c_can.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151
  1. /*
  2. * CAN bus driver for Bosch C_CAN controller
  3. *
  4. * Copyright (C) 2010 ST Microelectronics
  5. * Bhupesh Sharma <bhupesh.sharma@st.com>
  6. *
  7. * Borrowed heavily from the C_CAN driver originally written by:
  8. * Copyright (C) 2007
  9. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10. * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11. *
  12. * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13. * written by:
  14. * Copyright
  15. * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16. * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17. *
  18. * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19. * Bosch C_CAN user manual can be obtained from:
  20. * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21. * users_manual_c_can.pdf
  22. *
  23. * This file is licensed under the terms of the GNU General Public
  24. * License version 2. This program is licensed "as is" without any
  25. * warranty of any kind, whether express or implied.
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/version.h>
  29. #include <linux/module.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/delay.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/if_arp.h>
  34. #include <linux/if_ether.h>
  35. #include <linux/list.h>
  36. #include <linux/io.h>
  37. #include <linux/can.h>
  38. #include <linux/can/dev.h>
  39. #include <linux/can/error.h>
  40. #include "c_can.h"
  41. /* control register */
  42. #define CONTROL_TEST BIT(7)
  43. #define CONTROL_CCE BIT(6)
  44. #define CONTROL_DISABLE_AR BIT(5)
  45. #define CONTROL_ENABLE_AR (0 << 5)
  46. #define CONTROL_EIE BIT(3)
  47. #define CONTROL_SIE BIT(2)
  48. #define CONTROL_IE BIT(1)
  49. #define CONTROL_INIT BIT(0)
  50. /* test register */
  51. #define TEST_RX BIT(7)
  52. #define TEST_TX1 BIT(6)
  53. #define TEST_TX2 BIT(5)
  54. #define TEST_LBACK BIT(4)
  55. #define TEST_SILENT BIT(3)
  56. #define TEST_BASIC BIT(2)
  57. /* status register */
  58. #define STATUS_BOFF BIT(7)
  59. #define STATUS_EWARN BIT(6)
  60. #define STATUS_EPASS BIT(5)
  61. #define STATUS_RXOK BIT(4)
  62. #define STATUS_TXOK BIT(3)
  63. /* error counter register */
  64. #define ERR_CNT_TEC_MASK 0xff
  65. #define ERR_CNT_TEC_SHIFT 0
  66. #define ERR_CNT_REC_SHIFT 8
  67. #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
  68. #define ERR_CNT_RP_SHIFT 15
  69. #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
  70. /* bit-timing register */
  71. #define BTR_BRP_MASK 0x3f
  72. #define BTR_BRP_SHIFT 0
  73. #define BTR_SJW_SHIFT 6
  74. #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
  75. #define BTR_TSEG1_SHIFT 8
  76. #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
  77. #define BTR_TSEG2_SHIFT 12
  78. #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
  79. /* brp extension register */
  80. #define BRP_EXT_BRPE_MASK 0x0f
  81. #define BRP_EXT_BRPE_SHIFT 0
  82. /* IFx command request */
  83. #define IF_COMR_BUSY BIT(15)
  84. /* IFx command mask */
  85. #define IF_COMM_WR BIT(7)
  86. #define IF_COMM_MASK BIT(6)
  87. #define IF_COMM_ARB BIT(5)
  88. #define IF_COMM_CONTROL BIT(4)
  89. #define IF_COMM_CLR_INT_PND BIT(3)
  90. #define IF_COMM_TXRQST BIT(2)
  91. #define IF_COMM_DATAA BIT(1)
  92. #define IF_COMM_DATAB BIT(0)
  93. #define IF_COMM_ALL (IF_COMM_MASK | IF_COMM_ARB | \
  94. IF_COMM_CONTROL | IF_COMM_TXRQST | \
  95. IF_COMM_DATAA | IF_COMM_DATAB)
  96. /* IFx arbitration */
  97. #define IF_ARB_MSGVAL BIT(15)
  98. #define IF_ARB_MSGXTD BIT(14)
  99. #define IF_ARB_TRANSMIT BIT(13)
  100. /* IFx message control */
  101. #define IF_MCONT_NEWDAT BIT(15)
  102. #define IF_MCONT_MSGLST BIT(14)
  103. #define IF_MCONT_CLR_MSGLST (0 << 14)
  104. #define IF_MCONT_INTPND BIT(13)
  105. #define IF_MCONT_UMASK BIT(12)
  106. #define IF_MCONT_TXIE BIT(11)
  107. #define IF_MCONT_RXIE BIT(10)
  108. #define IF_MCONT_RMTEN BIT(9)
  109. #define IF_MCONT_TXRQST BIT(8)
  110. #define IF_MCONT_EOB BIT(7)
  111. #define IF_MCONT_DLC_MASK 0xf
  112. /*
  113. * IFx register masks:
  114. * allow easy operation on 16-bit registers when the
  115. * argument is 32-bit instead
  116. */
  117. #define IFX_WRITE_LOW_16BIT(x) ((x) & 0xFFFF)
  118. #define IFX_WRITE_HIGH_16BIT(x) (((x) & 0xFFFF0000) >> 16)
  119. /* message object split */
  120. #define C_CAN_NO_OF_OBJECTS 32
  121. #define C_CAN_MSG_OBJ_RX_NUM 16
  122. #define C_CAN_MSG_OBJ_TX_NUM 16
  123. #define C_CAN_MSG_OBJ_RX_FIRST 1
  124. #define C_CAN_MSG_OBJ_RX_LAST (C_CAN_MSG_OBJ_RX_FIRST + \
  125. C_CAN_MSG_OBJ_RX_NUM - 1)
  126. #define C_CAN_MSG_OBJ_TX_FIRST (C_CAN_MSG_OBJ_RX_LAST + 1)
  127. #define C_CAN_MSG_OBJ_TX_LAST (C_CAN_MSG_OBJ_TX_FIRST + \
  128. C_CAN_MSG_OBJ_TX_NUM - 1)
  129. #define C_CAN_MSG_OBJ_RX_SPLIT 9
  130. #define C_CAN_MSG_RX_LOW_LAST (C_CAN_MSG_OBJ_RX_SPLIT - 1)
  131. #define C_CAN_NEXT_MSG_OBJ_MASK (C_CAN_MSG_OBJ_TX_NUM - 1)
  132. #define RECEIVE_OBJECT_BITS 0x0000ffff
  133. /* status interrupt */
  134. #define STATUS_INTERRUPT 0x8000
  135. /* global interrupt masks */
  136. #define ENABLE_ALL_INTERRUPTS 1
  137. #define DISABLE_ALL_INTERRUPTS 0
  138. /* minimum timeout for checking BUSY status */
  139. #define MIN_TIMEOUT_VALUE 6
  140. /* napi related */
  141. #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
  142. /* c_can lec values */
  143. enum c_can_lec_type {
  144. LEC_NO_ERROR = 0,
  145. LEC_STUFF_ERROR,
  146. LEC_FORM_ERROR,
  147. LEC_ACK_ERROR,
  148. LEC_BIT1_ERROR,
  149. LEC_BIT0_ERROR,
  150. LEC_CRC_ERROR,
  151. LEC_UNUSED,
  152. };
  153. /*
  154. * c_can error types:
  155. * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
  156. */
  157. enum c_can_bus_error_types {
  158. C_CAN_NO_ERROR = 0,
  159. C_CAN_BUS_OFF,
  160. C_CAN_ERROR_WARNING,
  161. C_CAN_ERROR_PASSIVE,
  162. };
  163. static struct can_bittiming_const c_can_bittiming_const = {
  164. .name = KBUILD_MODNAME,
  165. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  166. .tseg1_max = 16,
  167. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  168. .tseg2_max = 8,
  169. .sjw_max = 4,
  170. .brp_min = 1,
  171. .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
  172. .brp_inc = 1,
  173. };
  174. static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
  175. {
  176. return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
  177. C_CAN_MSG_OBJ_TX_FIRST;
  178. }
  179. static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
  180. {
  181. return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
  182. C_CAN_MSG_OBJ_TX_FIRST;
  183. }
  184. static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
  185. {
  186. u32 val = priv->read_reg(priv, reg);
  187. val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
  188. return val;
  189. }
  190. static void c_can_enable_all_interrupts(struct c_can_priv *priv,
  191. int enable)
  192. {
  193. unsigned int cntrl_save = priv->read_reg(priv,
  194. &priv->regs->control);
  195. if (enable)
  196. cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
  197. else
  198. cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
  199. priv->write_reg(priv, &priv->regs->control, cntrl_save);
  200. }
  201. static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
  202. {
  203. int count = MIN_TIMEOUT_VALUE;
  204. while (count && priv->read_reg(priv,
  205. &priv->regs->ifregs[iface].com_req) &
  206. IF_COMR_BUSY) {
  207. count--;
  208. udelay(1);
  209. }
  210. if (!count)
  211. return 1;
  212. return 0;
  213. }
  214. static inline void c_can_object_get(struct net_device *dev,
  215. int iface, int objno, int mask)
  216. {
  217. struct c_can_priv *priv = netdev_priv(dev);
  218. /*
  219. * As per specs, after writting the message object number in the
  220. * IF command request register the transfer b/w interface
  221. * register and message RAM must be complete in 6 CAN-CLK
  222. * period.
  223. */
  224. priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
  225. IFX_WRITE_LOW_16BIT(mask));
  226. priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
  227. IFX_WRITE_LOW_16BIT(objno));
  228. if (c_can_msg_obj_is_busy(priv, iface))
  229. netdev_err(dev, "timed out in object get\n");
  230. }
  231. static inline void c_can_object_put(struct net_device *dev,
  232. int iface, int objno, int mask)
  233. {
  234. struct c_can_priv *priv = netdev_priv(dev);
  235. /*
  236. * As per specs, after writting the message object number in the
  237. * IF command request register the transfer b/w interface
  238. * register and message RAM must be complete in 6 CAN-CLK
  239. * period.
  240. */
  241. priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
  242. (IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
  243. priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
  244. IFX_WRITE_LOW_16BIT(objno));
  245. if (c_can_msg_obj_is_busy(priv, iface))
  246. netdev_err(dev, "timed out in object put\n");
  247. }
  248. static void c_can_write_msg_object(struct net_device *dev,
  249. int iface, struct can_frame *frame, int objno)
  250. {
  251. int i;
  252. u16 flags = 0;
  253. unsigned int id;
  254. struct c_can_priv *priv = netdev_priv(dev);
  255. if (!(frame->can_id & CAN_RTR_FLAG))
  256. flags |= IF_ARB_TRANSMIT;
  257. if (frame->can_id & CAN_EFF_FLAG) {
  258. id = frame->can_id & CAN_EFF_MASK;
  259. flags |= IF_ARB_MSGXTD;
  260. } else
  261. id = ((frame->can_id & CAN_SFF_MASK) << 18);
  262. flags |= IF_ARB_MSGVAL;
  263. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
  264. IFX_WRITE_LOW_16BIT(id));
  265. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
  266. IFX_WRITE_HIGH_16BIT(id));
  267. for (i = 0; i < frame->can_dlc; i += 2) {
  268. priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
  269. frame->data[i] | (frame->data[i + 1] << 8));
  270. }
  271. /* enable interrupt for this message object */
  272. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  273. IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
  274. frame->can_dlc);
  275. c_can_object_put(dev, iface, objno, IF_COMM_ALL);
  276. }
  277. static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
  278. int iface, int ctrl_mask,
  279. int obj)
  280. {
  281. struct c_can_priv *priv = netdev_priv(dev);
  282. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  283. ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
  284. c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
  285. }
  286. static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
  287. int iface,
  288. int ctrl_mask)
  289. {
  290. int i;
  291. struct c_can_priv *priv = netdev_priv(dev);
  292. for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
  293. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  294. ctrl_mask & ~(IF_MCONT_MSGLST |
  295. IF_MCONT_INTPND | IF_MCONT_NEWDAT));
  296. c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
  297. }
  298. }
  299. static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
  300. int iface, int ctrl_mask,
  301. int obj)
  302. {
  303. struct c_can_priv *priv = netdev_priv(dev);
  304. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  305. ctrl_mask & ~(IF_MCONT_MSGLST |
  306. IF_MCONT_INTPND | IF_MCONT_NEWDAT));
  307. c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
  308. }
  309. static void c_can_handle_lost_msg_obj(struct net_device *dev,
  310. int iface, int objno)
  311. {
  312. struct c_can_priv *priv = netdev_priv(dev);
  313. struct net_device_stats *stats = &dev->stats;
  314. struct sk_buff *skb;
  315. struct can_frame *frame;
  316. netdev_err(dev, "msg lost in buffer %d\n", objno);
  317. c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
  318. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  319. IF_MCONT_CLR_MSGLST);
  320. c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
  321. /* create an error msg */
  322. skb = alloc_can_err_skb(dev, &frame);
  323. if (unlikely(!skb))
  324. return;
  325. frame->can_id |= CAN_ERR_CRTL;
  326. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  327. stats->rx_errors++;
  328. stats->rx_over_errors++;
  329. netif_receive_skb(skb);
  330. }
  331. static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
  332. {
  333. u16 flags, data;
  334. int i;
  335. unsigned int val;
  336. struct c_can_priv *priv = netdev_priv(dev);
  337. struct net_device_stats *stats = &dev->stats;
  338. struct sk_buff *skb;
  339. struct can_frame *frame;
  340. skb = alloc_can_skb(dev, &frame);
  341. if (!skb) {
  342. stats->rx_dropped++;
  343. return -ENOMEM;
  344. }
  345. frame->can_dlc = get_can_dlc(ctrl & 0x0F);
  346. flags = priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
  347. val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
  348. (flags << 16);
  349. if (flags & IF_ARB_MSGXTD)
  350. frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
  351. else
  352. frame->can_id = (val >> 18) & CAN_SFF_MASK;
  353. if (flags & IF_ARB_TRANSMIT)
  354. frame->can_id |= CAN_RTR_FLAG;
  355. else {
  356. for (i = 0; i < frame->can_dlc; i += 2) {
  357. data = priv->read_reg(priv,
  358. &priv->regs->ifregs[iface].data[i / 2]);
  359. frame->data[i] = data;
  360. frame->data[i + 1] = data >> 8;
  361. }
  362. }
  363. netif_receive_skb(skb);
  364. stats->rx_packets++;
  365. stats->rx_bytes += frame->can_dlc;
  366. return 0;
  367. }
  368. static void c_can_setup_receive_object(struct net_device *dev, int iface,
  369. int objno, unsigned int mask,
  370. unsigned int id, unsigned int mcont)
  371. {
  372. struct c_can_priv *priv = netdev_priv(dev);
  373. priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
  374. IFX_WRITE_LOW_16BIT(mask));
  375. priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
  376. IFX_WRITE_HIGH_16BIT(mask));
  377. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
  378. IFX_WRITE_LOW_16BIT(id));
  379. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
  380. (IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
  381. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
  382. c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
  383. netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
  384. c_can_read_reg32(priv, &priv->regs->msgval1));
  385. }
  386. static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
  387. {
  388. struct c_can_priv *priv = netdev_priv(dev);
  389. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
  390. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
  391. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
  392. c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
  393. netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
  394. c_can_read_reg32(priv, &priv->regs->msgval1));
  395. }
  396. static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
  397. {
  398. int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
  399. /*
  400. * as transmission request register's bit n-1 corresponds to
  401. * message object n, we need to handle the same properly.
  402. */
  403. if (val & (1 << (objno - 1)))
  404. return 1;
  405. return 0;
  406. }
  407. static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
  408. struct net_device *dev)
  409. {
  410. u32 msg_obj_no;
  411. struct c_can_priv *priv = netdev_priv(dev);
  412. struct can_frame *frame = (struct can_frame *)skb->data;
  413. if (can_dropped_invalid_skb(dev, skb))
  414. return NETDEV_TX_OK;
  415. msg_obj_no = get_tx_next_msg_obj(priv);
  416. /* prepare message object for transmission */
  417. c_can_write_msg_object(dev, 0, frame, msg_obj_no);
  418. can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
  419. /*
  420. * we have to stop the queue in case of a wrap around or
  421. * if the next TX message object is still in use
  422. */
  423. priv->tx_next++;
  424. if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
  425. (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
  426. netif_stop_queue(dev);
  427. return NETDEV_TX_OK;
  428. }
  429. static int c_can_set_bittiming(struct net_device *dev)
  430. {
  431. unsigned int reg_btr, reg_brpe, ctrl_save;
  432. u8 brp, brpe, sjw, tseg1, tseg2;
  433. u32 ten_bit_brp;
  434. struct c_can_priv *priv = netdev_priv(dev);
  435. const struct can_bittiming *bt = &priv->can.bittiming;
  436. /* c_can provides a 6-bit brp and 4-bit brpe fields */
  437. ten_bit_brp = bt->brp - 1;
  438. brp = ten_bit_brp & BTR_BRP_MASK;
  439. brpe = ten_bit_brp >> 6;
  440. sjw = bt->sjw - 1;
  441. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  442. tseg2 = bt->phase_seg2 - 1;
  443. reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
  444. (tseg2 << BTR_TSEG2_SHIFT);
  445. reg_brpe = brpe & BRP_EXT_BRPE_MASK;
  446. netdev_info(dev,
  447. "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
  448. ctrl_save = priv->read_reg(priv, &priv->regs->control);
  449. priv->write_reg(priv, &priv->regs->control,
  450. ctrl_save | CONTROL_CCE | CONTROL_INIT);
  451. priv->write_reg(priv, &priv->regs->btr, reg_btr);
  452. priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
  453. priv->write_reg(priv, &priv->regs->control, ctrl_save);
  454. return 0;
  455. }
  456. /*
  457. * Configure C_CAN message objects for Tx and Rx purposes:
  458. * C_CAN provides a total of 32 message objects that can be configured
  459. * either for Tx or Rx purposes. Here the first 16 message objects are used as
  460. * a reception FIFO. The end of reception FIFO is signified by the EoB bit
  461. * being SET. The remaining 16 message objects are kept aside for Tx purposes.
  462. * See user guide document for further details on configuring message
  463. * objects.
  464. */
  465. static void c_can_configure_msg_objects(struct net_device *dev)
  466. {
  467. int i;
  468. /* first invalidate all message objects */
  469. for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
  470. c_can_inval_msg_object(dev, 0, i);
  471. /* setup receive message objects */
  472. for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
  473. c_can_setup_receive_object(dev, 0, i, 0, 0,
  474. (IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
  475. c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
  476. IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
  477. }
  478. /*
  479. * Configure C_CAN chip:
  480. * - enable/disable auto-retransmission
  481. * - set operating mode
  482. * - configure message objects
  483. */
  484. static void c_can_chip_config(struct net_device *dev)
  485. {
  486. struct c_can_priv *priv = netdev_priv(dev);
  487. /* enable automatic retransmission */
  488. priv->write_reg(priv, &priv->regs->control,
  489. CONTROL_ENABLE_AR);
  490. if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY &
  491. CAN_CTRLMODE_LOOPBACK)) {
  492. /* loopback + silent mode : useful for hot self-test */
  493. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  494. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  495. priv->write_reg(priv, &priv->regs->test,
  496. TEST_LBACK | TEST_SILENT);
  497. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  498. /* loopback mode : useful for self-test function */
  499. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  500. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  501. priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
  502. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  503. /* silent mode : bus-monitoring mode */
  504. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  505. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  506. priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
  507. } else
  508. /* normal mode*/
  509. priv->write_reg(priv, &priv->regs->control,
  510. CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
  511. /* configure message objects */
  512. c_can_configure_msg_objects(dev);
  513. /* set a `lec` value so that we can check for updates later */
  514. priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
  515. /* set bittiming params */
  516. c_can_set_bittiming(dev);
  517. }
  518. static void c_can_start(struct net_device *dev)
  519. {
  520. struct c_can_priv *priv = netdev_priv(dev);
  521. /* basic c_can configuration */
  522. c_can_chip_config(dev);
  523. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  524. /* reset tx helper pointers */
  525. priv->tx_next = priv->tx_echo = 0;
  526. /* enable status change, error and module interrupts */
  527. c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
  528. }
  529. static void c_can_stop(struct net_device *dev)
  530. {
  531. struct c_can_priv *priv = netdev_priv(dev);
  532. /* disable all interrupts */
  533. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  534. /* set the state as STOPPED */
  535. priv->can.state = CAN_STATE_STOPPED;
  536. }
  537. static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
  538. {
  539. switch (mode) {
  540. case CAN_MODE_START:
  541. c_can_start(dev);
  542. netif_wake_queue(dev);
  543. break;
  544. default:
  545. return -EOPNOTSUPP;
  546. }
  547. return 0;
  548. }
  549. static int c_can_get_berr_counter(const struct net_device *dev,
  550. struct can_berr_counter *bec)
  551. {
  552. unsigned int reg_err_counter;
  553. struct c_can_priv *priv = netdev_priv(dev);
  554. reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
  555. bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
  556. ERR_CNT_REC_SHIFT;
  557. bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
  558. return 0;
  559. }
  560. /*
  561. * theory of operation:
  562. *
  563. * priv->tx_echo holds the number of the oldest can_frame put for
  564. * transmission into the hardware, but not yet ACKed by the CAN tx
  565. * complete IRQ.
  566. *
  567. * We iterate from priv->tx_echo to priv->tx_next and check if the
  568. * packet has been transmitted, echo it back to the CAN framework.
  569. * If we discover a not yet transmitted package, stop looking for more.
  570. */
  571. static void c_can_do_tx(struct net_device *dev)
  572. {
  573. u32 val;
  574. u32 msg_obj_no;
  575. struct c_can_priv *priv = netdev_priv(dev);
  576. struct net_device_stats *stats = &dev->stats;
  577. for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
  578. msg_obj_no = get_tx_echo_msg_obj(priv);
  579. val = c_can_read_reg32(priv, &priv->regs->txrqst1);
  580. if (!(val & (1 << msg_obj_no))) {
  581. can_get_echo_skb(dev,
  582. msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
  583. stats->tx_bytes += priv->read_reg(priv,
  584. &priv->regs->ifregs[0].msg_cntrl)
  585. & IF_MCONT_DLC_MASK;
  586. stats->tx_packets++;
  587. c_can_inval_msg_object(dev, 0, msg_obj_no);
  588. }
  589. }
  590. /* restart queue if wrap-up or if queue stalled on last pkt */
  591. if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
  592. ((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
  593. netif_wake_queue(dev);
  594. }
  595. /*
  596. * theory of operation:
  597. *
  598. * c_can core saves a received CAN message into the first free message
  599. * object it finds free (starting with the lowest). Bits NEWDAT and
  600. * INTPND are set for this message object indicating that a new message
  601. * has arrived. To work-around this issue, we keep two groups of message
  602. * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
  603. *
  604. * To ensure in-order frame reception we use the following
  605. * approach while re-activating a message object to receive further
  606. * frames:
  607. * - if the current message object number is lower than
  608. * C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
  609. * the INTPND bit.
  610. * - if the current message object number is equal to
  611. * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
  612. * receive message objects.
  613. * - if the current message object number is greater than
  614. * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
  615. * only this message object.
  616. */
  617. static int c_can_do_rx_poll(struct net_device *dev, int quota)
  618. {
  619. u32 num_rx_pkts = 0;
  620. unsigned int msg_obj, msg_ctrl_save;
  621. struct c_can_priv *priv = netdev_priv(dev);
  622. u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
  623. for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
  624. msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
  625. val = c_can_read_reg32(priv, &priv->regs->intpnd1),
  626. msg_obj++) {
  627. /*
  628. * as interrupt pending register's bit n-1 corresponds to
  629. * message object n, we need to handle the same properly.
  630. */
  631. if (val & (1 << (msg_obj - 1))) {
  632. c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
  633. ~IF_COMM_TXRQST);
  634. msg_ctrl_save = priv->read_reg(priv,
  635. &priv->regs->ifregs[0].msg_cntrl);
  636. if (msg_ctrl_save & IF_MCONT_EOB)
  637. return num_rx_pkts;
  638. if (msg_ctrl_save & IF_MCONT_MSGLST) {
  639. c_can_handle_lost_msg_obj(dev, 0, msg_obj);
  640. num_rx_pkts++;
  641. quota--;
  642. continue;
  643. }
  644. if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
  645. continue;
  646. /* read the data from the message object */
  647. c_can_read_msg_object(dev, 0, msg_ctrl_save);
  648. if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
  649. c_can_mark_rx_msg_obj(dev, 0,
  650. msg_ctrl_save, msg_obj);
  651. else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
  652. /* activate this msg obj */
  653. c_can_activate_rx_msg_obj(dev, 0,
  654. msg_ctrl_save, msg_obj);
  655. else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
  656. /* activate all lower message objects */
  657. c_can_activate_all_lower_rx_msg_obj(dev,
  658. 0, msg_ctrl_save);
  659. num_rx_pkts++;
  660. quota--;
  661. }
  662. }
  663. return num_rx_pkts;
  664. }
  665. static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
  666. {
  667. return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  668. (priv->current_status & LEC_UNUSED);
  669. }
  670. static int c_can_handle_state_change(struct net_device *dev,
  671. enum c_can_bus_error_types error_type)
  672. {
  673. unsigned int reg_err_counter;
  674. unsigned int rx_err_passive;
  675. struct c_can_priv *priv = netdev_priv(dev);
  676. struct net_device_stats *stats = &dev->stats;
  677. struct can_frame *cf;
  678. struct sk_buff *skb;
  679. struct can_berr_counter bec;
  680. /* propagate the error condition to the CAN stack */
  681. skb = alloc_can_err_skb(dev, &cf);
  682. if (unlikely(!skb))
  683. return 0;
  684. c_can_get_berr_counter(dev, &bec);
  685. reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
  686. rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
  687. ERR_CNT_RP_SHIFT;
  688. switch (error_type) {
  689. case C_CAN_ERROR_WARNING:
  690. /* error warning state */
  691. priv->can.can_stats.error_warning++;
  692. priv->can.state = CAN_STATE_ERROR_WARNING;
  693. cf->can_id |= CAN_ERR_CRTL;
  694. cf->data[1] = (bec.txerr > bec.rxerr) ?
  695. CAN_ERR_CRTL_TX_WARNING :
  696. CAN_ERR_CRTL_RX_WARNING;
  697. cf->data[6] = bec.txerr;
  698. cf->data[7] = bec.rxerr;
  699. break;
  700. case C_CAN_ERROR_PASSIVE:
  701. /* error passive state */
  702. priv->can.can_stats.error_passive++;
  703. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  704. cf->can_id |= CAN_ERR_CRTL;
  705. if (rx_err_passive)
  706. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  707. if (bec.txerr > 127)
  708. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  709. cf->data[6] = bec.txerr;
  710. cf->data[7] = bec.rxerr;
  711. break;
  712. case C_CAN_BUS_OFF:
  713. /* bus-off state */
  714. priv->can.state = CAN_STATE_BUS_OFF;
  715. cf->can_id |= CAN_ERR_BUSOFF;
  716. /*
  717. * disable all interrupts in bus-off mode to ensure that
  718. * the CPU is not hogged down
  719. */
  720. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  721. can_bus_off(dev);
  722. break;
  723. default:
  724. break;
  725. }
  726. netif_receive_skb(skb);
  727. stats->rx_packets++;
  728. stats->rx_bytes += cf->can_dlc;
  729. return 1;
  730. }
  731. static int c_can_handle_bus_err(struct net_device *dev,
  732. enum c_can_lec_type lec_type)
  733. {
  734. struct c_can_priv *priv = netdev_priv(dev);
  735. struct net_device_stats *stats = &dev->stats;
  736. struct can_frame *cf;
  737. struct sk_buff *skb;
  738. /*
  739. * early exit if no lec update or no error.
  740. * no lec update means that no CAN bus event has been detected
  741. * since CPU wrote 0x7 value to status reg.
  742. */
  743. if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
  744. return 0;
  745. /* propagate the error condition to the CAN stack */
  746. skb = alloc_can_err_skb(dev, &cf);
  747. if (unlikely(!skb))
  748. return 0;
  749. /*
  750. * check for 'last error code' which tells us the
  751. * type of the last error to occur on the CAN bus
  752. */
  753. /* common for all type of bus errors */
  754. priv->can.can_stats.bus_error++;
  755. stats->rx_errors++;
  756. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  757. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  758. switch (lec_type) {
  759. case LEC_STUFF_ERROR:
  760. netdev_dbg(dev, "stuff error\n");
  761. cf->data[2] |= CAN_ERR_PROT_STUFF;
  762. break;
  763. case LEC_FORM_ERROR:
  764. netdev_dbg(dev, "form error\n");
  765. cf->data[2] |= CAN_ERR_PROT_FORM;
  766. break;
  767. case LEC_ACK_ERROR:
  768. netdev_dbg(dev, "ack error\n");
  769. cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
  770. CAN_ERR_PROT_LOC_ACK_DEL);
  771. break;
  772. case LEC_BIT1_ERROR:
  773. netdev_dbg(dev, "bit1 error\n");
  774. cf->data[2] |= CAN_ERR_PROT_BIT1;
  775. break;
  776. case LEC_BIT0_ERROR:
  777. netdev_dbg(dev, "bit0 error\n");
  778. cf->data[2] |= CAN_ERR_PROT_BIT0;
  779. break;
  780. case LEC_CRC_ERROR:
  781. netdev_dbg(dev, "CRC error\n");
  782. cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
  783. CAN_ERR_PROT_LOC_CRC_DEL);
  784. break;
  785. default:
  786. break;
  787. }
  788. /* set a `lec` value so that we can check for updates later */
  789. priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
  790. netif_receive_skb(skb);
  791. stats->rx_packets++;
  792. stats->rx_bytes += cf->can_dlc;
  793. return 1;
  794. }
  795. static int c_can_poll(struct napi_struct *napi, int quota)
  796. {
  797. u16 irqstatus;
  798. int lec_type = 0;
  799. int work_done = 0;
  800. struct net_device *dev = napi->dev;
  801. struct c_can_priv *priv = netdev_priv(dev);
  802. irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
  803. if (!irqstatus)
  804. goto end;
  805. /* status events have the highest priority */
  806. if (irqstatus == STATUS_INTERRUPT) {
  807. priv->current_status = priv->read_reg(priv,
  808. &priv->regs->status);
  809. /* handle Tx/Rx events */
  810. if (priv->current_status & STATUS_TXOK)
  811. priv->write_reg(priv, &priv->regs->status,
  812. priv->current_status & ~STATUS_TXOK);
  813. if (priv->current_status & STATUS_RXOK)
  814. priv->write_reg(priv, &priv->regs->status,
  815. priv->current_status & ~STATUS_RXOK);
  816. /* handle state changes */
  817. if ((priv->current_status & STATUS_EWARN) &&
  818. (!(priv->last_status & STATUS_EWARN))) {
  819. netdev_dbg(dev, "entered error warning state\n");
  820. work_done += c_can_handle_state_change(dev,
  821. C_CAN_ERROR_WARNING);
  822. }
  823. if ((priv->current_status & STATUS_EPASS) &&
  824. (!(priv->last_status & STATUS_EPASS))) {
  825. netdev_dbg(dev, "entered error passive state\n");
  826. work_done += c_can_handle_state_change(dev,
  827. C_CAN_ERROR_PASSIVE);
  828. }
  829. if ((priv->current_status & STATUS_BOFF) &&
  830. (!(priv->last_status & STATUS_BOFF))) {
  831. netdev_dbg(dev, "entered bus off state\n");
  832. work_done += c_can_handle_state_change(dev,
  833. C_CAN_BUS_OFF);
  834. }
  835. /* handle bus recovery events */
  836. if ((!(priv->current_status & STATUS_BOFF)) &&
  837. (priv->last_status & STATUS_BOFF)) {
  838. netdev_dbg(dev, "left bus off state\n");
  839. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  840. }
  841. if ((!(priv->current_status & STATUS_EPASS)) &&
  842. (priv->last_status & STATUS_EPASS)) {
  843. netdev_dbg(dev, "left error passive state\n");
  844. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  845. }
  846. priv->last_status = priv->current_status;
  847. /* handle lec errors on the bus */
  848. lec_type = c_can_has_and_handle_berr(priv);
  849. if (lec_type)
  850. work_done += c_can_handle_bus_err(dev, lec_type);
  851. } else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
  852. (irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
  853. /* handle events corresponding to receive message objects */
  854. work_done += c_can_do_rx_poll(dev, (quota - work_done));
  855. } else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
  856. (irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
  857. /* handle events corresponding to transmit message objects */
  858. c_can_do_tx(dev);
  859. }
  860. end:
  861. if (work_done < quota) {
  862. napi_complete(napi);
  863. /* enable all IRQs */
  864. c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
  865. }
  866. return work_done;
  867. }
  868. static irqreturn_t c_can_isr(int irq, void *dev_id)
  869. {
  870. u16 irqstatus;
  871. struct net_device *dev = (struct net_device *)dev_id;
  872. struct c_can_priv *priv = netdev_priv(dev);
  873. irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
  874. if (!irqstatus)
  875. return IRQ_NONE;
  876. /* disable all interrupts and schedule the NAPI */
  877. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  878. napi_schedule(&priv->napi);
  879. return IRQ_HANDLED;
  880. }
  881. static int c_can_open(struct net_device *dev)
  882. {
  883. int err;
  884. struct c_can_priv *priv = netdev_priv(dev);
  885. /* open the can device */
  886. err = open_candev(dev);
  887. if (err) {
  888. netdev_err(dev, "failed to open can device\n");
  889. return err;
  890. }
  891. /* register interrupt handler */
  892. err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
  893. dev);
  894. if (err < 0) {
  895. netdev_err(dev, "failed to request interrupt\n");
  896. goto exit_irq_fail;
  897. }
  898. /* start the c_can controller */
  899. c_can_start(dev);
  900. napi_enable(&priv->napi);
  901. netif_start_queue(dev);
  902. return 0;
  903. exit_irq_fail:
  904. close_candev(dev);
  905. return err;
  906. }
  907. static int c_can_close(struct net_device *dev)
  908. {
  909. struct c_can_priv *priv = netdev_priv(dev);
  910. netif_stop_queue(dev);
  911. napi_disable(&priv->napi);
  912. c_can_stop(dev);
  913. free_irq(dev->irq, dev);
  914. close_candev(dev);
  915. return 0;
  916. }
  917. struct net_device *alloc_c_can_dev(void)
  918. {
  919. struct net_device *dev;
  920. struct c_can_priv *priv;
  921. dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
  922. if (!dev)
  923. return NULL;
  924. priv = netdev_priv(dev);
  925. netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
  926. priv->dev = dev;
  927. priv->can.bittiming_const = &c_can_bittiming_const;
  928. priv->can.do_set_mode = c_can_set_mode;
  929. priv->can.do_get_berr_counter = c_can_get_berr_counter;
  930. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  931. CAN_CTRLMODE_LISTENONLY |
  932. CAN_CTRLMODE_BERR_REPORTING;
  933. return dev;
  934. }
  935. EXPORT_SYMBOL_GPL(alloc_c_can_dev);
  936. void free_c_can_dev(struct net_device *dev)
  937. {
  938. free_candev(dev);
  939. }
  940. EXPORT_SYMBOL_GPL(free_c_can_dev);
  941. static const struct net_device_ops c_can_netdev_ops = {
  942. .ndo_open = c_can_open,
  943. .ndo_stop = c_can_close,
  944. .ndo_start_xmit = c_can_start_xmit,
  945. };
  946. int register_c_can_dev(struct net_device *dev)
  947. {
  948. dev->flags |= IFF_ECHO; /* we support local echo */
  949. dev->netdev_ops = &c_can_netdev_ops;
  950. return register_candev(dev);
  951. }
  952. EXPORT_SYMBOL_GPL(register_c_can_dev);
  953. void unregister_c_can_dev(struct net_device *dev)
  954. {
  955. struct c_can_priv *priv = netdev_priv(dev);
  956. /* disable all interrupts */
  957. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  958. unregister_candev(dev);
  959. }
  960. EXPORT_SYMBOL_GPL(unregister_c_can_dev);
  961. MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
  962. MODULE_LICENSE("GPL v2");
  963. MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");