x86.c 141 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #define MAX_IO_MSRS 256
  55. #define CR0_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  57. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  58. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  59. #define CR4_RESERVED_BITS \
  60. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  61. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  62. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  63. | X86_CR4_OSXSAVE \
  64. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  65. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  66. #define KVM_MAX_MCE_BANKS 32
  67. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  68. /* EFER defaults:
  69. * - enable syscall per default because its emulated by KVM
  70. * - enable LME and LMA per default on 64 bit KVM
  71. */
  72. #ifdef CONFIG_X86_64
  73. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  74. #else
  75. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  76. #endif
  77. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  80. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  81. struct kvm_cpuid_entry2 __user *entries);
  82. struct kvm_x86_ops *kvm_x86_ops;
  83. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  84. int ignore_msrs = 0;
  85. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  86. #define KVM_NR_SHARED_MSRS 16
  87. struct kvm_shared_msrs_global {
  88. int nr;
  89. u32 msrs[KVM_NR_SHARED_MSRS];
  90. };
  91. struct kvm_shared_msrs {
  92. struct user_return_notifier urn;
  93. bool registered;
  94. struct kvm_shared_msr_values {
  95. u64 host;
  96. u64 curr;
  97. } values[KVM_NR_SHARED_MSRS];
  98. };
  99. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  100. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  101. struct kvm_stats_debugfs_item debugfs_entries[] = {
  102. { "pf_fixed", VCPU_STAT(pf_fixed) },
  103. { "pf_guest", VCPU_STAT(pf_guest) },
  104. { "tlb_flush", VCPU_STAT(tlb_flush) },
  105. { "invlpg", VCPU_STAT(invlpg) },
  106. { "exits", VCPU_STAT(exits) },
  107. { "io_exits", VCPU_STAT(io_exits) },
  108. { "mmio_exits", VCPU_STAT(mmio_exits) },
  109. { "signal_exits", VCPU_STAT(signal_exits) },
  110. { "irq_window", VCPU_STAT(irq_window_exits) },
  111. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  112. { "halt_exits", VCPU_STAT(halt_exits) },
  113. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  114. { "hypercalls", VCPU_STAT(hypercalls) },
  115. { "request_irq", VCPU_STAT(request_irq_exits) },
  116. { "irq_exits", VCPU_STAT(irq_exits) },
  117. { "host_state_reload", VCPU_STAT(host_state_reload) },
  118. { "efer_reload", VCPU_STAT(efer_reload) },
  119. { "fpu_reload", VCPU_STAT(fpu_reload) },
  120. { "insn_emulation", VCPU_STAT(insn_emulation) },
  121. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  122. { "irq_injections", VCPU_STAT(irq_injections) },
  123. { "nmi_injections", VCPU_STAT(nmi_injections) },
  124. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  125. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  126. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  127. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  128. { "mmu_flooded", VM_STAT(mmu_flooded) },
  129. { "mmu_recycled", VM_STAT(mmu_recycled) },
  130. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  131. { "mmu_unsync", VM_STAT(mmu_unsync) },
  132. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  133. { "largepages", VM_STAT(lpages) },
  134. { NULL }
  135. };
  136. u64 __read_mostly host_xcr0;
  137. static inline u32 bit(int bitno)
  138. {
  139. return 1 << (bitno & 31);
  140. }
  141. static void kvm_on_user_return(struct user_return_notifier *urn)
  142. {
  143. unsigned slot;
  144. struct kvm_shared_msrs *locals
  145. = container_of(urn, struct kvm_shared_msrs, urn);
  146. struct kvm_shared_msr_values *values;
  147. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  148. values = &locals->values[slot];
  149. if (values->host != values->curr) {
  150. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  151. values->curr = values->host;
  152. }
  153. }
  154. locals->registered = false;
  155. user_return_notifier_unregister(urn);
  156. }
  157. static void shared_msr_update(unsigned slot, u32 msr)
  158. {
  159. struct kvm_shared_msrs *smsr;
  160. u64 value;
  161. smsr = &__get_cpu_var(shared_msrs);
  162. /* only read, and nobody should modify it at this time,
  163. * so don't need lock */
  164. if (slot >= shared_msrs_global.nr) {
  165. printk(KERN_ERR "kvm: invalid MSR slot!");
  166. return;
  167. }
  168. rdmsrl_safe(msr, &value);
  169. smsr->values[slot].host = value;
  170. smsr->values[slot].curr = value;
  171. }
  172. void kvm_define_shared_msr(unsigned slot, u32 msr)
  173. {
  174. if (slot >= shared_msrs_global.nr)
  175. shared_msrs_global.nr = slot + 1;
  176. shared_msrs_global.msrs[slot] = msr;
  177. /* we need ensured the shared_msr_global have been updated */
  178. smp_wmb();
  179. }
  180. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  181. static void kvm_shared_msr_cpu_online(void)
  182. {
  183. unsigned i;
  184. for (i = 0; i < shared_msrs_global.nr; ++i)
  185. shared_msr_update(i, shared_msrs_global.msrs[i]);
  186. }
  187. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  188. {
  189. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  190. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  191. return;
  192. smsr->values[slot].curr = value;
  193. wrmsrl(shared_msrs_global.msrs[slot], value);
  194. if (!smsr->registered) {
  195. smsr->urn.on_user_return = kvm_on_user_return;
  196. user_return_notifier_register(&smsr->urn);
  197. smsr->registered = true;
  198. }
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  201. static void drop_user_return_notifiers(void *ignore)
  202. {
  203. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  204. if (smsr->registered)
  205. kvm_on_user_return(&smsr->urn);
  206. }
  207. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  208. {
  209. if (irqchip_in_kernel(vcpu->kvm))
  210. return vcpu->arch.apic_base;
  211. else
  212. return vcpu->arch.apic_base;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  215. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  216. {
  217. /* TODO: reserve bits check */
  218. if (irqchip_in_kernel(vcpu->kvm))
  219. kvm_lapic_set_base(vcpu, data);
  220. else
  221. vcpu->arch.apic_base = data;
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  224. #define EXCPT_BENIGN 0
  225. #define EXCPT_CONTRIBUTORY 1
  226. #define EXCPT_PF 2
  227. static int exception_class(int vector)
  228. {
  229. switch (vector) {
  230. case PF_VECTOR:
  231. return EXCPT_PF;
  232. case DE_VECTOR:
  233. case TS_VECTOR:
  234. case NP_VECTOR:
  235. case SS_VECTOR:
  236. case GP_VECTOR:
  237. return EXCPT_CONTRIBUTORY;
  238. default:
  239. break;
  240. }
  241. return EXCPT_BENIGN;
  242. }
  243. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  244. unsigned nr, bool has_error, u32 error_code,
  245. bool reinject)
  246. {
  247. u32 prev_nr;
  248. int class1, class2;
  249. if (!vcpu->arch.exception.pending) {
  250. queue:
  251. vcpu->arch.exception.pending = true;
  252. vcpu->arch.exception.has_error_code = has_error;
  253. vcpu->arch.exception.nr = nr;
  254. vcpu->arch.exception.error_code = error_code;
  255. vcpu->arch.exception.reinject = reinject;
  256. return;
  257. }
  258. /* to check exception */
  259. prev_nr = vcpu->arch.exception.nr;
  260. if (prev_nr == DF_VECTOR) {
  261. /* triple fault -> shutdown */
  262. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  263. return;
  264. }
  265. class1 = exception_class(prev_nr);
  266. class2 = exception_class(nr);
  267. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  268. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  269. /* generate double fault per SDM Table 5-5 */
  270. vcpu->arch.exception.pending = true;
  271. vcpu->arch.exception.has_error_code = true;
  272. vcpu->arch.exception.nr = DF_VECTOR;
  273. vcpu->arch.exception.error_code = 0;
  274. } else
  275. /* replace previous exception with a new one in a hope
  276. that instruction re-execution will regenerate lost
  277. exception */
  278. goto queue;
  279. }
  280. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  281. {
  282. kvm_multiple_exception(vcpu, nr, false, 0, false);
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  285. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  286. {
  287. kvm_multiple_exception(vcpu, nr, false, 0, true);
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  290. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  291. u32 error_code)
  292. {
  293. ++vcpu->stat.pf_guest;
  294. vcpu->arch.cr2 = addr;
  295. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  296. }
  297. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu->arch.nmi_pending = 1;
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  302. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  303. {
  304. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  305. }
  306. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  307. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  308. {
  309. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  310. }
  311. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  312. /*
  313. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  314. * a #GP and return false.
  315. */
  316. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  317. {
  318. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  319. return true;
  320. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  321. return false;
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  324. /*
  325. * Load the pae pdptrs. Return true is they are all valid.
  326. */
  327. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  328. {
  329. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  330. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  331. int i;
  332. int ret;
  333. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  334. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  335. offset * sizeof(u64), sizeof(pdpte));
  336. if (ret < 0) {
  337. ret = 0;
  338. goto out;
  339. }
  340. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  341. if (is_present_gpte(pdpte[i]) &&
  342. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  343. ret = 0;
  344. goto out;
  345. }
  346. }
  347. ret = 1;
  348. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  349. __set_bit(VCPU_EXREG_PDPTR,
  350. (unsigned long *)&vcpu->arch.regs_avail);
  351. __set_bit(VCPU_EXREG_PDPTR,
  352. (unsigned long *)&vcpu->arch.regs_dirty);
  353. out:
  354. return ret;
  355. }
  356. EXPORT_SYMBOL_GPL(load_pdptrs);
  357. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  358. {
  359. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  360. bool changed = true;
  361. int r;
  362. if (is_long_mode(vcpu) || !is_pae(vcpu))
  363. return false;
  364. if (!test_bit(VCPU_EXREG_PDPTR,
  365. (unsigned long *)&vcpu->arch.regs_avail))
  366. return true;
  367. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  368. if (r < 0)
  369. goto out;
  370. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  371. out:
  372. return changed;
  373. }
  374. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  375. {
  376. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  377. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  378. X86_CR0_CD | X86_CR0_NW;
  379. cr0 |= X86_CR0_ET;
  380. #ifdef CONFIG_X86_64
  381. if (cr0 & 0xffffffff00000000UL)
  382. return 1;
  383. #endif
  384. cr0 &= ~CR0_RESERVED_BITS;
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  386. return 1;
  387. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  388. return 1;
  389. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  390. #ifdef CONFIG_X86_64
  391. if ((vcpu->arch.efer & EFER_LME)) {
  392. int cs_db, cs_l;
  393. if (!is_pae(vcpu))
  394. return 1;
  395. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  396. if (cs_l)
  397. return 1;
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
  401. return 1;
  402. }
  403. kvm_x86_ops->set_cr0(vcpu, cr0);
  404. if ((cr0 ^ old_cr0) & update_bits)
  405. kvm_mmu_reset_context(vcpu);
  406. return 0;
  407. }
  408. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  409. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  410. {
  411. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  412. }
  413. EXPORT_SYMBOL_GPL(kvm_lmsw);
  414. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  415. {
  416. u64 xcr0;
  417. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  418. if (index != XCR_XFEATURE_ENABLED_MASK)
  419. return 1;
  420. xcr0 = xcr;
  421. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  422. return 1;
  423. if (!(xcr0 & XSTATE_FP))
  424. return 1;
  425. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  426. return 1;
  427. if (xcr0 & ~host_xcr0)
  428. return 1;
  429. vcpu->arch.xcr0 = xcr0;
  430. vcpu->guest_xcr0_loaded = 0;
  431. return 0;
  432. }
  433. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  434. {
  435. if (__kvm_set_xcr(vcpu, index, xcr)) {
  436. kvm_inject_gp(vcpu, 0);
  437. return 1;
  438. }
  439. return 0;
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  442. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  443. {
  444. struct kvm_cpuid_entry2 *best;
  445. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  446. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  447. }
  448. static void update_cpuid(struct kvm_vcpu *vcpu)
  449. {
  450. struct kvm_cpuid_entry2 *best;
  451. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  452. if (!best)
  453. return;
  454. /* Update OSXSAVE bit */
  455. if (cpu_has_xsave && best->function == 0x1) {
  456. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  457. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  458. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  459. }
  460. }
  461. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  462. {
  463. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  464. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  465. if (cr4 & CR4_RESERVED_BITS)
  466. return 1;
  467. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  468. return 1;
  469. if (is_long_mode(vcpu)) {
  470. if (!(cr4 & X86_CR4_PAE))
  471. return 1;
  472. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  473. && ((cr4 ^ old_cr4) & pdptr_bits)
  474. && !load_pdptrs(vcpu, vcpu->arch.cr3))
  475. return 1;
  476. if (cr4 & X86_CR4_VMXE)
  477. return 1;
  478. kvm_x86_ops->set_cr4(vcpu, cr4);
  479. if ((cr4 ^ old_cr4) & pdptr_bits)
  480. kvm_mmu_reset_context(vcpu);
  481. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  482. update_cpuid(vcpu);
  483. return 0;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  486. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  487. {
  488. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  489. kvm_mmu_sync_roots(vcpu);
  490. kvm_mmu_flush_tlb(vcpu);
  491. return 0;
  492. }
  493. if (is_long_mode(vcpu)) {
  494. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  495. return 1;
  496. } else {
  497. if (is_pae(vcpu)) {
  498. if (cr3 & CR3_PAE_RESERVED_BITS)
  499. return 1;
  500. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
  501. return 1;
  502. }
  503. /*
  504. * We don't check reserved bits in nonpae mode, because
  505. * this isn't enforced, and VMware depends on this.
  506. */
  507. }
  508. /*
  509. * Does the new cr3 value map to physical memory? (Note, we
  510. * catch an invalid cr3 even in real-mode, because it would
  511. * cause trouble later on when we turn on paging anyway.)
  512. *
  513. * A real CPU would silently accept an invalid cr3 and would
  514. * attempt to use it - with largely undefined (and often hard
  515. * to debug) behavior on the guest side.
  516. */
  517. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  518. return 1;
  519. vcpu->arch.cr3 = cr3;
  520. vcpu->arch.mmu.new_cr3(vcpu);
  521. return 0;
  522. }
  523. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  524. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  525. {
  526. if (cr8 & CR8_RESERVED_BITS)
  527. return 1;
  528. if (irqchip_in_kernel(vcpu->kvm))
  529. kvm_lapic_set_tpr(vcpu, cr8);
  530. else
  531. vcpu->arch.cr8 = cr8;
  532. return 0;
  533. }
  534. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  535. {
  536. if (__kvm_set_cr8(vcpu, cr8))
  537. kvm_inject_gp(vcpu, 0);
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  540. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  541. {
  542. if (irqchip_in_kernel(vcpu->kvm))
  543. return kvm_lapic_get_cr8(vcpu);
  544. else
  545. return vcpu->arch.cr8;
  546. }
  547. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  548. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  549. {
  550. switch (dr) {
  551. case 0 ... 3:
  552. vcpu->arch.db[dr] = val;
  553. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  554. vcpu->arch.eff_db[dr] = val;
  555. break;
  556. case 4:
  557. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  558. return 1; /* #UD */
  559. /* fall through */
  560. case 6:
  561. if (val & 0xffffffff00000000ULL)
  562. return -1; /* #GP */
  563. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  564. break;
  565. case 5:
  566. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  567. return 1; /* #UD */
  568. /* fall through */
  569. default: /* 7 */
  570. if (val & 0xffffffff00000000ULL)
  571. return -1; /* #GP */
  572. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  573. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  574. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  575. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  576. }
  577. break;
  578. }
  579. return 0;
  580. }
  581. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  582. {
  583. int res;
  584. res = __kvm_set_dr(vcpu, dr, val);
  585. if (res > 0)
  586. kvm_queue_exception(vcpu, UD_VECTOR);
  587. else if (res < 0)
  588. kvm_inject_gp(vcpu, 0);
  589. return res;
  590. }
  591. EXPORT_SYMBOL_GPL(kvm_set_dr);
  592. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  593. {
  594. switch (dr) {
  595. case 0 ... 3:
  596. *val = vcpu->arch.db[dr];
  597. break;
  598. case 4:
  599. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  600. return 1;
  601. /* fall through */
  602. case 6:
  603. *val = vcpu->arch.dr6;
  604. break;
  605. case 5:
  606. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  607. return 1;
  608. /* fall through */
  609. default: /* 7 */
  610. *val = vcpu->arch.dr7;
  611. break;
  612. }
  613. return 0;
  614. }
  615. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  616. {
  617. if (_kvm_get_dr(vcpu, dr, val)) {
  618. kvm_queue_exception(vcpu, UD_VECTOR);
  619. return 1;
  620. }
  621. return 0;
  622. }
  623. EXPORT_SYMBOL_GPL(kvm_get_dr);
  624. /*
  625. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  626. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  627. *
  628. * This list is modified at module load time to reflect the
  629. * capabilities of the host cpu. This capabilities test skips MSRs that are
  630. * kvm-specific. Those are put in the beginning of the list.
  631. */
  632. #define KVM_SAVE_MSRS_BEGIN 7
  633. static u32 msrs_to_save[] = {
  634. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  635. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  636. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  637. HV_X64_MSR_APIC_ASSIST_PAGE,
  638. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  639. MSR_STAR,
  640. #ifdef CONFIG_X86_64
  641. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  642. #endif
  643. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  644. };
  645. static unsigned num_msrs_to_save;
  646. static u32 emulated_msrs[] = {
  647. MSR_IA32_MISC_ENABLE,
  648. MSR_IA32_MCG_STATUS,
  649. MSR_IA32_MCG_CTL,
  650. };
  651. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  652. {
  653. u64 old_efer = vcpu->arch.efer;
  654. if (efer & efer_reserved_bits)
  655. return 1;
  656. if (is_paging(vcpu)
  657. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  658. return 1;
  659. if (efer & EFER_FFXSR) {
  660. struct kvm_cpuid_entry2 *feat;
  661. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  662. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  663. return 1;
  664. }
  665. if (efer & EFER_SVME) {
  666. struct kvm_cpuid_entry2 *feat;
  667. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  668. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  669. return 1;
  670. }
  671. efer &= ~EFER_LMA;
  672. efer |= vcpu->arch.efer & EFER_LMA;
  673. kvm_x86_ops->set_efer(vcpu, efer);
  674. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  675. kvm_mmu_reset_context(vcpu);
  676. /* Update reserved bits */
  677. if ((efer ^ old_efer) & EFER_NX)
  678. kvm_mmu_reset_context(vcpu);
  679. return 0;
  680. }
  681. void kvm_enable_efer_bits(u64 mask)
  682. {
  683. efer_reserved_bits &= ~mask;
  684. }
  685. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  686. /*
  687. * Writes msr value into into the appropriate "register".
  688. * Returns 0 on success, non-0 otherwise.
  689. * Assumes vcpu_load() was already called.
  690. */
  691. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  692. {
  693. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  694. }
  695. /*
  696. * Adapt set_msr() to msr_io()'s calling convention
  697. */
  698. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  699. {
  700. return kvm_set_msr(vcpu, index, *data);
  701. }
  702. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  703. {
  704. int version;
  705. int r;
  706. struct pvclock_wall_clock wc;
  707. struct timespec boot;
  708. if (!wall_clock)
  709. return;
  710. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  711. if (r)
  712. return;
  713. if (version & 1)
  714. ++version; /* first time write, random junk */
  715. ++version;
  716. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  717. /*
  718. * The guest calculates current wall clock time by adding
  719. * system time (updated by kvm_write_guest_time below) to the
  720. * wall clock specified here. guest system time equals host
  721. * system time for us, thus we must fill in host boot time here.
  722. */
  723. getboottime(&boot);
  724. wc.sec = boot.tv_sec;
  725. wc.nsec = boot.tv_nsec;
  726. wc.version = version;
  727. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  728. version++;
  729. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  730. }
  731. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  732. {
  733. uint32_t quotient, remainder;
  734. /* Don't try to replace with do_div(), this one calculates
  735. * "(dividend << 32) / divisor" */
  736. __asm__ ( "divl %4"
  737. : "=a" (quotient), "=d" (remainder)
  738. : "0" (0), "1" (dividend), "r" (divisor) );
  739. return quotient;
  740. }
  741. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  742. {
  743. uint64_t nsecs = 1000000000LL;
  744. int32_t shift = 0;
  745. uint64_t tps64;
  746. uint32_t tps32;
  747. tps64 = tsc_khz * 1000LL;
  748. while (tps64 > nsecs*2) {
  749. tps64 >>= 1;
  750. shift--;
  751. }
  752. tps32 = (uint32_t)tps64;
  753. while (tps32 <= (uint32_t)nsecs) {
  754. tps32 <<= 1;
  755. shift++;
  756. }
  757. hv_clock->tsc_shift = shift;
  758. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  759. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  760. __func__, tsc_khz, hv_clock->tsc_shift,
  761. hv_clock->tsc_to_system_mul);
  762. }
  763. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  764. static inline int kvm_tsc_changes_freq(void)
  765. {
  766. int cpu = get_cpu();
  767. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  768. cpufreq_quick_get(cpu) != 0;
  769. put_cpu();
  770. return ret;
  771. }
  772. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  773. {
  774. struct kvm *kvm = vcpu->kvm;
  775. u64 offset, ns, elapsed;
  776. unsigned long flags;
  777. struct timespec ts;
  778. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  779. offset = data - native_read_tsc();
  780. ktime_get_ts(&ts);
  781. monotonic_to_bootbased(&ts);
  782. ns = timespec_to_ns(&ts);
  783. elapsed = ns - kvm->arch.last_tsc_nsec;
  784. /*
  785. * Special case: identical write to TSC within 5 seconds of
  786. * another CPU is interpreted as an attempt to synchronize
  787. * (the 5 seconds is to accomodate host load / swapping).
  788. *
  789. * In that case, for a reliable TSC, we can match TSC offsets,
  790. * or make a best guest using kernel_ns value.
  791. */
  792. if (data == kvm->arch.last_tsc_write && elapsed < 5ULL * NSEC_PER_SEC) {
  793. if (!check_tsc_unstable()) {
  794. offset = kvm->arch.last_tsc_offset;
  795. pr_debug("kvm: matched tsc offset for %llu\n", data);
  796. } else {
  797. u64 tsc_delta = elapsed * __get_cpu_var(cpu_tsc_khz);
  798. tsc_delta = tsc_delta / USEC_PER_SEC;
  799. offset += tsc_delta;
  800. pr_debug("kvm: adjusted tsc offset by %llu\n", tsc_delta);
  801. }
  802. ns = kvm->arch.last_tsc_nsec;
  803. }
  804. kvm->arch.last_tsc_nsec = ns;
  805. kvm->arch.last_tsc_write = data;
  806. kvm->arch.last_tsc_offset = offset;
  807. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  808. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  809. /* Reset of TSC must disable overshoot protection below */
  810. vcpu->arch.hv_clock.tsc_timestamp = 0;
  811. }
  812. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  813. static int kvm_write_guest_time(struct kvm_vcpu *v)
  814. {
  815. struct timespec ts;
  816. unsigned long flags;
  817. struct kvm_vcpu_arch *vcpu = &v->arch;
  818. void *shared_kaddr;
  819. unsigned long this_tsc_khz;
  820. if ((!vcpu->time_page))
  821. return 0;
  822. /* Keep irq disabled to prevent changes to the clock */
  823. local_irq_save(flags);
  824. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  825. ktime_get_ts(&ts);
  826. monotonic_to_bootbased(&ts);
  827. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  828. local_irq_restore(flags);
  829. if (unlikely(this_tsc_khz == 0)) {
  830. kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
  831. return 1;
  832. }
  833. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  834. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  835. vcpu->hw_tsc_khz = this_tsc_khz;
  836. }
  837. /* With all the info we got, fill in the values */
  838. vcpu->hv_clock.system_time = ts.tv_nsec +
  839. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  840. vcpu->hv_clock.flags = 0;
  841. /*
  842. * The interface expects us to write an even number signaling that the
  843. * update is finished. Since the guest won't see the intermediate
  844. * state, we just increase by 2 at the end.
  845. */
  846. vcpu->hv_clock.version += 2;
  847. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  848. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  849. sizeof(vcpu->hv_clock));
  850. kunmap_atomic(shared_kaddr, KM_USER0);
  851. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  852. return 0;
  853. }
  854. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  855. {
  856. struct kvm_vcpu_arch *vcpu = &v->arch;
  857. if (!vcpu->time_page)
  858. return 0;
  859. kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
  860. return 1;
  861. }
  862. static bool msr_mtrr_valid(unsigned msr)
  863. {
  864. switch (msr) {
  865. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  866. case MSR_MTRRfix64K_00000:
  867. case MSR_MTRRfix16K_80000:
  868. case MSR_MTRRfix16K_A0000:
  869. case MSR_MTRRfix4K_C0000:
  870. case MSR_MTRRfix4K_C8000:
  871. case MSR_MTRRfix4K_D0000:
  872. case MSR_MTRRfix4K_D8000:
  873. case MSR_MTRRfix4K_E0000:
  874. case MSR_MTRRfix4K_E8000:
  875. case MSR_MTRRfix4K_F0000:
  876. case MSR_MTRRfix4K_F8000:
  877. case MSR_MTRRdefType:
  878. case MSR_IA32_CR_PAT:
  879. return true;
  880. case 0x2f8:
  881. return true;
  882. }
  883. return false;
  884. }
  885. static bool valid_pat_type(unsigned t)
  886. {
  887. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  888. }
  889. static bool valid_mtrr_type(unsigned t)
  890. {
  891. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  892. }
  893. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  894. {
  895. int i;
  896. if (!msr_mtrr_valid(msr))
  897. return false;
  898. if (msr == MSR_IA32_CR_PAT) {
  899. for (i = 0; i < 8; i++)
  900. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  901. return false;
  902. return true;
  903. } else if (msr == MSR_MTRRdefType) {
  904. if (data & ~0xcff)
  905. return false;
  906. return valid_mtrr_type(data & 0xff);
  907. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  908. for (i = 0; i < 8 ; i++)
  909. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  910. return false;
  911. return true;
  912. }
  913. /* variable MTRRs */
  914. return valid_mtrr_type(data & 0xff);
  915. }
  916. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  917. {
  918. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  919. if (!mtrr_valid(vcpu, msr, data))
  920. return 1;
  921. if (msr == MSR_MTRRdefType) {
  922. vcpu->arch.mtrr_state.def_type = data;
  923. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  924. } else if (msr == MSR_MTRRfix64K_00000)
  925. p[0] = data;
  926. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  927. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  928. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  929. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  930. else if (msr == MSR_IA32_CR_PAT)
  931. vcpu->arch.pat = data;
  932. else { /* Variable MTRRs */
  933. int idx, is_mtrr_mask;
  934. u64 *pt;
  935. idx = (msr - 0x200) / 2;
  936. is_mtrr_mask = msr - 0x200 - 2 * idx;
  937. if (!is_mtrr_mask)
  938. pt =
  939. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  940. else
  941. pt =
  942. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  943. *pt = data;
  944. }
  945. kvm_mmu_reset_context(vcpu);
  946. return 0;
  947. }
  948. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  949. {
  950. u64 mcg_cap = vcpu->arch.mcg_cap;
  951. unsigned bank_num = mcg_cap & 0xff;
  952. switch (msr) {
  953. case MSR_IA32_MCG_STATUS:
  954. vcpu->arch.mcg_status = data;
  955. break;
  956. case MSR_IA32_MCG_CTL:
  957. if (!(mcg_cap & MCG_CTL_P))
  958. return 1;
  959. if (data != 0 && data != ~(u64)0)
  960. return -1;
  961. vcpu->arch.mcg_ctl = data;
  962. break;
  963. default:
  964. if (msr >= MSR_IA32_MC0_CTL &&
  965. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  966. u32 offset = msr - MSR_IA32_MC0_CTL;
  967. /* only 0 or all 1s can be written to IA32_MCi_CTL
  968. * some Linux kernels though clear bit 10 in bank 4 to
  969. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  970. * this to avoid an uncatched #GP in the guest
  971. */
  972. if ((offset & 0x3) == 0 &&
  973. data != 0 && (data | (1 << 10)) != ~(u64)0)
  974. return -1;
  975. vcpu->arch.mce_banks[offset] = data;
  976. break;
  977. }
  978. return 1;
  979. }
  980. return 0;
  981. }
  982. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  983. {
  984. struct kvm *kvm = vcpu->kvm;
  985. int lm = is_long_mode(vcpu);
  986. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  987. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  988. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  989. : kvm->arch.xen_hvm_config.blob_size_32;
  990. u32 page_num = data & ~PAGE_MASK;
  991. u64 page_addr = data & PAGE_MASK;
  992. u8 *page;
  993. int r;
  994. r = -E2BIG;
  995. if (page_num >= blob_size)
  996. goto out;
  997. r = -ENOMEM;
  998. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  999. if (!page)
  1000. goto out;
  1001. r = -EFAULT;
  1002. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1003. goto out_free;
  1004. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1005. goto out_free;
  1006. r = 0;
  1007. out_free:
  1008. kfree(page);
  1009. out:
  1010. return r;
  1011. }
  1012. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1013. {
  1014. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1015. }
  1016. static bool kvm_hv_msr_partition_wide(u32 msr)
  1017. {
  1018. bool r = false;
  1019. switch (msr) {
  1020. case HV_X64_MSR_GUEST_OS_ID:
  1021. case HV_X64_MSR_HYPERCALL:
  1022. r = true;
  1023. break;
  1024. }
  1025. return r;
  1026. }
  1027. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1028. {
  1029. struct kvm *kvm = vcpu->kvm;
  1030. switch (msr) {
  1031. case HV_X64_MSR_GUEST_OS_ID:
  1032. kvm->arch.hv_guest_os_id = data;
  1033. /* setting guest os id to zero disables hypercall page */
  1034. if (!kvm->arch.hv_guest_os_id)
  1035. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1036. break;
  1037. case HV_X64_MSR_HYPERCALL: {
  1038. u64 gfn;
  1039. unsigned long addr;
  1040. u8 instructions[4];
  1041. /* if guest os id is not set hypercall should remain disabled */
  1042. if (!kvm->arch.hv_guest_os_id)
  1043. break;
  1044. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1045. kvm->arch.hv_hypercall = data;
  1046. break;
  1047. }
  1048. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1049. addr = gfn_to_hva(kvm, gfn);
  1050. if (kvm_is_error_hva(addr))
  1051. return 1;
  1052. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1053. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1054. if (copy_to_user((void __user *)addr, instructions, 4))
  1055. return 1;
  1056. kvm->arch.hv_hypercall = data;
  1057. break;
  1058. }
  1059. default:
  1060. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1061. "data 0x%llx\n", msr, data);
  1062. return 1;
  1063. }
  1064. return 0;
  1065. }
  1066. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1067. {
  1068. switch (msr) {
  1069. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1070. unsigned long addr;
  1071. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1072. vcpu->arch.hv_vapic = data;
  1073. break;
  1074. }
  1075. addr = gfn_to_hva(vcpu->kvm, data >>
  1076. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1077. if (kvm_is_error_hva(addr))
  1078. return 1;
  1079. if (clear_user((void __user *)addr, PAGE_SIZE))
  1080. return 1;
  1081. vcpu->arch.hv_vapic = data;
  1082. break;
  1083. }
  1084. case HV_X64_MSR_EOI:
  1085. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1086. case HV_X64_MSR_ICR:
  1087. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1088. case HV_X64_MSR_TPR:
  1089. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1090. default:
  1091. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1092. "data 0x%llx\n", msr, data);
  1093. return 1;
  1094. }
  1095. return 0;
  1096. }
  1097. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1098. {
  1099. switch (msr) {
  1100. case MSR_EFER:
  1101. return set_efer(vcpu, data);
  1102. case MSR_K7_HWCR:
  1103. data &= ~(u64)0x40; /* ignore flush filter disable */
  1104. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1105. if (data != 0) {
  1106. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1107. data);
  1108. return 1;
  1109. }
  1110. break;
  1111. case MSR_FAM10H_MMIO_CONF_BASE:
  1112. if (data != 0) {
  1113. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1114. "0x%llx\n", data);
  1115. return 1;
  1116. }
  1117. break;
  1118. case MSR_AMD64_NB_CFG:
  1119. break;
  1120. case MSR_IA32_DEBUGCTLMSR:
  1121. if (!data) {
  1122. /* We support the non-activated case already */
  1123. break;
  1124. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1125. /* Values other than LBR and BTF are vendor-specific,
  1126. thus reserved and should throw a #GP */
  1127. return 1;
  1128. }
  1129. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1130. __func__, data);
  1131. break;
  1132. case MSR_IA32_UCODE_REV:
  1133. case MSR_IA32_UCODE_WRITE:
  1134. case MSR_VM_HSAVE_PA:
  1135. case MSR_AMD64_PATCH_LOADER:
  1136. break;
  1137. case 0x200 ... 0x2ff:
  1138. return set_msr_mtrr(vcpu, msr, data);
  1139. case MSR_IA32_APICBASE:
  1140. kvm_set_apic_base(vcpu, data);
  1141. break;
  1142. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1143. return kvm_x2apic_msr_write(vcpu, msr, data);
  1144. case MSR_IA32_MISC_ENABLE:
  1145. vcpu->arch.ia32_misc_enable_msr = data;
  1146. break;
  1147. case MSR_KVM_WALL_CLOCK_NEW:
  1148. case MSR_KVM_WALL_CLOCK:
  1149. vcpu->kvm->arch.wall_clock = data;
  1150. kvm_write_wall_clock(vcpu->kvm, data);
  1151. break;
  1152. case MSR_KVM_SYSTEM_TIME_NEW:
  1153. case MSR_KVM_SYSTEM_TIME: {
  1154. if (vcpu->arch.time_page) {
  1155. kvm_release_page_dirty(vcpu->arch.time_page);
  1156. vcpu->arch.time_page = NULL;
  1157. }
  1158. vcpu->arch.time = data;
  1159. /* we verify if the enable bit is set... */
  1160. if (!(data & 1))
  1161. break;
  1162. /* ...but clean it before doing the actual write */
  1163. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1164. vcpu->arch.time_page =
  1165. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1166. if (is_error_page(vcpu->arch.time_page)) {
  1167. kvm_release_page_clean(vcpu->arch.time_page);
  1168. vcpu->arch.time_page = NULL;
  1169. }
  1170. kvm_request_guest_time_update(vcpu);
  1171. break;
  1172. }
  1173. case MSR_IA32_MCG_CTL:
  1174. case MSR_IA32_MCG_STATUS:
  1175. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1176. return set_msr_mce(vcpu, msr, data);
  1177. /* Performance counters are not protected by a CPUID bit,
  1178. * so we should check all of them in the generic path for the sake of
  1179. * cross vendor migration.
  1180. * Writing a zero into the event select MSRs disables them,
  1181. * which we perfectly emulate ;-). Any other value should be at least
  1182. * reported, some guests depend on them.
  1183. */
  1184. case MSR_P6_EVNTSEL0:
  1185. case MSR_P6_EVNTSEL1:
  1186. case MSR_K7_EVNTSEL0:
  1187. case MSR_K7_EVNTSEL1:
  1188. case MSR_K7_EVNTSEL2:
  1189. case MSR_K7_EVNTSEL3:
  1190. if (data != 0)
  1191. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1192. "0x%x data 0x%llx\n", msr, data);
  1193. break;
  1194. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1195. * so we ignore writes to make it happy.
  1196. */
  1197. case MSR_P6_PERFCTR0:
  1198. case MSR_P6_PERFCTR1:
  1199. case MSR_K7_PERFCTR0:
  1200. case MSR_K7_PERFCTR1:
  1201. case MSR_K7_PERFCTR2:
  1202. case MSR_K7_PERFCTR3:
  1203. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1204. "0x%x data 0x%llx\n", msr, data);
  1205. break;
  1206. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1207. if (kvm_hv_msr_partition_wide(msr)) {
  1208. int r;
  1209. mutex_lock(&vcpu->kvm->lock);
  1210. r = set_msr_hyperv_pw(vcpu, msr, data);
  1211. mutex_unlock(&vcpu->kvm->lock);
  1212. return r;
  1213. } else
  1214. return set_msr_hyperv(vcpu, msr, data);
  1215. break;
  1216. default:
  1217. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1218. return xen_hvm_config(vcpu, data);
  1219. if (!ignore_msrs) {
  1220. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1221. msr, data);
  1222. return 1;
  1223. } else {
  1224. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1225. msr, data);
  1226. break;
  1227. }
  1228. }
  1229. return 0;
  1230. }
  1231. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1232. /*
  1233. * Reads an msr value (of 'msr_index') into 'pdata'.
  1234. * Returns 0 on success, non-0 otherwise.
  1235. * Assumes vcpu_load() was already called.
  1236. */
  1237. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1238. {
  1239. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1240. }
  1241. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1242. {
  1243. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1244. if (!msr_mtrr_valid(msr))
  1245. return 1;
  1246. if (msr == MSR_MTRRdefType)
  1247. *pdata = vcpu->arch.mtrr_state.def_type +
  1248. (vcpu->arch.mtrr_state.enabled << 10);
  1249. else if (msr == MSR_MTRRfix64K_00000)
  1250. *pdata = p[0];
  1251. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1252. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1253. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1254. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1255. else if (msr == MSR_IA32_CR_PAT)
  1256. *pdata = vcpu->arch.pat;
  1257. else { /* Variable MTRRs */
  1258. int idx, is_mtrr_mask;
  1259. u64 *pt;
  1260. idx = (msr - 0x200) / 2;
  1261. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1262. if (!is_mtrr_mask)
  1263. pt =
  1264. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1265. else
  1266. pt =
  1267. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1268. *pdata = *pt;
  1269. }
  1270. return 0;
  1271. }
  1272. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1273. {
  1274. u64 data;
  1275. u64 mcg_cap = vcpu->arch.mcg_cap;
  1276. unsigned bank_num = mcg_cap & 0xff;
  1277. switch (msr) {
  1278. case MSR_IA32_P5_MC_ADDR:
  1279. case MSR_IA32_P5_MC_TYPE:
  1280. data = 0;
  1281. break;
  1282. case MSR_IA32_MCG_CAP:
  1283. data = vcpu->arch.mcg_cap;
  1284. break;
  1285. case MSR_IA32_MCG_CTL:
  1286. if (!(mcg_cap & MCG_CTL_P))
  1287. return 1;
  1288. data = vcpu->arch.mcg_ctl;
  1289. break;
  1290. case MSR_IA32_MCG_STATUS:
  1291. data = vcpu->arch.mcg_status;
  1292. break;
  1293. default:
  1294. if (msr >= MSR_IA32_MC0_CTL &&
  1295. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1296. u32 offset = msr - MSR_IA32_MC0_CTL;
  1297. data = vcpu->arch.mce_banks[offset];
  1298. break;
  1299. }
  1300. return 1;
  1301. }
  1302. *pdata = data;
  1303. return 0;
  1304. }
  1305. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1306. {
  1307. u64 data = 0;
  1308. struct kvm *kvm = vcpu->kvm;
  1309. switch (msr) {
  1310. case HV_X64_MSR_GUEST_OS_ID:
  1311. data = kvm->arch.hv_guest_os_id;
  1312. break;
  1313. case HV_X64_MSR_HYPERCALL:
  1314. data = kvm->arch.hv_hypercall;
  1315. break;
  1316. default:
  1317. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1318. return 1;
  1319. }
  1320. *pdata = data;
  1321. return 0;
  1322. }
  1323. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1324. {
  1325. u64 data = 0;
  1326. switch (msr) {
  1327. case HV_X64_MSR_VP_INDEX: {
  1328. int r;
  1329. struct kvm_vcpu *v;
  1330. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1331. if (v == vcpu)
  1332. data = r;
  1333. break;
  1334. }
  1335. case HV_X64_MSR_EOI:
  1336. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1337. case HV_X64_MSR_ICR:
  1338. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1339. case HV_X64_MSR_TPR:
  1340. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1341. default:
  1342. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1343. return 1;
  1344. }
  1345. *pdata = data;
  1346. return 0;
  1347. }
  1348. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1349. {
  1350. u64 data;
  1351. switch (msr) {
  1352. case MSR_IA32_PLATFORM_ID:
  1353. case MSR_IA32_UCODE_REV:
  1354. case MSR_IA32_EBL_CR_POWERON:
  1355. case MSR_IA32_DEBUGCTLMSR:
  1356. case MSR_IA32_LASTBRANCHFROMIP:
  1357. case MSR_IA32_LASTBRANCHTOIP:
  1358. case MSR_IA32_LASTINTFROMIP:
  1359. case MSR_IA32_LASTINTTOIP:
  1360. case MSR_K8_SYSCFG:
  1361. case MSR_K7_HWCR:
  1362. case MSR_VM_HSAVE_PA:
  1363. case MSR_P6_PERFCTR0:
  1364. case MSR_P6_PERFCTR1:
  1365. case MSR_P6_EVNTSEL0:
  1366. case MSR_P6_EVNTSEL1:
  1367. case MSR_K7_EVNTSEL0:
  1368. case MSR_K7_PERFCTR0:
  1369. case MSR_K8_INT_PENDING_MSG:
  1370. case MSR_AMD64_NB_CFG:
  1371. case MSR_FAM10H_MMIO_CONF_BASE:
  1372. data = 0;
  1373. break;
  1374. case MSR_MTRRcap:
  1375. data = 0x500 | KVM_NR_VAR_MTRR;
  1376. break;
  1377. case 0x200 ... 0x2ff:
  1378. return get_msr_mtrr(vcpu, msr, pdata);
  1379. case 0xcd: /* fsb frequency */
  1380. data = 3;
  1381. break;
  1382. case MSR_IA32_APICBASE:
  1383. data = kvm_get_apic_base(vcpu);
  1384. break;
  1385. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1386. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1387. break;
  1388. case MSR_IA32_MISC_ENABLE:
  1389. data = vcpu->arch.ia32_misc_enable_msr;
  1390. break;
  1391. case MSR_IA32_PERF_STATUS:
  1392. /* TSC increment by tick */
  1393. data = 1000ULL;
  1394. /* CPU multiplier */
  1395. data |= (((uint64_t)4ULL) << 40);
  1396. break;
  1397. case MSR_EFER:
  1398. data = vcpu->arch.efer;
  1399. break;
  1400. case MSR_KVM_WALL_CLOCK:
  1401. case MSR_KVM_WALL_CLOCK_NEW:
  1402. data = vcpu->kvm->arch.wall_clock;
  1403. break;
  1404. case MSR_KVM_SYSTEM_TIME:
  1405. case MSR_KVM_SYSTEM_TIME_NEW:
  1406. data = vcpu->arch.time;
  1407. break;
  1408. case MSR_IA32_P5_MC_ADDR:
  1409. case MSR_IA32_P5_MC_TYPE:
  1410. case MSR_IA32_MCG_CAP:
  1411. case MSR_IA32_MCG_CTL:
  1412. case MSR_IA32_MCG_STATUS:
  1413. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1414. return get_msr_mce(vcpu, msr, pdata);
  1415. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1416. if (kvm_hv_msr_partition_wide(msr)) {
  1417. int r;
  1418. mutex_lock(&vcpu->kvm->lock);
  1419. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1420. mutex_unlock(&vcpu->kvm->lock);
  1421. return r;
  1422. } else
  1423. return get_msr_hyperv(vcpu, msr, pdata);
  1424. break;
  1425. default:
  1426. if (!ignore_msrs) {
  1427. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1428. return 1;
  1429. } else {
  1430. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1431. data = 0;
  1432. }
  1433. break;
  1434. }
  1435. *pdata = data;
  1436. return 0;
  1437. }
  1438. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1439. /*
  1440. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1441. *
  1442. * @return number of msrs set successfully.
  1443. */
  1444. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1445. struct kvm_msr_entry *entries,
  1446. int (*do_msr)(struct kvm_vcpu *vcpu,
  1447. unsigned index, u64 *data))
  1448. {
  1449. int i, idx;
  1450. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1451. for (i = 0; i < msrs->nmsrs; ++i)
  1452. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1453. break;
  1454. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1455. return i;
  1456. }
  1457. /*
  1458. * Read or write a bunch of msrs. Parameters are user addresses.
  1459. *
  1460. * @return number of msrs set successfully.
  1461. */
  1462. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1463. int (*do_msr)(struct kvm_vcpu *vcpu,
  1464. unsigned index, u64 *data),
  1465. int writeback)
  1466. {
  1467. struct kvm_msrs msrs;
  1468. struct kvm_msr_entry *entries;
  1469. int r, n;
  1470. unsigned size;
  1471. r = -EFAULT;
  1472. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1473. goto out;
  1474. r = -E2BIG;
  1475. if (msrs.nmsrs >= MAX_IO_MSRS)
  1476. goto out;
  1477. r = -ENOMEM;
  1478. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1479. entries = kmalloc(size, GFP_KERNEL);
  1480. if (!entries)
  1481. goto out;
  1482. r = -EFAULT;
  1483. if (copy_from_user(entries, user_msrs->entries, size))
  1484. goto out_free;
  1485. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1486. if (r < 0)
  1487. goto out_free;
  1488. r = -EFAULT;
  1489. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1490. goto out_free;
  1491. r = n;
  1492. out_free:
  1493. kfree(entries);
  1494. out:
  1495. return r;
  1496. }
  1497. int kvm_dev_ioctl_check_extension(long ext)
  1498. {
  1499. int r;
  1500. switch (ext) {
  1501. case KVM_CAP_IRQCHIP:
  1502. case KVM_CAP_HLT:
  1503. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1504. case KVM_CAP_SET_TSS_ADDR:
  1505. case KVM_CAP_EXT_CPUID:
  1506. case KVM_CAP_CLOCKSOURCE:
  1507. case KVM_CAP_PIT:
  1508. case KVM_CAP_NOP_IO_DELAY:
  1509. case KVM_CAP_MP_STATE:
  1510. case KVM_CAP_SYNC_MMU:
  1511. case KVM_CAP_REINJECT_CONTROL:
  1512. case KVM_CAP_IRQ_INJECT_STATUS:
  1513. case KVM_CAP_ASSIGN_DEV_IRQ:
  1514. case KVM_CAP_IRQFD:
  1515. case KVM_CAP_IOEVENTFD:
  1516. case KVM_CAP_PIT2:
  1517. case KVM_CAP_PIT_STATE2:
  1518. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1519. case KVM_CAP_XEN_HVM:
  1520. case KVM_CAP_ADJUST_CLOCK:
  1521. case KVM_CAP_VCPU_EVENTS:
  1522. case KVM_CAP_HYPERV:
  1523. case KVM_CAP_HYPERV_VAPIC:
  1524. case KVM_CAP_HYPERV_SPIN:
  1525. case KVM_CAP_PCI_SEGMENT:
  1526. case KVM_CAP_DEBUGREGS:
  1527. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1528. case KVM_CAP_XSAVE:
  1529. r = 1;
  1530. break;
  1531. case KVM_CAP_COALESCED_MMIO:
  1532. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1533. break;
  1534. case KVM_CAP_VAPIC:
  1535. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1536. break;
  1537. case KVM_CAP_NR_VCPUS:
  1538. r = KVM_MAX_VCPUS;
  1539. break;
  1540. case KVM_CAP_NR_MEMSLOTS:
  1541. r = KVM_MEMORY_SLOTS;
  1542. break;
  1543. case KVM_CAP_PV_MMU: /* obsolete */
  1544. r = 0;
  1545. break;
  1546. case KVM_CAP_IOMMU:
  1547. r = iommu_found();
  1548. break;
  1549. case KVM_CAP_MCE:
  1550. r = KVM_MAX_MCE_BANKS;
  1551. break;
  1552. case KVM_CAP_XCRS:
  1553. r = cpu_has_xsave;
  1554. break;
  1555. default:
  1556. r = 0;
  1557. break;
  1558. }
  1559. return r;
  1560. }
  1561. long kvm_arch_dev_ioctl(struct file *filp,
  1562. unsigned int ioctl, unsigned long arg)
  1563. {
  1564. void __user *argp = (void __user *)arg;
  1565. long r;
  1566. switch (ioctl) {
  1567. case KVM_GET_MSR_INDEX_LIST: {
  1568. struct kvm_msr_list __user *user_msr_list = argp;
  1569. struct kvm_msr_list msr_list;
  1570. unsigned n;
  1571. r = -EFAULT;
  1572. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1573. goto out;
  1574. n = msr_list.nmsrs;
  1575. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1576. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1577. goto out;
  1578. r = -E2BIG;
  1579. if (n < msr_list.nmsrs)
  1580. goto out;
  1581. r = -EFAULT;
  1582. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1583. num_msrs_to_save * sizeof(u32)))
  1584. goto out;
  1585. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1586. &emulated_msrs,
  1587. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1588. goto out;
  1589. r = 0;
  1590. break;
  1591. }
  1592. case KVM_GET_SUPPORTED_CPUID: {
  1593. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1594. struct kvm_cpuid2 cpuid;
  1595. r = -EFAULT;
  1596. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1597. goto out;
  1598. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1599. cpuid_arg->entries);
  1600. if (r)
  1601. goto out;
  1602. r = -EFAULT;
  1603. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1604. goto out;
  1605. r = 0;
  1606. break;
  1607. }
  1608. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1609. u64 mce_cap;
  1610. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1611. r = -EFAULT;
  1612. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1613. goto out;
  1614. r = 0;
  1615. break;
  1616. }
  1617. default:
  1618. r = -EINVAL;
  1619. }
  1620. out:
  1621. return r;
  1622. }
  1623. static void wbinvd_ipi(void *garbage)
  1624. {
  1625. wbinvd();
  1626. }
  1627. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1628. {
  1629. return vcpu->kvm->arch.iommu_domain &&
  1630. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1631. }
  1632. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1633. {
  1634. /* Address WBINVD may be executed by guest */
  1635. if (need_emulate_wbinvd(vcpu)) {
  1636. if (kvm_x86_ops->has_wbinvd_exit())
  1637. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1638. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1639. smp_call_function_single(vcpu->cpu,
  1640. wbinvd_ipi, NULL, 1);
  1641. }
  1642. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1643. if (unlikely(vcpu->cpu != cpu)) {
  1644. /* Make sure TSC doesn't go backwards */
  1645. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1646. native_read_tsc() - vcpu->arch.last_host_tsc;
  1647. if (tsc_delta < 0)
  1648. mark_tsc_unstable("KVM discovered backwards TSC");
  1649. if (check_tsc_unstable())
  1650. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1651. kvm_migrate_timers(vcpu);
  1652. vcpu->cpu = cpu;
  1653. }
  1654. }
  1655. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1656. {
  1657. kvm_x86_ops->vcpu_put(vcpu);
  1658. kvm_put_guest_fpu(vcpu);
  1659. vcpu->arch.last_host_tsc = native_read_tsc();
  1660. }
  1661. static int is_efer_nx(void)
  1662. {
  1663. unsigned long long efer = 0;
  1664. rdmsrl_safe(MSR_EFER, &efer);
  1665. return efer & EFER_NX;
  1666. }
  1667. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1668. {
  1669. int i;
  1670. struct kvm_cpuid_entry2 *e, *entry;
  1671. entry = NULL;
  1672. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1673. e = &vcpu->arch.cpuid_entries[i];
  1674. if (e->function == 0x80000001) {
  1675. entry = e;
  1676. break;
  1677. }
  1678. }
  1679. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1680. entry->edx &= ~(1 << 20);
  1681. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1682. }
  1683. }
  1684. /* when an old userspace process fills a new kernel module */
  1685. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1686. struct kvm_cpuid *cpuid,
  1687. struct kvm_cpuid_entry __user *entries)
  1688. {
  1689. int r, i;
  1690. struct kvm_cpuid_entry *cpuid_entries;
  1691. r = -E2BIG;
  1692. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1693. goto out;
  1694. r = -ENOMEM;
  1695. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1696. if (!cpuid_entries)
  1697. goto out;
  1698. r = -EFAULT;
  1699. if (copy_from_user(cpuid_entries, entries,
  1700. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1701. goto out_free;
  1702. for (i = 0; i < cpuid->nent; i++) {
  1703. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1704. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1705. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1706. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1707. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1708. vcpu->arch.cpuid_entries[i].index = 0;
  1709. vcpu->arch.cpuid_entries[i].flags = 0;
  1710. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1711. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1712. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1713. }
  1714. vcpu->arch.cpuid_nent = cpuid->nent;
  1715. cpuid_fix_nx_cap(vcpu);
  1716. r = 0;
  1717. kvm_apic_set_version(vcpu);
  1718. kvm_x86_ops->cpuid_update(vcpu);
  1719. update_cpuid(vcpu);
  1720. out_free:
  1721. vfree(cpuid_entries);
  1722. out:
  1723. return r;
  1724. }
  1725. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1726. struct kvm_cpuid2 *cpuid,
  1727. struct kvm_cpuid_entry2 __user *entries)
  1728. {
  1729. int r;
  1730. r = -E2BIG;
  1731. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1732. goto out;
  1733. r = -EFAULT;
  1734. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1735. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1736. goto out;
  1737. vcpu->arch.cpuid_nent = cpuid->nent;
  1738. kvm_apic_set_version(vcpu);
  1739. kvm_x86_ops->cpuid_update(vcpu);
  1740. update_cpuid(vcpu);
  1741. return 0;
  1742. out:
  1743. return r;
  1744. }
  1745. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1746. struct kvm_cpuid2 *cpuid,
  1747. struct kvm_cpuid_entry2 __user *entries)
  1748. {
  1749. int r;
  1750. r = -E2BIG;
  1751. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1752. goto out;
  1753. r = -EFAULT;
  1754. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1755. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1756. goto out;
  1757. return 0;
  1758. out:
  1759. cpuid->nent = vcpu->arch.cpuid_nent;
  1760. return r;
  1761. }
  1762. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1763. u32 index)
  1764. {
  1765. entry->function = function;
  1766. entry->index = index;
  1767. cpuid_count(entry->function, entry->index,
  1768. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1769. entry->flags = 0;
  1770. }
  1771. #define F(x) bit(X86_FEATURE_##x)
  1772. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1773. u32 index, int *nent, int maxnent)
  1774. {
  1775. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1776. #ifdef CONFIG_X86_64
  1777. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1778. ? F(GBPAGES) : 0;
  1779. unsigned f_lm = F(LM);
  1780. #else
  1781. unsigned f_gbpages = 0;
  1782. unsigned f_lm = 0;
  1783. #endif
  1784. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1785. /* cpuid 1.edx */
  1786. const u32 kvm_supported_word0_x86_features =
  1787. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1788. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1789. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1790. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1791. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1792. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1793. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1794. 0 /* HTT, TM, Reserved, PBE */;
  1795. /* cpuid 0x80000001.edx */
  1796. const u32 kvm_supported_word1_x86_features =
  1797. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1798. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1799. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1800. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1801. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1802. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1803. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1804. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1805. /* cpuid 1.ecx */
  1806. const u32 kvm_supported_word4_x86_features =
  1807. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  1808. 0 /* DS-CPL, VMX, SMX, EST */ |
  1809. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1810. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1811. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1812. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1813. 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
  1814. /* cpuid 0x80000001.ecx */
  1815. const u32 kvm_supported_word6_x86_features =
  1816. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1817. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1818. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1819. 0 /* SKINIT */ | 0 /* WDT */;
  1820. /* all calls to cpuid_count() should be made on the same cpu */
  1821. get_cpu();
  1822. do_cpuid_1_ent(entry, function, index);
  1823. ++*nent;
  1824. switch (function) {
  1825. case 0:
  1826. entry->eax = min(entry->eax, (u32)0xd);
  1827. break;
  1828. case 1:
  1829. entry->edx &= kvm_supported_word0_x86_features;
  1830. entry->ecx &= kvm_supported_word4_x86_features;
  1831. /* we support x2apic emulation even if host does not support
  1832. * it since we emulate x2apic in software */
  1833. entry->ecx |= F(X2APIC);
  1834. break;
  1835. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1836. * may return different values. This forces us to get_cpu() before
  1837. * issuing the first command, and also to emulate this annoying behavior
  1838. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1839. case 2: {
  1840. int t, times = entry->eax & 0xff;
  1841. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1842. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1843. for (t = 1; t < times && *nent < maxnent; ++t) {
  1844. do_cpuid_1_ent(&entry[t], function, 0);
  1845. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1846. ++*nent;
  1847. }
  1848. break;
  1849. }
  1850. /* function 4 and 0xb have additional index. */
  1851. case 4: {
  1852. int i, cache_type;
  1853. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1854. /* read more entries until cache_type is zero */
  1855. for (i = 1; *nent < maxnent; ++i) {
  1856. cache_type = entry[i - 1].eax & 0x1f;
  1857. if (!cache_type)
  1858. break;
  1859. do_cpuid_1_ent(&entry[i], function, i);
  1860. entry[i].flags |=
  1861. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1862. ++*nent;
  1863. }
  1864. break;
  1865. }
  1866. case 0xb: {
  1867. int i, level_type;
  1868. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1869. /* read more entries until level_type is zero */
  1870. for (i = 1; *nent < maxnent; ++i) {
  1871. level_type = entry[i - 1].ecx & 0xff00;
  1872. if (!level_type)
  1873. break;
  1874. do_cpuid_1_ent(&entry[i], function, i);
  1875. entry[i].flags |=
  1876. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1877. ++*nent;
  1878. }
  1879. break;
  1880. }
  1881. case 0xd: {
  1882. int i;
  1883. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1884. for (i = 1; *nent < maxnent; ++i) {
  1885. if (entry[i - 1].eax == 0 && i != 2)
  1886. break;
  1887. do_cpuid_1_ent(&entry[i], function, i);
  1888. entry[i].flags |=
  1889. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1890. ++*nent;
  1891. }
  1892. break;
  1893. }
  1894. case KVM_CPUID_SIGNATURE: {
  1895. char signature[12] = "KVMKVMKVM\0\0";
  1896. u32 *sigptr = (u32 *)signature;
  1897. entry->eax = 0;
  1898. entry->ebx = sigptr[0];
  1899. entry->ecx = sigptr[1];
  1900. entry->edx = sigptr[2];
  1901. break;
  1902. }
  1903. case KVM_CPUID_FEATURES:
  1904. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  1905. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  1906. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  1907. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  1908. entry->ebx = 0;
  1909. entry->ecx = 0;
  1910. entry->edx = 0;
  1911. break;
  1912. case 0x80000000:
  1913. entry->eax = min(entry->eax, 0x8000001a);
  1914. break;
  1915. case 0x80000001:
  1916. entry->edx &= kvm_supported_word1_x86_features;
  1917. entry->ecx &= kvm_supported_word6_x86_features;
  1918. break;
  1919. }
  1920. kvm_x86_ops->set_supported_cpuid(function, entry);
  1921. put_cpu();
  1922. }
  1923. #undef F
  1924. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1925. struct kvm_cpuid_entry2 __user *entries)
  1926. {
  1927. struct kvm_cpuid_entry2 *cpuid_entries;
  1928. int limit, nent = 0, r = -E2BIG;
  1929. u32 func;
  1930. if (cpuid->nent < 1)
  1931. goto out;
  1932. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1933. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1934. r = -ENOMEM;
  1935. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1936. if (!cpuid_entries)
  1937. goto out;
  1938. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1939. limit = cpuid_entries[0].eax;
  1940. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1941. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1942. &nent, cpuid->nent);
  1943. r = -E2BIG;
  1944. if (nent >= cpuid->nent)
  1945. goto out_free;
  1946. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1947. limit = cpuid_entries[nent - 1].eax;
  1948. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1949. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1950. &nent, cpuid->nent);
  1951. r = -E2BIG;
  1952. if (nent >= cpuid->nent)
  1953. goto out_free;
  1954. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  1955. cpuid->nent);
  1956. r = -E2BIG;
  1957. if (nent >= cpuid->nent)
  1958. goto out_free;
  1959. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  1960. cpuid->nent);
  1961. r = -E2BIG;
  1962. if (nent >= cpuid->nent)
  1963. goto out_free;
  1964. r = -EFAULT;
  1965. if (copy_to_user(entries, cpuid_entries,
  1966. nent * sizeof(struct kvm_cpuid_entry2)))
  1967. goto out_free;
  1968. cpuid->nent = nent;
  1969. r = 0;
  1970. out_free:
  1971. vfree(cpuid_entries);
  1972. out:
  1973. return r;
  1974. }
  1975. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1976. struct kvm_lapic_state *s)
  1977. {
  1978. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1979. return 0;
  1980. }
  1981. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1982. struct kvm_lapic_state *s)
  1983. {
  1984. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1985. kvm_apic_post_state_restore(vcpu);
  1986. update_cr8_intercept(vcpu);
  1987. return 0;
  1988. }
  1989. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1990. struct kvm_interrupt *irq)
  1991. {
  1992. if (irq->irq < 0 || irq->irq >= 256)
  1993. return -EINVAL;
  1994. if (irqchip_in_kernel(vcpu->kvm))
  1995. return -ENXIO;
  1996. kvm_queue_interrupt(vcpu, irq->irq, false);
  1997. return 0;
  1998. }
  1999. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2000. {
  2001. kvm_inject_nmi(vcpu);
  2002. return 0;
  2003. }
  2004. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2005. struct kvm_tpr_access_ctl *tac)
  2006. {
  2007. if (tac->flags)
  2008. return -EINVAL;
  2009. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2010. return 0;
  2011. }
  2012. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2013. u64 mcg_cap)
  2014. {
  2015. int r;
  2016. unsigned bank_num = mcg_cap & 0xff, bank;
  2017. r = -EINVAL;
  2018. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2019. goto out;
  2020. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2021. goto out;
  2022. r = 0;
  2023. vcpu->arch.mcg_cap = mcg_cap;
  2024. /* Init IA32_MCG_CTL to all 1s */
  2025. if (mcg_cap & MCG_CTL_P)
  2026. vcpu->arch.mcg_ctl = ~(u64)0;
  2027. /* Init IA32_MCi_CTL to all 1s */
  2028. for (bank = 0; bank < bank_num; bank++)
  2029. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2030. out:
  2031. return r;
  2032. }
  2033. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2034. struct kvm_x86_mce *mce)
  2035. {
  2036. u64 mcg_cap = vcpu->arch.mcg_cap;
  2037. unsigned bank_num = mcg_cap & 0xff;
  2038. u64 *banks = vcpu->arch.mce_banks;
  2039. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2040. return -EINVAL;
  2041. /*
  2042. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2043. * reporting is disabled
  2044. */
  2045. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2046. vcpu->arch.mcg_ctl != ~(u64)0)
  2047. return 0;
  2048. banks += 4 * mce->bank;
  2049. /*
  2050. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2051. * reporting is disabled for the bank
  2052. */
  2053. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2054. return 0;
  2055. if (mce->status & MCI_STATUS_UC) {
  2056. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2057. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2058. printk(KERN_DEBUG "kvm: set_mce: "
  2059. "injects mce exception while "
  2060. "previous one is in progress!\n");
  2061. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2062. return 0;
  2063. }
  2064. if (banks[1] & MCI_STATUS_VAL)
  2065. mce->status |= MCI_STATUS_OVER;
  2066. banks[2] = mce->addr;
  2067. banks[3] = mce->misc;
  2068. vcpu->arch.mcg_status = mce->mcg_status;
  2069. banks[1] = mce->status;
  2070. kvm_queue_exception(vcpu, MC_VECTOR);
  2071. } else if (!(banks[1] & MCI_STATUS_VAL)
  2072. || !(banks[1] & MCI_STATUS_UC)) {
  2073. if (banks[1] & MCI_STATUS_VAL)
  2074. mce->status |= MCI_STATUS_OVER;
  2075. banks[2] = mce->addr;
  2076. banks[3] = mce->misc;
  2077. banks[1] = mce->status;
  2078. } else
  2079. banks[1] |= MCI_STATUS_OVER;
  2080. return 0;
  2081. }
  2082. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2083. struct kvm_vcpu_events *events)
  2084. {
  2085. events->exception.injected =
  2086. vcpu->arch.exception.pending &&
  2087. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2088. events->exception.nr = vcpu->arch.exception.nr;
  2089. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2090. events->exception.error_code = vcpu->arch.exception.error_code;
  2091. events->interrupt.injected =
  2092. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2093. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2094. events->interrupt.soft = 0;
  2095. events->interrupt.shadow =
  2096. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2097. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2098. events->nmi.injected = vcpu->arch.nmi_injected;
  2099. events->nmi.pending = vcpu->arch.nmi_pending;
  2100. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2101. events->sipi_vector = vcpu->arch.sipi_vector;
  2102. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2103. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2104. | KVM_VCPUEVENT_VALID_SHADOW);
  2105. }
  2106. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2107. struct kvm_vcpu_events *events)
  2108. {
  2109. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2110. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2111. | KVM_VCPUEVENT_VALID_SHADOW))
  2112. return -EINVAL;
  2113. vcpu->arch.exception.pending = events->exception.injected;
  2114. vcpu->arch.exception.nr = events->exception.nr;
  2115. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2116. vcpu->arch.exception.error_code = events->exception.error_code;
  2117. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2118. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2119. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2120. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2121. kvm_pic_clear_isr_ack(vcpu->kvm);
  2122. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2123. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2124. events->interrupt.shadow);
  2125. vcpu->arch.nmi_injected = events->nmi.injected;
  2126. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2127. vcpu->arch.nmi_pending = events->nmi.pending;
  2128. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2129. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2130. vcpu->arch.sipi_vector = events->sipi_vector;
  2131. return 0;
  2132. }
  2133. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2134. struct kvm_debugregs *dbgregs)
  2135. {
  2136. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2137. dbgregs->dr6 = vcpu->arch.dr6;
  2138. dbgregs->dr7 = vcpu->arch.dr7;
  2139. dbgregs->flags = 0;
  2140. }
  2141. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2142. struct kvm_debugregs *dbgregs)
  2143. {
  2144. if (dbgregs->flags)
  2145. return -EINVAL;
  2146. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2147. vcpu->arch.dr6 = dbgregs->dr6;
  2148. vcpu->arch.dr7 = dbgregs->dr7;
  2149. return 0;
  2150. }
  2151. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2152. struct kvm_xsave *guest_xsave)
  2153. {
  2154. if (cpu_has_xsave)
  2155. memcpy(guest_xsave->region,
  2156. &vcpu->arch.guest_fpu.state->xsave,
  2157. xstate_size);
  2158. else {
  2159. memcpy(guest_xsave->region,
  2160. &vcpu->arch.guest_fpu.state->fxsave,
  2161. sizeof(struct i387_fxsave_struct));
  2162. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2163. XSTATE_FPSSE;
  2164. }
  2165. }
  2166. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2167. struct kvm_xsave *guest_xsave)
  2168. {
  2169. u64 xstate_bv =
  2170. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2171. if (cpu_has_xsave)
  2172. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2173. guest_xsave->region, xstate_size);
  2174. else {
  2175. if (xstate_bv & ~XSTATE_FPSSE)
  2176. return -EINVAL;
  2177. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2178. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2179. }
  2180. return 0;
  2181. }
  2182. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2183. struct kvm_xcrs *guest_xcrs)
  2184. {
  2185. if (!cpu_has_xsave) {
  2186. guest_xcrs->nr_xcrs = 0;
  2187. return;
  2188. }
  2189. guest_xcrs->nr_xcrs = 1;
  2190. guest_xcrs->flags = 0;
  2191. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2192. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2193. }
  2194. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2195. struct kvm_xcrs *guest_xcrs)
  2196. {
  2197. int i, r = 0;
  2198. if (!cpu_has_xsave)
  2199. return -EINVAL;
  2200. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2201. return -EINVAL;
  2202. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2203. /* Only support XCR0 currently */
  2204. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2205. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2206. guest_xcrs->xcrs[0].value);
  2207. break;
  2208. }
  2209. if (r)
  2210. r = -EINVAL;
  2211. return r;
  2212. }
  2213. long kvm_arch_vcpu_ioctl(struct file *filp,
  2214. unsigned int ioctl, unsigned long arg)
  2215. {
  2216. struct kvm_vcpu *vcpu = filp->private_data;
  2217. void __user *argp = (void __user *)arg;
  2218. int r;
  2219. union {
  2220. struct kvm_lapic_state *lapic;
  2221. struct kvm_xsave *xsave;
  2222. struct kvm_xcrs *xcrs;
  2223. void *buffer;
  2224. } u;
  2225. u.buffer = NULL;
  2226. switch (ioctl) {
  2227. case KVM_GET_LAPIC: {
  2228. r = -EINVAL;
  2229. if (!vcpu->arch.apic)
  2230. goto out;
  2231. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2232. r = -ENOMEM;
  2233. if (!u.lapic)
  2234. goto out;
  2235. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2236. if (r)
  2237. goto out;
  2238. r = -EFAULT;
  2239. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2240. goto out;
  2241. r = 0;
  2242. break;
  2243. }
  2244. case KVM_SET_LAPIC: {
  2245. r = -EINVAL;
  2246. if (!vcpu->arch.apic)
  2247. goto out;
  2248. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2249. r = -ENOMEM;
  2250. if (!u.lapic)
  2251. goto out;
  2252. r = -EFAULT;
  2253. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2254. goto out;
  2255. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2256. if (r)
  2257. goto out;
  2258. r = 0;
  2259. break;
  2260. }
  2261. case KVM_INTERRUPT: {
  2262. struct kvm_interrupt irq;
  2263. r = -EFAULT;
  2264. if (copy_from_user(&irq, argp, sizeof irq))
  2265. goto out;
  2266. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2267. if (r)
  2268. goto out;
  2269. r = 0;
  2270. break;
  2271. }
  2272. case KVM_NMI: {
  2273. r = kvm_vcpu_ioctl_nmi(vcpu);
  2274. if (r)
  2275. goto out;
  2276. r = 0;
  2277. break;
  2278. }
  2279. case KVM_SET_CPUID: {
  2280. struct kvm_cpuid __user *cpuid_arg = argp;
  2281. struct kvm_cpuid cpuid;
  2282. r = -EFAULT;
  2283. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2284. goto out;
  2285. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2286. if (r)
  2287. goto out;
  2288. break;
  2289. }
  2290. case KVM_SET_CPUID2: {
  2291. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2292. struct kvm_cpuid2 cpuid;
  2293. r = -EFAULT;
  2294. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2295. goto out;
  2296. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2297. cpuid_arg->entries);
  2298. if (r)
  2299. goto out;
  2300. break;
  2301. }
  2302. case KVM_GET_CPUID2: {
  2303. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2304. struct kvm_cpuid2 cpuid;
  2305. r = -EFAULT;
  2306. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2307. goto out;
  2308. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2309. cpuid_arg->entries);
  2310. if (r)
  2311. goto out;
  2312. r = -EFAULT;
  2313. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2314. goto out;
  2315. r = 0;
  2316. break;
  2317. }
  2318. case KVM_GET_MSRS:
  2319. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2320. break;
  2321. case KVM_SET_MSRS:
  2322. r = msr_io(vcpu, argp, do_set_msr, 0);
  2323. break;
  2324. case KVM_TPR_ACCESS_REPORTING: {
  2325. struct kvm_tpr_access_ctl tac;
  2326. r = -EFAULT;
  2327. if (copy_from_user(&tac, argp, sizeof tac))
  2328. goto out;
  2329. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2330. if (r)
  2331. goto out;
  2332. r = -EFAULT;
  2333. if (copy_to_user(argp, &tac, sizeof tac))
  2334. goto out;
  2335. r = 0;
  2336. break;
  2337. };
  2338. case KVM_SET_VAPIC_ADDR: {
  2339. struct kvm_vapic_addr va;
  2340. r = -EINVAL;
  2341. if (!irqchip_in_kernel(vcpu->kvm))
  2342. goto out;
  2343. r = -EFAULT;
  2344. if (copy_from_user(&va, argp, sizeof va))
  2345. goto out;
  2346. r = 0;
  2347. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2348. break;
  2349. }
  2350. case KVM_X86_SETUP_MCE: {
  2351. u64 mcg_cap;
  2352. r = -EFAULT;
  2353. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2354. goto out;
  2355. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2356. break;
  2357. }
  2358. case KVM_X86_SET_MCE: {
  2359. struct kvm_x86_mce mce;
  2360. r = -EFAULT;
  2361. if (copy_from_user(&mce, argp, sizeof mce))
  2362. goto out;
  2363. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2364. break;
  2365. }
  2366. case KVM_GET_VCPU_EVENTS: {
  2367. struct kvm_vcpu_events events;
  2368. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2369. r = -EFAULT;
  2370. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2371. break;
  2372. r = 0;
  2373. break;
  2374. }
  2375. case KVM_SET_VCPU_EVENTS: {
  2376. struct kvm_vcpu_events events;
  2377. r = -EFAULT;
  2378. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2379. break;
  2380. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2381. break;
  2382. }
  2383. case KVM_GET_DEBUGREGS: {
  2384. struct kvm_debugregs dbgregs;
  2385. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2386. r = -EFAULT;
  2387. if (copy_to_user(argp, &dbgregs,
  2388. sizeof(struct kvm_debugregs)))
  2389. break;
  2390. r = 0;
  2391. break;
  2392. }
  2393. case KVM_SET_DEBUGREGS: {
  2394. struct kvm_debugregs dbgregs;
  2395. r = -EFAULT;
  2396. if (copy_from_user(&dbgregs, argp,
  2397. sizeof(struct kvm_debugregs)))
  2398. break;
  2399. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2400. break;
  2401. }
  2402. case KVM_GET_XSAVE: {
  2403. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2404. r = -ENOMEM;
  2405. if (!u.xsave)
  2406. break;
  2407. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2408. r = -EFAULT;
  2409. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2410. break;
  2411. r = 0;
  2412. break;
  2413. }
  2414. case KVM_SET_XSAVE: {
  2415. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2416. r = -ENOMEM;
  2417. if (!u.xsave)
  2418. break;
  2419. r = -EFAULT;
  2420. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2421. break;
  2422. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2423. break;
  2424. }
  2425. case KVM_GET_XCRS: {
  2426. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2427. r = -ENOMEM;
  2428. if (!u.xcrs)
  2429. break;
  2430. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2431. r = -EFAULT;
  2432. if (copy_to_user(argp, u.xcrs,
  2433. sizeof(struct kvm_xcrs)))
  2434. break;
  2435. r = 0;
  2436. break;
  2437. }
  2438. case KVM_SET_XCRS: {
  2439. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2440. r = -ENOMEM;
  2441. if (!u.xcrs)
  2442. break;
  2443. r = -EFAULT;
  2444. if (copy_from_user(u.xcrs, argp,
  2445. sizeof(struct kvm_xcrs)))
  2446. break;
  2447. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2448. break;
  2449. }
  2450. default:
  2451. r = -EINVAL;
  2452. }
  2453. out:
  2454. kfree(u.buffer);
  2455. return r;
  2456. }
  2457. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2458. {
  2459. int ret;
  2460. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2461. return -1;
  2462. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2463. return ret;
  2464. }
  2465. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2466. u64 ident_addr)
  2467. {
  2468. kvm->arch.ept_identity_map_addr = ident_addr;
  2469. return 0;
  2470. }
  2471. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2472. u32 kvm_nr_mmu_pages)
  2473. {
  2474. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2475. return -EINVAL;
  2476. mutex_lock(&kvm->slots_lock);
  2477. spin_lock(&kvm->mmu_lock);
  2478. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2479. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2480. spin_unlock(&kvm->mmu_lock);
  2481. mutex_unlock(&kvm->slots_lock);
  2482. return 0;
  2483. }
  2484. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2485. {
  2486. return kvm->arch.n_max_mmu_pages;
  2487. }
  2488. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2489. {
  2490. int r;
  2491. r = 0;
  2492. switch (chip->chip_id) {
  2493. case KVM_IRQCHIP_PIC_MASTER:
  2494. memcpy(&chip->chip.pic,
  2495. &pic_irqchip(kvm)->pics[0],
  2496. sizeof(struct kvm_pic_state));
  2497. break;
  2498. case KVM_IRQCHIP_PIC_SLAVE:
  2499. memcpy(&chip->chip.pic,
  2500. &pic_irqchip(kvm)->pics[1],
  2501. sizeof(struct kvm_pic_state));
  2502. break;
  2503. case KVM_IRQCHIP_IOAPIC:
  2504. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2505. break;
  2506. default:
  2507. r = -EINVAL;
  2508. break;
  2509. }
  2510. return r;
  2511. }
  2512. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2513. {
  2514. int r;
  2515. r = 0;
  2516. switch (chip->chip_id) {
  2517. case KVM_IRQCHIP_PIC_MASTER:
  2518. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2519. memcpy(&pic_irqchip(kvm)->pics[0],
  2520. &chip->chip.pic,
  2521. sizeof(struct kvm_pic_state));
  2522. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2523. break;
  2524. case KVM_IRQCHIP_PIC_SLAVE:
  2525. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2526. memcpy(&pic_irqchip(kvm)->pics[1],
  2527. &chip->chip.pic,
  2528. sizeof(struct kvm_pic_state));
  2529. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2530. break;
  2531. case KVM_IRQCHIP_IOAPIC:
  2532. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2533. break;
  2534. default:
  2535. r = -EINVAL;
  2536. break;
  2537. }
  2538. kvm_pic_update_irq(pic_irqchip(kvm));
  2539. return r;
  2540. }
  2541. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2542. {
  2543. int r = 0;
  2544. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2545. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2546. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2547. return r;
  2548. }
  2549. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2550. {
  2551. int r = 0;
  2552. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2553. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2554. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2555. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2556. return r;
  2557. }
  2558. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2559. {
  2560. int r = 0;
  2561. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2562. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2563. sizeof(ps->channels));
  2564. ps->flags = kvm->arch.vpit->pit_state.flags;
  2565. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2566. return r;
  2567. }
  2568. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2569. {
  2570. int r = 0, start = 0;
  2571. u32 prev_legacy, cur_legacy;
  2572. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2573. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2574. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2575. if (!prev_legacy && cur_legacy)
  2576. start = 1;
  2577. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2578. sizeof(kvm->arch.vpit->pit_state.channels));
  2579. kvm->arch.vpit->pit_state.flags = ps->flags;
  2580. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2581. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2582. return r;
  2583. }
  2584. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2585. struct kvm_reinject_control *control)
  2586. {
  2587. if (!kvm->arch.vpit)
  2588. return -ENXIO;
  2589. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2590. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2591. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2592. return 0;
  2593. }
  2594. /*
  2595. * Get (and clear) the dirty memory log for a memory slot.
  2596. */
  2597. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2598. struct kvm_dirty_log *log)
  2599. {
  2600. int r, i;
  2601. struct kvm_memory_slot *memslot;
  2602. unsigned long n;
  2603. unsigned long is_dirty = 0;
  2604. mutex_lock(&kvm->slots_lock);
  2605. r = -EINVAL;
  2606. if (log->slot >= KVM_MEMORY_SLOTS)
  2607. goto out;
  2608. memslot = &kvm->memslots->memslots[log->slot];
  2609. r = -ENOENT;
  2610. if (!memslot->dirty_bitmap)
  2611. goto out;
  2612. n = kvm_dirty_bitmap_bytes(memslot);
  2613. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2614. is_dirty = memslot->dirty_bitmap[i];
  2615. /* If nothing is dirty, don't bother messing with page tables. */
  2616. if (is_dirty) {
  2617. struct kvm_memslots *slots, *old_slots;
  2618. unsigned long *dirty_bitmap;
  2619. spin_lock(&kvm->mmu_lock);
  2620. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2621. spin_unlock(&kvm->mmu_lock);
  2622. r = -ENOMEM;
  2623. dirty_bitmap = vmalloc(n);
  2624. if (!dirty_bitmap)
  2625. goto out;
  2626. memset(dirty_bitmap, 0, n);
  2627. r = -ENOMEM;
  2628. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2629. if (!slots) {
  2630. vfree(dirty_bitmap);
  2631. goto out;
  2632. }
  2633. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2634. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2635. old_slots = kvm->memslots;
  2636. rcu_assign_pointer(kvm->memslots, slots);
  2637. synchronize_srcu_expedited(&kvm->srcu);
  2638. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2639. kfree(old_slots);
  2640. r = -EFAULT;
  2641. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2642. vfree(dirty_bitmap);
  2643. goto out;
  2644. }
  2645. vfree(dirty_bitmap);
  2646. } else {
  2647. r = -EFAULT;
  2648. if (clear_user(log->dirty_bitmap, n))
  2649. goto out;
  2650. }
  2651. r = 0;
  2652. out:
  2653. mutex_unlock(&kvm->slots_lock);
  2654. return r;
  2655. }
  2656. long kvm_arch_vm_ioctl(struct file *filp,
  2657. unsigned int ioctl, unsigned long arg)
  2658. {
  2659. struct kvm *kvm = filp->private_data;
  2660. void __user *argp = (void __user *)arg;
  2661. int r = -ENOTTY;
  2662. /*
  2663. * This union makes it completely explicit to gcc-3.x
  2664. * that these two variables' stack usage should be
  2665. * combined, not added together.
  2666. */
  2667. union {
  2668. struct kvm_pit_state ps;
  2669. struct kvm_pit_state2 ps2;
  2670. struct kvm_pit_config pit_config;
  2671. } u;
  2672. switch (ioctl) {
  2673. case KVM_SET_TSS_ADDR:
  2674. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2675. if (r < 0)
  2676. goto out;
  2677. break;
  2678. case KVM_SET_IDENTITY_MAP_ADDR: {
  2679. u64 ident_addr;
  2680. r = -EFAULT;
  2681. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2682. goto out;
  2683. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2684. if (r < 0)
  2685. goto out;
  2686. break;
  2687. }
  2688. case KVM_SET_NR_MMU_PAGES:
  2689. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2690. if (r)
  2691. goto out;
  2692. break;
  2693. case KVM_GET_NR_MMU_PAGES:
  2694. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2695. break;
  2696. case KVM_CREATE_IRQCHIP: {
  2697. struct kvm_pic *vpic;
  2698. mutex_lock(&kvm->lock);
  2699. r = -EEXIST;
  2700. if (kvm->arch.vpic)
  2701. goto create_irqchip_unlock;
  2702. r = -ENOMEM;
  2703. vpic = kvm_create_pic(kvm);
  2704. if (vpic) {
  2705. r = kvm_ioapic_init(kvm);
  2706. if (r) {
  2707. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2708. &vpic->dev);
  2709. kfree(vpic);
  2710. goto create_irqchip_unlock;
  2711. }
  2712. } else
  2713. goto create_irqchip_unlock;
  2714. smp_wmb();
  2715. kvm->arch.vpic = vpic;
  2716. smp_wmb();
  2717. r = kvm_setup_default_irq_routing(kvm);
  2718. if (r) {
  2719. mutex_lock(&kvm->irq_lock);
  2720. kvm_ioapic_destroy(kvm);
  2721. kvm_destroy_pic(kvm);
  2722. mutex_unlock(&kvm->irq_lock);
  2723. }
  2724. create_irqchip_unlock:
  2725. mutex_unlock(&kvm->lock);
  2726. break;
  2727. }
  2728. case KVM_CREATE_PIT:
  2729. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2730. goto create_pit;
  2731. case KVM_CREATE_PIT2:
  2732. r = -EFAULT;
  2733. if (copy_from_user(&u.pit_config, argp,
  2734. sizeof(struct kvm_pit_config)))
  2735. goto out;
  2736. create_pit:
  2737. mutex_lock(&kvm->slots_lock);
  2738. r = -EEXIST;
  2739. if (kvm->arch.vpit)
  2740. goto create_pit_unlock;
  2741. r = -ENOMEM;
  2742. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2743. if (kvm->arch.vpit)
  2744. r = 0;
  2745. create_pit_unlock:
  2746. mutex_unlock(&kvm->slots_lock);
  2747. break;
  2748. case KVM_IRQ_LINE_STATUS:
  2749. case KVM_IRQ_LINE: {
  2750. struct kvm_irq_level irq_event;
  2751. r = -EFAULT;
  2752. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2753. goto out;
  2754. r = -ENXIO;
  2755. if (irqchip_in_kernel(kvm)) {
  2756. __s32 status;
  2757. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2758. irq_event.irq, irq_event.level);
  2759. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2760. r = -EFAULT;
  2761. irq_event.status = status;
  2762. if (copy_to_user(argp, &irq_event,
  2763. sizeof irq_event))
  2764. goto out;
  2765. }
  2766. r = 0;
  2767. }
  2768. break;
  2769. }
  2770. case KVM_GET_IRQCHIP: {
  2771. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2772. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2773. r = -ENOMEM;
  2774. if (!chip)
  2775. goto out;
  2776. r = -EFAULT;
  2777. if (copy_from_user(chip, argp, sizeof *chip))
  2778. goto get_irqchip_out;
  2779. r = -ENXIO;
  2780. if (!irqchip_in_kernel(kvm))
  2781. goto get_irqchip_out;
  2782. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2783. if (r)
  2784. goto get_irqchip_out;
  2785. r = -EFAULT;
  2786. if (copy_to_user(argp, chip, sizeof *chip))
  2787. goto get_irqchip_out;
  2788. r = 0;
  2789. get_irqchip_out:
  2790. kfree(chip);
  2791. if (r)
  2792. goto out;
  2793. break;
  2794. }
  2795. case KVM_SET_IRQCHIP: {
  2796. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2797. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2798. r = -ENOMEM;
  2799. if (!chip)
  2800. goto out;
  2801. r = -EFAULT;
  2802. if (copy_from_user(chip, argp, sizeof *chip))
  2803. goto set_irqchip_out;
  2804. r = -ENXIO;
  2805. if (!irqchip_in_kernel(kvm))
  2806. goto set_irqchip_out;
  2807. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2808. if (r)
  2809. goto set_irqchip_out;
  2810. r = 0;
  2811. set_irqchip_out:
  2812. kfree(chip);
  2813. if (r)
  2814. goto out;
  2815. break;
  2816. }
  2817. case KVM_GET_PIT: {
  2818. r = -EFAULT;
  2819. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2820. goto out;
  2821. r = -ENXIO;
  2822. if (!kvm->arch.vpit)
  2823. goto out;
  2824. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2825. if (r)
  2826. goto out;
  2827. r = -EFAULT;
  2828. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2829. goto out;
  2830. r = 0;
  2831. break;
  2832. }
  2833. case KVM_SET_PIT: {
  2834. r = -EFAULT;
  2835. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2836. goto out;
  2837. r = -ENXIO;
  2838. if (!kvm->arch.vpit)
  2839. goto out;
  2840. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2841. if (r)
  2842. goto out;
  2843. r = 0;
  2844. break;
  2845. }
  2846. case KVM_GET_PIT2: {
  2847. r = -ENXIO;
  2848. if (!kvm->arch.vpit)
  2849. goto out;
  2850. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2851. if (r)
  2852. goto out;
  2853. r = -EFAULT;
  2854. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2855. goto out;
  2856. r = 0;
  2857. break;
  2858. }
  2859. case KVM_SET_PIT2: {
  2860. r = -EFAULT;
  2861. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2862. goto out;
  2863. r = -ENXIO;
  2864. if (!kvm->arch.vpit)
  2865. goto out;
  2866. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2867. if (r)
  2868. goto out;
  2869. r = 0;
  2870. break;
  2871. }
  2872. case KVM_REINJECT_CONTROL: {
  2873. struct kvm_reinject_control control;
  2874. r = -EFAULT;
  2875. if (copy_from_user(&control, argp, sizeof(control)))
  2876. goto out;
  2877. r = kvm_vm_ioctl_reinject(kvm, &control);
  2878. if (r)
  2879. goto out;
  2880. r = 0;
  2881. break;
  2882. }
  2883. case KVM_XEN_HVM_CONFIG: {
  2884. r = -EFAULT;
  2885. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2886. sizeof(struct kvm_xen_hvm_config)))
  2887. goto out;
  2888. r = -EINVAL;
  2889. if (kvm->arch.xen_hvm_config.flags)
  2890. goto out;
  2891. r = 0;
  2892. break;
  2893. }
  2894. case KVM_SET_CLOCK: {
  2895. struct timespec now;
  2896. struct kvm_clock_data user_ns;
  2897. u64 now_ns;
  2898. s64 delta;
  2899. r = -EFAULT;
  2900. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2901. goto out;
  2902. r = -EINVAL;
  2903. if (user_ns.flags)
  2904. goto out;
  2905. r = 0;
  2906. ktime_get_ts(&now);
  2907. now_ns = timespec_to_ns(&now);
  2908. delta = user_ns.clock - now_ns;
  2909. kvm->arch.kvmclock_offset = delta;
  2910. break;
  2911. }
  2912. case KVM_GET_CLOCK: {
  2913. struct timespec now;
  2914. struct kvm_clock_data user_ns;
  2915. u64 now_ns;
  2916. ktime_get_ts(&now);
  2917. now_ns = timespec_to_ns(&now);
  2918. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2919. user_ns.flags = 0;
  2920. r = -EFAULT;
  2921. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2922. goto out;
  2923. r = 0;
  2924. break;
  2925. }
  2926. default:
  2927. ;
  2928. }
  2929. out:
  2930. return r;
  2931. }
  2932. static void kvm_init_msr_list(void)
  2933. {
  2934. u32 dummy[2];
  2935. unsigned i, j;
  2936. /* skip the first msrs in the list. KVM-specific */
  2937. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2938. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2939. continue;
  2940. if (j < i)
  2941. msrs_to_save[j] = msrs_to_save[i];
  2942. j++;
  2943. }
  2944. num_msrs_to_save = j;
  2945. }
  2946. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2947. const void *v)
  2948. {
  2949. if (vcpu->arch.apic &&
  2950. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2951. return 0;
  2952. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2953. }
  2954. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2955. {
  2956. if (vcpu->arch.apic &&
  2957. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2958. return 0;
  2959. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2960. }
  2961. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2962. struct kvm_segment *var, int seg)
  2963. {
  2964. kvm_x86_ops->set_segment(vcpu, var, seg);
  2965. }
  2966. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2967. struct kvm_segment *var, int seg)
  2968. {
  2969. kvm_x86_ops->get_segment(vcpu, var, seg);
  2970. }
  2971. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2972. {
  2973. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2974. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2975. }
  2976. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2977. {
  2978. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2979. access |= PFERR_FETCH_MASK;
  2980. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2981. }
  2982. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2983. {
  2984. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2985. access |= PFERR_WRITE_MASK;
  2986. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2987. }
  2988. /* uses this to access any guest's mapped memory without checking CPL */
  2989. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2990. {
  2991. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2992. }
  2993. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2994. struct kvm_vcpu *vcpu, u32 access,
  2995. u32 *error)
  2996. {
  2997. void *data = val;
  2998. int r = X86EMUL_CONTINUE;
  2999. while (bytes) {
  3000. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  3001. unsigned offset = addr & (PAGE_SIZE-1);
  3002. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3003. int ret;
  3004. if (gpa == UNMAPPED_GVA) {
  3005. r = X86EMUL_PROPAGATE_FAULT;
  3006. goto out;
  3007. }
  3008. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3009. if (ret < 0) {
  3010. r = X86EMUL_IO_NEEDED;
  3011. goto out;
  3012. }
  3013. bytes -= toread;
  3014. data += toread;
  3015. addr += toread;
  3016. }
  3017. out:
  3018. return r;
  3019. }
  3020. /* used for instruction fetching */
  3021. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3022. struct kvm_vcpu *vcpu, u32 *error)
  3023. {
  3024. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3025. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3026. access | PFERR_FETCH_MASK, error);
  3027. }
  3028. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3029. struct kvm_vcpu *vcpu, u32 *error)
  3030. {
  3031. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3032. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3033. error);
  3034. }
  3035. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3036. struct kvm_vcpu *vcpu, u32 *error)
  3037. {
  3038. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3039. }
  3040. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3041. unsigned int bytes,
  3042. struct kvm_vcpu *vcpu,
  3043. u32 *error)
  3044. {
  3045. void *data = val;
  3046. int r = X86EMUL_CONTINUE;
  3047. while (bytes) {
  3048. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  3049. PFERR_WRITE_MASK, error);
  3050. unsigned offset = addr & (PAGE_SIZE-1);
  3051. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3052. int ret;
  3053. if (gpa == UNMAPPED_GVA) {
  3054. r = X86EMUL_PROPAGATE_FAULT;
  3055. goto out;
  3056. }
  3057. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3058. if (ret < 0) {
  3059. r = X86EMUL_IO_NEEDED;
  3060. goto out;
  3061. }
  3062. bytes -= towrite;
  3063. data += towrite;
  3064. addr += towrite;
  3065. }
  3066. out:
  3067. return r;
  3068. }
  3069. static int emulator_read_emulated(unsigned long addr,
  3070. void *val,
  3071. unsigned int bytes,
  3072. unsigned int *error_code,
  3073. struct kvm_vcpu *vcpu)
  3074. {
  3075. gpa_t gpa;
  3076. if (vcpu->mmio_read_completed) {
  3077. memcpy(val, vcpu->mmio_data, bytes);
  3078. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3079. vcpu->mmio_phys_addr, *(u64 *)val);
  3080. vcpu->mmio_read_completed = 0;
  3081. return X86EMUL_CONTINUE;
  3082. }
  3083. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3084. if (gpa == UNMAPPED_GVA)
  3085. return X86EMUL_PROPAGATE_FAULT;
  3086. /* For APIC access vmexit */
  3087. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3088. goto mmio;
  3089. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3090. == X86EMUL_CONTINUE)
  3091. return X86EMUL_CONTINUE;
  3092. mmio:
  3093. /*
  3094. * Is this MMIO handled locally?
  3095. */
  3096. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3097. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3098. return X86EMUL_CONTINUE;
  3099. }
  3100. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3101. vcpu->mmio_needed = 1;
  3102. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3103. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3104. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3105. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3106. return X86EMUL_IO_NEEDED;
  3107. }
  3108. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3109. const void *val, int bytes)
  3110. {
  3111. int ret;
  3112. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3113. if (ret < 0)
  3114. return 0;
  3115. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3116. return 1;
  3117. }
  3118. static int emulator_write_emulated_onepage(unsigned long addr,
  3119. const void *val,
  3120. unsigned int bytes,
  3121. unsigned int *error_code,
  3122. struct kvm_vcpu *vcpu)
  3123. {
  3124. gpa_t gpa;
  3125. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3126. if (gpa == UNMAPPED_GVA)
  3127. return X86EMUL_PROPAGATE_FAULT;
  3128. /* For APIC access vmexit */
  3129. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3130. goto mmio;
  3131. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3132. return X86EMUL_CONTINUE;
  3133. mmio:
  3134. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3135. /*
  3136. * Is this MMIO handled locally?
  3137. */
  3138. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3139. return X86EMUL_CONTINUE;
  3140. vcpu->mmio_needed = 1;
  3141. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3142. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3143. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3144. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3145. memcpy(vcpu->run->mmio.data, val, bytes);
  3146. return X86EMUL_CONTINUE;
  3147. }
  3148. int emulator_write_emulated(unsigned long addr,
  3149. const void *val,
  3150. unsigned int bytes,
  3151. unsigned int *error_code,
  3152. struct kvm_vcpu *vcpu)
  3153. {
  3154. /* Crossing a page boundary? */
  3155. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3156. int rc, now;
  3157. now = -addr & ~PAGE_MASK;
  3158. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3159. vcpu);
  3160. if (rc != X86EMUL_CONTINUE)
  3161. return rc;
  3162. addr += now;
  3163. val += now;
  3164. bytes -= now;
  3165. }
  3166. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3167. vcpu);
  3168. }
  3169. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3170. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3171. #ifdef CONFIG_X86_64
  3172. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3173. #else
  3174. # define CMPXCHG64(ptr, old, new) \
  3175. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3176. #endif
  3177. static int emulator_cmpxchg_emulated(unsigned long addr,
  3178. const void *old,
  3179. const void *new,
  3180. unsigned int bytes,
  3181. unsigned int *error_code,
  3182. struct kvm_vcpu *vcpu)
  3183. {
  3184. gpa_t gpa;
  3185. struct page *page;
  3186. char *kaddr;
  3187. bool exchanged;
  3188. /* guests cmpxchg8b have to be emulated atomically */
  3189. if (bytes > 8 || (bytes & (bytes - 1)))
  3190. goto emul_write;
  3191. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3192. if (gpa == UNMAPPED_GVA ||
  3193. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3194. goto emul_write;
  3195. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3196. goto emul_write;
  3197. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3198. if (is_error_page(page)) {
  3199. kvm_release_page_clean(page);
  3200. goto emul_write;
  3201. }
  3202. kaddr = kmap_atomic(page, KM_USER0);
  3203. kaddr += offset_in_page(gpa);
  3204. switch (bytes) {
  3205. case 1:
  3206. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3207. break;
  3208. case 2:
  3209. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3210. break;
  3211. case 4:
  3212. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3213. break;
  3214. case 8:
  3215. exchanged = CMPXCHG64(kaddr, old, new);
  3216. break;
  3217. default:
  3218. BUG();
  3219. }
  3220. kunmap_atomic(kaddr, KM_USER0);
  3221. kvm_release_page_dirty(page);
  3222. if (!exchanged)
  3223. return X86EMUL_CMPXCHG_FAILED;
  3224. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3225. return X86EMUL_CONTINUE;
  3226. emul_write:
  3227. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3228. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3229. }
  3230. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3231. {
  3232. /* TODO: String I/O for in kernel device */
  3233. int r;
  3234. if (vcpu->arch.pio.in)
  3235. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3236. vcpu->arch.pio.size, pd);
  3237. else
  3238. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3239. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3240. pd);
  3241. return r;
  3242. }
  3243. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3244. unsigned int count, struct kvm_vcpu *vcpu)
  3245. {
  3246. if (vcpu->arch.pio.count)
  3247. goto data_avail;
  3248. trace_kvm_pio(1, port, size, 1);
  3249. vcpu->arch.pio.port = port;
  3250. vcpu->arch.pio.in = 1;
  3251. vcpu->arch.pio.count = count;
  3252. vcpu->arch.pio.size = size;
  3253. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3254. data_avail:
  3255. memcpy(val, vcpu->arch.pio_data, size * count);
  3256. vcpu->arch.pio.count = 0;
  3257. return 1;
  3258. }
  3259. vcpu->run->exit_reason = KVM_EXIT_IO;
  3260. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3261. vcpu->run->io.size = size;
  3262. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3263. vcpu->run->io.count = count;
  3264. vcpu->run->io.port = port;
  3265. return 0;
  3266. }
  3267. static int emulator_pio_out_emulated(int size, unsigned short port,
  3268. const void *val, unsigned int count,
  3269. struct kvm_vcpu *vcpu)
  3270. {
  3271. trace_kvm_pio(0, port, size, 1);
  3272. vcpu->arch.pio.port = port;
  3273. vcpu->arch.pio.in = 0;
  3274. vcpu->arch.pio.count = count;
  3275. vcpu->arch.pio.size = size;
  3276. memcpy(vcpu->arch.pio_data, val, size * count);
  3277. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3278. vcpu->arch.pio.count = 0;
  3279. return 1;
  3280. }
  3281. vcpu->run->exit_reason = KVM_EXIT_IO;
  3282. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3283. vcpu->run->io.size = size;
  3284. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3285. vcpu->run->io.count = count;
  3286. vcpu->run->io.port = port;
  3287. return 0;
  3288. }
  3289. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3290. {
  3291. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3292. }
  3293. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3294. {
  3295. kvm_mmu_invlpg(vcpu, address);
  3296. return X86EMUL_CONTINUE;
  3297. }
  3298. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3299. {
  3300. if (!need_emulate_wbinvd(vcpu))
  3301. return X86EMUL_CONTINUE;
  3302. if (kvm_x86_ops->has_wbinvd_exit()) {
  3303. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3304. wbinvd_ipi, NULL, 1);
  3305. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3306. }
  3307. wbinvd();
  3308. return X86EMUL_CONTINUE;
  3309. }
  3310. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3311. int emulate_clts(struct kvm_vcpu *vcpu)
  3312. {
  3313. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3314. kvm_x86_ops->fpu_activate(vcpu);
  3315. return X86EMUL_CONTINUE;
  3316. }
  3317. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3318. {
  3319. return _kvm_get_dr(vcpu, dr, dest);
  3320. }
  3321. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3322. {
  3323. return __kvm_set_dr(vcpu, dr, value);
  3324. }
  3325. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3326. {
  3327. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3328. }
  3329. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3330. {
  3331. unsigned long value;
  3332. switch (cr) {
  3333. case 0:
  3334. value = kvm_read_cr0(vcpu);
  3335. break;
  3336. case 2:
  3337. value = vcpu->arch.cr2;
  3338. break;
  3339. case 3:
  3340. value = vcpu->arch.cr3;
  3341. break;
  3342. case 4:
  3343. value = kvm_read_cr4(vcpu);
  3344. break;
  3345. case 8:
  3346. value = kvm_get_cr8(vcpu);
  3347. break;
  3348. default:
  3349. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3350. return 0;
  3351. }
  3352. return value;
  3353. }
  3354. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3355. {
  3356. int res = 0;
  3357. switch (cr) {
  3358. case 0:
  3359. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3360. break;
  3361. case 2:
  3362. vcpu->arch.cr2 = val;
  3363. break;
  3364. case 3:
  3365. res = kvm_set_cr3(vcpu, val);
  3366. break;
  3367. case 4:
  3368. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3369. break;
  3370. case 8:
  3371. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3372. break;
  3373. default:
  3374. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3375. res = -1;
  3376. }
  3377. return res;
  3378. }
  3379. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3380. {
  3381. return kvm_x86_ops->get_cpl(vcpu);
  3382. }
  3383. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3384. {
  3385. kvm_x86_ops->get_gdt(vcpu, dt);
  3386. }
  3387. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3388. {
  3389. kvm_x86_ops->get_idt(vcpu, dt);
  3390. }
  3391. static unsigned long emulator_get_cached_segment_base(int seg,
  3392. struct kvm_vcpu *vcpu)
  3393. {
  3394. return get_segment_base(vcpu, seg);
  3395. }
  3396. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3397. struct kvm_vcpu *vcpu)
  3398. {
  3399. struct kvm_segment var;
  3400. kvm_get_segment(vcpu, &var, seg);
  3401. if (var.unusable)
  3402. return false;
  3403. if (var.g)
  3404. var.limit >>= 12;
  3405. set_desc_limit(desc, var.limit);
  3406. set_desc_base(desc, (unsigned long)var.base);
  3407. desc->type = var.type;
  3408. desc->s = var.s;
  3409. desc->dpl = var.dpl;
  3410. desc->p = var.present;
  3411. desc->avl = var.avl;
  3412. desc->l = var.l;
  3413. desc->d = var.db;
  3414. desc->g = var.g;
  3415. return true;
  3416. }
  3417. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3418. struct kvm_vcpu *vcpu)
  3419. {
  3420. struct kvm_segment var;
  3421. /* needed to preserve selector */
  3422. kvm_get_segment(vcpu, &var, seg);
  3423. var.base = get_desc_base(desc);
  3424. var.limit = get_desc_limit(desc);
  3425. if (desc->g)
  3426. var.limit = (var.limit << 12) | 0xfff;
  3427. var.type = desc->type;
  3428. var.present = desc->p;
  3429. var.dpl = desc->dpl;
  3430. var.db = desc->d;
  3431. var.s = desc->s;
  3432. var.l = desc->l;
  3433. var.g = desc->g;
  3434. var.avl = desc->avl;
  3435. var.present = desc->p;
  3436. var.unusable = !var.present;
  3437. var.padding = 0;
  3438. kvm_set_segment(vcpu, &var, seg);
  3439. return;
  3440. }
  3441. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3442. {
  3443. struct kvm_segment kvm_seg;
  3444. kvm_get_segment(vcpu, &kvm_seg, seg);
  3445. return kvm_seg.selector;
  3446. }
  3447. static void emulator_set_segment_selector(u16 sel, int seg,
  3448. struct kvm_vcpu *vcpu)
  3449. {
  3450. struct kvm_segment kvm_seg;
  3451. kvm_get_segment(vcpu, &kvm_seg, seg);
  3452. kvm_seg.selector = sel;
  3453. kvm_set_segment(vcpu, &kvm_seg, seg);
  3454. }
  3455. static struct x86_emulate_ops emulate_ops = {
  3456. .read_std = kvm_read_guest_virt_system,
  3457. .write_std = kvm_write_guest_virt_system,
  3458. .fetch = kvm_fetch_guest_virt,
  3459. .read_emulated = emulator_read_emulated,
  3460. .write_emulated = emulator_write_emulated,
  3461. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3462. .pio_in_emulated = emulator_pio_in_emulated,
  3463. .pio_out_emulated = emulator_pio_out_emulated,
  3464. .get_cached_descriptor = emulator_get_cached_descriptor,
  3465. .set_cached_descriptor = emulator_set_cached_descriptor,
  3466. .get_segment_selector = emulator_get_segment_selector,
  3467. .set_segment_selector = emulator_set_segment_selector,
  3468. .get_cached_segment_base = emulator_get_cached_segment_base,
  3469. .get_gdt = emulator_get_gdt,
  3470. .get_idt = emulator_get_idt,
  3471. .get_cr = emulator_get_cr,
  3472. .set_cr = emulator_set_cr,
  3473. .cpl = emulator_get_cpl,
  3474. .get_dr = emulator_get_dr,
  3475. .set_dr = emulator_set_dr,
  3476. .set_msr = kvm_set_msr,
  3477. .get_msr = kvm_get_msr,
  3478. };
  3479. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3480. {
  3481. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3482. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3483. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3484. vcpu->arch.regs_dirty = ~0;
  3485. }
  3486. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3487. {
  3488. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3489. /*
  3490. * an sti; sti; sequence only disable interrupts for the first
  3491. * instruction. So, if the last instruction, be it emulated or
  3492. * not, left the system with the INT_STI flag enabled, it
  3493. * means that the last instruction is an sti. We should not
  3494. * leave the flag on in this case. The same goes for mov ss
  3495. */
  3496. if (!(int_shadow & mask))
  3497. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3498. }
  3499. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3500. {
  3501. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3502. if (ctxt->exception == PF_VECTOR)
  3503. kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
  3504. else if (ctxt->error_code_valid)
  3505. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3506. else
  3507. kvm_queue_exception(vcpu, ctxt->exception);
  3508. }
  3509. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3510. {
  3511. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3512. int cs_db, cs_l;
  3513. cache_all_regs(vcpu);
  3514. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3515. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3516. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3517. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3518. vcpu->arch.emulate_ctxt.mode =
  3519. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3520. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3521. ? X86EMUL_MODE_VM86 : cs_l
  3522. ? X86EMUL_MODE_PROT64 : cs_db
  3523. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3524. memset(c, 0, sizeof(struct decode_cache));
  3525. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3526. }
  3527. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3528. {
  3529. ++vcpu->stat.insn_emulation_fail;
  3530. trace_kvm_emulate_insn_failed(vcpu);
  3531. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3532. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3533. vcpu->run->internal.ndata = 0;
  3534. kvm_queue_exception(vcpu, UD_VECTOR);
  3535. return EMULATE_FAIL;
  3536. }
  3537. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3538. {
  3539. gpa_t gpa;
  3540. if (tdp_enabled)
  3541. return false;
  3542. /*
  3543. * if emulation was due to access to shadowed page table
  3544. * and it failed try to unshadow page and re-entetr the
  3545. * guest to let CPU execute the instruction.
  3546. */
  3547. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3548. return true;
  3549. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3550. if (gpa == UNMAPPED_GVA)
  3551. return true; /* let cpu generate fault */
  3552. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3553. return true;
  3554. return false;
  3555. }
  3556. int emulate_instruction(struct kvm_vcpu *vcpu,
  3557. unsigned long cr2,
  3558. u16 error_code,
  3559. int emulation_type)
  3560. {
  3561. int r;
  3562. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3563. kvm_clear_exception_queue(vcpu);
  3564. vcpu->arch.mmio_fault_cr2 = cr2;
  3565. /*
  3566. * TODO: fix emulate.c to use guest_read/write_register
  3567. * instead of direct ->regs accesses, can save hundred cycles
  3568. * on Intel for instructions that don't read/change RSP, for
  3569. * for example.
  3570. */
  3571. cache_all_regs(vcpu);
  3572. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3573. init_emulate_ctxt(vcpu);
  3574. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3575. vcpu->arch.emulate_ctxt.exception = -1;
  3576. vcpu->arch.emulate_ctxt.perm_ok = false;
  3577. r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
  3578. trace_kvm_emulate_insn_start(vcpu);
  3579. /* Only allow emulation of specific instructions on #UD
  3580. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3581. if (emulation_type & EMULTYPE_TRAP_UD) {
  3582. if (!c->twobyte)
  3583. return EMULATE_FAIL;
  3584. switch (c->b) {
  3585. case 0x01: /* VMMCALL */
  3586. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3587. return EMULATE_FAIL;
  3588. break;
  3589. case 0x34: /* sysenter */
  3590. case 0x35: /* sysexit */
  3591. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3592. return EMULATE_FAIL;
  3593. break;
  3594. case 0x05: /* syscall */
  3595. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3596. return EMULATE_FAIL;
  3597. break;
  3598. default:
  3599. return EMULATE_FAIL;
  3600. }
  3601. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3602. return EMULATE_FAIL;
  3603. }
  3604. ++vcpu->stat.insn_emulation;
  3605. if (r) {
  3606. if (reexecute_instruction(vcpu, cr2))
  3607. return EMULATE_DONE;
  3608. if (emulation_type & EMULTYPE_SKIP)
  3609. return EMULATE_FAIL;
  3610. return handle_emulation_failure(vcpu);
  3611. }
  3612. }
  3613. if (emulation_type & EMULTYPE_SKIP) {
  3614. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3615. return EMULATE_DONE;
  3616. }
  3617. /* this is needed for vmware backdor interface to work since it
  3618. changes registers values during IO operation */
  3619. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3620. restart:
  3621. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3622. if (r) { /* emulation failed */
  3623. if (reexecute_instruction(vcpu, cr2))
  3624. return EMULATE_DONE;
  3625. return handle_emulation_failure(vcpu);
  3626. }
  3627. r = EMULATE_DONE;
  3628. if (vcpu->arch.emulate_ctxt.exception >= 0)
  3629. inject_emulated_exception(vcpu);
  3630. else if (vcpu->arch.pio.count) {
  3631. if (!vcpu->arch.pio.in)
  3632. vcpu->arch.pio.count = 0;
  3633. r = EMULATE_DO_MMIO;
  3634. } else if (vcpu->mmio_needed) {
  3635. if (vcpu->mmio_is_write)
  3636. vcpu->mmio_needed = 0;
  3637. r = EMULATE_DO_MMIO;
  3638. } else if (vcpu->arch.emulate_ctxt.restart)
  3639. goto restart;
  3640. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3641. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3642. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3643. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3644. return r;
  3645. }
  3646. EXPORT_SYMBOL_GPL(emulate_instruction);
  3647. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3648. {
  3649. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3650. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3651. /* do not return to emulator after return from userspace */
  3652. vcpu->arch.pio.count = 0;
  3653. return ret;
  3654. }
  3655. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3656. static void tsc_bad(void *info)
  3657. {
  3658. __get_cpu_var(cpu_tsc_khz) = 0;
  3659. }
  3660. static void tsc_khz_changed(void *data)
  3661. {
  3662. struct cpufreq_freqs *freq = data;
  3663. unsigned long khz = 0;
  3664. if (data)
  3665. khz = freq->new;
  3666. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3667. khz = cpufreq_quick_get(raw_smp_processor_id());
  3668. if (!khz)
  3669. khz = tsc_khz;
  3670. __get_cpu_var(cpu_tsc_khz) = khz;
  3671. }
  3672. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3673. void *data)
  3674. {
  3675. struct cpufreq_freqs *freq = data;
  3676. struct kvm *kvm;
  3677. struct kvm_vcpu *vcpu;
  3678. int i, send_ipi = 0;
  3679. /*
  3680. * We allow guests to temporarily run on slowing clocks,
  3681. * provided we notify them after, or to run on accelerating
  3682. * clocks, provided we notify them before. Thus time never
  3683. * goes backwards.
  3684. *
  3685. * However, we have a problem. We can't atomically update
  3686. * the frequency of a given CPU from this function; it is
  3687. * merely a notifier, which can be called from any CPU.
  3688. * Changing the TSC frequency at arbitrary points in time
  3689. * requires a recomputation of local variables related to
  3690. * the TSC for each VCPU. We must flag these local variables
  3691. * to be updated and be sure the update takes place with the
  3692. * new frequency before any guests proceed.
  3693. *
  3694. * Unfortunately, the combination of hotplug CPU and frequency
  3695. * change creates an intractable locking scenario; the order
  3696. * of when these callouts happen is undefined with respect to
  3697. * CPU hotplug, and they can race with each other. As such,
  3698. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3699. * undefined; you can actually have a CPU frequency change take
  3700. * place in between the computation of X and the setting of the
  3701. * variable. To protect against this problem, all updates of
  3702. * the per_cpu tsc_khz variable are done in an interrupt
  3703. * protected IPI, and all callers wishing to update the value
  3704. * must wait for a synchronous IPI to complete (which is trivial
  3705. * if the caller is on the CPU already). This establishes the
  3706. * necessary total order on variable updates.
  3707. *
  3708. * Note that because a guest time update may take place
  3709. * anytime after the setting of the VCPU's request bit, the
  3710. * correct TSC value must be set before the request. However,
  3711. * to ensure the update actually makes it to any guest which
  3712. * starts running in hardware virtualization between the set
  3713. * and the acquisition of the spinlock, we must also ping the
  3714. * CPU after setting the request bit.
  3715. *
  3716. */
  3717. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3718. return 0;
  3719. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3720. return 0;
  3721. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3722. spin_lock(&kvm_lock);
  3723. list_for_each_entry(kvm, &vm_list, vm_list) {
  3724. kvm_for_each_vcpu(i, vcpu, kvm) {
  3725. if (vcpu->cpu != freq->cpu)
  3726. continue;
  3727. if (!kvm_request_guest_time_update(vcpu))
  3728. continue;
  3729. if (vcpu->cpu != smp_processor_id())
  3730. send_ipi = 1;
  3731. }
  3732. }
  3733. spin_unlock(&kvm_lock);
  3734. if (freq->old < freq->new && send_ipi) {
  3735. /*
  3736. * We upscale the frequency. Must make the guest
  3737. * doesn't see old kvmclock values while running with
  3738. * the new frequency, otherwise we risk the guest sees
  3739. * time go backwards.
  3740. *
  3741. * In case we update the frequency for another cpu
  3742. * (which might be in guest context) send an interrupt
  3743. * to kick the cpu out of guest context. Next time
  3744. * guest context is entered kvmclock will be updated,
  3745. * so the guest will not see stale values.
  3746. */
  3747. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3748. }
  3749. return 0;
  3750. }
  3751. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3752. .notifier_call = kvmclock_cpufreq_notifier
  3753. };
  3754. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  3755. unsigned long action, void *hcpu)
  3756. {
  3757. unsigned int cpu = (unsigned long)hcpu;
  3758. switch (action) {
  3759. case CPU_ONLINE:
  3760. case CPU_DOWN_FAILED:
  3761. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3762. break;
  3763. case CPU_DOWN_PREPARE:
  3764. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  3765. break;
  3766. }
  3767. return NOTIFY_OK;
  3768. }
  3769. static struct notifier_block kvmclock_cpu_notifier_block = {
  3770. .notifier_call = kvmclock_cpu_notifier,
  3771. .priority = -INT_MAX
  3772. };
  3773. static void kvm_timer_init(void)
  3774. {
  3775. int cpu;
  3776. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  3777. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3778. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3779. CPUFREQ_TRANSITION_NOTIFIER);
  3780. }
  3781. for_each_online_cpu(cpu)
  3782. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3783. }
  3784. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3785. static int kvm_is_in_guest(void)
  3786. {
  3787. return percpu_read(current_vcpu) != NULL;
  3788. }
  3789. static int kvm_is_user_mode(void)
  3790. {
  3791. int user_mode = 3;
  3792. if (percpu_read(current_vcpu))
  3793. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3794. return user_mode != 0;
  3795. }
  3796. static unsigned long kvm_get_guest_ip(void)
  3797. {
  3798. unsigned long ip = 0;
  3799. if (percpu_read(current_vcpu))
  3800. ip = kvm_rip_read(percpu_read(current_vcpu));
  3801. return ip;
  3802. }
  3803. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3804. .is_in_guest = kvm_is_in_guest,
  3805. .is_user_mode = kvm_is_user_mode,
  3806. .get_guest_ip = kvm_get_guest_ip,
  3807. };
  3808. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3809. {
  3810. percpu_write(current_vcpu, vcpu);
  3811. }
  3812. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3813. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3814. {
  3815. percpu_write(current_vcpu, NULL);
  3816. }
  3817. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3818. int kvm_arch_init(void *opaque)
  3819. {
  3820. int r;
  3821. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3822. if (kvm_x86_ops) {
  3823. printk(KERN_ERR "kvm: already loaded the other module\n");
  3824. r = -EEXIST;
  3825. goto out;
  3826. }
  3827. if (!ops->cpu_has_kvm_support()) {
  3828. printk(KERN_ERR "kvm: no hardware support\n");
  3829. r = -EOPNOTSUPP;
  3830. goto out;
  3831. }
  3832. if (ops->disabled_by_bios()) {
  3833. printk(KERN_ERR "kvm: disabled by bios\n");
  3834. r = -EOPNOTSUPP;
  3835. goto out;
  3836. }
  3837. r = kvm_mmu_module_init();
  3838. if (r)
  3839. goto out;
  3840. kvm_init_msr_list();
  3841. kvm_x86_ops = ops;
  3842. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3843. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3844. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3845. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3846. kvm_timer_init();
  3847. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3848. if (cpu_has_xsave)
  3849. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  3850. return 0;
  3851. out:
  3852. return r;
  3853. }
  3854. void kvm_arch_exit(void)
  3855. {
  3856. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3857. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3858. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3859. CPUFREQ_TRANSITION_NOTIFIER);
  3860. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  3861. kvm_x86_ops = NULL;
  3862. kvm_mmu_module_exit();
  3863. }
  3864. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3865. {
  3866. ++vcpu->stat.halt_exits;
  3867. if (irqchip_in_kernel(vcpu->kvm)) {
  3868. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3869. return 1;
  3870. } else {
  3871. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3872. return 0;
  3873. }
  3874. }
  3875. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3876. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3877. unsigned long a1)
  3878. {
  3879. if (is_long_mode(vcpu))
  3880. return a0;
  3881. else
  3882. return a0 | ((gpa_t)a1 << 32);
  3883. }
  3884. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3885. {
  3886. u64 param, ingpa, outgpa, ret;
  3887. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3888. bool fast, longmode;
  3889. int cs_db, cs_l;
  3890. /*
  3891. * hypercall generates UD from non zero cpl and real mode
  3892. * per HYPER-V spec
  3893. */
  3894. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3895. kvm_queue_exception(vcpu, UD_VECTOR);
  3896. return 0;
  3897. }
  3898. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3899. longmode = is_long_mode(vcpu) && cs_l == 1;
  3900. if (!longmode) {
  3901. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3902. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3903. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3904. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3905. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3906. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3907. }
  3908. #ifdef CONFIG_X86_64
  3909. else {
  3910. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3911. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3912. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3913. }
  3914. #endif
  3915. code = param & 0xffff;
  3916. fast = (param >> 16) & 0x1;
  3917. rep_cnt = (param >> 32) & 0xfff;
  3918. rep_idx = (param >> 48) & 0xfff;
  3919. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3920. switch (code) {
  3921. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3922. kvm_vcpu_on_spin(vcpu);
  3923. break;
  3924. default:
  3925. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3926. break;
  3927. }
  3928. ret = res | (((u64)rep_done & 0xfff) << 32);
  3929. if (longmode) {
  3930. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3931. } else {
  3932. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3933. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3934. }
  3935. return 1;
  3936. }
  3937. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3938. {
  3939. unsigned long nr, a0, a1, a2, a3, ret;
  3940. int r = 1;
  3941. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3942. return kvm_hv_hypercall(vcpu);
  3943. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3944. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3945. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3946. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3947. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3948. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3949. if (!is_long_mode(vcpu)) {
  3950. nr &= 0xFFFFFFFF;
  3951. a0 &= 0xFFFFFFFF;
  3952. a1 &= 0xFFFFFFFF;
  3953. a2 &= 0xFFFFFFFF;
  3954. a3 &= 0xFFFFFFFF;
  3955. }
  3956. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3957. ret = -KVM_EPERM;
  3958. goto out;
  3959. }
  3960. switch (nr) {
  3961. case KVM_HC_VAPIC_POLL_IRQ:
  3962. ret = 0;
  3963. break;
  3964. case KVM_HC_MMU_OP:
  3965. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3966. break;
  3967. default:
  3968. ret = -KVM_ENOSYS;
  3969. break;
  3970. }
  3971. out:
  3972. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3973. ++vcpu->stat.hypercalls;
  3974. return r;
  3975. }
  3976. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3977. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3978. {
  3979. char instruction[3];
  3980. unsigned long rip = kvm_rip_read(vcpu);
  3981. /*
  3982. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3983. * to ensure that the updated hypercall appears atomically across all
  3984. * VCPUs.
  3985. */
  3986. kvm_mmu_zap_all(vcpu->kvm);
  3987. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3988. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  3989. }
  3990. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3991. {
  3992. struct desc_ptr dt = { limit, base };
  3993. kvm_x86_ops->set_gdt(vcpu, &dt);
  3994. }
  3995. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3996. {
  3997. struct desc_ptr dt = { limit, base };
  3998. kvm_x86_ops->set_idt(vcpu, &dt);
  3999. }
  4000. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4001. {
  4002. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4003. int j, nent = vcpu->arch.cpuid_nent;
  4004. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4005. /* when no next entry is found, the current entry[i] is reselected */
  4006. for (j = i + 1; ; j = (j + 1) % nent) {
  4007. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4008. if (ej->function == e->function) {
  4009. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4010. return j;
  4011. }
  4012. }
  4013. return 0; /* silence gcc, even though control never reaches here */
  4014. }
  4015. /* find an entry with matching function, matching index (if needed), and that
  4016. * should be read next (if it's stateful) */
  4017. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4018. u32 function, u32 index)
  4019. {
  4020. if (e->function != function)
  4021. return 0;
  4022. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4023. return 0;
  4024. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4025. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4026. return 0;
  4027. return 1;
  4028. }
  4029. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4030. u32 function, u32 index)
  4031. {
  4032. int i;
  4033. struct kvm_cpuid_entry2 *best = NULL;
  4034. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4035. struct kvm_cpuid_entry2 *e;
  4036. e = &vcpu->arch.cpuid_entries[i];
  4037. if (is_matching_cpuid_entry(e, function, index)) {
  4038. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4039. move_to_next_stateful_cpuid_entry(vcpu, i);
  4040. best = e;
  4041. break;
  4042. }
  4043. /*
  4044. * Both basic or both extended?
  4045. */
  4046. if (((e->function ^ function) & 0x80000000) == 0)
  4047. if (!best || e->function > best->function)
  4048. best = e;
  4049. }
  4050. return best;
  4051. }
  4052. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4053. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4054. {
  4055. struct kvm_cpuid_entry2 *best;
  4056. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4057. if (!best || best->eax < 0x80000008)
  4058. goto not_found;
  4059. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4060. if (best)
  4061. return best->eax & 0xff;
  4062. not_found:
  4063. return 36;
  4064. }
  4065. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4066. {
  4067. u32 function, index;
  4068. struct kvm_cpuid_entry2 *best;
  4069. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4070. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4071. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4072. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4073. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4074. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4075. best = kvm_find_cpuid_entry(vcpu, function, index);
  4076. if (best) {
  4077. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4078. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4079. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4080. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4081. }
  4082. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4083. trace_kvm_cpuid(function,
  4084. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4085. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4086. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4087. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4088. }
  4089. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4090. /*
  4091. * Check if userspace requested an interrupt window, and that the
  4092. * interrupt window is open.
  4093. *
  4094. * No need to exit to userspace if we already have an interrupt queued.
  4095. */
  4096. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4097. {
  4098. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4099. vcpu->run->request_interrupt_window &&
  4100. kvm_arch_interrupt_allowed(vcpu));
  4101. }
  4102. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4103. {
  4104. struct kvm_run *kvm_run = vcpu->run;
  4105. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4106. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4107. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4108. if (irqchip_in_kernel(vcpu->kvm))
  4109. kvm_run->ready_for_interrupt_injection = 1;
  4110. else
  4111. kvm_run->ready_for_interrupt_injection =
  4112. kvm_arch_interrupt_allowed(vcpu) &&
  4113. !kvm_cpu_has_interrupt(vcpu) &&
  4114. !kvm_event_needs_reinjection(vcpu);
  4115. }
  4116. static void vapic_enter(struct kvm_vcpu *vcpu)
  4117. {
  4118. struct kvm_lapic *apic = vcpu->arch.apic;
  4119. struct page *page;
  4120. if (!apic || !apic->vapic_addr)
  4121. return;
  4122. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4123. vcpu->arch.apic->vapic_page = page;
  4124. }
  4125. static void vapic_exit(struct kvm_vcpu *vcpu)
  4126. {
  4127. struct kvm_lapic *apic = vcpu->arch.apic;
  4128. int idx;
  4129. if (!apic || !apic->vapic_addr)
  4130. return;
  4131. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4132. kvm_release_page_dirty(apic->vapic_page);
  4133. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4134. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4135. }
  4136. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4137. {
  4138. int max_irr, tpr;
  4139. if (!kvm_x86_ops->update_cr8_intercept)
  4140. return;
  4141. if (!vcpu->arch.apic)
  4142. return;
  4143. if (!vcpu->arch.apic->vapic_addr)
  4144. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4145. else
  4146. max_irr = -1;
  4147. if (max_irr != -1)
  4148. max_irr >>= 4;
  4149. tpr = kvm_lapic_get_cr8(vcpu);
  4150. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4151. }
  4152. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4153. {
  4154. /* try to reinject previous events if any */
  4155. if (vcpu->arch.exception.pending) {
  4156. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4157. vcpu->arch.exception.has_error_code,
  4158. vcpu->arch.exception.error_code);
  4159. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4160. vcpu->arch.exception.has_error_code,
  4161. vcpu->arch.exception.error_code,
  4162. vcpu->arch.exception.reinject);
  4163. return;
  4164. }
  4165. if (vcpu->arch.nmi_injected) {
  4166. kvm_x86_ops->set_nmi(vcpu);
  4167. return;
  4168. }
  4169. if (vcpu->arch.interrupt.pending) {
  4170. kvm_x86_ops->set_irq(vcpu);
  4171. return;
  4172. }
  4173. /* try to inject new event if pending */
  4174. if (vcpu->arch.nmi_pending) {
  4175. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4176. vcpu->arch.nmi_pending = false;
  4177. vcpu->arch.nmi_injected = true;
  4178. kvm_x86_ops->set_nmi(vcpu);
  4179. }
  4180. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4181. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4182. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4183. false);
  4184. kvm_x86_ops->set_irq(vcpu);
  4185. }
  4186. }
  4187. }
  4188. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4189. {
  4190. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4191. !vcpu->guest_xcr0_loaded) {
  4192. /* kvm_set_xcr() also depends on this */
  4193. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4194. vcpu->guest_xcr0_loaded = 1;
  4195. }
  4196. }
  4197. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4198. {
  4199. if (vcpu->guest_xcr0_loaded) {
  4200. if (vcpu->arch.xcr0 != host_xcr0)
  4201. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4202. vcpu->guest_xcr0_loaded = 0;
  4203. }
  4204. }
  4205. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4206. {
  4207. int r;
  4208. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4209. vcpu->run->request_interrupt_window;
  4210. if (vcpu->requests) {
  4211. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4212. kvm_mmu_unload(vcpu);
  4213. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4214. __kvm_migrate_timers(vcpu);
  4215. if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
  4216. r = kvm_write_guest_time(vcpu);
  4217. if (unlikely(r))
  4218. goto out;
  4219. }
  4220. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4221. kvm_mmu_sync_roots(vcpu);
  4222. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4223. kvm_x86_ops->tlb_flush(vcpu);
  4224. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4225. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4226. r = 0;
  4227. goto out;
  4228. }
  4229. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4230. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4231. r = 0;
  4232. goto out;
  4233. }
  4234. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4235. vcpu->fpu_active = 0;
  4236. kvm_x86_ops->fpu_deactivate(vcpu);
  4237. }
  4238. }
  4239. r = kvm_mmu_reload(vcpu);
  4240. if (unlikely(r))
  4241. goto out;
  4242. preempt_disable();
  4243. kvm_x86_ops->prepare_guest_switch(vcpu);
  4244. if (vcpu->fpu_active)
  4245. kvm_load_guest_fpu(vcpu);
  4246. kvm_load_guest_xcr0(vcpu);
  4247. atomic_set(&vcpu->guest_mode, 1);
  4248. smp_wmb();
  4249. local_irq_disable();
  4250. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4251. || need_resched() || signal_pending(current)) {
  4252. atomic_set(&vcpu->guest_mode, 0);
  4253. smp_wmb();
  4254. local_irq_enable();
  4255. preempt_enable();
  4256. r = 1;
  4257. goto out;
  4258. }
  4259. inject_pending_event(vcpu);
  4260. /* enable NMI/IRQ window open exits if needed */
  4261. if (vcpu->arch.nmi_pending)
  4262. kvm_x86_ops->enable_nmi_window(vcpu);
  4263. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4264. kvm_x86_ops->enable_irq_window(vcpu);
  4265. if (kvm_lapic_enabled(vcpu)) {
  4266. update_cr8_intercept(vcpu);
  4267. kvm_lapic_sync_to_vapic(vcpu);
  4268. }
  4269. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4270. kvm_guest_enter();
  4271. if (unlikely(vcpu->arch.switch_db_regs)) {
  4272. set_debugreg(0, 7);
  4273. set_debugreg(vcpu->arch.eff_db[0], 0);
  4274. set_debugreg(vcpu->arch.eff_db[1], 1);
  4275. set_debugreg(vcpu->arch.eff_db[2], 2);
  4276. set_debugreg(vcpu->arch.eff_db[3], 3);
  4277. }
  4278. trace_kvm_entry(vcpu->vcpu_id);
  4279. kvm_x86_ops->run(vcpu);
  4280. /*
  4281. * If the guest has used debug registers, at least dr7
  4282. * will be disabled while returning to the host.
  4283. * If we don't have active breakpoints in the host, we don't
  4284. * care about the messed up debug address registers. But if
  4285. * we have some of them active, restore the old state.
  4286. */
  4287. if (hw_breakpoint_active())
  4288. hw_breakpoint_restore();
  4289. atomic_set(&vcpu->guest_mode, 0);
  4290. smp_wmb();
  4291. local_irq_enable();
  4292. ++vcpu->stat.exits;
  4293. /*
  4294. * We must have an instruction between local_irq_enable() and
  4295. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4296. * the interrupt shadow. The stat.exits increment will do nicely.
  4297. * But we need to prevent reordering, hence this barrier():
  4298. */
  4299. barrier();
  4300. kvm_guest_exit();
  4301. preempt_enable();
  4302. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4303. /*
  4304. * Profile KVM exit RIPs:
  4305. */
  4306. if (unlikely(prof_on == KVM_PROFILING)) {
  4307. unsigned long rip = kvm_rip_read(vcpu);
  4308. profile_hit(KVM_PROFILING, (void *)rip);
  4309. }
  4310. kvm_lapic_sync_from_vapic(vcpu);
  4311. r = kvm_x86_ops->handle_exit(vcpu);
  4312. out:
  4313. return r;
  4314. }
  4315. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4316. {
  4317. int r;
  4318. struct kvm *kvm = vcpu->kvm;
  4319. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4320. pr_debug("vcpu %d received sipi with vector # %x\n",
  4321. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4322. kvm_lapic_reset(vcpu);
  4323. r = kvm_arch_vcpu_reset(vcpu);
  4324. if (r)
  4325. return r;
  4326. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4327. }
  4328. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4329. vapic_enter(vcpu);
  4330. r = 1;
  4331. while (r > 0) {
  4332. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4333. r = vcpu_enter_guest(vcpu);
  4334. else {
  4335. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4336. kvm_vcpu_block(vcpu);
  4337. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4338. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4339. {
  4340. switch(vcpu->arch.mp_state) {
  4341. case KVM_MP_STATE_HALTED:
  4342. vcpu->arch.mp_state =
  4343. KVM_MP_STATE_RUNNABLE;
  4344. case KVM_MP_STATE_RUNNABLE:
  4345. break;
  4346. case KVM_MP_STATE_SIPI_RECEIVED:
  4347. default:
  4348. r = -EINTR;
  4349. break;
  4350. }
  4351. }
  4352. }
  4353. if (r <= 0)
  4354. break;
  4355. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4356. if (kvm_cpu_has_pending_timer(vcpu))
  4357. kvm_inject_pending_timer_irqs(vcpu);
  4358. if (dm_request_for_irq_injection(vcpu)) {
  4359. r = -EINTR;
  4360. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4361. ++vcpu->stat.request_irq_exits;
  4362. }
  4363. if (signal_pending(current)) {
  4364. r = -EINTR;
  4365. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4366. ++vcpu->stat.signal_exits;
  4367. }
  4368. if (need_resched()) {
  4369. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4370. kvm_resched(vcpu);
  4371. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4372. }
  4373. }
  4374. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4375. vapic_exit(vcpu);
  4376. return r;
  4377. }
  4378. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4379. {
  4380. int r;
  4381. sigset_t sigsaved;
  4382. if (vcpu->sigset_active)
  4383. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4384. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4385. kvm_vcpu_block(vcpu);
  4386. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4387. r = -EAGAIN;
  4388. goto out;
  4389. }
  4390. /* re-sync apic's tpr */
  4391. if (!irqchip_in_kernel(vcpu->kvm))
  4392. kvm_set_cr8(vcpu, kvm_run->cr8);
  4393. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4394. vcpu->arch.emulate_ctxt.restart) {
  4395. if (vcpu->mmio_needed) {
  4396. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4397. vcpu->mmio_read_completed = 1;
  4398. vcpu->mmio_needed = 0;
  4399. }
  4400. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4401. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4402. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4403. if (r != EMULATE_DONE) {
  4404. r = 0;
  4405. goto out;
  4406. }
  4407. }
  4408. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4409. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4410. kvm_run->hypercall.ret);
  4411. r = __vcpu_run(vcpu);
  4412. out:
  4413. post_kvm_run_save(vcpu);
  4414. if (vcpu->sigset_active)
  4415. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4416. return r;
  4417. }
  4418. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4419. {
  4420. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4421. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4422. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4423. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4424. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4425. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4426. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4427. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4428. #ifdef CONFIG_X86_64
  4429. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4430. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4431. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4432. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4433. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4434. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4435. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4436. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4437. #endif
  4438. regs->rip = kvm_rip_read(vcpu);
  4439. regs->rflags = kvm_get_rflags(vcpu);
  4440. return 0;
  4441. }
  4442. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4443. {
  4444. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4445. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4446. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4447. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4448. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4449. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4450. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4451. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4452. #ifdef CONFIG_X86_64
  4453. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4454. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4455. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4456. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4457. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4458. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4459. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4460. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4461. #endif
  4462. kvm_rip_write(vcpu, regs->rip);
  4463. kvm_set_rflags(vcpu, regs->rflags);
  4464. vcpu->arch.exception.pending = false;
  4465. return 0;
  4466. }
  4467. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4468. {
  4469. struct kvm_segment cs;
  4470. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4471. *db = cs.db;
  4472. *l = cs.l;
  4473. }
  4474. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4475. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4476. struct kvm_sregs *sregs)
  4477. {
  4478. struct desc_ptr dt;
  4479. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4480. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4481. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4482. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4483. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4484. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4485. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4486. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4487. kvm_x86_ops->get_idt(vcpu, &dt);
  4488. sregs->idt.limit = dt.size;
  4489. sregs->idt.base = dt.address;
  4490. kvm_x86_ops->get_gdt(vcpu, &dt);
  4491. sregs->gdt.limit = dt.size;
  4492. sregs->gdt.base = dt.address;
  4493. sregs->cr0 = kvm_read_cr0(vcpu);
  4494. sregs->cr2 = vcpu->arch.cr2;
  4495. sregs->cr3 = vcpu->arch.cr3;
  4496. sregs->cr4 = kvm_read_cr4(vcpu);
  4497. sregs->cr8 = kvm_get_cr8(vcpu);
  4498. sregs->efer = vcpu->arch.efer;
  4499. sregs->apic_base = kvm_get_apic_base(vcpu);
  4500. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4501. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4502. set_bit(vcpu->arch.interrupt.nr,
  4503. (unsigned long *)sregs->interrupt_bitmap);
  4504. return 0;
  4505. }
  4506. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4507. struct kvm_mp_state *mp_state)
  4508. {
  4509. mp_state->mp_state = vcpu->arch.mp_state;
  4510. return 0;
  4511. }
  4512. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4513. struct kvm_mp_state *mp_state)
  4514. {
  4515. vcpu->arch.mp_state = mp_state->mp_state;
  4516. return 0;
  4517. }
  4518. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4519. bool has_error_code, u32 error_code)
  4520. {
  4521. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4522. int ret;
  4523. init_emulate_ctxt(vcpu);
  4524. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4525. tss_selector, reason, has_error_code,
  4526. error_code);
  4527. if (ret)
  4528. return EMULATE_FAIL;
  4529. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4530. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4531. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4532. return EMULATE_DONE;
  4533. }
  4534. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4535. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4536. struct kvm_sregs *sregs)
  4537. {
  4538. int mmu_reset_needed = 0;
  4539. int pending_vec, max_bits;
  4540. struct desc_ptr dt;
  4541. dt.size = sregs->idt.limit;
  4542. dt.address = sregs->idt.base;
  4543. kvm_x86_ops->set_idt(vcpu, &dt);
  4544. dt.size = sregs->gdt.limit;
  4545. dt.address = sregs->gdt.base;
  4546. kvm_x86_ops->set_gdt(vcpu, &dt);
  4547. vcpu->arch.cr2 = sregs->cr2;
  4548. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4549. vcpu->arch.cr3 = sregs->cr3;
  4550. kvm_set_cr8(vcpu, sregs->cr8);
  4551. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4552. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4553. kvm_set_apic_base(vcpu, sregs->apic_base);
  4554. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4555. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4556. vcpu->arch.cr0 = sregs->cr0;
  4557. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4558. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4559. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4560. load_pdptrs(vcpu, vcpu->arch.cr3);
  4561. mmu_reset_needed = 1;
  4562. }
  4563. if (mmu_reset_needed)
  4564. kvm_mmu_reset_context(vcpu);
  4565. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4566. pending_vec = find_first_bit(
  4567. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4568. if (pending_vec < max_bits) {
  4569. kvm_queue_interrupt(vcpu, pending_vec, false);
  4570. pr_debug("Set back pending irq %d\n", pending_vec);
  4571. if (irqchip_in_kernel(vcpu->kvm))
  4572. kvm_pic_clear_isr_ack(vcpu->kvm);
  4573. }
  4574. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4575. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4576. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4577. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4578. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4579. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4580. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4581. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4582. update_cr8_intercept(vcpu);
  4583. /* Older userspace won't unhalt the vcpu on reset. */
  4584. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4585. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4586. !is_protmode(vcpu))
  4587. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4588. return 0;
  4589. }
  4590. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4591. struct kvm_guest_debug *dbg)
  4592. {
  4593. unsigned long rflags;
  4594. int i, r;
  4595. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4596. r = -EBUSY;
  4597. if (vcpu->arch.exception.pending)
  4598. goto out;
  4599. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4600. kvm_queue_exception(vcpu, DB_VECTOR);
  4601. else
  4602. kvm_queue_exception(vcpu, BP_VECTOR);
  4603. }
  4604. /*
  4605. * Read rflags as long as potentially injected trace flags are still
  4606. * filtered out.
  4607. */
  4608. rflags = kvm_get_rflags(vcpu);
  4609. vcpu->guest_debug = dbg->control;
  4610. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4611. vcpu->guest_debug = 0;
  4612. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4613. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4614. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4615. vcpu->arch.switch_db_regs =
  4616. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4617. } else {
  4618. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4619. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4620. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4621. }
  4622. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4623. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4624. get_segment_base(vcpu, VCPU_SREG_CS);
  4625. /*
  4626. * Trigger an rflags update that will inject or remove the trace
  4627. * flags.
  4628. */
  4629. kvm_set_rflags(vcpu, rflags);
  4630. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4631. r = 0;
  4632. out:
  4633. return r;
  4634. }
  4635. /*
  4636. * Translate a guest virtual address to a guest physical address.
  4637. */
  4638. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4639. struct kvm_translation *tr)
  4640. {
  4641. unsigned long vaddr = tr->linear_address;
  4642. gpa_t gpa;
  4643. int idx;
  4644. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4645. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4646. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4647. tr->physical_address = gpa;
  4648. tr->valid = gpa != UNMAPPED_GVA;
  4649. tr->writeable = 1;
  4650. tr->usermode = 0;
  4651. return 0;
  4652. }
  4653. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4654. {
  4655. struct i387_fxsave_struct *fxsave =
  4656. &vcpu->arch.guest_fpu.state->fxsave;
  4657. memcpy(fpu->fpr, fxsave->st_space, 128);
  4658. fpu->fcw = fxsave->cwd;
  4659. fpu->fsw = fxsave->swd;
  4660. fpu->ftwx = fxsave->twd;
  4661. fpu->last_opcode = fxsave->fop;
  4662. fpu->last_ip = fxsave->rip;
  4663. fpu->last_dp = fxsave->rdp;
  4664. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4665. return 0;
  4666. }
  4667. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4668. {
  4669. struct i387_fxsave_struct *fxsave =
  4670. &vcpu->arch.guest_fpu.state->fxsave;
  4671. memcpy(fxsave->st_space, fpu->fpr, 128);
  4672. fxsave->cwd = fpu->fcw;
  4673. fxsave->swd = fpu->fsw;
  4674. fxsave->twd = fpu->ftwx;
  4675. fxsave->fop = fpu->last_opcode;
  4676. fxsave->rip = fpu->last_ip;
  4677. fxsave->rdp = fpu->last_dp;
  4678. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4679. return 0;
  4680. }
  4681. int fx_init(struct kvm_vcpu *vcpu)
  4682. {
  4683. int err;
  4684. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4685. if (err)
  4686. return err;
  4687. fpu_finit(&vcpu->arch.guest_fpu);
  4688. /*
  4689. * Ensure guest xcr0 is valid for loading
  4690. */
  4691. vcpu->arch.xcr0 = XSTATE_FP;
  4692. vcpu->arch.cr0 |= X86_CR0_ET;
  4693. return 0;
  4694. }
  4695. EXPORT_SYMBOL_GPL(fx_init);
  4696. static void fx_free(struct kvm_vcpu *vcpu)
  4697. {
  4698. fpu_free(&vcpu->arch.guest_fpu);
  4699. }
  4700. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4701. {
  4702. if (vcpu->guest_fpu_loaded)
  4703. return;
  4704. /*
  4705. * Restore all possible states in the guest,
  4706. * and assume host would use all available bits.
  4707. * Guest xcr0 would be loaded later.
  4708. */
  4709. kvm_put_guest_xcr0(vcpu);
  4710. vcpu->guest_fpu_loaded = 1;
  4711. unlazy_fpu(current);
  4712. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4713. trace_kvm_fpu(1);
  4714. }
  4715. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4716. {
  4717. kvm_put_guest_xcr0(vcpu);
  4718. if (!vcpu->guest_fpu_loaded)
  4719. return;
  4720. vcpu->guest_fpu_loaded = 0;
  4721. fpu_save_init(&vcpu->arch.guest_fpu);
  4722. ++vcpu->stat.fpu_reload;
  4723. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  4724. trace_kvm_fpu(0);
  4725. }
  4726. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4727. {
  4728. if (vcpu->arch.time_page) {
  4729. kvm_release_page_dirty(vcpu->arch.time_page);
  4730. vcpu->arch.time_page = NULL;
  4731. }
  4732. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  4733. fx_free(vcpu);
  4734. kvm_x86_ops->vcpu_free(vcpu);
  4735. }
  4736. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4737. unsigned int id)
  4738. {
  4739. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  4740. printk_once(KERN_WARNING
  4741. "kvm: SMP vm created on host with unstable TSC; "
  4742. "guest TSC will not be reliable\n");
  4743. return kvm_x86_ops->vcpu_create(kvm, id);
  4744. }
  4745. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4746. {
  4747. int r;
  4748. vcpu->arch.mtrr_state.have_fixed = 1;
  4749. vcpu_load(vcpu);
  4750. r = kvm_arch_vcpu_reset(vcpu);
  4751. if (r == 0)
  4752. r = kvm_mmu_setup(vcpu);
  4753. vcpu_put(vcpu);
  4754. if (r < 0)
  4755. goto free_vcpu;
  4756. return 0;
  4757. free_vcpu:
  4758. kvm_x86_ops->vcpu_free(vcpu);
  4759. return r;
  4760. }
  4761. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4762. {
  4763. vcpu_load(vcpu);
  4764. kvm_mmu_unload(vcpu);
  4765. vcpu_put(vcpu);
  4766. fx_free(vcpu);
  4767. kvm_x86_ops->vcpu_free(vcpu);
  4768. }
  4769. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4770. {
  4771. vcpu->arch.nmi_pending = false;
  4772. vcpu->arch.nmi_injected = false;
  4773. vcpu->arch.switch_db_regs = 0;
  4774. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4775. vcpu->arch.dr6 = DR6_FIXED_1;
  4776. vcpu->arch.dr7 = DR7_FIXED_1;
  4777. return kvm_x86_ops->vcpu_reset(vcpu);
  4778. }
  4779. int kvm_arch_hardware_enable(void *garbage)
  4780. {
  4781. kvm_shared_msr_cpu_online();
  4782. return kvm_x86_ops->hardware_enable(garbage);
  4783. }
  4784. void kvm_arch_hardware_disable(void *garbage)
  4785. {
  4786. kvm_x86_ops->hardware_disable(garbage);
  4787. drop_user_return_notifiers(garbage);
  4788. }
  4789. int kvm_arch_hardware_setup(void)
  4790. {
  4791. return kvm_x86_ops->hardware_setup();
  4792. }
  4793. void kvm_arch_hardware_unsetup(void)
  4794. {
  4795. kvm_x86_ops->hardware_unsetup();
  4796. }
  4797. void kvm_arch_check_processor_compat(void *rtn)
  4798. {
  4799. kvm_x86_ops->check_processor_compatibility(rtn);
  4800. }
  4801. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4802. {
  4803. struct page *page;
  4804. struct kvm *kvm;
  4805. int r;
  4806. BUG_ON(vcpu->kvm == NULL);
  4807. kvm = vcpu->kvm;
  4808. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  4809. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4810. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4811. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4812. else
  4813. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4814. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4815. if (!page) {
  4816. r = -ENOMEM;
  4817. goto fail;
  4818. }
  4819. vcpu->arch.pio_data = page_address(page);
  4820. r = kvm_mmu_create(vcpu);
  4821. if (r < 0)
  4822. goto fail_free_pio_data;
  4823. if (irqchip_in_kernel(kvm)) {
  4824. r = kvm_create_lapic(vcpu);
  4825. if (r < 0)
  4826. goto fail_mmu_destroy;
  4827. }
  4828. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4829. GFP_KERNEL);
  4830. if (!vcpu->arch.mce_banks) {
  4831. r = -ENOMEM;
  4832. goto fail_free_lapic;
  4833. }
  4834. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4835. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  4836. goto fail_free_mce_banks;
  4837. return 0;
  4838. fail_free_mce_banks:
  4839. kfree(vcpu->arch.mce_banks);
  4840. fail_free_lapic:
  4841. kvm_free_lapic(vcpu);
  4842. fail_mmu_destroy:
  4843. kvm_mmu_destroy(vcpu);
  4844. fail_free_pio_data:
  4845. free_page((unsigned long)vcpu->arch.pio_data);
  4846. fail:
  4847. return r;
  4848. }
  4849. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4850. {
  4851. int idx;
  4852. kfree(vcpu->arch.mce_banks);
  4853. kvm_free_lapic(vcpu);
  4854. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4855. kvm_mmu_destroy(vcpu);
  4856. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4857. free_page((unsigned long)vcpu->arch.pio_data);
  4858. }
  4859. struct kvm *kvm_arch_create_vm(void)
  4860. {
  4861. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4862. if (!kvm)
  4863. return ERR_PTR(-ENOMEM);
  4864. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4865. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4866. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4867. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4868. spin_lock_init(&kvm->arch.tsc_write_lock);
  4869. return kvm;
  4870. }
  4871. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4872. {
  4873. vcpu_load(vcpu);
  4874. kvm_mmu_unload(vcpu);
  4875. vcpu_put(vcpu);
  4876. }
  4877. static void kvm_free_vcpus(struct kvm *kvm)
  4878. {
  4879. unsigned int i;
  4880. struct kvm_vcpu *vcpu;
  4881. /*
  4882. * Unpin any mmu pages first.
  4883. */
  4884. kvm_for_each_vcpu(i, vcpu, kvm)
  4885. kvm_unload_vcpu_mmu(vcpu);
  4886. kvm_for_each_vcpu(i, vcpu, kvm)
  4887. kvm_arch_vcpu_free(vcpu);
  4888. mutex_lock(&kvm->lock);
  4889. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4890. kvm->vcpus[i] = NULL;
  4891. atomic_set(&kvm->online_vcpus, 0);
  4892. mutex_unlock(&kvm->lock);
  4893. }
  4894. void kvm_arch_sync_events(struct kvm *kvm)
  4895. {
  4896. kvm_free_all_assigned_devices(kvm);
  4897. kvm_free_pit(kvm);
  4898. }
  4899. void kvm_arch_destroy_vm(struct kvm *kvm)
  4900. {
  4901. kvm_iommu_unmap_guest(kvm);
  4902. kfree(kvm->arch.vpic);
  4903. kfree(kvm->arch.vioapic);
  4904. kvm_free_vcpus(kvm);
  4905. kvm_free_physmem(kvm);
  4906. if (kvm->arch.apic_access_page)
  4907. put_page(kvm->arch.apic_access_page);
  4908. if (kvm->arch.ept_identity_pagetable)
  4909. put_page(kvm->arch.ept_identity_pagetable);
  4910. cleanup_srcu_struct(&kvm->srcu);
  4911. kfree(kvm);
  4912. }
  4913. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4914. struct kvm_memory_slot *memslot,
  4915. struct kvm_memory_slot old,
  4916. struct kvm_userspace_memory_region *mem,
  4917. int user_alloc)
  4918. {
  4919. int npages = memslot->npages;
  4920. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  4921. /* Prevent internal slot pages from being moved by fork()/COW. */
  4922. if (memslot->id >= KVM_MEMORY_SLOTS)
  4923. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  4924. /*To keep backward compatibility with older userspace,
  4925. *x86 needs to hanlde !user_alloc case.
  4926. */
  4927. if (!user_alloc) {
  4928. if (npages && !old.rmap) {
  4929. unsigned long userspace_addr;
  4930. down_write(&current->mm->mmap_sem);
  4931. userspace_addr = do_mmap(NULL, 0,
  4932. npages * PAGE_SIZE,
  4933. PROT_READ | PROT_WRITE,
  4934. map_flags,
  4935. 0);
  4936. up_write(&current->mm->mmap_sem);
  4937. if (IS_ERR((void *)userspace_addr))
  4938. return PTR_ERR((void *)userspace_addr);
  4939. memslot->userspace_addr = userspace_addr;
  4940. }
  4941. }
  4942. return 0;
  4943. }
  4944. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4945. struct kvm_userspace_memory_region *mem,
  4946. struct kvm_memory_slot old,
  4947. int user_alloc)
  4948. {
  4949. int npages = mem->memory_size >> PAGE_SHIFT;
  4950. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4951. int ret;
  4952. down_write(&current->mm->mmap_sem);
  4953. ret = do_munmap(current->mm, old.userspace_addr,
  4954. old.npages * PAGE_SIZE);
  4955. up_write(&current->mm->mmap_sem);
  4956. if (ret < 0)
  4957. printk(KERN_WARNING
  4958. "kvm_vm_ioctl_set_memory_region: "
  4959. "failed to munmap memory\n");
  4960. }
  4961. spin_lock(&kvm->mmu_lock);
  4962. if (!kvm->arch.n_requested_mmu_pages) {
  4963. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4964. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4965. }
  4966. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4967. spin_unlock(&kvm->mmu_lock);
  4968. }
  4969. void kvm_arch_flush_shadow(struct kvm *kvm)
  4970. {
  4971. kvm_mmu_zap_all(kvm);
  4972. kvm_reload_remote_mmus(kvm);
  4973. }
  4974. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4975. {
  4976. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4977. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4978. || vcpu->arch.nmi_pending ||
  4979. (kvm_arch_interrupt_allowed(vcpu) &&
  4980. kvm_cpu_has_interrupt(vcpu));
  4981. }
  4982. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4983. {
  4984. int me;
  4985. int cpu = vcpu->cpu;
  4986. if (waitqueue_active(&vcpu->wq)) {
  4987. wake_up_interruptible(&vcpu->wq);
  4988. ++vcpu->stat.halt_wakeup;
  4989. }
  4990. me = get_cpu();
  4991. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4992. if (atomic_xchg(&vcpu->guest_mode, 0))
  4993. smp_send_reschedule(cpu);
  4994. put_cpu();
  4995. }
  4996. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4997. {
  4998. return kvm_x86_ops->interrupt_allowed(vcpu);
  4999. }
  5000. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5001. {
  5002. unsigned long current_rip = kvm_rip_read(vcpu) +
  5003. get_segment_base(vcpu, VCPU_SREG_CS);
  5004. return current_rip == linear_rip;
  5005. }
  5006. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5007. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5008. {
  5009. unsigned long rflags;
  5010. rflags = kvm_x86_ops->get_rflags(vcpu);
  5011. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5012. rflags &= ~X86_EFLAGS_TF;
  5013. return rflags;
  5014. }
  5015. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5016. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5017. {
  5018. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5019. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5020. rflags |= X86_EFLAGS_TF;
  5021. kvm_x86_ops->set_rflags(vcpu, rflags);
  5022. }
  5023. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5024. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5025. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5026. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5027. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5028. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5029. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5030. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5031. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5032. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5033. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5034. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5035. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);