vmx.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <asm/io.h>
  25. #include <asm/desc.h>
  26. #include "segment_descriptor.h"
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  30. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  31. #ifdef CONFIG_X86_64
  32. #define HOST_IS_64 1
  33. #else
  34. #define HOST_IS_64 0
  35. #endif
  36. static struct vmcs_descriptor {
  37. int size;
  38. int order;
  39. u32 revision_id;
  40. } vmcs_descriptor;
  41. #define VMX_SEGMENT_FIELD(seg) \
  42. [VCPU_SREG_##seg] = { \
  43. .selector = GUEST_##seg##_SELECTOR, \
  44. .base = GUEST_##seg##_BASE, \
  45. .limit = GUEST_##seg##_LIMIT, \
  46. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  47. }
  48. static struct kvm_vmx_segment_field {
  49. unsigned selector;
  50. unsigned base;
  51. unsigned limit;
  52. unsigned ar_bytes;
  53. } kvm_vmx_segment_fields[] = {
  54. VMX_SEGMENT_FIELD(CS),
  55. VMX_SEGMENT_FIELD(DS),
  56. VMX_SEGMENT_FIELD(ES),
  57. VMX_SEGMENT_FIELD(FS),
  58. VMX_SEGMENT_FIELD(GS),
  59. VMX_SEGMENT_FIELD(SS),
  60. VMX_SEGMENT_FIELD(TR),
  61. VMX_SEGMENT_FIELD(LDTR),
  62. };
  63. static const u32 vmx_msr_index[] = {
  64. #ifdef CONFIG_X86_64
  65. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  66. #endif
  67. MSR_EFER, MSR_K6_STAR,
  68. };
  69. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  70. static inline int is_page_fault(u32 intr_info)
  71. {
  72. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  73. INTR_INFO_VALID_MASK)) ==
  74. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  75. }
  76. static inline int is_external_interrupt(u32 intr_info)
  77. {
  78. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  79. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  80. }
  81. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  82. {
  83. int i;
  84. for (i = 0; i < vcpu->nmsrs; ++i)
  85. if (vcpu->guest_msrs[i].index == msr)
  86. return &vcpu->guest_msrs[i];
  87. return 0;
  88. }
  89. static void vmcs_clear(struct vmcs *vmcs)
  90. {
  91. u64 phys_addr = __pa(vmcs);
  92. u8 error;
  93. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  94. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  95. : "cc", "memory");
  96. if (error)
  97. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  98. vmcs, phys_addr);
  99. }
  100. static void __vcpu_clear(void *arg)
  101. {
  102. struct kvm_vcpu *vcpu = arg;
  103. int cpu = raw_smp_processor_id();
  104. if (vcpu->cpu == cpu)
  105. vmcs_clear(vcpu->vmcs);
  106. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  107. per_cpu(current_vmcs, cpu) = NULL;
  108. }
  109. static unsigned long vmcs_readl(unsigned long field)
  110. {
  111. unsigned long value;
  112. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  113. : "=a"(value) : "d"(field) : "cc");
  114. return value;
  115. }
  116. static u16 vmcs_read16(unsigned long field)
  117. {
  118. return vmcs_readl(field);
  119. }
  120. static u32 vmcs_read32(unsigned long field)
  121. {
  122. return vmcs_readl(field);
  123. }
  124. static u64 vmcs_read64(unsigned long field)
  125. {
  126. #ifdef CONFIG_X86_64
  127. return vmcs_readl(field);
  128. #else
  129. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  130. #endif
  131. }
  132. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  133. {
  134. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  135. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  136. dump_stack();
  137. }
  138. static void vmcs_writel(unsigned long field, unsigned long value)
  139. {
  140. u8 error;
  141. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  142. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  143. if (unlikely(error))
  144. vmwrite_error(field, value);
  145. }
  146. static void vmcs_write16(unsigned long field, u16 value)
  147. {
  148. vmcs_writel(field, value);
  149. }
  150. static void vmcs_write32(unsigned long field, u32 value)
  151. {
  152. vmcs_writel(field, value);
  153. }
  154. static void vmcs_write64(unsigned long field, u64 value)
  155. {
  156. #ifdef CONFIG_X86_64
  157. vmcs_writel(field, value);
  158. #else
  159. vmcs_writel(field, value);
  160. asm volatile ("");
  161. vmcs_writel(field+1, value >> 32);
  162. #endif
  163. }
  164. /*
  165. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  166. * vcpu mutex is already taken.
  167. */
  168. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  169. {
  170. u64 phys_addr = __pa(vcpu->vmcs);
  171. int cpu;
  172. cpu = get_cpu();
  173. if (vcpu->cpu != cpu) {
  174. smp_call_function(__vcpu_clear, vcpu, 0, 1);
  175. vcpu->launched = 0;
  176. }
  177. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  178. u8 error;
  179. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  180. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  181. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  182. : "cc");
  183. if (error)
  184. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  185. vcpu->vmcs, phys_addr);
  186. }
  187. if (vcpu->cpu != cpu) {
  188. struct descriptor_table dt;
  189. unsigned long sysenter_esp;
  190. vcpu->cpu = cpu;
  191. /*
  192. * Linux uses per-cpu TSS and GDT, so set these when switching
  193. * processors.
  194. */
  195. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  196. get_gdt(&dt);
  197. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  198. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  199. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  200. }
  201. return vcpu;
  202. }
  203. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  204. {
  205. put_cpu();
  206. }
  207. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  208. {
  209. return vmcs_readl(GUEST_RFLAGS);
  210. }
  211. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  212. {
  213. vmcs_writel(GUEST_RFLAGS, rflags);
  214. }
  215. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  216. {
  217. unsigned long rip;
  218. u32 interruptibility;
  219. rip = vmcs_readl(GUEST_RIP);
  220. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  221. vmcs_writel(GUEST_RIP, rip);
  222. /*
  223. * We emulated an instruction, so temporary interrupt blocking
  224. * should be removed, if set.
  225. */
  226. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  227. if (interruptibility & 3)
  228. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  229. interruptibility & ~3);
  230. vcpu->interrupt_window_open = 1;
  231. }
  232. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  233. {
  234. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  235. vmcs_readl(GUEST_RIP));
  236. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  237. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  238. GP_VECTOR |
  239. INTR_TYPE_EXCEPTION |
  240. INTR_INFO_DELIEVER_CODE_MASK |
  241. INTR_INFO_VALID_MASK);
  242. }
  243. /*
  244. * reads and returns guest's timestamp counter "register"
  245. * guest_tsc = host_tsc + tsc_offset -- 21.3
  246. */
  247. static u64 guest_read_tsc(void)
  248. {
  249. u64 host_tsc, tsc_offset;
  250. rdtscll(host_tsc);
  251. tsc_offset = vmcs_read64(TSC_OFFSET);
  252. return host_tsc + tsc_offset;
  253. }
  254. /*
  255. * writes 'guest_tsc' into guest's timestamp counter "register"
  256. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  257. */
  258. static void guest_write_tsc(u64 guest_tsc)
  259. {
  260. u64 host_tsc;
  261. rdtscll(host_tsc);
  262. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  263. }
  264. static void reload_tss(void)
  265. {
  266. #ifndef CONFIG_X86_64
  267. /*
  268. * VT restores TR but not its size. Useless.
  269. */
  270. struct descriptor_table gdt;
  271. struct segment_descriptor *descs;
  272. get_gdt(&gdt);
  273. descs = (void *)gdt.base;
  274. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  275. load_TR_desc();
  276. #endif
  277. }
  278. /*
  279. * Reads an msr value (of 'msr_index') into 'pdata'.
  280. * Returns 0 on success, non-0 otherwise.
  281. * Assumes vcpu_load() was already called.
  282. */
  283. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  284. {
  285. u64 data;
  286. struct vmx_msr_entry *msr;
  287. if (!pdata) {
  288. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  289. return -EINVAL;
  290. }
  291. switch (msr_index) {
  292. #ifdef CONFIG_X86_64
  293. case MSR_FS_BASE:
  294. data = vmcs_readl(GUEST_FS_BASE);
  295. break;
  296. case MSR_GS_BASE:
  297. data = vmcs_readl(GUEST_GS_BASE);
  298. break;
  299. case MSR_EFER:
  300. return kvm_get_msr_common(vcpu, msr_index, pdata);
  301. #endif
  302. case MSR_IA32_TIME_STAMP_COUNTER:
  303. data = guest_read_tsc();
  304. break;
  305. case MSR_IA32_SYSENTER_CS:
  306. data = vmcs_read32(GUEST_SYSENTER_CS);
  307. break;
  308. case MSR_IA32_SYSENTER_EIP:
  309. data = vmcs_read32(GUEST_SYSENTER_EIP);
  310. break;
  311. case MSR_IA32_SYSENTER_ESP:
  312. data = vmcs_read32(GUEST_SYSENTER_ESP);
  313. break;
  314. default:
  315. msr = find_msr_entry(vcpu, msr_index);
  316. if (msr) {
  317. data = msr->data;
  318. break;
  319. }
  320. return kvm_get_msr_common(vcpu, msr_index, pdata);
  321. }
  322. *pdata = data;
  323. return 0;
  324. }
  325. /*
  326. * Writes msr value into into the appropriate "register".
  327. * Returns 0 on success, non-0 otherwise.
  328. * Assumes vcpu_load() was already called.
  329. */
  330. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  331. {
  332. struct vmx_msr_entry *msr;
  333. switch (msr_index) {
  334. #ifdef CONFIG_X86_64
  335. case MSR_EFER:
  336. return kvm_set_msr_common(vcpu, msr_index, data);
  337. case MSR_FS_BASE:
  338. vmcs_writel(GUEST_FS_BASE, data);
  339. break;
  340. case MSR_GS_BASE:
  341. vmcs_writel(GUEST_GS_BASE, data);
  342. break;
  343. #endif
  344. case MSR_IA32_SYSENTER_CS:
  345. vmcs_write32(GUEST_SYSENTER_CS, data);
  346. break;
  347. case MSR_IA32_SYSENTER_EIP:
  348. vmcs_write32(GUEST_SYSENTER_EIP, data);
  349. break;
  350. case MSR_IA32_SYSENTER_ESP:
  351. vmcs_write32(GUEST_SYSENTER_ESP, data);
  352. break;
  353. case MSR_IA32_TIME_STAMP_COUNTER: {
  354. guest_write_tsc(data);
  355. break;
  356. }
  357. default:
  358. msr = find_msr_entry(vcpu, msr_index);
  359. if (msr) {
  360. msr->data = data;
  361. break;
  362. }
  363. return kvm_set_msr_common(vcpu, msr_index, data);
  364. msr->data = data;
  365. break;
  366. }
  367. return 0;
  368. }
  369. /*
  370. * Sync the rsp and rip registers into the vcpu structure. This allows
  371. * registers to be accessed by indexing vcpu->regs.
  372. */
  373. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  374. {
  375. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  376. vcpu->rip = vmcs_readl(GUEST_RIP);
  377. }
  378. /*
  379. * Syncs rsp and rip back into the vmcs. Should be called after possible
  380. * modification.
  381. */
  382. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  383. {
  384. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  385. vmcs_writel(GUEST_RIP, vcpu->rip);
  386. }
  387. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  388. {
  389. unsigned long dr7 = 0x400;
  390. u32 exception_bitmap;
  391. int old_singlestep;
  392. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  393. old_singlestep = vcpu->guest_debug.singlestep;
  394. vcpu->guest_debug.enabled = dbg->enabled;
  395. if (vcpu->guest_debug.enabled) {
  396. int i;
  397. dr7 |= 0x200; /* exact */
  398. for (i = 0; i < 4; ++i) {
  399. if (!dbg->breakpoints[i].enabled)
  400. continue;
  401. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  402. dr7 |= 2 << (i*2); /* global enable */
  403. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  404. }
  405. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  406. vcpu->guest_debug.singlestep = dbg->singlestep;
  407. } else {
  408. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  409. vcpu->guest_debug.singlestep = 0;
  410. }
  411. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  412. unsigned long flags;
  413. flags = vmcs_readl(GUEST_RFLAGS);
  414. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  415. vmcs_writel(GUEST_RFLAGS, flags);
  416. }
  417. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  418. vmcs_writel(GUEST_DR7, dr7);
  419. return 0;
  420. }
  421. static __init int cpu_has_kvm_support(void)
  422. {
  423. unsigned long ecx = cpuid_ecx(1);
  424. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  425. }
  426. static __init int vmx_disabled_by_bios(void)
  427. {
  428. u64 msr;
  429. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  430. return (msr & 5) == 1; /* locked but not enabled */
  431. }
  432. static __init void hardware_enable(void *garbage)
  433. {
  434. int cpu = raw_smp_processor_id();
  435. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  436. u64 old;
  437. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  438. if ((old & 5) != 5)
  439. /* enable and lock */
  440. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  441. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  442. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  443. : "memory", "cc");
  444. }
  445. static void hardware_disable(void *garbage)
  446. {
  447. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  448. }
  449. static __init void setup_vmcs_descriptor(void)
  450. {
  451. u32 vmx_msr_low, vmx_msr_high;
  452. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  453. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  454. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  455. vmcs_descriptor.revision_id = vmx_msr_low;
  456. }
  457. static struct vmcs *alloc_vmcs_cpu(int cpu)
  458. {
  459. int node = cpu_to_node(cpu);
  460. struct page *pages;
  461. struct vmcs *vmcs;
  462. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  463. if (!pages)
  464. return NULL;
  465. vmcs = page_address(pages);
  466. memset(vmcs, 0, vmcs_descriptor.size);
  467. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  468. return vmcs;
  469. }
  470. static struct vmcs *alloc_vmcs(void)
  471. {
  472. return alloc_vmcs_cpu(raw_smp_processor_id());
  473. }
  474. static void free_vmcs(struct vmcs *vmcs)
  475. {
  476. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  477. }
  478. static __exit void free_kvm_area(void)
  479. {
  480. int cpu;
  481. for_each_online_cpu(cpu)
  482. free_vmcs(per_cpu(vmxarea, cpu));
  483. }
  484. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  485. static __init int alloc_kvm_area(void)
  486. {
  487. int cpu;
  488. for_each_online_cpu(cpu) {
  489. struct vmcs *vmcs;
  490. vmcs = alloc_vmcs_cpu(cpu);
  491. if (!vmcs) {
  492. free_kvm_area();
  493. return -ENOMEM;
  494. }
  495. per_cpu(vmxarea, cpu) = vmcs;
  496. }
  497. return 0;
  498. }
  499. static __init int hardware_setup(void)
  500. {
  501. setup_vmcs_descriptor();
  502. return alloc_kvm_area();
  503. }
  504. static __exit void hardware_unsetup(void)
  505. {
  506. free_kvm_area();
  507. }
  508. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  509. {
  510. if (vcpu->rmode.active)
  511. vmcs_write32(EXCEPTION_BITMAP, ~0);
  512. else
  513. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  514. }
  515. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  516. {
  517. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  518. if (vmcs_readl(sf->base) == save->base) {
  519. vmcs_write16(sf->selector, save->selector);
  520. vmcs_writel(sf->base, save->base);
  521. vmcs_write32(sf->limit, save->limit);
  522. vmcs_write32(sf->ar_bytes, save->ar);
  523. } else {
  524. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  525. << AR_DPL_SHIFT;
  526. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  527. }
  528. }
  529. static void enter_pmode(struct kvm_vcpu *vcpu)
  530. {
  531. unsigned long flags;
  532. vcpu->rmode.active = 0;
  533. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  534. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  535. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  536. flags = vmcs_readl(GUEST_RFLAGS);
  537. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  538. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  539. vmcs_writel(GUEST_RFLAGS, flags);
  540. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  541. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  542. update_exception_bitmap(vcpu);
  543. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  544. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  545. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  546. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  547. vmcs_write16(GUEST_SS_SELECTOR, 0);
  548. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  549. vmcs_write16(GUEST_CS_SELECTOR,
  550. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  551. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  552. }
  553. static int rmode_tss_base(struct kvm* kvm)
  554. {
  555. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  556. return base_gfn << PAGE_SHIFT;
  557. }
  558. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  559. {
  560. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  561. save->selector = vmcs_read16(sf->selector);
  562. save->base = vmcs_readl(sf->base);
  563. save->limit = vmcs_read32(sf->limit);
  564. save->ar = vmcs_read32(sf->ar_bytes);
  565. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  566. vmcs_write32(sf->limit, 0xffff);
  567. vmcs_write32(sf->ar_bytes, 0xf3);
  568. }
  569. static void enter_rmode(struct kvm_vcpu *vcpu)
  570. {
  571. unsigned long flags;
  572. vcpu->rmode.active = 1;
  573. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  574. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  575. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  576. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  577. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  578. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  579. flags = vmcs_readl(GUEST_RFLAGS);
  580. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  581. flags |= IOPL_MASK | X86_EFLAGS_VM;
  582. vmcs_writel(GUEST_RFLAGS, flags);
  583. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  584. update_exception_bitmap(vcpu);
  585. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  586. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  587. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  588. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  589. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  590. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  591. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  592. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  593. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  594. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  595. }
  596. #ifdef CONFIG_X86_64
  597. static void enter_lmode(struct kvm_vcpu *vcpu)
  598. {
  599. u32 guest_tr_ar;
  600. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  601. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  602. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  603. __FUNCTION__);
  604. vmcs_write32(GUEST_TR_AR_BYTES,
  605. (guest_tr_ar & ~AR_TYPE_MASK)
  606. | AR_TYPE_BUSY_64_TSS);
  607. }
  608. vcpu->shadow_efer |= EFER_LMA;
  609. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  610. vmcs_write32(VM_ENTRY_CONTROLS,
  611. vmcs_read32(VM_ENTRY_CONTROLS)
  612. | VM_ENTRY_CONTROLS_IA32E_MASK);
  613. }
  614. static void exit_lmode(struct kvm_vcpu *vcpu)
  615. {
  616. vcpu->shadow_efer &= ~EFER_LMA;
  617. vmcs_write32(VM_ENTRY_CONTROLS,
  618. vmcs_read32(VM_ENTRY_CONTROLS)
  619. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  620. }
  621. #endif
  622. static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
  623. {
  624. vcpu->cr0 &= KVM_GUEST_CR0_MASK;
  625. vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
  626. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  627. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  628. }
  629. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  630. {
  631. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  632. enter_pmode(vcpu);
  633. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  634. enter_rmode(vcpu);
  635. #ifdef CONFIG_X86_64
  636. if (vcpu->shadow_efer & EFER_LME) {
  637. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  638. enter_lmode(vcpu);
  639. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  640. exit_lmode(vcpu);
  641. }
  642. #endif
  643. vmcs_writel(CR0_READ_SHADOW, cr0);
  644. vmcs_writel(GUEST_CR0,
  645. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  646. vcpu->cr0 = cr0;
  647. }
  648. /*
  649. * Used when restoring the VM to avoid corrupting segment registers
  650. */
  651. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  652. {
  653. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  654. update_exception_bitmap(vcpu);
  655. vmcs_writel(CR0_READ_SHADOW, cr0);
  656. vmcs_writel(GUEST_CR0,
  657. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  658. vcpu->cr0 = cr0;
  659. }
  660. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  661. {
  662. vmcs_writel(GUEST_CR3, cr3);
  663. }
  664. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  665. {
  666. vmcs_writel(CR4_READ_SHADOW, cr4);
  667. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  668. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  669. vcpu->cr4 = cr4;
  670. }
  671. #ifdef CONFIG_X86_64
  672. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  673. {
  674. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  675. vcpu->shadow_efer = efer;
  676. if (efer & EFER_LMA) {
  677. vmcs_write32(VM_ENTRY_CONTROLS,
  678. vmcs_read32(VM_ENTRY_CONTROLS) |
  679. VM_ENTRY_CONTROLS_IA32E_MASK);
  680. msr->data = efer;
  681. } else {
  682. vmcs_write32(VM_ENTRY_CONTROLS,
  683. vmcs_read32(VM_ENTRY_CONTROLS) &
  684. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  685. msr->data = efer & ~EFER_LME;
  686. }
  687. }
  688. #endif
  689. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  690. {
  691. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  692. return vmcs_readl(sf->base);
  693. }
  694. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  695. struct kvm_segment *var, int seg)
  696. {
  697. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  698. u32 ar;
  699. var->base = vmcs_readl(sf->base);
  700. var->limit = vmcs_read32(sf->limit);
  701. var->selector = vmcs_read16(sf->selector);
  702. ar = vmcs_read32(sf->ar_bytes);
  703. if (ar & AR_UNUSABLE_MASK)
  704. ar = 0;
  705. var->type = ar & 15;
  706. var->s = (ar >> 4) & 1;
  707. var->dpl = (ar >> 5) & 3;
  708. var->present = (ar >> 7) & 1;
  709. var->avl = (ar >> 12) & 1;
  710. var->l = (ar >> 13) & 1;
  711. var->db = (ar >> 14) & 1;
  712. var->g = (ar >> 15) & 1;
  713. var->unusable = (ar >> 16) & 1;
  714. }
  715. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  716. struct kvm_segment *var, int seg)
  717. {
  718. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  719. u32 ar;
  720. vmcs_writel(sf->base, var->base);
  721. vmcs_write32(sf->limit, var->limit);
  722. vmcs_write16(sf->selector, var->selector);
  723. if (var->unusable)
  724. ar = 1 << 16;
  725. else {
  726. ar = var->type & 15;
  727. ar |= (var->s & 1) << 4;
  728. ar |= (var->dpl & 3) << 5;
  729. ar |= (var->present & 1) << 7;
  730. ar |= (var->avl & 1) << 12;
  731. ar |= (var->l & 1) << 13;
  732. ar |= (var->db & 1) << 14;
  733. ar |= (var->g & 1) << 15;
  734. }
  735. if (ar == 0) /* a 0 value means unusable */
  736. ar = AR_UNUSABLE_MASK;
  737. vmcs_write32(sf->ar_bytes, ar);
  738. }
  739. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  740. {
  741. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  742. *db = (ar >> 14) & 1;
  743. *l = (ar >> 13) & 1;
  744. }
  745. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  746. {
  747. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  748. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  749. }
  750. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  751. {
  752. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  753. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  754. }
  755. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  756. {
  757. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  758. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  759. }
  760. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  761. {
  762. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  763. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  764. }
  765. static int init_rmode_tss(struct kvm* kvm)
  766. {
  767. struct page *p1, *p2, *p3;
  768. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  769. char *page;
  770. p1 = _gfn_to_page(kvm, fn++);
  771. p2 = _gfn_to_page(kvm, fn++);
  772. p3 = _gfn_to_page(kvm, fn);
  773. if (!p1 || !p2 || !p3) {
  774. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  775. return 0;
  776. }
  777. page = kmap_atomic(p1, KM_USER0);
  778. memset(page, 0, PAGE_SIZE);
  779. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  780. kunmap_atomic(page, KM_USER0);
  781. page = kmap_atomic(p2, KM_USER0);
  782. memset(page, 0, PAGE_SIZE);
  783. kunmap_atomic(page, KM_USER0);
  784. page = kmap_atomic(p3, KM_USER0);
  785. memset(page, 0, PAGE_SIZE);
  786. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  787. kunmap_atomic(page, KM_USER0);
  788. return 1;
  789. }
  790. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  791. {
  792. u32 msr_high, msr_low;
  793. rdmsr(msr, msr_low, msr_high);
  794. val &= msr_high;
  795. val |= msr_low;
  796. vmcs_write32(vmcs_field, val);
  797. }
  798. static void seg_setup(int seg)
  799. {
  800. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  801. vmcs_write16(sf->selector, 0);
  802. vmcs_writel(sf->base, 0);
  803. vmcs_write32(sf->limit, 0xffff);
  804. vmcs_write32(sf->ar_bytes, 0x93);
  805. }
  806. /*
  807. * Sets up the vmcs for emulated real mode.
  808. */
  809. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  810. {
  811. u32 host_sysenter_cs;
  812. u32 junk;
  813. unsigned long a;
  814. struct descriptor_table dt;
  815. int i;
  816. int ret = 0;
  817. int nr_good_msrs;
  818. extern asmlinkage void kvm_vmx_return(void);
  819. if (!init_rmode_tss(vcpu->kvm)) {
  820. ret = -ENOMEM;
  821. goto out;
  822. }
  823. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  824. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  825. vcpu->cr8 = 0;
  826. vcpu->apic_base = 0xfee00000 |
  827. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  828. MSR_IA32_APICBASE_ENABLE;
  829. fx_init(vcpu);
  830. /*
  831. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  832. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  833. */
  834. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  835. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  836. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  837. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  838. seg_setup(VCPU_SREG_DS);
  839. seg_setup(VCPU_SREG_ES);
  840. seg_setup(VCPU_SREG_FS);
  841. seg_setup(VCPU_SREG_GS);
  842. seg_setup(VCPU_SREG_SS);
  843. vmcs_write16(GUEST_TR_SELECTOR, 0);
  844. vmcs_writel(GUEST_TR_BASE, 0);
  845. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  846. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  847. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  848. vmcs_writel(GUEST_LDTR_BASE, 0);
  849. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  850. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  851. vmcs_write32(GUEST_SYSENTER_CS, 0);
  852. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  853. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  854. vmcs_writel(GUEST_RFLAGS, 0x02);
  855. vmcs_writel(GUEST_RIP, 0xfff0);
  856. vmcs_writel(GUEST_RSP, 0);
  857. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  858. vmcs_writel(GUEST_DR7, 0x400);
  859. vmcs_writel(GUEST_GDTR_BASE, 0);
  860. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  861. vmcs_writel(GUEST_IDTR_BASE, 0);
  862. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  863. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  864. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  865. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  866. /* I/O */
  867. vmcs_write64(IO_BITMAP_A, 0);
  868. vmcs_write64(IO_BITMAP_B, 0);
  869. guest_write_tsc(0);
  870. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  871. /* Special registers */
  872. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  873. /* Control */
  874. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  875. PIN_BASED_VM_EXEC_CONTROL,
  876. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  877. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  878. );
  879. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  880. CPU_BASED_VM_EXEC_CONTROL,
  881. CPU_BASED_HLT_EXITING /* 20.6.2 */
  882. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  883. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  884. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  885. | CPU_BASED_MOV_DR_EXITING
  886. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  887. );
  888. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  889. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  890. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  891. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  892. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  893. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  894. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  895. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  896. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  897. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  898. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  899. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  900. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  901. #ifdef CONFIG_X86_64
  902. rdmsrl(MSR_FS_BASE, a);
  903. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  904. rdmsrl(MSR_GS_BASE, a);
  905. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  906. #else
  907. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  908. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  909. #endif
  910. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  911. get_idt(&dt);
  912. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  913. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  914. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  915. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  916. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  917. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  918. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  919. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  920. for (i = 0; i < NR_VMX_MSR; ++i) {
  921. u32 index = vmx_msr_index[i];
  922. u32 data_low, data_high;
  923. u64 data;
  924. int j = vcpu->nmsrs;
  925. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  926. continue;
  927. data = data_low | ((u64)data_high << 32);
  928. vcpu->host_msrs[j].index = index;
  929. vcpu->host_msrs[j].reserved = 0;
  930. vcpu->host_msrs[j].data = data;
  931. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  932. ++vcpu->nmsrs;
  933. }
  934. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  935. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  936. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  937. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  938. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  939. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  940. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  941. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  942. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  943. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  944. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  945. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  946. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  947. /* 22.2.1, 20.8.1 */
  948. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  949. VM_ENTRY_CONTROLS, 0);
  950. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  951. #ifdef CONFIG_X86_64
  952. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  953. vmcs_writel(TPR_THRESHOLD, 0);
  954. #endif
  955. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  956. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  957. vcpu->cr0 = 0x60000010;
  958. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  959. vmx_set_cr4(vcpu, 0);
  960. #ifdef CONFIG_X86_64
  961. vmx_set_efer(vcpu, 0);
  962. #endif
  963. return 0;
  964. out:
  965. return ret;
  966. }
  967. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  968. {
  969. u16 ent[2];
  970. u16 cs;
  971. u16 ip;
  972. unsigned long flags;
  973. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  974. u16 sp = vmcs_readl(GUEST_RSP);
  975. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  976. if (sp > ss_limit || sp - 6 > sp) {
  977. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  978. __FUNCTION__,
  979. vmcs_readl(GUEST_RSP),
  980. vmcs_readl(GUEST_SS_BASE),
  981. vmcs_read32(GUEST_SS_LIMIT));
  982. return;
  983. }
  984. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  985. sizeof(ent)) {
  986. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  987. return;
  988. }
  989. flags = vmcs_readl(GUEST_RFLAGS);
  990. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  991. ip = vmcs_readl(GUEST_RIP);
  992. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  993. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  994. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  995. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  996. return;
  997. }
  998. vmcs_writel(GUEST_RFLAGS, flags &
  999. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1000. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1001. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1002. vmcs_writel(GUEST_RIP, ent[0]);
  1003. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1004. }
  1005. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1006. {
  1007. int word_index = __ffs(vcpu->irq_summary);
  1008. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1009. int irq = word_index * BITS_PER_LONG + bit_index;
  1010. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1011. if (!vcpu->irq_pending[word_index])
  1012. clear_bit(word_index, &vcpu->irq_summary);
  1013. if (vcpu->rmode.active) {
  1014. inject_rmode_irq(vcpu, irq);
  1015. return;
  1016. }
  1017. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1018. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1019. }
  1020. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1021. struct kvm_run *kvm_run)
  1022. {
  1023. u32 cpu_based_vm_exec_control;
  1024. vcpu->interrupt_window_open =
  1025. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1026. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1027. if (vcpu->interrupt_window_open &&
  1028. vcpu->irq_summary &&
  1029. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1030. /*
  1031. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1032. */
  1033. kvm_do_inject_irq(vcpu);
  1034. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1035. if (!vcpu->interrupt_window_open &&
  1036. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1037. /*
  1038. * Interrupts blocked. Wait for unblock.
  1039. */
  1040. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1041. else
  1042. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1043. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1044. }
  1045. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1046. {
  1047. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1048. set_debugreg(dbg->bp[0], 0);
  1049. set_debugreg(dbg->bp[1], 1);
  1050. set_debugreg(dbg->bp[2], 2);
  1051. set_debugreg(dbg->bp[3], 3);
  1052. if (dbg->singlestep) {
  1053. unsigned long flags;
  1054. flags = vmcs_readl(GUEST_RFLAGS);
  1055. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1056. vmcs_writel(GUEST_RFLAGS, flags);
  1057. }
  1058. }
  1059. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1060. int vec, u32 err_code)
  1061. {
  1062. if (!vcpu->rmode.active)
  1063. return 0;
  1064. if (vec == GP_VECTOR && err_code == 0)
  1065. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1066. return 1;
  1067. return 0;
  1068. }
  1069. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1070. {
  1071. u32 intr_info, error_code;
  1072. unsigned long cr2, rip;
  1073. u32 vect_info;
  1074. enum emulation_result er;
  1075. int r;
  1076. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1077. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1078. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1079. !is_page_fault(intr_info)) {
  1080. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1081. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1082. }
  1083. if (is_external_interrupt(vect_info)) {
  1084. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1085. set_bit(irq, vcpu->irq_pending);
  1086. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1087. }
  1088. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1089. asm ("int $2");
  1090. return 1;
  1091. }
  1092. error_code = 0;
  1093. rip = vmcs_readl(GUEST_RIP);
  1094. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1095. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1096. if (is_page_fault(intr_info)) {
  1097. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1098. spin_lock(&vcpu->kvm->lock);
  1099. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1100. if (r < 0) {
  1101. spin_unlock(&vcpu->kvm->lock);
  1102. return r;
  1103. }
  1104. if (!r) {
  1105. spin_unlock(&vcpu->kvm->lock);
  1106. return 1;
  1107. }
  1108. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1109. spin_unlock(&vcpu->kvm->lock);
  1110. switch (er) {
  1111. case EMULATE_DONE:
  1112. return 1;
  1113. case EMULATE_DO_MMIO:
  1114. ++kvm_stat.mmio_exits;
  1115. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1116. return 0;
  1117. case EMULATE_FAIL:
  1118. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1119. break;
  1120. default:
  1121. BUG();
  1122. }
  1123. }
  1124. if (vcpu->rmode.active &&
  1125. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1126. error_code))
  1127. return 1;
  1128. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1129. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1130. return 0;
  1131. }
  1132. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1133. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1134. kvm_run->ex.error_code = error_code;
  1135. return 0;
  1136. }
  1137. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1138. struct kvm_run *kvm_run)
  1139. {
  1140. ++kvm_stat.irq_exits;
  1141. return 1;
  1142. }
  1143. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1144. {
  1145. u64 inst;
  1146. gva_t rip;
  1147. int countr_size;
  1148. int i, n;
  1149. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1150. countr_size = 2;
  1151. } else {
  1152. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1153. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1154. (cs_ar & AR_DB_MASK) ? 4: 2;
  1155. }
  1156. rip = vmcs_readl(GUEST_RIP);
  1157. if (countr_size != 8)
  1158. rip += vmcs_readl(GUEST_CS_BASE);
  1159. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1160. for (i = 0; i < n; i++) {
  1161. switch (((u8*)&inst)[i]) {
  1162. case 0xf0:
  1163. case 0xf2:
  1164. case 0xf3:
  1165. case 0x2e:
  1166. case 0x36:
  1167. case 0x3e:
  1168. case 0x26:
  1169. case 0x64:
  1170. case 0x65:
  1171. case 0x66:
  1172. break;
  1173. case 0x67:
  1174. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1175. default:
  1176. goto done;
  1177. }
  1178. }
  1179. return 0;
  1180. done:
  1181. countr_size *= 8;
  1182. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1183. return 1;
  1184. }
  1185. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1186. {
  1187. u64 exit_qualification;
  1188. ++kvm_stat.io_exits;
  1189. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1190. kvm_run->exit_reason = KVM_EXIT_IO;
  1191. if (exit_qualification & 8)
  1192. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1193. else
  1194. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1195. kvm_run->io.size = (exit_qualification & 7) + 1;
  1196. kvm_run->io.string = (exit_qualification & 16) != 0;
  1197. kvm_run->io.string_down
  1198. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1199. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1200. kvm_run->io.port = exit_qualification >> 16;
  1201. if (kvm_run->io.string) {
  1202. if (!get_io_count(vcpu, &kvm_run->io.count))
  1203. return 1;
  1204. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1205. } else
  1206. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1207. return 0;
  1208. }
  1209. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1210. {
  1211. u64 exit_qualification;
  1212. int cr;
  1213. int reg;
  1214. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1215. cr = exit_qualification & 15;
  1216. reg = (exit_qualification >> 8) & 15;
  1217. switch ((exit_qualification >> 4) & 3) {
  1218. case 0: /* mov to cr */
  1219. switch (cr) {
  1220. case 0:
  1221. vcpu_load_rsp_rip(vcpu);
  1222. set_cr0(vcpu, vcpu->regs[reg]);
  1223. skip_emulated_instruction(vcpu);
  1224. return 1;
  1225. case 3:
  1226. vcpu_load_rsp_rip(vcpu);
  1227. set_cr3(vcpu, vcpu->regs[reg]);
  1228. skip_emulated_instruction(vcpu);
  1229. return 1;
  1230. case 4:
  1231. vcpu_load_rsp_rip(vcpu);
  1232. set_cr4(vcpu, vcpu->regs[reg]);
  1233. skip_emulated_instruction(vcpu);
  1234. return 1;
  1235. case 8:
  1236. vcpu_load_rsp_rip(vcpu);
  1237. set_cr8(vcpu, vcpu->regs[reg]);
  1238. skip_emulated_instruction(vcpu);
  1239. return 1;
  1240. };
  1241. break;
  1242. case 1: /*mov from cr*/
  1243. switch (cr) {
  1244. case 3:
  1245. vcpu_load_rsp_rip(vcpu);
  1246. vcpu->regs[reg] = vcpu->cr3;
  1247. vcpu_put_rsp_rip(vcpu);
  1248. skip_emulated_instruction(vcpu);
  1249. return 1;
  1250. case 8:
  1251. printk(KERN_DEBUG "handle_cr: read CR8 "
  1252. "cpu erratum AA15\n");
  1253. vcpu_load_rsp_rip(vcpu);
  1254. vcpu->regs[reg] = vcpu->cr8;
  1255. vcpu_put_rsp_rip(vcpu);
  1256. skip_emulated_instruction(vcpu);
  1257. return 1;
  1258. }
  1259. break;
  1260. case 3: /* lmsw */
  1261. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1262. skip_emulated_instruction(vcpu);
  1263. return 1;
  1264. default:
  1265. break;
  1266. }
  1267. kvm_run->exit_reason = 0;
  1268. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1269. (int)(exit_qualification >> 4) & 3, cr);
  1270. return 0;
  1271. }
  1272. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1273. {
  1274. u64 exit_qualification;
  1275. unsigned long val;
  1276. int dr, reg;
  1277. /*
  1278. * FIXME: this code assumes the host is debugging the guest.
  1279. * need to deal with guest debugging itself too.
  1280. */
  1281. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1282. dr = exit_qualification & 7;
  1283. reg = (exit_qualification >> 8) & 15;
  1284. vcpu_load_rsp_rip(vcpu);
  1285. if (exit_qualification & 16) {
  1286. /* mov from dr */
  1287. switch (dr) {
  1288. case 6:
  1289. val = 0xffff0ff0;
  1290. break;
  1291. case 7:
  1292. val = 0x400;
  1293. break;
  1294. default:
  1295. val = 0;
  1296. }
  1297. vcpu->regs[reg] = val;
  1298. } else {
  1299. /* mov to dr */
  1300. }
  1301. vcpu_put_rsp_rip(vcpu);
  1302. skip_emulated_instruction(vcpu);
  1303. return 1;
  1304. }
  1305. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1306. {
  1307. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1308. return 0;
  1309. }
  1310. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1311. {
  1312. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1313. u64 data;
  1314. if (vmx_get_msr(vcpu, ecx, &data)) {
  1315. vmx_inject_gp(vcpu, 0);
  1316. return 1;
  1317. }
  1318. /* FIXME: handling of bits 32:63 of rax, rdx */
  1319. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1320. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1321. skip_emulated_instruction(vcpu);
  1322. return 1;
  1323. }
  1324. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1325. {
  1326. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1327. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1328. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1329. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1330. vmx_inject_gp(vcpu, 0);
  1331. return 1;
  1332. }
  1333. skip_emulated_instruction(vcpu);
  1334. return 1;
  1335. }
  1336. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1337. struct kvm_run *kvm_run)
  1338. {
  1339. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1340. kvm_run->cr8 = vcpu->cr8;
  1341. kvm_run->apic_base = vcpu->apic_base;
  1342. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1343. vcpu->irq_summary == 0);
  1344. }
  1345. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1346. struct kvm_run *kvm_run)
  1347. {
  1348. /*
  1349. * If the user space waits to inject interrupts, exit as soon as
  1350. * possible
  1351. */
  1352. if (kvm_run->request_interrupt_window &&
  1353. !vcpu->irq_summary) {
  1354. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1355. ++kvm_stat.irq_window_exits;
  1356. return 0;
  1357. }
  1358. return 1;
  1359. }
  1360. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1361. {
  1362. skip_emulated_instruction(vcpu);
  1363. if (vcpu->irq_summary)
  1364. return 1;
  1365. kvm_run->exit_reason = KVM_EXIT_HLT;
  1366. ++kvm_stat.halt_exits;
  1367. return 0;
  1368. }
  1369. /*
  1370. * The exit handlers return 1 if the exit was handled fully and guest execution
  1371. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1372. * to be done to userspace and return 0.
  1373. */
  1374. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1375. struct kvm_run *kvm_run) = {
  1376. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1377. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1378. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1379. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1380. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1381. [EXIT_REASON_CPUID] = handle_cpuid,
  1382. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1383. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1384. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1385. [EXIT_REASON_HLT] = handle_halt,
  1386. };
  1387. static const int kvm_vmx_max_exit_handlers =
  1388. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1389. /*
  1390. * The guest has exited. See if we can fix it or if we need userspace
  1391. * assistance.
  1392. */
  1393. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1394. {
  1395. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1396. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1397. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1398. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1399. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1400. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1401. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1402. if (exit_reason < kvm_vmx_max_exit_handlers
  1403. && kvm_vmx_exit_handlers[exit_reason])
  1404. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1405. else {
  1406. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1407. kvm_run->hw.hardware_exit_reason = exit_reason;
  1408. }
  1409. return 0;
  1410. }
  1411. /*
  1412. * Check if userspace requested an interrupt window, and that the
  1413. * interrupt window is open.
  1414. *
  1415. * No need to exit to userspace if we already have an interrupt queued.
  1416. */
  1417. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1418. struct kvm_run *kvm_run)
  1419. {
  1420. return (!vcpu->irq_summary &&
  1421. kvm_run->request_interrupt_window &&
  1422. vcpu->interrupt_window_open &&
  1423. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1424. }
  1425. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1426. {
  1427. u8 fail;
  1428. u16 fs_sel, gs_sel, ldt_sel;
  1429. int fs_gs_ldt_reload_needed;
  1430. int r;
  1431. again:
  1432. /*
  1433. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1434. * allow segment selectors with cpl > 0 or ti == 1.
  1435. */
  1436. fs_sel = read_fs();
  1437. gs_sel = read_gs();
  1438. ldt_sel = read_ldt();
  1439. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1440. if (!fs_gs_ldt_reload_needed) {
  1441. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1442. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1443. } else {
  1444. vmcs_write16(HOST_FS_SELECTOR, 0);
  1445. vmcs_write16(HOST_GS_SELECTOR, 0);
  1446. }
  1447. #ifdef CONFIG_X86_64
  1448. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1449. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1450. #else
  1451. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1452. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1453. #endif
  1454. if (!vcpu->mmio_read_completed)
  1455. do_interrupt_requests(vcpu, kvm_run);
  1456. if (vcpu->guest_debug.enabled)
  1457. kvm_guest_debug_pre(vcpu);
  1458. fx_save(vcpu->host_fx_image);
  1459. fx_restore(vcpu->guest_fx_image);
  1460. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1461. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1462. asm (
  1463. /* Store host registers */
  1464. "pushf \n\t"
  1465. #ifdef CONFIG_X86_64
  1466. "push %%rax; push %%rbx; push %%rdx;"
  1467. "push %%rsi; push %%rdi; push %%rbp;"
  1468. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1469. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1470. "push %%rcx \n\t"
  1471. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1472. #else
  1473. "pusha; push %%ecx \n\t"
  1474. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1475. #endif
  1476. /* Check if vmlaunch of vmresume is needed */
  1477. "cmp $0, %1 \n\t"
  1478. /* Load guest registers. Don't clobber flags. */
  1479. #ifdef CONFIG_X86_64
  1480. "mov %c[cr2](%3), %%rax \n\t"
  1481. "mov %%rax, %%cr2 \n\t"
  1482. "mov %c[rax](%3), %%rax \n\t"
  1483. "mov %c[rbx](%3), %%rbx \n\t"
  1484. "mov %c[rdx](%3), %%rdx \n\t"
  1485. "mov %c[rsi](%3), %%rsi \n\t"
  1486. "mov %c[rdi](%3), %%rdi \n\t"
  1487. "mov %c[rbp](%3), %%rbp \n\t"
  1488. "mov %c[r8](%3), %%r8 \n\t"
  1489. "mov %c[r9](%3), %%r9 \n\t"
  1490. "mov %c[r10](%3), %%r10 \n\t"
  1491. "mov %c[r11](%3), %%r11 \n\t"
  1492. "mov %c[r12](%3), %%r12 \n\t"
  1493. "mov %c[r13](%3), %%r13 \n\t"
  1494. "mov %c[r14](%3), %%r14 \n\t"
  1495. "mov %c[r15](%3), %%r15 \n\t"
  1496. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1497. #else
  1498. "mov %c[cr2](%3), %%eax \n\t"
  1499. "mov %%eax, %%cr2 \n\t"
  1500. "mov %c[rax](%3), %%eax \n\t"
  1501. "mov %c[rbx](%3), %%ebx \n\t"
  1502. "mov %c[rdx](%3), %%edx \n\t"
  1503. "mov %c[rsi](%3), %%esi \n\t"
  1504. "mov %c[rdi](%3), %%edi \n\t"
  1505. "mov %c[rbp](%3), %%ebp \n\t"
  1506. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1507. #endif
  1508. /* Enter guest mode */
  1509. "jne launched \n\t"
  1510. ASM_VMX_VMLAUNCH "\n\t"
  1511. "jmp kvm_vmx_return \n\t"
  1512. "launched: " ASM_VMX_VMRESUME "\n\t"
  1513. ".globl kvm_vmx_return \n\t"
  1514. "kvm_vmx_return: "
  1515. /* Save guest registers, load host registers, keep flags */
  1516. #ifdef CONFIG_X86_64
  1517. "xchg %3, 0(%%rsp) \n\t"
  1518. "mov %%rax, %c[rax](%3) \n\t"
  1519. "mov %%rbx, %c[rbx](%3) \n\t"
  1520. "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
  1521. "mov %%rdx, %c[rdx](%3) \n\t"
  1522. "mov %%rsi, %c[rsi](%3) \n\t"
  1523. "mov %%rdi, %c[rdi](%3) \n\t"
  1524. "mov %%rbp, %c[rbp](%3) \n\t"
  1525. "mov %%r8, %c[r8](%3) \n\t"
  1526. "mov %%r9, %c[r9](%3) \n\t"
  1527. "mov %%r10, %c[r10](%3) \n\t"
  1528. "mov %%r11, %c[r11](%3) \n\t"
  1529. "mov %%r12, %c[r12](%3) \n\t"
  1530. "mov %%r13, %c[r13](%3) \n\t"
  1531. "mov %%r14, %c[r14](%3) \n\t"
  1532. "mov %%r15, %c[r15](%3) \n\t"
  1533. "mov %%cr2, %%rax \n\t"
  1534. "mov %%rax, %c[cr2](%3) \n\t"
  1535. "mov 0(%%rsp), %3 \n\t"
  1536. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1537. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1538. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1539. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1540. #else
  1541. "xchg %3, 0(%%esp) \n\t"
  1542. "mov %%eax, %c[rax](%3) \n\t"
  1543. "mov %%ebx, %c[rbx](%3) \n\t"
  1544. "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
  1545. "mov %%edx, %c[rdx](%3) \n\t"
  1546. "mov %%esi, %c[rsi](%3) \n\t"
  1547. "mov %%edi, %c[rdi](%3) \n\t"
  1548. "mov %%ebp, %c[rbp](%3) \n\t"
  1549. "mov %%cr2, %%eax \n\t"
  1550. "mov %%eax, %c[cr2](%3) \n\t"
  1551. "mov 0(%%esp), %3 \n\t"
  1552. "pop %%ecx; popa \n\t"
  1553. #endif
  1554. "setbe %0 \n\t"
  1555. "popf \n\t"
  1556. : "=q" (fail)
  1557. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1558. "c"(vcpu),
  1559. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1560. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1561. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1562. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1563. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1564. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1565. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1566. #ifdef CONFIG_X86_64
  1567. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1568. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1569. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1570. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1571. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1572. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1573. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1574. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1575. #endif
  1576. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1577. : "cc", "memory" );
  1578. ++kvm_stat.exits;
  1579. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1580. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1581. fx_save(vcpu->guest_fx_image);
  1582. fx_restore(vcpu->host_fx_image);
  1583. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1584. #ifndef CONFIG_X86_64
  1585. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1586. #endif
  1587. /*
  1588. * Profile KVM exit RIPs:
  1589. */
  1590. if (unlikely(prof_on == KVM_PROFILING))
  1591. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1592. kvm_run->exit_type = 0;
  1593. if (fail) {
  1594. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1595. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1596. r = 0;
  1597. } else {
  1598. if (fs_gs_ldt_reload_needed) {
  1599. load_ldt(ldt_sel);
  1600. load_fs(fs_sel);
  1601. /*
  1602. * If we have to reload gs, we must take care to
  1603. * preserve our gs base.
  1604. */
  1605. local_irq_disable();
  1606. load_gs(gs_sel);
  1607. #ifdef CONFIG_X86_64
  1608. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1609. #endif
  1610. local_irq_enable();
  1611. reload_tss();
  1612. }
  1613. vcpu->launched = 1;
  1614. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1615. r = kvm_handle_exit(kvm_run, vcpu);
  1616. if (r > 0) {
  1617. /* Give scheduler a change to reschedule. */
  1618. if (signal_pending(current)) {
  1619. ++kvm_stat.signal_exits;
  1620. post_kvm_run_save(vcpu, kvm_run);
  1621. return -EINTR;
  1622. }
  1623. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1624. ++kvm_stat.request_irq_exits;
  1625. post_kvm_run_save(vcpu, kvm_run);
  1626. return -EINTR;
  1627. }
  1628. kvm_resched(vcpu);
  1629. goto again;
  1630. }
  1631. }
  1632. post_kvm_run_save(vcpu, kvm_run);
  1633. return r;
  1634. }
  1635. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1636. {
  1637. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1638. }
  1639. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1640. unsigned long addr,
  1641. u32 err_code)
  1642. {
  1643. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1644. ++kvm_stat.pf_guest;
  1645. if (is_page_fault(vect_info)) {
  1646. printk(KERN_DEBUG "inject_page_fault: "
  1647. "double fault 0x%lx @ 0x%lx\n",
  1648. addr, vmcs_readl(GUEST_RIP));
  1649. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1650. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1651. DF_VECTOR |
  1652. INTR_TYPE_EXCEPTION |
  1653. INTR_INFO_DELIEVER_CODE_MASK |
  1654. INTR_INFO_VALID_MASK);
  1655. return;
  1656. }
  1657. vcpu->cr2 = addr;
  1658. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1659. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1660. PF_VECTOR |
  1661. INTR_TYPE_EXCEPTION |
  1662. INTR_INFO_DELIEVER_CODE_MASK |
  1663. INTR_INFO_VALID_MASK);
  1664. }
  1665. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1666. {
  1667. if (vcpu->vmcs) {
  1668. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1669. free_vmcs(vcpu->vmcs);
  1670. vcpu->vmcs = NULL;
  1671. }
  1672. }
  1673. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1674. {
  1675. vmx_free_vmcs(vcpu);
  1676. }
  1677. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1678. {
  1679. struct vmcs *vmcs;
  1680. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1681. if (!vcpu->guest_msrs)
  1682. return -ENOMEM;
  1683. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1684. if (!vcpu->host_msrs)
  1685. goto out_free_guest_msrs;
  1686. vmcs = alloc_vmcs();
  1687. if (!vmcs)
  1688. goto out_free_msrs;
  1689. vmcs_clear(vmcs);
  1690. vcpu->vmcs = vmcs;
  1691. vcpu->launched = 0;
  1692. return 0;
  1693. out_free_msrs:
  1694. kfree(vcpu->host_msrs);
  1695. vcpu->host_msrs = NULL;
  1696. out_free_guest_msrs:
  1697. kfree(vcpu->guest_msrs);
  1698. vcpu->guest_msrs = NULL;
  1699. return -ENOMEM;
  1700. }
  1701. static struct kvm_arch_ops vmx_arch_ops = {
  1702. .cpu_has_kvm_support = cpu_has_kvm_support,
  1703. .disabled_by_bios = vmx_disabled_by_bios,
  1704. .hardware_setup = hardware_setup,
  1705. .hardware_unsetup = hardware_unsetup,
  1706. .hardware_enable = hardware_enable,
  1707. .hardware_disable = hardware_disable,
  1708. .vcpu_create = vmx_create_vcpu,
  1709. .vcpu_free = vmx_free_vcpu,
  1710. .vcpu_load = vmx_vcpu_load,
  1711. .vcpu_put = vmx_vcpu_put,
  1712. .set_guest_debug = set_guest_debug,
  1713. .get_msr = vmx_get_msr,
  1714. .set_msr = vmx_set_msr,
  1715. .get_segment_base = vmx_get_segment_base,
  1716. .get_segment = vmx_get_segment,
  1717. .set_segment = vmx_set_segment,
  1718. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1719. .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
  1720. .set_cr0 = vmx_set_cr0,
  1721. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1722. .set_cr3 = vmx_set_cr3,
  1723. .set_cr4 = vmx_set_cr4,
  1724. #ifdef CONFIG_X86_64
  1725. .set_efer = vmx_set_efer,
  1726. #endif
  1727. .get_idt = vmx_get_idt,
  1728. .set_idt = vmx_set_idt,
  1729. .get_gdt = vmx_get_gdt,
  1730. .set_gdt = vmx_set_gdt,
  1731. .cache_regs = vcpu_load_rsp_rip,
  1732. .decache_regs = vcpu_put_rsp_rip,
  1733. .get_rflags = vmx_get_rflags,
  1734. .set_rflags = vmx_set_rflags,
  1735. .tlb_flush = vmx_flush_tlb,
  1736. .inject_page_fault = vmx_inject_page_fault,
  1737. .inject_gp = vmx_inject_gp,
  1738. .run = vmx_vcpu_run,
  1739. .skip_emulated_instruction = skip_emulated_instruction,
  1740. .vcpu_setup = vmx_vcpu_setup,
  1741. };
  1742. static int __init vmx_init(void)
  1743. {
  1744. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1745. }
  1746. static void __exit vmx_exit(void)
  1747. {
  1748. kvm_exit_arch();
  1749. }
  1750. module_init(vmx_init)
  1751. module_exit(vmx_exit)