mmu.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/cputype.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/sections.h>
  20. #include <asm/setup.h>
  21. #include <asm/sizes.h>
  22. #include <asm/tlb.h>
  23. #include <asm/mach/arch.h>
  24. #include <asm/mach/map.h>
  25. #include "mm.h"
  26. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  27. /*
  28. * empty_zero_page is a special page that is used for
  29. * zero-initialized data and COW.
  30. */
  31. struct page *empty_zero_page;
  32. EXPORT_SYMBOL(empty_zero_page);
  33. /*
  34. * The pmd table for the upper-most set of pages.
  35. */
  36. pmd_t *top_pmd;
  37. #define CPOLICY_UNCACHED 0
  38. #define CPOLICY_BUFFERED 1
  39. #define CPOLICY_WRITETHROUGH 2
  40. #define CPOLICY_WRITEBACK 3
  41. #define CPOLICY_WRITEALLOC 4
  42. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  43. static unsigned int ecc_mask __initdata = 0;
  44. pgprot_t pgprot_user;
  45. pgprot_t pgprot_kernel;
  46. EXPORT_SYMBOL(pgprot_user);
  47. EXPORT_SYMBOL(pgprot_kernel);
  48. struct cachepolicy {
  49. const char policy[16];
  50. unsigned int cr_mask;
  51. unsigned int pmd;
  52. unsigned int pte;
  53. };
  54. static struct cachepolicy cache_policies[] __initdata = {
  55. {
  56. .policy = "uncached",
  57. .cr_mask = CR_W|CR_C,
  58. .pmd = PMD_SECT_UNCACHED,
  59. .pte = L_PTE_MT_UNCACHED,
  60. }, {
  61. .policy = "buffered",
  62. .cr_mask = CR_C,
  63. .pmd = PMD_SECT_BUFFERED,
  64. .pte = L_PTE_MT_BUFFERABLE,
  65. }, {
  66. .policy = "writethrough",
  67. .cr_mask = 0,
  68. .pmd = PMD_SECT_WT,
  69. .pte = L_PTE_MT_WRITETHROUGH,
  70. }, {
  71. .policy = "writeback",
  72. .cr_mask = 0,
  73. .pmd = PMD_SECT_WB,
  74. .pte = L_PTE_MT_WRITEBACK,
  75. }, {
  76. .policy = "writealloc",
  77. .cr_mask = 0,
  78. .pmd = PMD_SECT_WBWA,
  79. .pte = L_PTE_MT_WRITEALLOC,
  80. }
  81. };
  82. /*
  83. * These are useful for identifying cache coherency
  84. * problems by allowing the cache or the cache and
  85. * writebuffer to be turned off. (Note: the write
  86. * buffer should not be on and the cache off).
  87. */
  88. static void __init early_cachepolicy(char **p)
  89. {
  90. int i;
  91. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  92. int len = strlen(cache_policies[i].policy);
  93. if (memcmp(*p, cache_policies[i].policy, len) == 0) {
  94. cachepolicy = i;
  95. cr_alignment &= ~cache_policies[i].cr_mask;
  96. cr_no_alignment &= ~cache_policies[i].cr_mask;
  97. *p += len;
  98. break;
  99. }
  100. }
  101. if (i == ARRAY_SIZE(cache_policies))
  102. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  103. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  104. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  105. cachepolicy = CPOLICY_WRITEBACK;
  106. }
  107. flush_cache_all();
  108. set_cr(cr_alignment);
  109. }
  110. __early_param("cachepolicy=", early_cachepolicy);
  111. static void __init early_nocache(char **__unused)
  112. {
  113. char *p = "buffered";
  114. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  115. early_cachepolicy(&p);
  116. }
  117. __early_param("nocache", early_nocache);
  118. static void __init early_nowrite(char **__unused)
  119. {
  120. char *p = "uncached";
  121. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  122. early_cachepolicy(&p);
  123. }
  124. __early_param("nowb", early_nowrite);
  125. static void __init early_ecc(char **p)
  126. {
  127. if (memcmp(*p, "on", 2) == 0) {
  128. ecc_mask = PMD_PROTECTION;
  129. *p += 2;
  130. } else if (memcmp(*p, "off", 3) == 0) {
  131. ecc_mask = 0;
  132. *p += 3;
  133. }
  134. }
  135. __early_param("ecc=", early_ecc);
  136. static int __init noalign_setup(char *__unused)
  137. {
  138. cr_alignment &= ~CR_A;
  139. cr_no_alignment &= ~CR_A;
  140. set_cr(cr_alignment);
  141. return 1;
  142. }
  143. __setup("noalign", noalign_setup);
  144. #ifndef CONFIG_SMP
  145. void adjust_cr(unsigned long mask, unsigned long set)
  146. {
  147. unsigned long flags;
  148. mask &= ~CR_A;
  149. set &= mask;
  150. local_irq_save(flags);
  151. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  152. cr_alignment = (cr_alignment & ~mask) | set;
  153. set_cr((get_cr() & ~mask) | set);
  154. local_irq_restore(flags);
  155. }
  156. #endif
  157. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  158. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  159. static struct mem_type mem_types[] = {
  160. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  161. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  162. L_PTE_SHARED,
  163. .prot_l1 = PMD_TYPE_TABLE,
  164. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  165. .domain = DOMAIN_IO,
  166. },
  167. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  168. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  169. .prot_l1 = PMD_TYPE_TABLE,
  170. .prot_sect = PROT_SECT_DEVICE,
  171. .domain = DOMAIN_IO,
  172. },
  173. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  174. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  175. .prot_l1 = PMD_TYPE_TABLE,
  176. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  177. .domain = DOMAIN_IO,
  178. },
  179. [MT_DEVICE_WC] = { /* ioremap_wc */
  180. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  181. .prot_l1 = PMD_TYPE_TABLE,
  182. .prot_sect = PROT_SECT_DEVICE,
  183. .domain = DOMAIN_IO,
  184. },
  185. [MT_UNCACHED] = {
  186. .prot_pte = PROT_PTE_DEVICE,
  187. .prot_l1 = PMD_TYPE_TABLE,
  188. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  189. .domain = DOMAIN_IO,
  190. },
  191. [MT_CACHECLEAN] = {
  192. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  193. .domain = DOMAIN_KERNEL,
  194. },
  195. [MT_MINICLEAN] = {
  196. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  197. .domain = DOMAIN_KERNEL,
  198. },
  199. [MT_LOW_VECTORS] = {
  200. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  201. L_PTE_EXEC,
  202. .prot_l1 = PMD_TYPE_TABLE,
  203. .domain = DOMAIN_USER,
  204. },
  205. [MT_HIGH_VECTORS] = {
  206. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  207. L_PTE_USER | L_PTE_EXEC,
  208. .prot_l1 = PMD_TYPE_TABLE,
  209. .domain = DOMAIN_USER,
  210. },
  211. [MT_MEMORY] = {
  212. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  213. .domain = DOMAIN_KERNEL,
  214. },
  215. [MT_ROM] = {
  216. .prot_sect = PMD_TYPE_SECT,
  217. .domain = DOMAIN_KERNEL,
  218. },
  219. [MT_MEMORY_NONCACHED] = {
  220. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  221. .domain = DOMAIN_KERNEL,
  222. },
  223. };
  224. const struct mem_type *get_mem_type(unsigned int type)
  225. {
  226. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  227. }
  228. /*
  229. * Adjust the PMD section entries according to the CPU in use.
  230. */
  231. static void __init build_mem_type_table(void)
  232. {
  233. struct cachepolicy *cp;
  234. unsigned int cr = get_cr();
  235. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  236. int cpu_arch = cpu_architecture();
  237. int i;
  238. if (cpu_arch < CPU_ARCH_ARMv6) {
  239. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  240. if (cachepolicy > CPOLICY_BUFFERED)
  241. cachepolicy = CPOLICY_BUFFERED;
  242. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  243. if (cachepolicy > CPOLICY_WRITETHROUGH)
  244. cachepolicy = CPOLICY_WRITETHROUGH;
  245. #endif
  246. }
  247. if (cpu_arch < CPU_ARCH_ARMv5) {
  248. if (cachepolicy >= CPOLICY_WRITEALLOC)
  249. cachepolicy = CPOLICY_WRITEBACK;
  250. ecc_mask = 0;
  251. }
  252. #ifdef CONFIG_SMP
  253. cachepolicy = CPOLICY_WRITEALLOC;
  254. #endif
  255. /*
  256. * Strip out features not present on earlier architectures.
  257. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  258. * without extended page tables don't have the 'Shared' bit.
  259. */
  260. if (cpu_arch < CPU_ARCH_ARMv5)
  261. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  262. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  263. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  264. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  265. mem_types[i].prot_sect &= ~PMD_SECT_S;
  266. /*
  267. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  268. * "update-able on write" bit on ARM610). However, Xscale and
  269. * Xscale3 require this bit to be cleared.
  270. */
  271. if (cpu_is_xscale() || cpu_is_xsc3()) {
  272. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  273. mem_types[i].prot_sect &= ~PMD_BIT4;
  274. mem_types[i].prot_l1 &= ~PMD_BIT4;
  275. }
  276. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  277. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  278. if (mem_types[i].prot_l1)
  279. mem_types[i].prot_l1 |= PMD_BIT4;
  280. if (mem_types[i].prot_sect)
  281. mem_types[i].prot_sect |= PMD_BIT4;
  282. }
  283. }
  284. /*
  285. * Mark the device areas according to the CPU/architecture.
  286. */
  287. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  288. if (!cpu_is_xsc3()) {
  289. /*
  290. * Mark device regions on ARMv6+ as execute-never
  291. * to prevent speculative instruction fetches.
  292. */
  293. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  294. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  295. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  296. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  297. }
  298. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  299. /*
  300. * For ARMv7 with TEX remapping,
  301. * - shared device is SXCB=1100
  302. * - nonshared device is SXCB=0100
  303. * - write combine device mem is SXCB=0001
  304. * (Uncached Normal memory)
  305. */
  306. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  307. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  308. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  309. } else if (cpu_is_xsc3()) {
  310. /*
  311. * For Xscale3,
  312. * - shared device is TEXCB=00101
  313. * - nonshared device is TEXCB=01000
  314. * - write combine device mem is TEXCB=00100
  315. * (Inner/Outer Uncacheable in xsc3 parlance)
  316. */
  317. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  318. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  319. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  320. } else {
  321. /*
  322. * For ARMv6 and ARMv7 without TEX remapping,
  323. * - shared device is TEXCB=00001
  324. * - nonshared device is TEXCB=01000
  325. * - write combine device mem is TEXCB=00100
  326. * (Uncached Normal in ARMv6 parlance).
  327. */
  328. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  329. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  330. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  331. }
  332. } else {
  333. /*
  334. * On others, write combining is "Uncached/Buffered"
  335. */
  336. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  337. }
  338. /*
  339. * Now deal with the memory-type mappings
  340. */
  341. cp = &cache_policies[cachepolicy];
  342. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  343. #ifndef CONFIG_SMP
  344. /*
  345. * Only use write-through for non-SMP systems
  346. */
  347. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  348. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  349. #endif
  350. /*
  351. * Enable CPU-specific coherency if supported.
  352. * (Only available on XSC3 at the moment.)
  353. */
  354. if (arch_is_coherent() && cpu_is_xsc3())
  355. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  356. /*
  357. * ARMv6 and above have extended page tables.
  358. */
  359. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  360. /*
  361. * Mark cache clean areas and XIP ROM read only
  362. * from SVC mode and no access from userspace.
  363. */
  364. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  365. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  366. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  367. #ifdef CONFIG_SMP
  368. /*
  369. * Mark memory with the "shared" attribute for SMP systems
  370. */
  371. user_pgprot |= L_PTE_SHARED;
  372. kern_pgprot |= L_PTE_SHARED;
  373. vecs_pgprot |= L_PTE_SHARED;
  374. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  375. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  376. #endif
  377. }
  378. /*
  379. * Non-cacheable Normal - intended for memory areas that must
  380. * not cause dirty cache line writebacks when used
  381. */
  382. if (cpu_arch >= CPU_ARCH_ARMv6) {
  383. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  384. /* Non-cacheable Normal is XCB = 001 */
  385. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  386. PMD_SECT_BUFFERED;
  387. } else {
  388. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  389. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  390. PMD_SECT_TEX(1);
  391. }
  392. } else {
  393. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  394. }
  395. for (i = 0; i < 16; i++) {
  396. unsigned long v = pgprot_val(protection_map[i]);
  397. protection_map[i] = __pgprot(v | user_pgprot);
  398. }
  399. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  400. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  401. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  402. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  403. L_PTE_DIRTY | L_PTE_WRITE |
  404. L_PTE_EXEC | kern_pgprot);
  405. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  406. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  407. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  408. mem_types[MT_ROM].prot_sect |= cp->pmd;
  409. switch (cp->pmd) {
  410. case PMD_SECT_WT:
  411. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  412. break;
  413. case PMD_SECT_WB:
  414. case PMD_SECT_WBWA:
  415. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  416. break;
  417. }
  418. printk("Memory policy: ECC %sabled, Data cache %s\n",
  419. ecc_mask ? "en" : "dis", cp->policy);
  420. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  421. struct mem_type *t = &mem_types[i];
  422. if (t->prot_l1)
  423. t->prot_l1 |= PMD_DOMAIN(t->domain);
  424. if (t->prot_sect)
  425. t->prot_sect |= PMD_DOMAIN(t->domain);
  426. }
  427. }
  428. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  429. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  430. unsigned long end, unsigned long pfn,
  431. const struct mem_type *type)
  432. {
  433. pte_t *pte;
  434. if (pmd_none(*pmd)) {
  435. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  436. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  437. }
  438. pte = pte_offset_kernel(pmd, addr);
  439. do {
  440. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  441. pfn++;
  442. } while (pte++, addr += PAGE_SIZE, addr != end);
  443. }
  444. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  445. unsigned long end, unsigned long phys,
  446. const struct mem_type *type)
  447. {
  448. pmd_t *pmd = pmd_offset(pgd, addr);
  449. /*
  450. * Try a section mapping - end, addr and phys must all be aligned
  451. * to a section boundary. Note that PMDs refer to the individual
  452. * L1 entries, whereas PGDs refer to a group of L1 entries making
  453. * up one logical pointer to an L2 table.
  454. */
  455. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  456. pmd_t *p = pmd;
  457. if (addr & SECTION_SIZE)
  458. pmd++;
  459. do {
  460. *pmd = __pmd(phys | type->prot_sect);
  461. phys += SECTION_SIZE;
  462. } while (pmd++, addr += SECTION_SIZE, addr != end);
  463. flush_pmd_entry(p);
  464. } else {
  465. /*
  466. * No need to loop; pte's aren't interested in the
  467. * individual L1 entries.
  468. */
  469. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  470. }
  471. }
  472. static void __init create_36bit_mapping(struct map_desc *md,
  473. const struct mem_type *type)
  474. {
  475. unsigned long phys, addr, length, end;
  476. pgd_t *pgd;
  477. addr = md->virtual;
  478. phys = (unsigned long)__pfn_to_phys(md->pfn);
  479. length = PAGE_ALIGN(md->length);
  480. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  481. printk(KERN_ERR "MM: CPU does not support supersection "
  482. "mapping for 0x%08llx at 0x%08lx\n",
  483. __pfn_to_phys((u64)md->pfn), addr);
  484. return;
  485. }
  486. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  487. * Since domain assignments can in fact be arbitrary, the
  488. * 'domain == 0' check below is required to insure that ARMv6
  489. * supersections are only allocated for domain 0 regardless
  490. * of the actual domain assignments in use.
  491. */
  492. if (type->domain) {
  493. printk(KERN_ERR "MM: invalid domain in supersection "
  494. "mapping for 0x%08llx at 0x%08lx\n",
  495. __pfn_to_phys((u64)md->pfn), addr);
  496. return;
  497. }
  498. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  499. printk(KERN_ERR "MM: cannot create mapping for "
  500. "0x%08llx at 0x%08lx invalid alignment\n",
  501. __pfn_to_phys((u64)md->pfn), addr);
  502. return;
  503. }
  504. /*
  505. * Shift bits [35:32] of address into bits [23:20] of PMD
  506. * (See ARMv6 spec).
  507. */
  508. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  509. pgd = pgd_offset_k(addr);
  510. end = addr + length;
  511. do {
  512. pmd_t *pmd = pmd_offset(pgd, addr);
  513. int i;
  514. for (i = 0; i < 16; i++)
  515. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  516. addr += SUPERSECTION_SIZE;
  517. phys += SUPERSECTION_SIZE;
  518. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  519. } while (addr != end);
  520. }
  521. /*
  522. * Create the page directory entries and any necessary
  523. * page tables for the mapping specified by `md'. We
  524. * are able to cope here with varying sizes and address
  525. * offsets, and we take full advantage of sections and
  526. * supersections.
  527. */
  528. void __init create_mapping(struct map_desc *md)
  529. {
  530. unsigned long phys, addr, length, end;
  531. const struct mem_type *type;
  532. pgd_t *pgd;
  533. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  534. printk(KERN_WARNING "BUG: not creating mapping for "
  535. "0x%08llx at 0x%08lx in user region\n",
  536. __pfn_to_phys((u64)md->pfn), md->virtual);
  537. return;
  538. }
  539. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  540. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  541. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  542. "overlaps vmalloc space\n",
  543. __pfn_to_phys((u64)md->pfn), md->virtual);
  544. }
  545. type = &mem_types[md->type];
  546. /*
  547. * Catch 36-bit addresses
  548. */
  549. if (md->pfn >= 0x100000) {
  550. create_36bit_mapping(md, type);
  551. return;
  552. }
  553. addr = md->virtual & PAGE_MASK;
  554. phys = (unsigned long)__pfn_to_phys(md->pfn);
  555. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  556. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  557. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  558. "be mapped using pages, ignoring.\n",
  559. __pfn_to_phys(md->pfn), addr);
  560. return;
  561. }
  562. pgd = pgd_offset_k(addr);
  563. end = addr + length;
  564. do {
  565. unsigned long next = pgd_addr_end(addr, end);
  566. alloc_init_section(pgd, addr, next, phys, type);
  567. phys += next - addr;
  568. addr = next;
  569. } while (pgd++, addr != end);
  570. }
  571. /*
  572. * Create the architecture specific mappings
  573. */
  574. void __init iotable_init(struct map_desc *io_desc, int nr)
  575. {
  576. int i;
  577. for (i = 0; i < nr; i++)
  578. create_mapping(io_desc + i);
  579. }
  580. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  581. /*
  582. * vmalloc=size forces the vmalloc area to be exactly 'size'
  583. * bytes. This can be used to increase (or decrease) the vmalloc
  584. * area - the default is 128m.
  585. */
  586. static void __init early_vmalloc(char **arg)
  587. {
  588. vmalloc_reserve = memparse(*arg, arg);
  589. if (vmalloc_reserve < SZ_16M) {
  590. vmalloc_reserve = SZ_16M;
  591. printk(KERN_WARNING
  592. "vmalloc area too small, limiting to %luMB\n",
  593. vmalloc_reserve >> 20);
  594. }
  595. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  596. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  597. printk(KERN_WARNING
  598. "vmalloc area is too big, limiting to %luMB\n",
  599. vmalloc_reserve >> 20);
  600. }
  601. }
  602. __early_param("vmalloc=", early_vmalloc);
  603. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  604. static void __init sanity_check_meminfo(void)
  605. {
  606. int i, j;
  607. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  608. struct membank *bank = &meminfo.bank[j];
  609. *bank = meminfo.bank[i];
  610. #ifdef CONFIG_HIGHMEM
  611. /*
  612. * Split those memory banks which are partially overlapping
  613. * the vmalloc area greatly simplifying things later.
  614. */
  615. if (__va(bank->start) < VMALLOC_MIN &&
  616. bank->size > VMALLOC_MIN - __va(bank->start)) {
  617. if (meminfo.nr_banks >= NR_BANKS) {
  618. printk(KERN_CRIT "NR_BANKS too low, "
  619. "ignoring high memory\n");
  620. } else {
  621. memmove(bank + 1, bank,
  622. (meminfo.nr_banks - i) * sizeof(*bank));
  623. meminfo.nr_banks++;
  624. i++;
  625. bank[1].size -= VMALLOC_MIN - __va(bank->start);
  626. bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
  627. j++;
  628. }
  629. bank->size = VMALLOC_MIN - __va(bank->start);
  630. }
  631. #else
  632. /*
  633. * Check whether this memory bank would entirely overlap
  634. * the vmalloc area.
  635. */
  636. if (__va(bank->start) >= VMALLOC_MIN) {
  637. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  638. "(vmalloc region overlap).\n",
  639. bank->start, bank->start + bank->size - 1);
  640. continue;
  641. }
  642. /*
  643. * Check whether this memory bank would partially overlap
  644. * the vmalloc area.
  645. */
  646. if (__va(bank->start + bank->size) > VMALLOC_MIN ||
  647. __va(bank->start + bank->size) < __va(bank->start)) {
  648. unsigned long newsize = VMALLOC_MIN - __va(bank->start);
  649. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  650. "to -%.8lx (vmalloc region overlap).\n",
  651. bank->start, bank->start + bank->size - 1,
  652. bank->start + newsize - 1);
  653. bank->size = newsize;
  654. }
  655. #endif
  656. j++;
  657. }
  658. meminfo.nr_banks = j;
  659. }
  660. static inline void prepare_page_table(void)
  661. {
  662. unsigned long addr;
  663. /*
  664. * Clear out all the mappings below the kernel image.
  665. */
  666. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  667. pmd_clear(pmd_off_k(addr));
  668. #ifdef CONFIG_XIP_KERNEL
  669. /* The XIP kernel is mapped in the module area -- skip over it */
  670. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  671. #endif
  672. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  673. pmd_clear(pmd_off_k(addr));
  674. /*
  675. * Clear out all the kernel space mappings, except for the first
  676. * memory bank, up to the end of the vmalloc region.
  677. */
  678. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  679. addr < VMALLOC_END; addr += PGDIR_SIZE)
  680. pmd_clear(pmd_off_k(addr));
  681. }
  682. /*
  683. * Reserve the various regions of node 0
  684. */
  685. void __init reserve_node_zero(pg_data_t *pgdat)
  686. {
  687. unsigned long res_size = 0;
  688. /*
  689. * Register the kernel text and data with bootmem.
  690. * Note that this can only be in node 0.
  691. */
  692. #ifdef CONFIG_XIP_KERNEL
  693. reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
  694. BOOTMEM_DEFAULT);
  695. #else
  696. reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
  697. BOOTMEM_DEFAULT);
  698. #endif
  699. /*
  700. * Reserve the page tables. These are already in use,
  701. * and can only be in node 0.
  702. */
  703. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  704. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  705. /*
  706. * Hmm... This should go elsewhere, but we really really need to
  707. * stop things allocating the low memory; ideally we need a better
  708. * implementation of GFP_DMA which does not assume that DMA-able
  709. * memory starts at zero.
  710. */
  711. if (machine_is_integrator() || machine_is_cintegrator())
  712. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  713. /*
  714. * These should likewise go elsewhere. They pre-reserve the
  715. * screen memory region at the start of main system memory.
  716. */
  717. if (machine_is_edb7211())
  718. res_size = 0x00020000;
  719. if (machine_is_p720t())
  720. res_size = 0x00014000;
  721. /* H1940 and RX3715 need to reserve this for suspend */
  722. if (machine_is_h1940() || machine_is_rx3715()) {
  723. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  724. BOOTMEM_DEFAULT);
  725. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  726. BOOTMEM_DEFAULT);
  727. }
  728. #ifdef CONFIG_SA1111
  729. /*
  730. * Because of the SA1111 DMA bug, we want to preserve our
  731. * precious DMA-able memory...
  732. */
  733. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  734. #endif
  735. if (res_size)
  736. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  737. BOOTMEM_DEFAULT);
  738. }
  739. /*
  740. * Set up device the mappings. Since we clear out the page tables for all
  741. * mappings above VMALLOC_END, we will remove any debug device mappings.
  742. * This means you have to be careful how you debug this function, or any
  743. * called function. This means you can't use any function or debugging
  744. * method which may touch any device, otherwise the kernel _will_ crash.
  745. */
  746. static void __init devicemaps_init(struct machine_desc *mdesc)
  747. {
  748. struct map_desc map;
  749. unsigned long addr;
  750. void *vectors;
  751. /*
  752. * Allocate the vector page early.
  753. */
  754. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  755. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  756. pmd_clear(pmd_off_k(addr));
  757. /*
  758. * Map the kernel if it is XIP.
  759. * It is always first in the modulearea.
  760. */
  761. #ifdef CONFIG_XIP_KERNEL
  762. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  763. map.virtual = MODULES_VADDR;
  764. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  765. map.type = MT_ROM;
  766. create_mapping(&map);
  767. #endif
  768. /*
  769. * Map the cache flushing regions.
  770. */
  771. #ifdef FLUSH_BASE
  772. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  773. map.virtual = FLUSH_BASE;
  774. map.length = SZ_1M;
  775. map.type = MT_CACHECLEAN;
  776. create_mapping(&map);
  777. #endif
  778. #ifdef FLUSH_BASE_MINICACHE
  779. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  780. map.virtual = FLUSH_BASE_MINICACHE;
  781. map.length = SZ_1M;
  782. map.type = MT_MINICLEAN;
  783. create_mapping(&map);
  784. #endif
  785. /*
  786. * Create a mapping for the machine vectors at the high-vectors
  787. * location (0xffff0000). If we aren't using high-vectors, also
  788. * create a mapping at the low-vectors virtual address.
  789. */
  790. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  791. map.virtual = 0xffff0000;
  792. map.length = PAGE_SIZE;
  793. map.type = MT_HIGH_VECTORS;
  794. create_mapping(&map);
  795. if (!vectors_high()) {
  796. map.virtual = 0;
  797. map.type = MT_LOW_VECTORS;
  798. create_mapping(&map);
  799. }
  800. /*
  801. * Ask the machine support to map in the statically mapped devices.
  802. */
  803. if (mdesc->map_io)
  804. mdesc->map_io();
  805. /*
  806. * Finally flush the caches and tlb to ensure that we're in a
  807. * consistent state wrt the writebuffer. This also ensures that
  808. * any write-allocated cache lines in the vector page are written
  809. * back. After this point, we can start to touch devices again.
  810. */
  811. local_flush_tlb_all();
  812. flush_cache_all();
  813. }
  814. /*
  815. * paging_init() sets up the page tables, initialises the zone memory
  816. * maps, and sets up the zero page, bad page and bad page tables.
  817. */
  818. void __init paging_init(struct machine_desc *mdesc)
  819. {
  820. void *zero_page;
  821. build_mem_type_table();
  822. sanity_check_meminfo();
  823. prepare_page_table();
  824. bootmem_init();
  825. devicemaps_init(mdesc);
  826. top_pmd = pmd_off_k(0xffff0000);
  827. /*
  828. * allocate the zero page. Note that this always succeeds and
  829. * returns a zeroed result.
  830. */
  831. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  832. empty_zero_page = virt_to_page(zero_page);
  833. flush_dcache_page(empty_zero_page);
  834. }
  835. /*
  836. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  837. * the user-mode pages. This will then ensure that we have predictable
  838. * results when turning the mmu off
  839. */
  840. void setup_mm_for_reboot(char mode)
  841. {
  842. unsigned long base_pmdval;
  843. pgd_t *pgd;
  844. int i;
  845. if (current->mm && current->mm->pgd)
  846. pgd = current->mm->pgd;
  847. else
  848. pgd = init_mm.pgd;
  849. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  850. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  851. base_pmdval |= PMD_BIT4;
  852. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  853. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  854. pmd_t *pmd;
  855. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  856. pmd[0] = __pmd(pmdval);
  857. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  858. flush_pmd_entry(pmd);
  859. }
  860. }