u32 cont;
  135. u32 stat;
  136. u32 errc;
  137. u32 bitt;
  138. u32 intr;
  139. u32 opt;
  140. u32 brpe;
  141. u32 reserve;
  142. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  143. u32 reserve1[8];
  144. u32 treq1;
  145. u32 treq2;
  146. u32 reserve2[6];
  147. u32 data1;
  148. u32 data2;
  149. u32 reserve3[6];
  150. u32 canipend1;
  151. u32 canipend2;
  152. u32 reserve4[6];
  153. u32 canmval1;
  154. u32 canmval2;
  155. u32 reserve5[37];
  156. u32 srst;
  157. };
  158. struct pch_can_priv {
  159. struct can_priv can;
  160. unsigned int can_num;
  161. struct pci_dev *dev;
  162. int tx_enable[PCH_TX_OBJ_END];
  163. int rx_enable[PCH_TX_OBJ_END];
  164. int rx_link[PCH_TX_OBJ_END];
  165. unsigned int int_enables;
  166. unsigned int int_stat;
  167. struct net_device *ndev;
  168. unsigned int msg_obj[PCH_TX_OBJ_END];
  169. struct pch_can_regs __iomem *regs;
  170. struct napi_struct napi;
  171. unsigned int tx_obj; /* Point next Tx Obj index */
  172. unsigned int use_msi;
  173. };
  174. static struct can_bittiming_const pch_can_bittiming_const = {
  175. .name = KBUILD_MODNAME,
  176. .tseg1_min = 1,
  177. .tseg1_max = 16,
  178. .tseg2_min = 1,
  179. .tseg2_max = 8,
  180. .sjw_max = 4,
  181. .brp_min = 1,
  182. .brp_max = 1024, /* 6bit + extended 4bit */
  183. .brp_inc = 1,
  184. };
  185. static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
  186. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  187. {0,}
  188. };
  189. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  190. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  191. {
  192. iowrite32(ioread32(addr) | mask, addr);
  193. }
  194. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  195. {
  196. iowrite32(ioread32(addr) & ~mask, addr);
  197. }
  198. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  199. enum pch_can_mode mode)
  200. {
  201. switch (mode) {
  202. case PCH_CAN_RUN:
  203. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  204. break;
  205. case PCH_CAN_STOP:
  206. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  207. break;
  208. default:
  209. dev_err(&priv->ndev->dev, "%s -> Invalid Mode.\n", __func__);
  210. break;
  211. }
  212. }
  213. static void pch_can_set_optmode(struct pch_can_priv *priv)
  214. {
  215. u32 reg_val = ioread32(&priv->regs->opt);
  216. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  217. reg_val |= PCH_OPT_SILENT;
  218. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  219. reg_val |= PCH_OPT_LBACK;
  220. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  221. iowrite32(reg_val, &priv->regs->opt);
  222. }
  223. static void pch_can_set_int_custom(struct pch_can_priv *priv)
  224. {
  225. /* Clearing the IE, SIE and EIE bits of Can control register. */
  226. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  227. /* Appropriately setting them. */
  228. pch_can_bit_set(&priv->regs->cont,
  229. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  230. }
  231. /* This function retrieves interrupt enabled for the CAN device. */
  232. static void pch_can_get_int_enables(struct pch_can_priv *priv, u32 *enables)
  233. {
  234. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  235. *enables = ((ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1);
  236. }
  237. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  238. enum pch_can_mode interrupt_no)
  239. {
  240. switch (interrupt_no) {
  241. case PCH_CAN_ENABLE:
  242. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE);
  243. break;
  244. case PCH_CAN_DISABLE:
  245. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  246. break;
  247. case PCH_CAN_ALL:
  248. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  249. break;
  250. case PCH_CAN_NONE:
  251. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  252. break;
  253. default:
  254. dev_err(&priv->ndev->dev, "Invalid interrupt number.\n");
  255. break;
  256. }
  257. }
  258. static void pch_can_check_if_busy(u32 __iomem *creq_addr, u32 num)
  259. {
  260. u32 counter = PCH_COUNTER_LIMIT;
  261. u32 ifx_creq;
  262. iowrite32(num, creq_addr);
  263. while (counter) {
  264. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  265. if (!ifx_creq)
  266. break;
  267. counter--;
  268. udelay(1);
  269. }
  270. if (!counter)
  271. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  272. }
  273. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  274. u32 set, enum pch_ifreg dir)
  275. {
  276. u32 ie;
  277. if (dir)
  278. ie = PCH_IF_MCONT_TXIE;
  279. else
  280. ie = PCH_IF_MCONT_RXIE;
  281. /* Reading the receive buffer data from RAM to Interface1 registers */
  282. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  283. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  284. /* Setting the IF1MASK1 register to access MsgVal and RxIE bits */
  285. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  286. &priv->regs->ifregs[dir].cmask);
  287. if (set == PCH_ENABLE) {
  288. /* Setting the MsgVal and RxIE bits */
  289. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  290. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  291. } else if (set == PCH_DISABLE) {
  292. /* Resetting the MsgVal and RxIE bits */
  293. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  294. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  295. }
  296. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  297. }
  298. static void pch_can_set_rx_all(struct pch_can_priv *priv, u32 set)
  299. {
  300. int i;
  301. /* Traversing to obtain the object configured as receivers. */
  302. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  303. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  304. }
  305. static void pch_can_set_tx_all(struct pch_can_priv *priv, u32 set)
  306. {
  307. int i;
  308. /* Traversing to obtain the object configured as transmit object. */
  309. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  310. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  311. }
  312. static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
  313. enum pch_ifreg dir)
  314. {
  315. u32 ie, enable;
  316. if (dir)
  317. ie = PCH_IF_MCONT_RXIE;
  318. else
  319. ie = PCH_IF_MCONT_TXIE;
  320. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  321. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  322. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  323. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie)) {
  324. enable = 1;
  325. } else {
  326. enable = 0;
  327. }
  328. return enable;
  329. }
  330. static int pch_can_int_pending(struct pch_can_priv *priv)
  331. {
  332. return ioread32(&priv->regs->intr) & 0xffff;
  333. }
  334. static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  335. u32 buffer_num, u32 set)
  336. {
  337. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  338. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  339. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  340. &priv->regs->ifregs[0].cmask);
  341. if (set == PCH_ENABLE)
  342. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  343. PCH_IF_MCONT_EOB);
  344. else
  345. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  346. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  347. }
  348. static void pch_can_get_rx_buffer_link(struct pch_can_priv *priv,
  349. u32 buffer_num, u32 *link)
  350. {
  351. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  352. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  353. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  354. *link = PCH_DISABLE;
  355. else
  356. *link = PCH_ENABLE;
  357. }
  358. static void pch_can_clear_buffers(struct pch_can_priv *priv)
  359. {
  360. int i;
  361. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  362. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  363. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  364. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  365. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  366. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  367. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  368. iowrite32(0x0, &priv->regs->ifregs[0].dataa1);
  369. iowrite32(0x0, &priv->regs->ifregs[0].dataa2);
  370. iowrite32(0x0, &priv->regs->ifregs[0].datab1);
  371. iowrite32(0x0, &priv->regs->ifregs[0].datab2);
  372. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  373. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  374. &priv->regs->ifregs[0].cmask);
  375. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  376. }
  377. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  378. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[1].cmask);
  379. iowrite32(0xffff, &priv->regs->ifregs[1].mask1);
  380. iowrite32(0xffff, &priv->regs->ifregs[1].mask2);
  381. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  382. iowrite32(0x0, &priv->regs->ifregs[1].id2);
  383. iowrite32(0x0, &priv->regs->ifregs[1].mcont);
  384. iowrite32(0x0, &priv->regs->ifregs[1].dataa1);
  385. iowrite32(0x0, &priv->regs->ifregs[1].dataa2);
  386. iowrite32(0x0, &priv->regs->ifregs[1].datab1);
  387. iowrite32(0x0, &priv->regs->ifregs[1].datab2);
  388. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  389. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  390. &priv->regs->ifregs[1].cmask);
  391. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  392. }
  393. }
  394. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  395. {
  396. int i;
  397. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  398. iowrite32(PCH_CMASK_RX_TX_GET,
  399. &priv->regs->ifregs[0].cmask);
  400. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  401. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  402. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  403. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  404. PCH_IF_MCONT_UMASK);
  405. /* Set FIFO mode set to 0 except last Rx Obj*/
  406. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  407. PCH_IF_MCONT_EOB);
  408. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  409. if (i == PCH_RX_OBJ_END)
  410. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  411. PCH_IF_MCONT_EOB);
  412. iowrite32(0, &priv->regs->ifregs[0].mask1);
  413. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  414. 0x1fff | PCH_MASK2_MDIR_MXTD);
  415. /* Setting CMASK for writing */
  416. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  417. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  418. &priv->regs->ifregs[0].cmask);
  419. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  420. }
  421. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  422. iowrite32(PCH_CMASK_RX_TX_GET,
  423. &priv->regs->ifregs[1].cmask);
  424. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  425. /* Resetting DIR bit for reception */
  426. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  427. iowrite32(0x0, &priv->regs->ifregs[1].id2);
  428. pch_can_bit_set(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
  429. /* Setting EOB bit for transmitter */
  430. iowrite32(PCH_IF_MCONT_EOB, &priv->regs->ifregs[1].mcont);
  431. pch_can_bit_set(&priv->regs->ifregs[1].mcont,
  432. PCH_IF_MCONT_UMASK);
  433. iowrite32(0, &priv->regs->ifregs[1].mask1);
  434. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  435. /* Setting CMASK for writing */
  436. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  437. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  438. &priv->regs->ifregs[1].cmask);
  439. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  440. }
  441. }
  442. static void pch_can_init(struct pch_can_priv *priv)
  443. {
  444. /* Stopping the Can device. */
  445. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  446. /* Clearing all the message object buffers. */
  447. pch_can_clear_buffers(priv);
  448. /* Configuring the respective message object as either rx/tx object. */
  449. pch_can_config_rx_tx_buffers(priv);
  450. /* Enabling the interrupts. */
  451. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  452. }
  453. static void pch_can_release(struct pch_can_priv *priv)
  454. {
  455. /* Stooping the CAN device. */
  456. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  457. /* Disabling the interrupts. */
  458. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  459. /* Disabling all the receive object. */
  460. pch_can_set_rx_all(priv, 0);
  461. /* Disabling all the transmit object. */
  462. pch_can_set_tx_all(priv, 0);
  463. }
  464. /* This function clears interrupt(s) from the CAN device. */
  465. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  466. {
  467. if (mask == PCH_STATUS_INT) {
  468. ioread32(&priv->regs->stat);
  469. return;
  470. }
  471. /* Clear interrupt for transmit object */
  472. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  473. /* Setting CMASK for clearing the reception interrupts. */
  474. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  475. &priv->regs->ifregs[0].cmask);
  476. /* Clearing the Dir bit. */
  477. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  478. /* Clearing NewDat & IntPnd */
  479. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  480. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  481. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, mask);
  482. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  483. /* Setting CMASK for clearing interrupts for
  484. frame transmission. */
  485. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  486. &priv->regs->ifregs[1].cmask);
  487. /* Resetting the ID registers. */
  488. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  489. PCH_ID2_DIR | (0x7ff << 2));
  490. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  491. /* Claring NewDat, TxRqst & IntPnd */
  492. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  493. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  494. PCH_IF_MCONT_TXRQXT);
  495. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, mask);
  496. }
  497. }
  498. static int pch_can_get_buffer_status(struct pch_can_priv *priv)
  499. {
  500. return (ioread32(&priv->regs->treq1) & 0xffff) |
  501. ((ioread32(&priv->regs->treq2) & 0xffff) << 16);
  502. }
  503. static void pch_can_reset(struct pch_can_priv *priv)
  504. {
  505. /* write to sw reset register */
  506. iowrite32(1, &priv->regs->srst);
  507. iowrite32(0, &priv->regs->srst);
  508. }
  509. static void pch_can_error(struct net_device *ndev, u32 status)
  510. {
  511. struct sk_buff *skb;
  512. struct pch_can_priv *priv = netdev_priv(ndev);
  513. struct can_frame *cf;
  514. u32 errc, lec;
  515. struct net_device_stats *stats = &(priv->ndev->stats);
  516. enum can_state state = priv->can.state;
  517. skb = alloc_can_err_skb(ndev, &cf);
  518. if (!skb)
  519. return;
  520. if (status & PCH_BUS_OFF) {
  521. pch_can_set_tx_all(priv, 0);
  522. pch_can_set_rx_all(priv, 0);
  523. state = CAN_STATE_BUS_OFF;
  524. cf->can_id |= CAN_ERR_BUSOFF;
  525. can_bus_off(ndev);
  526. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  527. dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__);
  528. }
  529. /* Warning interrupt. */
  530. if (status & PCH_EWARN) {
  531. state = CAN_STATE_ERROR_WARNING;
  532. priv->can.can_stats.error_warning++;
  533. cf->can_id |= CAN_ERR_CRTL;
  534. errc = ioread32(&priv->regs->errc);
  535. if (((errc & PCH_REC) >> 8) > 96)
  536. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  537. if ((errc & PCH_TEC) > 96)
  538. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  539. dev_warn(&ndev->dev,
  540. "%s -> Error Counter is more than 96.\n", __func__);
  541. }
  542. /* Error passive interrupt. */
  543. if (status & PCH_EPASSIV) {
  544. priv->can.can_stats.error_passive++;
  545. state = CAN_STATE_ERROR_PASSIVE;
  546. cf->can_id |= CAN_ERR_CRTL;
  547. errc = ioread32(&priv->regs->errc);
  548. if (((errc & PCH_REC) >> 8) > 127)
  549. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  550. if ((errc & PCH_TEC) > 127)
  551. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  552. dev_err(&ndev->dev,
  553. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  554. }
  555. lec = status & PCH_LEC_ALL;
  556. switch (lec) {
  557. case PCH_STUF_ERR:
  558. cf->data[2] |= CAN_ERR_PROT_STUFF;
  559. priv->can.can_stats.bus_error++;
  560. stats->rx_errors++;
  561. break;
  562. case PCH_FORM_ERR:
  563. cf->data[2] |= CAN_ERR_PROT_FORM;
  564. priv->can.can_stats.bus_error++;
  565. stats->rx_errors++;
  566. break;
  567. case PCH_ACK_ERR:
  568. cf->can_id |= CAN_ERR_ACK;
  569. priv->can.can_stats.bus_error++;
  570. stats->rx_errors++;
  571. break;
  572. case PCH_BIT1_ERR:
  573. case PCH_BIT0_ERR:
  574. cf->data[2] |= CAN_ERR_PROT_BIT;
  575. priv->can.can_stats.bus_error++;
  576. stats->rx_errors++;
  577. break;
  578. case PCH_CRC_ERR:
  579. cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
  580. CAN_ERR_PROT_LOC_CRC_DEL;
  581. priv->can.can_stats.bus_error++;
  582. stats->rx_errors++;
  583. break;
  584. case PCH_LEC_ALL: /* Written by CPU. No error status */
  585. break;
  586. }
  587. priv->can.state = state;
  588. netif_rx(skb);
  589. stats->rx_packets++;
  590. stats->rx_bytes += cf->can_dlc;
  591. }
  592. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  593. {
  594. struct net_device *ndev = (struct net_device *)dev_id;
  595. struct pch_can_priv *priv = netdev_priv(ndev);
  596. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  597. napi_schedule(&priv->napi);
  598. return IRQ_HANDLED;
  599. }
  600. static int pch_can_rx_normal(struct net_device *ndev, u32 int_stat)
  601. {
  602. u32 reg;
  603. canid_t id;
  604. u32 ide;
  605. u32 rtr;
  606. int i, j, k;
  607. int rcv_pkts = 0;
  608. struct sk_buff *skb;
  609. struct can_frame *cf;
  610. struct pch_can_priv *priv = netdev_priv(ndev);
  611. struct net_device_stats *stats = &(priv->ndev->stats);
  612. /* Reading the messsage object from the Message RAM */
  613. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  614. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, int_stat);
  615. /* Reading the MCONT register. */
  616. reg = ioread32(&priv->regs->ifregs[0].mcont);
  617. reg &= 0xffff;
  618. for (k = int_stat; !(reg & PCH_IF_MCONT_EOB); k++) {
  619. /* If MsgLost bit set. */
  620. if (reg & PCH_IF_MCONT_MSGLOST) {
  621. dev_err(&priv->ndev->dev, "Msg Obj is overwritten.\n");
  622. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  623. PCH_IF_MCONT_MSGLOST);
  624. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  625. &priv->regs->ifregs[0].cmask);
  626. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
  627. skb = alloc_can_err_skb(ndev, &cf);
  628. if (!skb)
  629. return -ENOMEM;
  630. priv->can.can_stats.error_passive++;
  631. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  632. cf->can_id |= CAN_ERR_CRTL;
  633. cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
  634. cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
  635. stats->rx_packets++;
  636. stats->rx_bytes += cf->can_dlc;
  637. netif_receive_skb(skb);
  638. rcv_pkts++;
  639. goto RX_NEXT;
  640. }
  641. if (!(reg & PCH_IF_MCONT_NEWDAT))
  642. goto RX_NEXT;
  643. skb = alloc_can_skb(priv->ndev, &cf);
  644. if (!skb)
  645. return -ENOMEM;
  646. /* Get Received data */
  647. ide = ((ioread32(&priv->regs->ifregs[0].id2)) & PCH_ID2_XTD) >>
  648. 14;
  649. if (ide) {
  650. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  651. id |= (((ioread32(&priv->regs->ifregs[0].id2)) &
  652. 0x1fff) << 16);
  653. cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
  654. } else {
  655. id = (((ioread32(&priv->regs->ifregs[0].id2)) &
  656. (CAN_SFF_MASK << 2)) >> 2);
  657. cf->can_id = (id & CAN_SFF_MASK);
  658. }
  659. rtr = (ioread32(&priv->regs->ifregs[0].id2) & PCH_ID2_DIR);
  660. if (rtr) {
  661. cf->can_dlc = 0;
  662. cf->can_id |= CAN_RTR_FLAG;
  663. } else {
  664. cf->can_dlc =
  665. ((ioread32(&priv->regs->ifregs[0].mcont)) & 0x0f);
  666. }
  667. for (i = 0, j = 0; i < cf->can_dlc; j++) {
  668. reg = ioread32(&priv->regs->ifregs[0].dataa1 + j*4);
  669. cf->data[i++] = cpu_to_le32(reg & 0xff);
  670. if (i == cf->can_dlc)
  671. break;
  672. cf->data[i++] = cpu_to_le32((reg >> 8) & 0xff);
  673. }
  674. netif_receive_skb(skb);
  675. rcv_pkts++;
  676. stats->rx_packets++;
  677. stats->rx_bytes += cf->can_dlc;
  678. if (k < PCH_FIFO_THRESH) {
  679. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  680. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  681. /* Clearing the Dir bit. */
  682. pch_can_bit_clear(&priv->regs->ifregs[0].id2,
  683. PCH_ID2_DIR);
  684. /* Clearing NewDat & IntPnd */
  685. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  686. PCH_IF_MCONT_INTPND);
  687. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
  688. } else if (k > PCH_FIFO_THRESH) {
  689. pch_can_int_clr(priv, k);
  690. } else if (k == PCH_FIFO_THRESH) {
  691. int cnt;
  692. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  693. pch_can_int_clr(priv, cnt+1);
  694. }
  695. RX_NEXT:
  696. /* Reading the messsage object from the Message RAM */
  697. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  698. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
  699. reg = ioread32(&priv->regs->ifregs[0].mcont);
  700. }
  701. return rcv_pkts;
  702. }
  703. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  704. {
  705. struct pch_can_priv *priv = netdev_priv(ndev);
  706. struct net_device_stats *stats = &(priv->ndev->stats);
  707. u32 dlc;
  708. can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
  709. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  710. &priv->regs->ifregs[1].cmask);
  711. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, int_stat);
  712. dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
  713. PCH_IF_MCONT_DLC);
  714. stats->tx_bytes += dlc;
  715. stats->tx_packets++;
  716. if (int_stat == PCH_TX_OBJ_END)
  717. netif_wake_queue(ndev);
  718. }
  719. static int pch_can_rx_poll(struct napi_struct *napi, int quota)
  720. {
  721. struct net_device *ndev = napi->dev;
  722. struct pch_can_priv *priv = netdev_priv(ndev);
  723. u32 int_stat;
  724. int rcv_pkts = 0;
  725. u32 reg_stat;
  726. int_stat = pch_can_int_pending(priv);
  727. if (!int_stat)
  728. goto end;
  729. if ((int_stat == PCH_STATUS_INT) && (quota > 0)) {
  730. reg_stat = ioread32(&priv->regs->stat);
  731. if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
  732. if (reg_stat & PCH_BUS_OFF ||
  733. (reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL) {
  734. pch_can_error(ndev, reg_stat);
  735. quota--;
  736. }
  737. }
  738. if (reg_stat & PCH_TX_OK)
  739. pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
  740. if (reg_stat & PCH_RX_OK)
  741. pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
  742. int_stat = pch_can_int_pending(priv);
  743. }
  744. if (quota == 0)
  745. goto end;
  746. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  747. rcv_pkts += pch_can_rx_normal(ndev, int_stat);
  748. quota -= rcv_pkts;
  749. if (quota < 0)
  750. goto end;
  751. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  752. (int_stat <= PCH_TX_OBJ_END)) {
  753. /* Handle transmission interrupt */
  754. pch_can_tx_complete(ndev, int_stat);
  755. }
  756. end:
  757. napi_complete(napi);
  758. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  759. return rcv_pkts;
  760. }
  761. static int pch_set_bittiming(struct net_device *ndev)
  762. {
  763. struct pch_can_priv *priv = netdev_priv(ndev);
  764. const struct can_bittiming *bt = &priv->can.bittiming;
  765. u32 canbit;
  766. u32 bepe;
  767. u32 brp;
  768. /* Setting the CCE bit for accessing the Can Timing register. */
  769. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  770. brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1;
  771. canbit = brp & PCH_MSK_BITT_BRP;
  772. canbit |= (bt->sjw - 1) << PCH_BIT_SJW;
  773. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1;
  774. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2;
  775. bepe = (brp & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE;
  776. iowrite32(canbit, &priv->regs->bitt);
  777. iowrite32(bepe, &priv->regs->brpe);
  778. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  779. return 0;
  780. }
  781. static void pch_can_start(struct net_device *ndev)
  782. {
  783. struct pch_can_priv *priv = netdev_priv(ndev);
  784. if (priv->can.state != CAN_STATE_STOPPED)
  785. pch_can_reset(priv);
  786. pch_set_bittiming(ndev);
  787. pch_can_set_optmode(priv);
  788. pch_can_set_tx_all(priv, 1);
  789. pch_can_set_rx_all(priv, 1);
  790. /* Setting the CAN to run mode. */
  791. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  792. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  793. return;
  794. }
  795. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  796. {
  797. int ret = 0;
  798. switch (mode) {
  799. case CAN_MODE_START:
  800. pch_can_start(ndev);
  801. netif_wake_queue(ndev);
  802. break;
  803. default:
  804. ret = -EOPNOTSUPP;
  805. break;
  806. }
  807. return ret;
  808. }
  809. static int pch_can_open(struct net_device *ndev)
  810. {
  811. struct pch_can_priv *priv = netdev_priv(ndev);
  812. int retval;
  813. retval = pci_enable_msi(priv->dev);
  814. if (retval) {
  815. dev_info(&ndev->dev, "PCH CAN opened without MSI\n");
  816. priv->use_msi = 0;
  817. } else {
  818. dev_info(&ndev->dev, "PCH CAN opened with MSI\n");
  819. priv->use_msi = 1;
  820. }
  821. /* Regsitering the interrupt. */
  822. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  823. ndev->name, ndev);
  824. if (retval) {
  825. dev_err(&ndev->dev, "request_irq failed.\n");
  826. goto req_irq_err;
  827. }
  828. /* Open common can device */
  829. retval = open_candev(ndev);
  830. if (retval) {
  831. dev_err(ndev->dev.parent, "open_candev() failed %d\n", retval);
  832. goto err_open_candev;
  833. }
  834. pch_can_init(priv);
  835. pch_can_start(ndev);
  836. napi_enable(&priv->napi);
  837. netif_start_queue(ndev);
  838. return 0;
  839. err_open_candev:
  840. free_irq(priv->dev->irq, ndev);
  841. req_irq_err:
  842. if (priv->use_msi)
  843. pci_disable_msi(priv->dev);
  844. pch_can_release(priv);
  845. return retval;
  846. }
  847. static int pch_close(struct net_device *ndev)
  848. {
  849. struct pch_can_priv *priv = netdev_priv(ndev);
  850. netif_stop_queue(ndev);
  851. napi_disable(&priv->napi);
  852. pch_can_release(priv);
  853. free_irq(priv->dev->irq, ndev);
  854. if (priv->use_msi)
  855. pci_disable_msi(priv->dev);
  856. close_candev(ndev);
  857. priv->can.state = CAN_STATE_STOPPED;
  858. return 0;
  859. }
  860. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  861. {
  862. int i, j;
  863. struct pch_can_priv *priv = netdev_priv(ndev);
  864. struct can_frame *cf = (struct can_frame *)skb->data;
  865. int tx_buffer_avail = 0;
  866. if (can_dropped_invalid_skb(ndev, skb))
  867. return NETDEV_TX_OK;
  868. if (priv->tx_obj == PCH_TX_OBJ_END) {
  869. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  870. netif_stop_queue(ndev);
  871. tx_buffer_avail = priv->tx_obj;
  872. priv->tx_obj = PCH_TX_OBJ_START;
  873. } else {
  874. tx_buffer_avail = priv->tx_obj;
  875. priv->tx_obj++;
  876. }
  877. /* Reading the Msg Obj from the Msg RAM to the Interface register. */
  878. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  879. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
  880. /* Setting the CMASK register. */
  881. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  882. /* If ID extended is set. */
  883. pch_can_bit_clear(&priv->regs->ifregs[1].id1, 0xffff);
  884. pch_can_bit_clear(&priv->regs->ifregs[1].id2, 0x1fff | PCH_ID2_XTD);
  885. if (cf->can_id & CAN_EFF_FLAG) {
  886. pch_can_bit_set(&priv->regs->ifregs[1].id1,
  887. cf->can_id & 0xffff);
  888. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  889. ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD);
  890. } else {
  891. pch_can_bit_set(&priv->regs->ifregs[1].id1, 0);
  892. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  893. (cf->can_id & CAN_SFF_MASK) << 2);
  894. }
  895. /* If remote frame has to be transmitted.. */
  896. if (cf->can_id & CAN_RTR_FLAG)
  897. pch_can_bit_clear(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
  898. for (i = 0, j = 0; i < cf->can_dlc; j++) {
  899. iowrite32(le32_to_cpu(cf->data[i++]),
  900. (&priv->regs->ifregs[1].dataa1) + j*4);
  901. if (i == cf->can_dlc)
  902. break;
  903. iowrite32(le32_to_cpu(cf->data[i++] << 8),
  904. (&priv->regs->ifregs[1].dataa1) + j*4);
  905. }
  906. can_put_echo_skb(skb, ndev, tx_buffer_avail - PCH_RX_OBJ_END - 1);
  907. /* Updating the size of the data. */
  908. pch_can_bit_clear(&priv->regs->ifregs[1].mcont, 0x0f);
  909. pch_can_bit_set(&priv->regs->ifregs[1].mcont, cf->can_dlc);
  910. /* Clearing IntPend, NewDat & TxRqst */
  911. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  912. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  913. PCH_IF_MCONT_TXRQXT);
  914. /* Setting NewDat, TxRqst bits */
  915. pch_can_bit_set(&priv->regs->ifregs[1].mcont,
  916. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT);
  917. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
  918. return NETDEV_TX_OK;
  919. }
  920. static const struct net_device_ops pch_can_netdev_ops = {
  921. .ndo_open = pch_can_open,
  922. .ndo_stop = pch_close,
  923. .ndo_start_xmit = pch_xmit,
  924. };
  925. static void __devexit pch_can_remove(struct pci_dev *pdev)
  926. {
  927. struct net_device *ndev = pci_get_drvdata(pdev);
  928. struct pch_can_priv *priv = netdev_priv(ndev);
  929. unregister_candev(priv->ndev);
  930. free_candev(priv->ndev);
  931. pci_iounmap(pdev, priv->regs);
  932. pci_release_regions(pdev);
  933. pci_disable_device(pdev);
  934. pci_set_drvdata(pdev, NULL);
  935. pch_can_reset(priv);
  936. }
  937. #ifdef CONFIG_PM
  938. static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
  939. {
  940. int i; /* Counter variable. */
  941. int retval; /* Return value. */
  942. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  943. u32 counter = 0xFFFFFF;
  944. struct net_device *dev = pci_get_drvdata(pdev);
  945. struct pch_can_priv *priv = netdev_priv(dev);
  946. /* Stop the CAN controller */
  947. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  948. /* Indicate that we are aboutto/in suspend */
  949. priv->can.state = CAN_STATE_SLEEPING;
  950. /* Waiting for all transmission to complete. */
  951. while (counter) {
  952. buf_stat = pch_can_get_buffer_status(priv);
  953. if (!buf_stat)
  954. break;
  955. counter--;
  956. udelay(1);
  957. }
  958. if (!counter)
  959. dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
  960. /* Save interrupt configuration and then disable them */
  961. pch_can_get_int_enables(priv, &(priv->int_enables));
  962. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  963. /* Save Tx buffer enable state */
  964. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  965. priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_TX_IFREG);
  966. /* Disable all Transmit buffers */
  967. pch_can_set_tx_all(priv, 0);
  968. /* Save Rx buffer enable state */
  969. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  970. priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_RX_IFREG);
  971. pch_can_get_rx_buffer_link(priv, i, &priv->rx_link[i]);
  972. }
  973. /* Disable all Receive buffers */
  974. pch_can_set_rx_all(priv, 0);
  975. retval = pci_save_state(pdev);
  976. if (retval) {
  977. dev_err(&pdev->dev, "pci_save_state failed.\n");
  978. } else {
  979. pci_enable_wake(pdev, PCI_D3hot, 0);
  980. pci_disable_device(pdev);
  981. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  982. }
  983. return retval;
  984. }
  985. static int pch_can_resume(struct pci_dev *pdev)
  986. {
  987. int i; /* Counter variable. */
  988. int retval; /* Return variable. */
  989. struct net_device *dev = pci_get_drvdata(pdev);
  990. struct pch_can_priv *priv = netdev_priv(dev);
  991. pci_set_power_state(pdev, PCI_D0);
  992. pci_restore_state(pdev);
  993. retval = pci_enable_device(pdev);
  994. if (retval) {
  995. dev_err(&pdev->dev, "pci_enable_device failed.\n");
  996. return retval;
  997. }
  998. pci_enable_wake(pdev, PCI_D3hot, 0);
  999. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  1000. /* Disabling all interrupts. */
  1001. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  1002. /* Setting the CAN device in Stop Mode. */
  1003. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  1004. /* Configuring the transmit and receive buffers. */
  1005. pch_can_config_rx_tx_buffers(priv);
  1006. /* Restore the CAN state */
  1007. pch_set_bittiming(dev);
  1008. /* Listen/Active */
  1009. pch_can_set_optmode(priv);
  1010. /* Enabling the transmit buffer. */
  1011. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  1012. pch_can_set_rxtx(priv, i, priv->tx_enable[i], PCH_TX_IFREG);
  1013. /* Configuring the receive buffer and enabling them. */
  1014. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  1015. /* Restore buffer link */
  1016. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i]);
  1017. /* Restore buffer enables */
  1018. pch_can_set_rxtx(priv, i, priv->rx_enable[i], PCH_RX_IFREG);
  1019. }
  1020. /* Enable CAN Interrupts */
  1021. pch_can_set_int_custom(priv);
  1022. /* Restore Run Mode */
  1023. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  1024. return retval;
  1025. }
  1026. #else
  1027. #define pch_can_suspend NULL
  1028. #define pch_can_resume NULL
  1029. #endif
  1030. static int pch_can_get_berr_counter(const struct net_device *dev,
  1031. struct can_berr_counter *bec)
  1032. {
  1033. struct pch_can_priv *priv = netdev_priv(dev);
  1034. bec->txerr = ioread32(&priv->regs->errc) & PCH_TEC;
  1035. bec->rxerr = (ioread32(&priv->regs->errc) & PCH_REC) >> 8;
  1036. return 0;
  1037. }
  1038. static int __devinit pch_can_probe(struct pci_dev *pdev,
  1039. const struct pci_device_id *id)
  1040. {
  1041. struct net_device *ndev;
  1042. struct pch_can_priv *priv;
  1043. int rc;
  1044. void __iomem *addr;
  1045. rc = pci_enable_device(pdev);
  1046. if (rc) {
  1047. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  1048. goto probe_exit_endev;
  1049. }
  1050. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  1051. if (rc) {
  1052. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  1053. goto probe_exit_pcireq;
  1054. }
  1055. addr = pci_iomap(pdev, 1, 0);
  1056. if (!addr) {
  1057. rc = -EIO;
  1058. dev_err(&pdev->dev, "Failed pci_iomap\n");
  1059. goto probe_exit_ipmap;
  1060. }
  1061. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  1062. if (!ndev) {
  1063. rc = -ENOMEM;
  1064. dev_err(&pdev->dev, "Failed alloc_candev\n");
  1065. goto probe_exit_alloc_candev;
  1066. }
  1067. priv = netdev_priv(ndev);
  1068. priv->ndev = ndev;
  1069. priv->regs = addr;
  1070. priv->dev = pdev;
  1071. priv->can.bittiming_const = &pch_can_bittiming_const;
  1072. priv->can.do_set_mode = pch_can_do_set_mode;
  1073. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  1074. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  1075. CAN_CTRLMODE_LOOPBACK;
  1076. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  1077. ndev->irq = pdev->irq;
  1078. ndev->flags |= IFF_ECHO;
  1079. pci_set_drvdata(pdev, ndev);
  1080. SET_NETDEV_DEV(ndev, &pdev->dev);
  1081. ndev->netdev_ops = &pch_can_netdev_ops;
  1082. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  1083. netif_napi_add(ndev, &priv->napi, pch_can_rx_poll, PCH_RX_OBJ_END);
  1084. rc = register_candev(ndev);
  1085. if (rc) {
  1086. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1087. goto probe_exit_reg_candev;
  1088. }
  1089. return 0;
  1090. probe_exit_reg_candev:
  1091. free_candev(ndev);
  1092. probe_exit_alloc_candev:
  1093. pci_iounmap(pdev, addr);
  1094. probe_exit_ipmap:
  1095. pci_release_regions(pdev);
  1096. probe_exit_pcireq:
  1097. pci_disable_device(pdev);
  1098. probe_exit_endev:
  1099. return rc;
  1100. }
  1101. static struct pci_driver pch_can_pci_driver = {
  1102. .name = "pch_can",
  1103. .id_table = pch_pci_tbl,
  1104. .probe = pch_can_probe,
  1105. .remove = __devexit_p(pch_can_remove),
  1106. .suspend = pch_can_suspend,
  1107. .resume = pch_can_resume,
  1108. };
  1109. static int __init pch_can_pci_init(void)
  1110. {
  1111. return pci_register_driver(&pch_can_pci_driver);
  1112. }
  1113. module_init(pch_can_pci_init);
  1114. static void __exit pch_can_pci_exit(void)
  1115. {
  1116. pci_unregister_driver(&pch_can_pci_driver);
  1117. }
  1118. module_exit(pch_can_pci_exit);
  1119. MODULE_DESCRIPTION("Controller Area Network Driver");
  1120. MODULE_LICENSE("GPL v2");
  1121. MODULE_VERSION("0.94");