ds2490.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. /*
  2. * dscore.c
  3. *
  4. * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
  5. *
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mod_devicetable.h>
  24. #include <linux/usb.h>
  25. #include "../w1_int.h"
  26. #include "../w1.h"
  27. /* COMMAND TYPE CODES */
  28. #define CONTROL_CMD 0x00
  29. #define COMM_CMD 0x01
  30. #define MODE_CMD 0x02
  31. /* CONTROL COMMAND CODES */
  32. #define CTL_RESET_DEVICE 0x0000
  33. #define CTL_START_EXE 0x0001
  34. #define CTL_RESUME_EXE 0x0002
  35. #define CTL_HALT_EXE_IDLE 0x0003
  36. #define CTL_HALT_EXE_DONE 0x0004
  37. #define CTL_FLUSH_COMM_CMDS 0x0007
  38. #define CTL_FLUSH_RCV_BUFFER 0x0008
  39. #define CTL_FLUSH_XMT_BUFFER 0x0009
  40. #define CTL_GET_COMM_CMDS 0x000A
  41. /* MODE COMMAND CODES */
  42. #define MOD_PULSE_EN 0x0000
  43. #define MOD_SPEED_CHANGE_EN 0x0001
  44. #define MOD_1WIRE_SPEED 0x0002
  45. #define MOD_STRONG_PU_DURATION 0x0003
  46. #define MOD_PULLDOWN_SLEWRATE 0x0004
  47. #define MOD_PROG_PULSE_DURATION 0x0005
  48. #define MOD_WRITE1_LOWTIME 0x0006
  49. #define MOD_DSOW0_TREC 0x0007
  50. /* COMMUNICATION COMMAND CODES */
  51. #define COMM_ERROR_ESCAPE 0x0601
  52. #define COMM_SET_DURATION 0x0012
  53. #define COMM_BIT_IO 0x0020
  54. #define COMM_PULSE 0x0030
  55. #define COMM_1_WIRE_RESET 0x0042
  56. #define COMM_BYTE_IO 0x0052
  57. #define COMM_MATCH_ACCESS 0x0064
  58. #define COMM_BLOCK_IO 0x0074
  59. #define COMM_READ_STRAIGHT 0x0080
  60. #define COMM_DO_RELEASE 0x6092
  61. #define COMM_SET_PATH 0x00A2
  62. #define COMM_WRITE_SRAM_PAGE 0x00B2
  63. #define COMM_WRITE_EPROM 0x00C4
  64. #define COMM_READ_CRC_PROT_PAGE 0x00D4
  65. #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
  66. #define COMM_SEARCH_ACCESS 0x00F4
  67. /* Communication command bits */
  68. #define COMM_TYPE 0x0008
  69. #define COMM_SE 0x0008
  70. #define COMM_D 0x0008
  71. #define COMM_Z 0x0008
  72. #define COMM_CH 0x0008
  73. #define COMM_SM 0x0008
  74. #define COMM_R 0x0008
  75. #define COMM_IM 0x0001
  76. #define COMM_PS 0x4000
  77. #define COMM_PST 0x4000
  78. #define COMM_CIB 0x4000
  79. #define COMM_RTS 0x4000
  80. #define COMM_DT 0x2000
  81. #define COMM_SPU 0x1000
  82. #define COMM_F 0x0800
  83. #define COMM_NTP 0x0400
  84. #define COMM_ICP 0x0200
  85. #define COMM_RST 0x0100
  86. #define PULSE_PROG 0x01
  87. #define PULSE_SPUE 0x02
  88. #define BRANCH_MAIN 0xCC
  89. #define BRANCH_AUX 0x33
  90. /* Status flags */
  91. #define ST_SPUA 0x01 /* Strong Pull-up is active */
  92. #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
  93. #define ST_12VP 0x04 /* external 12V programming voltage is present */
  94. #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
  95. #define ST_HALT 0x10 /* DS2490 is currently halted */
  96. #define ST_IDLE 0x20 /* DS2490 is currently idle */
  97. #define ST_EPOF 0x80
  98. /* Result Register flags */
  99. #define RR_DETECT 0xA5 /* New device detected */
  100. #define RR_NRS 0x01 /* Reset no presence or ... */
  101. #define RR_SH 0x02 /* short on reset or set path */
  102. #define RR_APP 0x04 /* alarming presence on reset */
  103. #define RR_VPP 0x08 /* 12V expected not seen */
  104. #define RR_CMP 0x10 /* compare error */
  105. #define RR_CRC 0x20 /* CRC error detected */
  106. #define RR_RDP 0x40 /* redirected page */
  107. #define RR_EOS 0x80 /* end of search error */
  108. #define SPEED_NORMAL 0x00
  109. #define SPEED_FLEXIBLE 0x01
  110. #define SPEED_OVERDRIVE 0x02
  111. #define NUM_EP 4
  112. #define EP_CONTROL 0
  113. #define EP_STATUS 1
  114. #define EP_DATA_OUT 2
  115. #define EP_DATA_IN 3
  116. struct ds_device
  117. {
  118. struct list_head ds_entry;
  119. struct usb_device *udev;
  120. struct usb_interface *intf;
  121. int ep[NUM_EP];
  122. /* Strong PullUp
  123. * 0: pullup not active, else duration in milliseconds
  124. */
  125. int spu_sleep;
  126. struct w1_bus_master master;
  127. };
  128. struct ds_status
  129. {
  130. u8 enable;
  131. u8 speed;
  132. u8 pullup_dur;
  133. u8 ppuls_dur;
  134. u8 pulldown_slew;
  135. u8 write1_time;
  136. u8 write0_time;
  137. u8 reserved0;
  138. u8 status;
  139. u8 command0;
  140. u8 command1;
  141. u8 command_buffer_status;
  142. u8 data_out_buffer_status;
  143. u8 data_in_buffer_status;
  144. u8 reserved1;
  145. u8 reserved2;
  146. };
  147. static struct usb_device_id ds_id_table [] = {
  148. { USB_DEVICE(0x04fa, 0x2490) },
  149. { },
  150. };
  151. MODULE_DEVICE_TABLE(usb, ds_id_table);
  152. static int ds_probe(struct usb_interface *, const struct usb_device_id *);
  153. static void ds_disconnect(struct usb_interface *);
  154. static int ds_send_control(struct ds_device *, u16, u16);
  155. static int ds_send_control_cmd(struct ds_device *, u16, u16);
  156. static LIST_HEAD(ds_devices);
  157. static DEFINE_MUTEX(ds_mutex);
  158. static struct usb_driver ds_driver = {
  159. .name = "DS9490R",
  160. .probe = ds_probe,
  161. .disconnect = ds_disconnect,
  162. .id_table = ds_id_table,
  163. };
  164. static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
  165. {
  166. int err;
  167. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  168. CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
  169. if (err < 0) {
  170. printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
  171. value, index, err);
  172. return err;
  173. }
  174. return err;
  175. }
  176. static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
  177. {
  178. int err;
  179. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  180. MODE_CMD, 0x40, value, index, NULL, 0, 1000);
  181. if (err < 0) {
  182. printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
  183. value, index, err);
  184. return err;
  185. }
  186. return err;
  187. }
  188. static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
  189. {
  190. int err;
  191. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  192. COMM_CMD, 0x40, value, index, NULL, 0, 1000);
  193. if (err < 0) {
  194. printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
  195. value, index, err);
  196. return err;
  197. }
  198. return err;
  199. }
  200. static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
  201. unsigned char *buf, int size)
  202. {
  203. int count, err;
  204. memset(st, 0, sizeof(*st));
  205. count = 0;
  206. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
  207. if (err < 0) {
  208. printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
  209. return err;
  210. }
  211. if (count >= sizeof(*st))
  212. memcpy(st, buf, sizeof(*st));
  213. return count;
  214. }
  215. static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
  216. {
  217. printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
  218. }
  219. static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
  220. {
  221. int i;
  222. printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
  223. for (i=0; i<count; ++i)
  224. printk("%02x ", buf[i]);
  225. printk(KERN_INFO "\n");
  226. if (count >= 16) {
  227. ds_print_msg(buf, "enable flag", 0);
  228. ds_print_msg(buf, "1-wire speed", 1);
  229. ds_print_msg(buf, "strong pullup duration", 2);
  230. ds_print_msg(buf, "programming pulse duration", 3);
  231. ds_print_msg(buf, "pulldown slew rate control", 4);
  232. ds_print_msg(buf, "write-1 low time", 5);
  233. ds_print_msg(buf, "data sample offset/write-0 recovery time",
  234. 6);
  235. ds_print_msg(buf, "reserved (test register)", 7);
  236. ds_print_msg(buf, "device status flags", 8);
  237. ds_print_msg(buf, "communication command byte 1", 9);
  238. ds_print_msg(buf, "communication command byte 2", 10);
  239. ds_print_msg(buf, "communication command buffer status", 11);
  240. ds_print_msg(buf, "1-wire data output buffer status", 12);
  241. ds_print_msg(buf, "1-wire data input buffer status", 13);
  242. ds_print_msg(buf, "reserved", 14);
  243. ds_print_msg(buf, "reserved", 15);
  244. }
  245. for (i = 16; i < count; ++i) {
  246. if (buf[i] == RR_DETECT) {
  247. ds_print_msg(buf, "new device detect", i);
  248. continue;
  249. }
  250. ds_print_msg(buf, "Result Register Value: ", i);
  251. if (buf[i] & RR_NRS)
  252. printk(KERN_INFO "NRS: Reset no presence or ...\n");
  253. if (buf[i] & RR_SH)
  254. printk(KERN_INFO "SH: short on reset or set path\n");
  255. if (buf[i] & RR_APP)
  256. printk(KERN_INFO "APP: alarming presence on reset\n");
  257. if (buf[i] & RR_VPP)
  258. printk(KERN_INFO "VPP: 12V expected not seen\n");
  259. if (buf[i] & RR_CMP)
  260. printk(KERN_INFO "CMP: compare error\n");
  261. if (buf[i] & RR_CRC)
  262. printk(KERN_INFO "CRC: CRC error detected\n");
  263. if (buf[i] & RR_RDP)
  264. printk(KERN_INFO "RDP: redirected page\n");
  265. if (buf[i] & RR_EOS)
  266. printk(KERN_INFO "EOS: end of search error\n");
  267. }
  268. }
  269. static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
  270. {
  271. int count, err;
  272. struct ds_status st;
  273. /* Careful on size. If size is less than what is available in
  274. * the input buffer, the device fails the bulk transfer and
  275. * clears the input buffer. It could read the maximum size of
  276. * the data buffer, but then do you return the first, last, or
  277. * some set of the middle size bytes? As long as the rest of
  278. * the code is correct there will be size bytes waiting. A
  279. * call to ds_wait_status will wait until the device is idle
  280. * and any data to be received would have been available.
  281. */
  282. count = 0;
  283. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
  284. buf, size, &count, 1000);
  285. if (err < 0) {
  286. u8 buf[0x20];
  287. int count;
  288. printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
  289. usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
  290. count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
  291. ds_dump_status(dev, buf, count);
  292. return err;
  293. }
  294. #if 0
  295. {
  296. int i;
  297. printk("%s: count=%d: ", __func__, count);
  298. for (i=0; i<count; ++i)
  299. printk("%02x ", buf[i]);
  300. printk("\n");
  301. }
  302. #endif
  303. return count;
  304. }
  305. static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
  306. {
  307. int count, err;
  308. count = 0;
  309. err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
  310. if (err < 0) {
  311. printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
  312. "err=%d.\n", dev->ep[EP_DATA_OUT], err);
  313. return err;
  314. }
  315. return err;
  316. }
  317. #if 0
  318. int ds_stop_pulse(struct ds_device *dev, int limit)
  319. {
  320. struct ds_status st;
  321. int count = 0, err = 0;
  322. u8 buf[0x20];
  323. do {
  324. err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
  325. if (err)
  326. break;
  327. err = ds_send_control(dev, CTL_RESUME_EXE, 0);
  328. if (err)
  329. break;
  330. err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
  331. if (err)
  332. break;
  333. if ((st.status & ST_SPUA) == 0) {
  334. err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
  335. if (err)
  336. break;
  337. }
  338. } while(++count < limit);
  339. return err;
  340. }
  341. int ds_detect(struct ds_device *dev, struct ds_status *st)
  342. {
  343. int err;
  344. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  345. if (err)
  346. return err;
  347. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
  348. if (err)
  349. return err;
  350. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
  351. if (err)
  352. return err;
  353. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
  354. if (err)
  355. return err;
  356. err = ds_dump_status(dev, st);
  357. return err;
  358. }
  359. #endif /* 0 */
  360. static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
  361. {
  362. u8 buf[0x20];
  363. int err, count = 0;
  364. do {
  365. err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  366. #if 0
  367. if (err >= 0) {
  368. int i;
  369. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
  370. for (i=0; i<err; ++i)
  371. printk("%02x ", buf[i]);
  372. printk("\n");
  373. }
  374. #endif
  375. } while(!(buf[0x08] & 0x20) && !(err < 0) && ++count < 100);
  376. if (err >= 16 && st->status & ST_EPOF) {
  377. printk(KERN_INFO "Resetting device after ST_EPOF.\n");
  378. ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  379. /* Always dump the device status. */
  380. count = 101;
  381. }
  382. /* Dump the status for errors or if there is extended return data.
  383. * The extended status includes new device detection (maybe someone
  384. * can do something with it).
  385. */
  386. if (err > 16 || count >= 100 || err < 0)
  387. ds_dump_status(dev, buf, err);
  388. /* Extended data isn't an error. Well, a short is, but the dump
  389. * would have already told the user that and we can't do anything
  390. * about it in software anyway.
  391. */
  392. if (count >= 100 || err < 0)
  393. return -1;
  394. else
  395. return 0;
  396. }
  397. static int ds_reset(struct ds_device *dev)
  398. {
  399. int err;
  400. //err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE);
  401. err = ds_send_control(dev, 0x43, SPEED_NORMAL);
  402. if (err)
  403. return err;
  404. return 0;
  405. }
  406. #if 0
  407. static int ds_set_speed(struct ds_device *dev, int speed)
  408. {
  409. int err;
  410. if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
  411. return -EINVAL;
  412. if (speed != SPEED_OVERDRIVE)
  413. speed = SPEED_FLEXIBLE;
  414. speed &= 0xff;
  415. err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
  416. if (err)
  417. return err;
  418. return err;
  419. }
  420. #endif /* 0 */
  421. static int ds_set_pullup(struct ds_device *dev, int delay)
  422. {
  423. int err;
  424. u8 del = 1 + (u8)(delay >> 4);
  425. dev->spu_sleep = 0;
  426. err = ds_send_control_mode(dev, MOD_PULSE_EN, delay ? PULSE_SPUE : 0);
  427. if (err)
  428. return err;
  429. if (delay) {
  430. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
  431. if (err)
  432. return err;
  433. /* Just storing delay would not get the trunication and
  434. * roundup.
  435. */
  436. dev->spu_sleep = del<<4;
  437. }
  438. return err;
  439. }
  440. static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
  441. {
  442. int err;
  443. struct ds_status st;
  444. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
  445. 0);
  446. if (err)
  447. return err;
  448. ds_wait_status(dev, &st);
  449. err = ds_recv_data(dev, tbit, sizeof(*tbit));
  450. if (err < 0)
  451. return err;
  452. return 0;
  453. }
  454. #if 0
  455. static int ds_write_bit(struct ds_device *dev, u8 bit)
  456. {
  457. int err;
  458. struct ds_status st;
  459. /* Set COMM_ICP to write without a readback. Note, this will
  460. * produce one time slot, a down followed by an up with COMM_D
  461. * only determing the timing.
  462. */
  463. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
  464. (bit ? COMM_D : 0), 0);
  465. if (err)
  466. return err;
  467. ds_wait_status(dev, &st);
  468. return 0;
  469. }
  470. #endif
  471. static int ds_write_byte(struct ds_device *dev, u8 byte)
  472. {
  473. int err;
  474. struct ds_status st;
  475. u8 rbyte;
  476. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
  477. if (err)
  478. return err;
  479. if (dev->spu_sleep)
  480. msleep(dev->spu_sleep);
  481. err = ds_wait_status(dev, &st);
  482. if (err)
  483. return err;
  484. err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
  485. if (err < 0)
  486. return err;
  487. return !(byte == rbyte);
  488. }
  489. static int ds_read_byte(struct ds_device *dev, u8 *byte)
  490. {
  491. int err;
  492. struct ds_status st;
  493. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
  494. if (err)
  495. return err;
  496. ds_wait_status(dev, &st);
  497. err = ds_recv_data(dev, byte, sizeof(*byte));
  498. if (err < 0)
  499. return err;
  500. return 0;
  501. }
  502. static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
  503. {
  504. struct ds_status st;
  505. int err;
  506. if (len > 64*1024)
  507. return -E2BIG;
  508. memset(buf, 0xFF, len);
  509. err = ds_send_data(dev, buf, len);
  510. if (err < 0)
  511. return err;
  512. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
  513. if (err)
  514. return err;
  515. ds_wait_status(dev, &st);
  516. memset(buf, 0x00, len);
  517. err = ds_recv_data(dev, buf, len);
  518. return err;
  519. }
  520. static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
  521. {
  522. int err;
  523. struct ds_status st;
  524. err = ds_send_data(dev, buf, len);
  525. if (err < 0)
  526. return err;
  527. ds_wait_status(dev, &st);
  528. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  529. if (err)
  530. return err;
  531. if (dev->spu_sleep)
  532. msleep(dev->spu_sleep);
  533. ds_wait_status(dev, &st);
  534. err = ds_recv_data(dev, buf, len);
  535. if (err < 0)
  536. return err;
  537. return !(err == len);
  538. }
  539. #if 0
  540. static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
  541. {
  542. int err;
  543. u16 value, index;
  544. struct ds_status st;
  545. memset(buf, 0, sizeof(buf));
  546. err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
  547. if (err)
  548. return err;
  549. ds_wait_status(ds_dev, &st);
  550. value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
  551. index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
  552. err = ds_send_control(ds_dev, value, index);
  553. if (err)
  554. return err;
  555. ds_wait_status(ds_dev, &st);
  556. err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
  557. if (err < 0)
  558. return err;
  559. return err/8;
  560. }
  561. static int ds_match_access(struct ds_device *dev, u64 init)
  562. {
  563. int err;
  564. struct ds_status st;
  565. err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
  566. if (err)
  567. return err;
  568. ds_wait_status(dev, &st);
  569. err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
  570. if (err)
  571. return err;
  572. ds_wait_status(dev, &st);
  573. return 0;
  574. }
  575. static int ds_set_path(struct ds_device *dev, u64 init)
  576. {
  577. int err;
  578. struct ds_status st;
  579. u8 buf[9];
  580. memcpy(buf, &init, 8);
  581. buf[8] = BRANCH_MAIN;
  582. err = ds_send_data(dev, buf, sizeof(buf));
  583. if (err)
  584. return err;
  585. ds_wait_status(dev, &st);
  586. err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
  587. if (err)
  588. return err;
  589. ds_wait_status(dev, &st);
  590. return 0;
  591. }
  592. #endif /* 0 */
  593. static u8 ds9490r_touch_bit(void *data, u8 bit)
  594. {
  595. u8 ret;
  596. struct ds_device *dev = data;
  597. if (ds_touch_bit(dev, bit, &ret))
  598. return 0;
  599. return ret;
  600. }
  601. #if 0
  602. static void ds9490r_write_bit(void *data, u8 bit)
  603. {
  604. struct ds_device *dev = data;
  605. ds_write_bit(dev, bit);
  606. }
  607. static u8 ds9490r_read_bit(void *data)
  608. {
  609. struct ds_device *dev = data;
  610. int err;
  611. u8 bit = 0;
  612. err = ds_touch_bit(dev, 1, &bit);
  613. if (err)
  614. return 0;
  615. return bit & 1;
  616. }
  617. #endif
  618. static void ds9490r_write_byte(void *data, u8 byte)
  619. {
  620. struct ds_device *dev = data;
  621. ds_write_byte(dev, byte);
  622. }
  623. static u8 ds9490r_read_byte(void *data)
  624. {
  625. struct ds_device *dev = data;
  626. int err;
  627. u8 byte = 0;
  628. err = ds_read_byte(dev, &byte);
  629. if (err)
  630. return 0;
  631. return byte;
  632. }
  633. static void ds9490r_write_block(void *data, const u8 *buf, int len)
  634. {
  635. struct ds_device *dev = data;
  636. ds_write_block(dev, (u8 *)buf, len);
  637. }
  638. static u8 ds9490r_read_block(void *data, u8 *buf, int len)
  639. {
  640. struct ds_device *dev = data;
  641. int err;
  642. err = ds_read_block(dev, buf, len);
  643. if (err < 0)
  644. return 0;
  645. return len;
  646. }
  647. static u8 ds9490r_reset(void *data)
  648. {
  649. struct ds_device *dev = data;
  650. int err;
  651. err = ds_reset(dev);
  652. if (err)
  653. return 1;
  654. return 0;
  655. }
  656. static u8 ds9490r_set_pullup(void *data, int delay)
  657. {
  658. struct ds_device *dev = data;
  659. if (ds_set_pullup(dev, delay))
  660. return 1;
  661. return 0;
  662. }
  663. static int ds_w1_init(struct ds_device *dev)
  664. {
  665. memset(&dev->master, 0, sizeof(struct w1_bus_master));
  666. /* Reset the device as it can be in a bad state.
  667. * This is necessary because a block write will wait for data
  668. * to be placed in the output buffer and block any later
  669. * commands which will keep accumulating and the device will
  670. * not be idle. Another case is removing the ds2490 module
  671. * while a bus search is in progress, somehow a few commands
  672. * get through, but the input transfers fail leaving data in
  673. * the input buffer. This will cause the next read to fail
  674. * see the note in ds_recv_data.
  675. */
  676. ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  677. dev->master.data = dev;
  678. dev->master.touch_bit = &ds9490r_touch_bit;
  679. /* read_bit and write_bit in w1_bus_master are expected to set and
  680. * sample the line level. For write_bit that means it is expected to
  681. * set it to that value and leave it there. ds2490 only supports an
  682. * individual time slot at the lowest level. The requirement from
  683. * pulling the bus state down to reading the state is 15us, something
  684. * that isn't realistic on the USB bus anyway.
  685. dev->master.read_bit = &ds9490r_read_bit;
  686. dev->master.write_bit = &ds9490r_write_bit;
  687. */
  688. dev->master.read_byte = &ds9490r_read_byte;
  689. dev->master.write_byte = &ds9490r_write_byte;
  690. dev->master.read_block = &ds9490r_read_block;
  691. dev->master.write_block = &ds9490r_write_block;
  692. dev->master.reset_bus = &ds9490r_reset;
  693. dev->master.set_pullup = &ds9490r_set_pullup;
  694. return w1_add_master_device(&dev->master);
  695. }
  696. static void ds_w1_fini(struct ds_device *dev)
  697. {
  698. w1_remove_master_device(&dev->master);
  699. }
  700. static int ds_probe(struct usb_interface *intf,
  701. const struct usb_device_id *udev_id)
  702. {
  703. struct usb_device *udev = interface_to_usbdev(intf);
  704. struct usb_endpoint_descriptor *endpoint;
  705. struct usb_host_interface *iface_desc;
  706. struct ds_device *dev;
  707. int i, err;
  708. dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
  709. if (!dev) {
  710. printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
  711. return -ENOMEM;
  712. }
  713. dev->spu_sleep = 0;
  714. dev->udev = usb_get_dev(udev);
  715. if (!dev->udev) {
  716. err = -ENOMEM;
  717. goto err_out_free;
  718. }
  719. memset(dev->ep, 0, sizeof(dev->ep));
  720. usb_set_intfdata(intf, dev);
  721. err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
  722. if (err) {
  723. printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
  724. intf->altsetting[0].desc.bInterfaceNumber, err);
  725. goto err_out_clear;
  726. }
  727. err = usb_reset_configuration(dev->udev);
  728. if (err) {
  729. printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
  730. goto err_out_clear;
  731. }
  732. iface_desc = &intf->altsetting[0];
  733. if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
  734. printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
  735. err = -EINVAL;
  736. goto err_out_clear;
  737. }
  738. /*
  739. * This loop doesn'd show control 0 endpoint,
  740. * so we will fill only 1-3 endpoints entry.
  741. */
  742. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  743. endpoint = &iface_desc->endpoint[i].desc;
  744. dev->ep[i+1] = endpoint->bEndpointAddress;
  745. #if 0
  746. printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
  747. i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
  748. (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
  749. endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
  750. #endif
  751. }
  752. err = ds_w1_init(dev);
  753. if (err)
  754. goto err_out_clear;
  755. mutex_lock(&ds_mutex);
  756. list_add_tail(&dev->ds_entry, &ds_devices);
  757. mutex_unlock(&ds_mutex);
  758. return 0;
  759. err_out_clear:
  760. usb_set_intfdata(intf, NULL);
  761. usb_put_dev(dev->udev);
  762. err_out_free:
  763. kfree(dev);
  764. return err;
  765. }
  766. static void ds_disconnect(struct usb_interface *intf)
  767. {
  768. struct ds_device *dev;
  769. dev = usb_get_intfdata(intf);
  770. if (!dev)
  771. return;
  772. mutex_lock(&ds_mutex);
  773. list_del(&dev->ds_entry);
  774. mutex_unlock(&ds_mutex);
  775. ds_w1_fini(dev);
  776. usb_set_intfdata(intf, NULL);
  777. usb_put_dev(dev->udev);
  778. kfree(dev);
  779. }
  780. static int ds_init(void)
  781. {
  782. int err;
  783. err = usb_register(&ds_driver);
  784. if (err) {
  785. printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
  786. return err;
  787. }
  788. return 0;
  789. }
  790. static void ds_fini(void)
  791. {
  792. usb_deregister(&ds_driver);
  793. }
  794. module_init(ds_init);
  795. module_exit(ds_fini);
  796. MODULE_LICENSE("GPL");
  797. MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
  798. MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");