slub.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /*
  127. * Mininum number of partial slabs. These will be left on the partial
  128. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  129. */
  130. #define MIN_PARTIAL 5
  131. /*
  132. * Maximum number of desirable partial slabs.
  133. * The existence of more partial slabs makes kmem_cache_shrink
  134. * sort the partial list by the number of objects in the.
  135. */
  136. #define MAX_PARTIAL 10
  137. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  138. SLAB_POISON | SLAB_STORE_USER)
  139. /*
  140. * Debugging flags that require metadata to be stored in the slab. These get
  141. * disabled when slub_debug=O is used and a cache's min order increases with
  142. * metadata.
  143. */
  144. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  145. /*
  146. * Set of flags that will prevent slab merging
  147. */
  148. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  149. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  150. SLAB_FAILSLAB)
  151. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  152. SLAB_CACHE_DMA | SLAB_NOTRACK)
  153. #define OO_SHIFT 16
  154. #define OO_MASK ((1 << OO_SHIFT) - 1)
  155. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  156. /* Internal SLUB flags */
  157. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  158. #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */
  159. static int kmem_size = sizeof(struct kmem_cache);
  160. #ifdef CONFIG_SMP
  161. static struct notifier_block slab_notifier;
  162. #endif
  163. static enum {
  164. DOWN, /* No slab functionality available */
  165. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  166. UP, /* Everything works but does not show up in sysfs */
  167. SYSFS /* Sysfs up */
  168. } slab_state = DOWN;
  169. /* A list of all slab caches on the system */
  170. static DECLARE_RWSEM(slub_lock);
  171. static LIST_HEAD(slab_caches);
  172. /*
  173. * Tracking user of a slab.
  174. */
  175. struct track {
  176. unsigned long addr; /* Called from address */
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SLUB_DEBUG
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s);
  193. }
  194. #endif
  195. static inline void stat(struct kmem_cache *s, enum stat_item si)
  196. {
  197. #ifdef CONFIG_SLUB_STATS
  198. __this_cpu_inc(s->cpu_slab->stat[si]);
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. int slab_is_available(void)
  205. {
  206. return slab_state >= UP;
  207. }
  208. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  209. {
  210. #ifdef CONFIG_NUMA
  211. return s->node[node];
  212. #else
  213. return &s->local_node;
  214. #endif
  215. }
  216. /* Verify that a pointer has an address that is valid within a slab page */
  217. static inline int check_valid_pointer(struct kmem_cache *s,
  218. struct page *page, const void *object)
  219. {
  220. void *base;
  221. if (!object)
  222. return 1;
  223. base = page_address(page);
  224. if (object < base || object >= base + page->objects * s->size ||
  225. (object - base) % s->size) {
  226. return 0;
  227. }
  228. return 1;
  229. }
  230. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  231. {
  232. return *(void **)(object + s->offset);
  233. }
  234. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  235. {
  236. *(void **)(object + s->offset) = fp;
  237. }
  238. /* Loop over all objects in a slab */
  239. #define for_each_object(__p, __s, __addr, __objects) \
  240. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  241. __p += (__s)->size)
  242. /* Scan freelist */
  243. #define for_each_free_object(__p, __s, __free) \
  244. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  245. /* Determine object index from a given position */
  246. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  247. {
  248. return (p - addr) / s->size;
  249. }
  250. static inline struct kmem_cache_order_objects oo_make(int order,
  251. unsigned long size)
  252. {
  253. struct kmem_cache_order_objects x = {
  254. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  255. };
  256. return x;
  257. }
  258. static inline int oo_order(struct kmem_cache_order_objects x)
  259. {
  260. return x.x >> OO_SHIFT;
  261. }
  262. static inline int oo_objects(struct kmem_cache_order_objects x)
  263. {
  264. return x.x & OO_MASK;
  265. }
  266. #ifdef CONFIG_SLUB_DEBUG
  267. /*
  268. * Debug settings:
  269. */
  270. #ifdef CONFIG_SLUB_DEBUG_ON
  271. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  272. #else
  273. static int slub_debug;
  274. #endif
  275. static char *slub_debug_slabs;
  276. static int disable_higher_order_debug;
  277. /*
  278. * Object debugging
  279. */
  280. static void print_section(char *text, u8 *addr, unsigned int length)
  281. {
  282. int i, offset;
  283. int newline = 1;
  284. char ascii[17];
  285. ascii[16] = 0;
  286. for (i = 0; i < length; i++) {
  287. if (newline) {
  288. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  289. newline = 0;
  290. }
  291. printk(KERN_CONT " %02x", addr[i]);
  292. offset = i % 16;
  293. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  294. if (offset == 15) {
  295. printk(KERN_CONT " %s\n", ascii);
  296. newline = 1;
  297. }
  298. }
  299. if (!newline) {
  300. i %= 16;
  301. while (i < 16) {
  302. printk(KERN_CONT " ");
  303. ascii[i] = ' ';
  304. i++;
  305. }
  306. printk(KERN_CONT " %s\n", ascii);
  307. }
  308. }
  309. static struct track *get_track(struct kmem_cache *s, void *object,
  310. enum track_item alloc)
  311. {
  312. struct track *p;
  313. if (s->offset)
  314. p = object + s->offset + sizeof(void *);
  315. else
  316. p = object + s->inuse;
  317. return p + alloc;
  318. }
  319. static void set_track(struct kmem_cache *s, void *object,
  320. enum track_item alloc, unsigned long addr)
  321. {
  322. struct track *p = get_track(s, object, alloc);
  323. if (addr) {
  324. p->addr = addr;
  325. p->cpu = smp_processor_id();
  326. p->pid = current->pid;
  327. p->when = jiffies;
  328. } else
  329. memset(p, 0, sizeof(struct track));
  330. }
  331. static void init_tracking(struct kmem_cache *s, void *object)
  332. {
  333. if (!(s->flags & SLAB_STORE_USER))
  334. return;
  335. set_track(s, object, TRACK_FREE, 0UL);
  336. set_track(s, object, TRACK_ALLOC, 0UL);
  337. }
  338. static void print_track(const char *s, struct track *t)
  339. {
  340. if (!t->addr)
  341. return;
  342. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  343. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  344. }
  345. static void print_tracking(struct kmem_cache *s, void *object)
  346. {
  347. if (!(s->flags & SLAB_STORE_USER))
  348. return;
  349. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  350. print_track("Freed", get_track(s, object, TRACK_FREE));
  351. }
  352. static void print_page_info(struct page *page)
  353. {
  354. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  355. page, page->objects, page->inuse, page->freelist, page->flags);
  356. }
  357. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  358. {
  359. va_list args;
  360. char buf[100];
  361. va_start(args, fmt);
  362. vsnprintf(buf, sizeof(buf), fmt, args);
  363. va_end(args);
  364. printk(KERN_ERR "========================================"
  365. "=====================================\n");
  366. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  367. printk(KERN_ERR "----------------------------------------"
  368. "-------------------------------------\n\n");
  369. }
  370. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  371. {
  372. va_list args;
  373. char buf[100];
  374. va_start(args, fmt);
  375. vsnprintf(buf, sizeof(buf), fmt, args);
  376. va_end(args);
  377. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  378. }
  379. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  380. {
  381. unsigned int off; /* Offset of last byte */
  382. u8 *addr = page_address(page);
  383. print_tracking(s, p);
  384. print_page_info(page);
  385. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  386. p, p - addr, get_freepointer(s, p));
  387. if (p > addr + 16)
  388. print_section("Bytes b4", p - 16, 16);
  389. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  390. if (s->flags & SLAB_RED_ZONE)
  391. print_section("Redzone", p + s->objsize,
  392. s->inuse - s->objsize);
  393. if (s->offset)
  394. off = s->offset + sizeof(void *);
  395. else
  396. off = s->inuse;
  397. if (s->flags & SLAB_STORE_USER)
  398. off += 2 * sizeof(struct track);
  399. if (off != s->size)
  400. /* Beginning of the filler is the free pointer */
  401. print_section("Padding", p + off, s->size - off);
  402. dump_stack();
  403. }
  404. static void object_err(struct kmem_cache *s, struct page *page,
  405. u8 *object, char *reason)
  406. {
  407. slab_bug(s, "%s", reason);
  408. print_trailer(s, page, object);
  409. }
  410. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  411. {
  412. va_list args;
  413. char buf[100];
  414. va_start(args, fmt);
  415. vsnprintf(buf, sizeof(buf), fmt, args);
  416. va_end(args);
  417. slab_bug(s, "%s", buf);
  418. print_page_info(page);
  419. dump_stack();
  420. }
  421. static void init_object(struct kmem_cache *s, void *object, int active)
  422. {
  423. u8 *p = object;
  424. if (s->flags & __OBJECT_POISON) {
  425. memset(p, POISON_FREE, s->objsize - 1);
  426. p[s->objsize - 1] = POISON_END;
  427. }
  428. if (s->flags & SLAB_RED_ZONE)
  429. memset(p + s->objsize,
  430. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  431. s->inuse - s->objsize);
  432. }
  433. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  434. {
  435. while (bytes) {
  436. if (*start != (u8)value)
  437. return start;
  438. start++;
  439. bytes--;
  440. }
  441. return NULL;
  442. }
  443. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  444. void *from, void *to)
  445. {
  446. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  447. memset(from, data, to - from);
  448. }
  449. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  450. u8 *object, char *what,
  451. u8 *start, unsigned int value, unsigned int bytes)
  452. {
  453. u8 *fault;
  454. u8 *end;
  455. fault = check_bytes(start, value, bytes);
  456. if (!fault)
  457. return 1;
  458. end = start + bytes;
  459. while (end > fault && end[-1] == value)
  460. end--;
  461. slab_bug(s, "%s overwritten", what);
  462. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  463. fault, end - 1, fault[0], value);
  464. print_trailer(s, page, object);
  465. restore_bytes(s, what, value, fault, end);
  466. return 0;
  467. }
  468. /*
  469. * Object layout:
  470. *
  471. * object address
  472. * Bytes of the object to be managed.
  473. * If the freepointer may overlay the object then the free
  474. * pointer is the first word of the object.
  475. *
  476. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  477. * 0xa5 (POISON_END)
  478. *
  479. * object + s->objsize
  480. * Padding to reach word boundary. This is also used for Redzoning.
  481. * Padding is extended by another word if Redzoning is enabled and
  482. * objsize == inuse.
  483. *
  484. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  485. * 0xcc (RED_ACTIVE) for objects in use.
  486. *
  487. * object + s->inuse
  488. * Meta data starts here.
  489. *
  490. * A. Free pointer (if we cannot overwrite object on free)
  491. * B. Tracking data for SLAB_STORE_USER
  492. * C. Padding to reach required alignment boundary or at mininum
  493. * one word if debugging is on to be able to detect writes
  494. * before the word boundary.
  495. *
  496. * Padding is done using 0x5a (POISON_INUSE)
  497. *
  498. * object + s->size
  499. * Nothing is used beyond s->size.
  500. *
  501. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  502. * ignored. And therefore no slab options that rely on these boundaries
  503. * may be used with merged slabcaches.
  504. */
  505. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  506. {
  507. unsigned long off = s->inuse; /* The end of info */
  508. if (s->offset)
  509. /* Freepointer is placed after the object. */
  510. off += sizeof(void *);
  511. if (s->flags & SLAB_STORE_USER)
  512. /* We also have user information there */
  513. off += 2 * sizeof(struct track);
  514. if (s->size == off)
  515. return 1;
  516. return check_bytes_and_report(s, page, p, "Object padding",
  517. p + off, POISON_INUSE, s->size - off);
  518. }
  519. /* Check the pad bytes at the end of a slab page */
  520. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  521. {
  522. u8 *start;
  523. u8 *fault;
  524. u8 *end;
  525. int length;
  526. int remainder;
  527. if (!(s->flags & SLAB_POISON))
  528. return 1;
  529. start = page_address(page);
  530. length = (PAGE_SIZE << compound_order(page));
  531. end = start + length;
  532. remainder = length % s->size;
  533. if (!remainder)
  534. return 1;
  535. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  536. if (!fault)
  537. return 1;
  538. while (end > fault && end[-1] == POISON_INUSE)
  539. end--;
  540. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  541. print_section("Padding", end - remainder, remainder);
  542. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  543. return 0;
  544. }
  545. static int check_object(struct kmem_cache *s, struct page *page,
  546. void *object, int active)
  547. {
  548. u8 *p = object;
  549. u8 *endobject = object + s->objsize;
  550. if (s->flags & SLAB_RED_ZONE) {
  551. unsigned int red =
  552. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  553. if (!check_bytes_and_report(s, page, object, "Redzone",
  554. endobject, red, s->inuse - s->objsize))
  555. return 0;
  556. } else {
  557. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  558. check_bytes_and_report(s, page, p, "Alignment padding",
  559. endobject, POISON_INUSE, s->inuse - s->objsize);
  560. }
  561. }
  562. if (s->flags & SLAB_POISON) {
  563. if (!active && (s->flags & __OBJECT_POISON) &&
  564. (!check_bytes_and_report(s, page, p, "Poison", p,
  565. POISON_FREE, s->objsize - 1) ||
  566. !check_bytes_and_report(s, page, p, "Poison",
  567. p + s->objsize - 1, POISON_END, 1)))
  568. return 0;
  569. /*
  570. * check_pad_bytes cleans up on its own.
  571. */
  572. check_pad_bytes(s, page, p);
  573. }
  574. if (!s->offset && active)
  575. /*
  576. * Object and freepointer overlap. Cannot check
  577. * freepointer while object is allocated.
  578. */
  579. return 1;
  580. /* Check free pointer validity */
  581. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  582. object_err(s, page, p, "Freepointer corrupt");
  583. /*
  584. * No choice but to zap it and thus lose the remainder
  585. * of the free objects in this slab. May cause
  586. * another error because the object count is now wrong.
  587. */
  588. set_freepointer(s, p, NULL);
  589. return 0;
  590. }
  591. return 1;
  592. }
  593. static int check_slab(struct kmem_cache *s, struct page *page)
  594. {
  595. int maxobj;
  596. VM_BUG_ON(!irqs_disabled());
  597. if (!PageSlab(page)) {
  598. slab_err(s, page, "Not a valid slab page");
  599. return 0;
  600. }
  601. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  602. if (page->objects > maxobj) {
  603. slab_err(s, page, "objects %u > max %u",
  604. s->name, page->objects, maxobj);
  605. return 0;
  606. }
  607. if (page->inuse > page->objects) {
  608. slab_err(s, page, "inuse %u > max %u",
  609. s->name, page->inuse, page->objects);
  610. return 0;
  611. }
  612. /* Slab_pad_check fixes things up after itself */
  613. slab_pad_check(s, page);
  614. return 1;
  615. }
  616. /*
  617. * Determine if a certain object on a page is on the freelist. Must hold the
  618. * slab lock to guarantee that the chains are in a consistent state.
  619. */
  620. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  621. {
  622. int nr = 0;
  623. void *fp = page->freelist;
  624. void *object = NULL;
  625. unsigned long max_objects;
  626. while (fp && nr <= page->objects) {
  627. if (fp == search)
  628. return 1;
  629. if (!check_valid_pointer(s, page, fp)) {
  630. if (object) {
  631. object_err(s, page, object,
  632. "Freechain corrupt");
  633. set_freepointer(s, object, NULL);
  634. break;
  635. } else {
  636. slab_err(s, page, "Freepointer corrupt");
  637. page->freelist = NULL;
  638. page->inuse = page->objects;
  639. slab_fix(s, "Freelist cleared");
  640. return 0;
  641. }
  642. break;
  643. }
  644. object = fp;
  645. fp = get_freepointer(s, object);
  646. nr++;
  647. }
  648. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  649. if (max_objects > MAX_OBJS_PER_PAGE)
  650. max_objects = MAX_OBJS_PER_PAGE;
  651. if (page->objects != max_objects) {
  652. slab_err(s, page, "Wrong number of objects. Found %d but "
  653. "should be %d", page->objects, max_objects);
  654. page->objects = max_objects;
  655. slab_fix(s, "Number of objects adjusted.");
  656. }
  657. if (page->inuse != page->objects - nr) {
  658. slab_err(s, page, "Wrong object count. Counter is %d but "
  659. "counted were %d", page->inuse, page->objects - nr);
  660. page->inuse = page->objects - nr;
  661. slab_fix(s, "Object count adjusted.");
  662. }
  663. return search == NULL;
  664. }
  665. static void trace(struct kmem_cache *s, struct page *page, void *object,
  666. int alloc)
  667. {
  668. if (s->flags & SLAB_TRACE) {
  669. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  670. s->name,
  671. alloc ? "alloc" : "free",
  672. object, page->inuse,
  673. page->freelist);
  674. if (!alloc)
  675. print_section("Object", (void *)object, s->objsize);
  676. dump_stack();
  677. }
  678. }
  679. /*
  680. * Tracking of fully allocated slabs for debugging purposes.
  681. */
  682. static void add_full(struct kmem_cache_node *n, struct page *page)
  683. {
  684. spin_lock(&n->list_lock);
  685. list_add(&page->lru, &n->full);
  686. spin_unlock(&n->list_lock);
  687. }
  688. static void remove_full(struct kmem_cache *s, struct page *page)
  689. {
  690. struct kmem_cache_node *n;
  691. if (!(s->flags & SLAB_STORE_USER))
  692. return;
  693. n = get_node(s, page_to_nid(page));
  694. spin_lock(&n->list_lock);
  695. list_del(&page->lru);
  696. spin_unlock(&n->list_lock);
  697. }
  698. /* Tracking of the number of slabs for debugging purposes */
  699. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  700. {
  701. struct kmem_cache_node *n = get_node(s, node);
  702. return atomic_long_read(&n->nr_slabs);
  703. }
  704. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  705. {
  706. return atomic_long_read(&n->nr_slabs);
  707. }
  708. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  709. {
  710. struct kmem_cache_node *n = get_node(s, node);
  711. /*
  712. * May be called early in order to allocate a slab for the
  713. * kmem_cache_node structure. Solve the chicken-egg
  714. * dilemma by deferring the increment of the count during
  715. * bootstrap (see early_kmem_cache_node_alloc).
  716. */
  717. if (!NUMA_BUILD || n) {
  718. atomic_long_inc(&n->nr_slabs);
  719. atomic_long_add(objects, &n->total_objects);
  720. }
  721. }
  722. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  723. {
  724. struct kmem_cache_node *n = get_node(s, node);
  725. atomic_long_dec(&n->nr_slabs);
  726. atomic_long_sub(objects, &n->total_objects);
  727. }
  728. /* Object debug checks for alloc/free paths */
  729. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  730. void *object)
  731. {
  732. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  733. return;
  734. init_object(s, object, 0);
  735. init_tracking(s, object);
  736. }
  737. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  738. void *object, unsigned long addr)
  739. {
  740. if (!check_slab(s, page))
  741. goto bad;
  742. if (!on_freelist(s, page, object)) {
  743. object_err(s, page, object, "Object already allocated");
  744. goto bad;
  745. }
  746. if (!check_valid_pointer(s, page, object)) {
  747. object_err(s, page, object, "Freelist Pointer check fails");
  748. goto bad;
  749. }
  750. if (!check_object(s, page, object, 0))
  751. goto bad;
  752. /* Success perform special debug activities for allocs */
  753. if (s->flags & SLAB_STORE_USER)
  754. set_track(s, object, TRACK_ALLOC, addr);
  755. trace(s, page, object, 1);
  756. init_object(s, object, 1);
  757. return 1;
  758. bad:
  759. if (PageSlab(page)) {
  760. /*
  761. * If this is a slab page then lets do the best we can
  762. * to avoid issues in the future. Marking all objects
  763. * as used avoids touching the remaining objects.
  764. */
  765. slab_fix(s, "Marking all objects used");
  766. page->inuse = page->objects;
  767. page->freelist = NULL;
  768. }
  769. return 0;
  770. }
  771. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  772. void *object, unsigned long addr)
  773. {
  774. if (!check_slab(s, page))
  775. goto fail;
  776. if (!check_valid_pointer(s, page, object)) {
  777. slab_err(s, page, "Invalid object pointer 0x%p", object);
  778. goto fail;
  779. }
  780. if (on_freelist(s, page, object)) {
  781. object_err(s, page, object, "Object already free");
  782. goto fail;
  783. }
  784. if (!check_object(s, page, object, 1))
  785. return 0;
  786. if (unlikely(s != page->slab)) {
  787. if (!PageSlab(page)) {
  788. slab_err(s, page, "Attempt to free object(0x%p) "
  789. "outside of slab", object);
  790. } else if (!page->slab) {
  791. printk(KERN_ERR
  792. "SLUB <none>: no slab for object 0x%p.\n",
  793. object);
  794. dump_stack();
  795. } else
  796. object_err(s, page, object,
  797. "page slab pointer corrupt.");
  798. goto fail;
  799. }
  800. /* Special debug activities for freeing objects */
  801. if (!PageSlubFrozen(page) && !page->freelist)
  802. remove_full(s, page);
  803. if (s->flags & SLAB_STORE_USER)
  804. set_track(s, object, TRACK_FREE, addr);
  805. trace(s, page, object, 0);
  806. init_object(s, object, 0);
  807. return 1;
  808. fail:
  809. slab_fix(s, "Object at 0x%p not freed", object);
  810. return 0;
  811. }
  812. static int __init setup_slub_debug(char *str)
  813. {
  814. slub_debug = DEBUG_DEFAULT_FLAGS;
  815. if (*str++ != '=' || !*str)
  816. /*
  817. * No options specified. Switch on full debugging.
  818. */
  819. goto out;
  820. if (*str == ',')
  821. /*
  822. * No options but restriction on slabs. This means full
  823. * debugging for slabs matching a pattern.
  824. */
  825. goto check_slabs;
  826. if (tolower(*str) == 'o') {
  827. /*
  828. * Avoid enabling debugging on caches if its minimum order
  829. * would increase as a result.
  830. */
  831. disable_higher_order_debug = 1;
  832. goto out;
  833. }
  834. slub_debug = 0;
  835. if (*str == '-')
  836. /*
  837. * Switch off all debugging measures.
  838. */
  839. goto out;
  840. /*
  841. * Determine which debug features should be switched on
  842. */
  843. for (; *str && *str != ','; str++) {
  844. switch (tolower(*str)) {
  845. case 'f':
  846. slub_debug |= SLAB_DEBUG_FREE;
  847. break;
  848. case 'z':
  849. slub_debug |= SLAB_RED_ZONE;
  850. break;
  851. case 'p':
  852. slub_debug |= SLAB_POISON;
  853. break;
  854. case 'u':
  855. slub_debug |= SLAB_STORE_USER;
  856. break;
  857. case 't':
  858. slub_debug |= SLAB_TRACE;
  859. break;
  860. case 'a':
  861. slub_debug |= SLAB_FAILSLAB;
  862. break;
  863. default:
  864. printk(KERN_ERR "slub_debug option '%c' "
  865. "unknown. skipped\n", *str);
  866. }
  867. }
  868. check_slabs:
  869. if (*str == ',')
  870. slub_debug_slabs = str + 1;
  871. out:
  872. return 1;
  873. }
  874. __setup("slub_debug", setup_slub_debug);
  875. static unsigned long kmem_cache_flags(unsigned long objsize,
  876. unsigned long flags, const char *name,
  877. void (*ctor)(void *))
  878. {
  879. /*
  880. * Enable debugging if selected on the kernel commandline.
  881. */
  882. if (slub_debug && (!slub_debug_slabs ||
  883. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  884. flags |= slub_debug;
  885. return flags;
  886. }
  887. #else
  888. static inline void setup_object_debug(struct kmem_cache *s,
  889. struct page *page, void *object) {}
  890. static inline int alloc_debug_processing(struct kmem_cache *s,
  891. struct page *page, void *object, unsigned long addr) { return 0; }
  892. static inline int free_debug_processing(struct kmem_cache *s,
  893. struct page *page, void *object, unsigned long addr) { return 0; }
  894. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  895. { return 1; }
  896. static inline int check_object(struct kmem_cache *s, struct page *page,
  897. void *object, int active) { return 1; }
  898. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  899. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  900. unsigned long flags, const char *name,
  901. void (*ctor)(void *))
  902. {
  903. return flags;
  904. }
  905. #define slub_debug 0
  906. #define disable_higher_order_debug 0
  907. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  908. { return 0; }
  909. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  910. { return 0; }
  911. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  912. int objects) {}
  913. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  914. int objects) {}
  915. #endif
  916. /*
  917. * Slab allocation and freeing
  918. */
  919. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  920. struct kmem_cache_order_objects oo)
  921. {
  922. int order = oo_order(oo);
  923. flags |= __GFP_NOTRACK;
  924. if (node == NUMA_NO_NODE)
  925. return alloc_pages(flags, order);
  926. else
  927. return alloc_pages_exact_node(node, flags, order);
  928. }
  929. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  930. {
  931. struct page *page;
  932. struct kmem_cache_order_objects oo = s->oo;
  933. gfp_t alloc_gfp;
  934. flags |= s->allocflags;
  935. /*
  936. * Let the initial higher-order allocation fail under memory pressure
  937. * so we fall-back to the minimum order allocation.
  938. */
  939. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  940. page = alloc_slab_page(alloc_gfp, node, oo);
  941. if (unlikely(!page)) {
  942. oo = s->min;
  943. /*
  944. * Allocation may have failed due to fragmentation.
  945. * Try a lower order alloc if possible
  946. */
  947. page = alloc_slab_page(flags, node, oo);
  948. if (!page)
  949. return NULL;
  950. stat(s, ORDER_FALLBACK);
  951. }
  952. if (kmemcheck_enabled
  953. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  954. int pages = 1 << oo_order(oo);
  955. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  956. /*
  957. * Objects from caches that have a constructor don't get
  958. * cleared when they're allocated, so we need to do it here.
  959. */
  960. if (s->ctor)
  961. kmemcheck_mark_uninitialized_pages(page, pages);
  962. else
  963. kmemcheck_mark_unallocated_pages(page, pages);
  964. }
  965. page->objects = oo_objects(oo);
  966. mod_zone_page_state(page_zone(page),
  967. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  968. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  969. 1 << oo_order(oo));
  970. return page;
  971. }
  972. static void setup_object(struct kmem_cache *s, struct page *page,
  973. void *object)
  974. {
  975. setup_object_debug(s, page, object);
  976. if (unlikely(s->ctor))
  977. s->ctor(object);
  978. }
  979. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  980. {
  981. struct page *page;
  982. void *start;
  983. void *last;
  984. void *p;
  985. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  986. page = allocate_slab(s,
  987. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  988. if (!page)
  989. goto out;
  990. inc_slabs_node(s, page_to_nid(page), page->objects);
  991. page->slab = s;
  992. page->flags |= 1 << PG_slab;
  993. start = page_address(page);
  994. if (unlikely(s->flags & SLAB_POISON))
  995. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  996. last = start;
  997. for_each_object(p, s, start, page->objects) {
  998. setup_object(s, page, last);
  999. set_freepointer(s, last, p);
  1000. last = p;
  1001. }
  1002. setup_object(s, page, last);
  1003. set_freepointer(s, last, NULL);
  1004. page->freelist = start;
  1005. page->inuse = 0;
  1006. out:
  1007. return page;
  1008. }
  1009. static void __free_slab(struct kmem_cache *s, struct page *page)
  1010. {
  1011. int order = compound_order(page);
  1012. int pages = 1 << order;
  1013. if (kmem_cache_debug(s)) {
  1014. void *p;
  1015. slab_pad_check(s, page);
  1016. for_each_object(p, s, page_address(page),
  1017. page->objects)
  1018. check_object(s, page, p, 0);
  1019. }
  1020. kmemcheck_free_shadow(page, compound_order(page));
  1021. mod_zone_page_state(page_zone(page),
  1022. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1023. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1024. -pages);
  1025. __ClearPageSlab(page);
  1026. reset_page_mapcount(page);
  1027. if (current->reclaim_state)
  1028. current->reclaim_state->reclaimed_slab += pages;
  1029. __free_pages(page, order);
  1030. }
  1031. static void rcu_free_slab(struct rcu_head *h)
  1032. {
  1033. struct page *page;
  1034. page = container_of((struct list_head *)h, struct page, lru);
  1035. __free_slab(page->slab, page);
  1036. }
  1037. static void free_slab(struct kmem_cache *s, struct page *page)
  1038. {
  1039. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1040. /*
  1041. * RCU free overloads the RCU head over the LRU
  1042. */
  1043. struct rcu_head *head = (void *)&page->lru;
  1044. call_rcu(head, rcu_free_slab);
  1045. } else
  1046. __free_slab(s, page);
  1047. }
  1048. static void discard_slab(struct kmem_cache *s, struct page *page)
  1049. {
  1050. dec_slabs_node(s, page_to_nid(page), page->objects);
  1051. free_slab(s, page);
  1052. }
  1053. /*
  1054. * Per slab locking using the pagelock
  1055. */
  1056. static __always_inline void slab_lock(struct page *page)
  1057. {
  1058. bit_spin_lock(PG_locked, &page->flags);
  1059. }
  1060. static __always_inline void slab_unlock(struct page *page)
  1061. {
  1062. __bit_spin_unlock(PG_locked, &page->flags);
  1063. }
  1064. static __always_inline int slab_trylock(struct page *page)
  1065. {
  1066. int rc = 1;
  1067. rc = bit_spin_trylock(PG_locked, &page->flags);
  1068. return rc;
  1069. }
  1070. /*
  1071. * Management of partially allocated slabs
  1072. */
  1073. static void add_partial(struct kmem_cache_node *n,
  1074. struct page *page, int tail)
  1075. {
  1076. spin_lock(&n->list_lock);
  1077. n->nr_partial++;
  1078. if (tail)
  1079. list_add_tail(&page->lru, &n->partial);
  1080. else
  1081. list_add(&page->lru, &n->partial);
  1082. spin_unlock(&n->list_lock);
  1083. }
  1084. static void remove_partial(struct kmem_cache *s, struct page *page)
  1085. {
  1086. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1087. spin_lock(&n->list_lock);
  1088. list_del(&page->lru);
  1089. n->nr_partial--;
  1090. spin_unlock(&n->list_lock);
  1091. }
  1092. /*
  1093. * Lock slab and remove from the partial list.
  1094. *
  1095. * Must hold list_lock.
  1096. */
  1097. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1098. struct page *page)
  1099. {
  1100. if (slab_trylock(page)) {
  1101. list_del(&page->lru);
  1102. n->nr_partial--;
  1103. __SetPageSlubFrozen(page);
  1104. return 1;
  1105. }
  1106. return 0;
  1107. }
  1108. /*
  1109. * Try to allocate a partial slab from a specific node.
  1110. */
  1111. static struct page *get_partial_node(struct kmem_cache_node *n)
  1112. {
  1113. struct page *page;
  1114. /*
  1115. * Racy check. If we mistakenly see no partial slabs then we
  1116. * just allocate an empty slab. If we mistakenly try to get a
  1117. * partial slab and there is none available then get_partials()
  1118. * will return NULL.
  1119. */
  1120. if (!n || !n->nr_partial)
  1121. return NULL;
  1122. spin_lock(&n->list_lock);
  1123. list_for_each_entry(page, &n->partial, lru)
  1124. if (lock_and_freeze_slab(n, page))
  1125. goto out;
  1126. page = NULL;
  1127. out:
  1128. spin_unlock(&n->list_lock);
  1129. return page;
  1130. }
  1131. /*
  1132. * Get a page from somewhere. Search in increasing NUMA distances.
  1133. */
  1134. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1135. {
  1136. #ifdef CONFIG_NUMA
  1137. struct zonelist *zonelist;
  1138. struct zoneref *z;
  1139. struct zone *zone;
  1140. enum zone_type high_zoneidx = gfp_zone(flags);
  1141. struct page *page;
  1142. /*
  1143. * The defrag ratio allows a configuration of the tradeoffs between
  1144. * inter node defragmentation and node local allocations. A lower
  1145. * defrag_ratio increases the tendency to do local allocations
  1146. * instead of attempting to obtain partial slabs from other nodes.
  1147. *
  1148. * If the defrag_ratio is set to 0 then kmalloc() always
  1149. * returns node local objects. If the ratio is higher then kmalloc()
  1150. * may return off node objects because partial slabs are obtained
  1151. * from other nodes and filled up.
  1152. *
  1153. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1154. * defrag_ratio = 1000) then every (well almost) allocation will
  1155. * first attempt to defrag slab caches on other nodes. This means
  1156. * scanning over all nodes to look for partial slabs which may be
  1157. * expensive if we do it every time we are trying to find a slab
  1158. * with available objects.
  1159. */
  1160. if (!s->remote_node_defrag_ratio ||
  1161. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1162. return NULL;
  1163. get_mems_allowed();
  1164. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1165. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1166. struct kmem_cache_node *n;
  1167. n = get_node(s, zone_to_nid(zone));
  1168. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1169. n->nr_partial > s->min_partial) {
  1170. page = get_partial_node(n);
  1171. if (page) {
  1172. put_mems_allowed();
  1173. return page;
  1174. }
  1175. }
  1176. }
  1177. put_mems_allowed();
  1178. #endif
  1179. return NULL;
  1180. }
  1181. /*
  1182. * Get a partial page, lock it and return it.
  1183. */
  1184. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1185. {
  1186. struct page *page;
  1187. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1188. page = get_partial_node(get_node(s, searchnode));
  1189. if (page || (flags & __GFP_THISNODE))
  1190. return page;
  1191. return get_any_partial(s, flags);
  1192. }
  1193. /*
  1194. * Move a page back to the lists.
  1195. *
  1196. * Must be called with the slab lock held.
  1197. *
  1198. * On exit the slab lock will have been dropped.
  1199. */
  1200. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1201. {
  1202. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1203. __ClearPageSlubFrozen(page);
  1204. if (page->inuse) {
  1205. if (page->freelist) {
  1206. add_partial(n, page, tail);
  1207. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1208. } else {
  1209. stat(s, DEACTIVATE_FULL);
  1210. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1211. add_full(n, page);
  1212. }
  1213. slab_unlock(page);
  1214. } else {
  1215. stat(s, DEACTIVATE_EMPTY);
  1216. if (n->nr_partial < s->min_partial) {
  1217. /*
  1218. * Adding an empty slab to the partial slabs in order
  1219. * to avoid page allocator overhead. This slab needs
  1220. * to come after the other slabs with objects in
  1221. * so that the others get filled first. That way the
  1222. * size of the partial list stays small.
  1223. *
  1224. * kmem_cache_shrink can reclaim any empty slabs from
  1225. * the partial list.
  1226. */
  1227. add_partial(n, page, 1);
  1228. slab_unlock(page);
  1229. } else {
  1230. slab_unlock(page);
  1231. stat(s, FREE_SLAB);
  1232. discard_slab(s, page);
  1233. }
  1234. }
  1235. }
  1236. /*
  1237. * Remove the cpu slab
  1238. */
  1239. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1240. {
  1241. struct page *page = c->page;
  1242. int tail = 1;
  1243. if (page->freelist)
  1244. stat(s, DEACTIVATE_REMOTE_FREES);
  1245. /*
  1246. * Merge cpu freelist into slab freelist. Typically we get here
  1247. * because both freelists are empty. So this is unlikely
  1248. * to occur.
  1249. */
  1250. while (unlikely(c->freelist)) {
  1251. void **object;
  1252. tail = 0; /* Hot objects. Put the slab first */
  1253. /* Retrieve object from cpu_freelist */
  1254. object = c->freelist;
  1255. c->freelist = get_freepointer(s, c->freelist);
  1256. /* And put onto the regular freelist */
  1257. set_freepointer(s, object, page->freelist);
  1258. page->freelist = object;
  1259. page->inuse--;
  1260. }
  1261. c->page = NULL;
  1262. unfreeze_slab(s, page, tail);
  1263. }
  1264. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1265. {
  1266. stat(s, CPUSLAB_FLUSH);
  1267. slab_lock(c->page);
  1268. deactivate_slab(s, c);
  1269. }
  1270. /*
  1271. * Flush cpu slab.
  1272. *
  1273. * Called from IPI handler with interrupts disabled.
  1274. */
  1275. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1276. {
  1277. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1278. if (likely(c && c->page))
  1279. flush_slab(s, c);
  1280. }
  1281. static void flush_cpu_slab(void *d)
  1282. {
  1283. struct kmem_cache *s = d;
  1284. __flush_cpu_slab(s, smp_processor_id());
  1285. }
  1286. static void flush_all(struct kmem_cache *s)
  1287. {
  1288. on_each_cpu(flush_cpu_slab, s, 1);
  1289. }
  1290. /*
  1291. * Check if the objects in a per cpu structure fit numa
  1292. * locality expectations.
  1293. */
  1294. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1295. {
  1296. #ifdef CONFIG_NUMA
  1297. if (node != NUMA_NO_NODE && c->node != node)
  1298. return 0;
  1299. #endif
  1300. return 1;
  1301. }
  1302. static int count_free(struct page *page)
  1303. {
  1304. return page->objects - page->inuse;
  1305. }
  1306. static unsigned long count_partial(struct kmem_cache_node *n,
  1307. int (*get_count)(struct page *))
  1308. {
  1309. unsigned long flags;
  1310. unsigned long x = 0;
  1311. struct page *page;
  1312. spin_lock_irqsave(&n->list_lock, flags);
  1313. list_for_each_entry(page, &n->partial, lru)
  1314. x += get_count(page);
  1315. spin_unlock_irqrestore(&n->list_lock, flags);
  1316. return x;
  1317. }
  1318. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1319. {
  1320. #ifdef CONFIG_SLUB_DEBUG
  1321. return atomic_long_read(&n->total_objects);
  1322. #else
  1323. return 0;
  1324. #endif
  1325. }
  1326. static noinline void
  1327. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1328. {
  1329. int node;
  1330. printk(KERN_WARNING
  1331. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1332. nid, gfpflags);
  1333. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1334. "default order: %d, min order: %d\n", s->name, s->objsize,
  1335. s->size, oo_order(s->oo), oo_order(s->min));
  1336. if (oo_order(s->min) > get_order(s->objsize))
  1337. printk(KERN_WARNING " %s debugging increased min order, use "
  1338. "slub_debug=O to disable.\n", s->name);
  1339. for_each_online_node(node) {
  1340. struct kmem_cache_node *n = get_node(s, node);
  1341. unsigned long nr_slabs;
  1342. unsigned long nr_objs;
  1343. unsigned long nr_free;
  1344. if (!n)
  1345. continue;
  1346. nr_free = count_partial(n, count_free);
  1347. nr_slabs = node_nr_slabs(n);
  1348. nr_objs = node_nr_objs(n);
  1349. printk(KERN_WARNING
  1350. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1351. node, nr_slabs, nr_objs, nr_free);
  1352. }
  1353. }
  1354. /*
  1355. * Slow path. The lockless freelist is empty or we need to perform
  1356. * debugging duties.
  1357. *
  1358. * Interrupts are disabled.
  1359. *
  1360. * Processing is still very fast if new objects have been freed to the
  1361. * regular freelist. In that case we simply take over the regular freelist
  1362. * as the lockless freelist and zap the regular freelist.
  1363. *
  1364. * If that is not working then we fall back to the partial lists. We take the
  1365. * first element of the freelist as the object to allocate now and move the
  1366. * rest of the freelist to the lockless freelist.
  1367. *
  1368. * And if we were unable to get a new slab from the partial slab lists then
  1369. * we need to allocate a new slab. This is the slowest path since it involves
  1370. * a call to the page allocator and the setup of a new slab.
  1371. */
  1372. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1373. unsigned long addr, struct kmem_cache_cpu *c)
  1374. {
  1375. void **object;
  1376. struct page *new;
  1377. /* We handle __GFP_ZERO in the caller */
  1378. gfpflags &= ~__GFP_ZERO;
  1379. if (!c->page)
  1380. goto new_slab;
  1381. slab_lock(c->page);
  1382. if (unlikely(!node_match(c, node)))
  1383. goto another_slab;
  1384. stat(s, ALLOC_REFILL);
  1385. load_freelist:
  1386. object = c->page->freelist;
  1387. if (unlikely(!object))
  1388. goto another_slab;
  1389. if (kmem_cache_debug(s))
  1390. goto debug;
  1391. c->freelist = get_freepointer(s, object);
  1392. c->page->inuse = c->page->objects;
  1393. c->page->freelist = NULL;
  1394. c->node = page_to_nid(c->page);
  1395. unlock_out:
  1396. slab_unlock(c->page);
  1397. stat(s, ALLOC_SLOWPATH);
  1398. return object;
  1399. another_slab:
  1400. deactivate_slab(s, c);
  1401. new_slab:
  1402. new = get_partial(s, gfpflags, node);
  1403. if (new) {
  1404. c->page = new;
  1405. stat(s, ALLOC_FROM_PARTIAL);
  1406. goto load_freelist;
  1407. }
  1408. if (gfpflags & __GFP_WAIT)
  1409. local_irq_enable();
  1410. new = new_slab(s, gfpflags, node);
  1411. if (gfpflags & __GFP_WAIT)
  1412. local_irq_disable();
  1413. if (new) {
  1414. c = __this_cpu_ptr(s->cpu_slab);
  1415. stat(s, ALLOC_SLAB);
  1416. if (c->page)
  1417. flush_slab(s, c);
  1418. slab_lock(new);
  1419. __SetPageSlubFrozen(new);
  1420. c->page = new;
  1421. goto load_freelist;
  1422. }
  1423. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1424. slab_out_of_memory(s, gfpflags, node);
  1425. return NULL;
  1426. debug:
  1427. if (!alloc_debug_processing(s, c->page, object, addr))
  1428. goto another_slab;
  1429. c->page->inuse++;
  1430. c->page->freelist = get_freepointer(s, object);
  1431. c->node = -1;
  1432. goto unlock_out;
  1433. }
  1434. /*
  1435. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1436. * have the fastpath folded into their functions. So no function call
  1437. * overhead for requests that can be satisfied on the fastpath.
  1438. *
  1439. * The fastpath works by first checking if the lockless freelist can be used.
  1440. * If not then __slab_alloc is called for slow processing.
  1441. *
  1442. * Otherwise we can simply pick the next object from the lockless free list.
  1443. */
  1444. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1445. gfp_t gfpflags, int node, unsigned long addr)
  1446. {
  1447. void **object;
  1448. struct kmem_cache_cpu *c;
  1449. unsigned long flags;
  1450. gfpflags &= gfp_allowed_mask;
  1451. lockdep_trace_alloc(gfpflags);
  1452. might_sleep_if(gfpflags & __GFP_WAIT);
  1453. if (should_failslab(s->objsize, gfpflags, s->flags))
  1454. return NULL;
  1455. local_irq_save(flags);
  1456. c = __this_cpu_ptr(s->cpu_slab);
  1457. object = c->freelist;
  1458. if (unlikely(!object || !node_match(c, node)))
  1459. object = __slab_alloc(s, gfpflags, node, addr, c);
  1460. else {
  1461. c->freelist = get_freepointer(s, object);
  1462. stat(s, ALLOC_FASTPATH);
  1463. }
  1464. local_irq_restore(flags);
  1465. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1466. memset(object, 0, s->objsize);
  1467. kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
  1468. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
  1469. return object;
  1470. }
  1471. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1472. {
  1473. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1474. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1475. return ret;
  1476. }
  1477. EXPORT_SYMBOL(kmem_cache_alloc);
  1478. #ifdef CONFIG_TRACING
  1479. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1480. {
  1481. return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1482. }
  1483. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1484. #endif
  1485. #ifdef CONFIG_NUMA
  1486. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1487. {
  1488. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1489. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1490. s->objsize, s->size, gfpflags, node);
  1491. return ret;
  1492. }
  1493. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1494. #endif
  1495. #ifdef CONFIG_TRACING
  1496. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1497. gfp_t gfpflags,
  1498. int node)
  1499. {
  1500. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1501. }
  1502. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1503. #endif
  1504. /*
  1505. * Slow patch handling. This may still be called frequently since objects
  1506. * have a longer lifetime than the cpu slabs in most processing loads.
  1507. *
  1508. * So we still attempt to reduce cache line usage. Just take the slab
  1509. * lock and free the item. If there is no additional partial page
  1510. * handling required then we can return immediately.
  1511. */
  1512. static void __slab_free(struct kmem_cache *s, struct page *page,
  1513. void *x, unsigned long addr)
  1514. {
  1515. void *prior;
  1516. void **object = (void *)x;
  1517. stat(s, FREE_SLOWPATH);
  1518. slab_lock(page);
  1519. if (kmem_cache_debug(s))
  1520. goto debug;
  1521. checks_ok:
  1522. prior = page->freelist;
  1523. set_freepointer(s, object, prior);
  1524. page->freelist = object;
  1525. page->inuse--;
  1526. if (unlikely(PageSlubFrozen(page))) {
  1527. stat(s, FREE_FROZEN);
  1528. goto out_unlock;
  1529. }
  1530. if (unlikely(!page->inuse))
  1531. goto slab_empty;
  1532. /*
  1533. * Objects left in the slab. If it was not on the partial list before
  1534. * then add it.
  1535. */
  1536. if (unlikely(!prior)) {
  1537. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1538. stat(s, FREE_ADD_PARTIAL);
  1539. }
  1540. out_unlock:
  1541. slab_unlock(page);
  1542. return;
  1543. slab_empty:
  1544. if (prior) {
  1545. /*
  1546. * Slab still on the partial list.
  1547. */
  1548. remove_partial(s, page);
  1549. stat(s, FREE_REMOVE_PARTIAL);
  1550. }
  1551. slab_unlock(page);
  1552. stat(s, FREE_SLAB);
  1553. discard_slab(s, page);
  1554. return;
  1555. debug:
  1556. if (!free_debug_processing(s, page, x, addr))
  1557. goto out_unlock;
  1558. goto checks_ok;
  1559. }
  1560. /*
  1561. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1562. * can perform fastpath freeing without additional function calls.
  1563. *
  1564. * The fastpath is only possible if we are freeing to the current cpu slab
  1565. * of this processor. This typically the case if we have just allocated
  1566. * the item before.
  1567. *
  1568. * If fastpath is not possible then fall back to __slab_free where we deal
  1569. * with all sorts of special processing.
  1570. */
  1571. static __always_inline void slab_free(struct kmem_cache *s,
  1572. struct page *page, void *x, unsigned long addr)
  1573. {
  1574. void **object = (void *)x;
  1575. struct kmem_cache_cpu *c;
  1576. unsigned long flags;
  1577. kmemleak_free_recursive(x, s->flags);
  1578. local_irq_save(flags);
  1579. c = __this_cpu_ptr(s->cpu_slab);
  1580. kmemcheck_slab_free(s, object, s->objsize);
  1581. debug_check_no_locks_freed(object, s->objsize);
  1582. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1583. debug_check_no_obj_freed(object, s->objsize);
  1584. if (likely(page == c->page && c->node >= 0)) {
  1585. set_freepointer(s, object, c->freelist);
  1586. c->freelist = object;
  1587. stat(s, FREE_FASTPATH);
  1588. } else
  1589. __slab_free(s, page, x, addr);
  1590. local_irq_restore(flags);
  1591. }
  1592. void kmem_cache_free(struct kmem_cache *s, void *x)
  1593. {
  1594. struct page *page;
  1595. page = virt_to_head_page(x);
  1596. slab_free(s, page, x, _RET_IP_);
  1597. trace_kmem_cache_free(_RET_IP_, x);
  1598. }
  1599. EXPORT_SYMBOL(kmem_cache_free);
  1600. /* Figure out on which slab page the object resides */
  1601. static struct page *get_object_page(const void *x)
  1602. {
  1603. struct page *page = virt_to_head_page(x);
  1604. if (!PageSlab(page))
  1605. return NULL;
  1606. return page;
  1607. }
  1608. /*
  1609. * Object placement in a slab is made very easy because we always start at
  1610. * offset 0. If we tune the size of the object to the alignment then we can
  1611. * get the required alignment by putting one properly sized object after
  1612. * another.
  1613. *
  1614. * Notice that the allocation order determines the sizes of the per cpu
  1615. * caches. Each processor has always one slab available for allocations.
  1616. * Increasing the allocation order reduces the number of times that slabs
  1617. * must be moved on and off the partial lists and is therefore a factor in
  1618. * locking overhead.
  1619. */
  1620. /*
  1621. * Mininum / Maximum order of slab pages. This influences locking overhead
  1622. * and slab fragmentation. A higher order reduces the number of partial slabs
  1623. * and increases the number of allocations possible without having to
  1624. * take the list_lock.
  1625. */
  1626. static int slub_min_order;
  1627. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1628. static int slub_min_objects;
  1629. /*
  1630. * Merge control. If this is set then no merging of slab caches will occur.
  1631. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1632. */
  1633. static int slub_nomerge;
  1634. /*
  1635. * Calculate the order of allocation given an slab object size.
  1636. *
  1637. * The order of allocation has significant impact on performance and other
  1638. * system components. Generally order 0 allocations should be preferred since
  1639. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1640. * be problematic to put into order 0 slabs because there may be too much
  1641. * unused space left. We go to a higher order if more than 1/16th of the slab
  1642. * would be wasted.
  1643. *
  1644. * In order to reach satisfactory performance we must ensure that a minimum
  1645. * number of objects is in one slab. Otherwise we may generate too much
  1646. * activity on the partial lists which requires taking the list_lock. This is
  1647. * less a concern for large slabs though which are rarely used.
  1648. *
  1649. * slub_max_order specifies the order where we begin to stop considering the
  1650. * number of objects in a slab as critical. If we reach slub_max_order then
  1651. * we try to keep the page order as low as possible. So we accept more waste
  1652. * of space in favor of a small page order.
  1653. *
  1654. * Higher order allocations also allow the placement of more objects in a
  1655. * slab and thereby reduce object handling overhead. If the user has
  1656. * requested a higher mininum order then we start with that one instead of
  1657. * the smallest order which will fit the object.
  1658. */
  1659. static inline int slab_order(int size, int min_objects,
  1660. int max_order, int fract_leftover)
  1661. {
  1662. int order;
  1663. int rem;
  1664. int min_order = slub_min_order;
  1665. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1666. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1667. for (order = max(min_order,
  1668. fls(min_objects * size - 1) - PAGE_SHIFT);
  1669. order <= max_order; order++) {
  1670. unsigned long slab_size = PAGE_SIZE << order;
  1671. if (slab_size < min_objects * size)
  1672. continue;
  1673. rem = slab_size % size;
  1674. if (rem <= slab_size / fract_leftover)
  1675. break;
  1676. }
  1677. return order;
  1678. }
  1679. static inline int calculate_order(int size)
  1680. {
  1681. int order;
  1682. int min_objects;
  1683. int fraction;
  1684. int max_objects;
  1685. /*
  1686. * Attempt to find best configuration for a slab. This
  1687. * works by first attempting to generate a layout with
  1688. * the best configuration and backing off gradually.
  1689. *
  1690. * First we reduce the acceptable waste in a slab. Then
  1691. * we reduce the minimum objects required in a slab.
  1692. */
  1693. min_objects = slub_min_objects;
  1694. if (!min_objects)
  1695. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1696. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1697. min_objects = min(min_objects, max_objects);
  1698. while (min_objects > 1) {
  1699. fraction = 16;
  1700. while (fraction >= 4) {
  1701. order = slab_order(size, min_objects,
  1702. slub_max_order, fraction);
  1703. if (order <= slub_max_order)
  1704. return order;
  1705. fraction /= 2;
  1706. }
  1707. min_objects--;
  1708. }
  1709. /*
  1710. * We were unable to place multiple objects in a slab. Now
  1711. * lets see if we can place a single object there.
  1712. */
  1713. order = slab_order(size, 1, slub_max_order, 1);
  1714. if (order <= slub_max_order)
  1715. return order;
  1716. /*
  1717. * Doh this slab cannot be placed using slub_max_order.
  1718. */
  1719. order = slab_order(size, 1, MAX_ORDER, 1);
  1720. if (order < MAX_ORDER)
  1721. return order;
  1722. return -ENOSYS;
  1723. }
  1724. /*
  1725. * Figure out what the alignment of the objects will be.
  1726. */
  1727. static unsigned long calculate_alignment(unsigned long flags,
  1728. unsigned long align, unsigned long size)
  1729. {
  1730. /*
  1731. * If the user wants hardware cache aligned objects then follow that
  1732. * suggestion if the object is sufficiently large.
  1733. *
  1734. * The hardware cache alignment cannot override the specified
  1735. * alignment though. If that is greater then use it.
  1736. */
  1737. if (flags & SLAB_HWCACHE_ALIGN) {
  1738. unsigned long ralign = cache_line_size();
  1739. while (size <= ralign / 2)
  1740. ralign /= 2;
  1741. align = max(align, ralign);
  1742. }
  1743. if (align < ARCH_SLAB_MINALIGN)
  1744. align = ARCH_SLAB_MINALIGN;
  1745. return ALIGN(align, sizeof(void *));
  1746. }
  1747. static void
  1748. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1749. {
  1750. n->nr_partial = 0;
  1751. spin_lock_init(&n->list_lock);
  1752. INIT_LIST_HEAD(&n->partial);
  1753. #ifdef CONFIG_SLUB_DEBUG
  1754. atomic_long_set(&n->nr_slabs, 0);
  1755. atomic_long_set(&n->total_objects, 0);
  1756. INIT_LIST_HEAD(&n->full);
  1757. #endif
  1758. }
  1759. static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
  1760. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1761. {
  1762. if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
  1763. /*
  1764. * Boot time creation of the kmalloc array. Use static per cpu data
  1765. * since the per cpu allocator is not available yet.
  1766. */
  1767. s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
  1768. else
  1769. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1770. if (!s->cpu_slab)
  1771. return 0;
  1772. return 1;
  1773. }
  1774. #ifdef CONFIG_NUMA
  1775. /*
  1776. * No kmalloc_node yet so do it by hand. We know that this is the first
  1777. * slab on the node for this slabcache. There are no concurrent accesses
  1778. * possible.
  1779. *
  1780. * Note that this function only works on the kmalloc_node_cache
  1781. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1782. * memory on a fresh node that has no slab structures yet.
  1783. */
  1784. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1785. {
  1786. struct page *page;
  1787. struct kmem_cache_node *n;
  1788. unsigned long flags;
  1789. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1790. page = new_slab(kmalloc_caches, gfpflags, node);
  1791. BUG_ON(!page);
  1792. if (page_to_nid(page) != node) {
  1793. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1794. "node %d\n", node);
  1795. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1796. "in order to be able to continue\n");
  1797. }
  1798. n = page->freelist;
  1799. BUG_ON(!n);
  1800. page->freelist = get_freepointer(kmalloc_caches, n);
  1801. page->inuse++;
  1802. kmalloc_caches->node[node] = n;
  1803. #ifdef CONFIG_SLUB_DEBUG
  1804. init_object(kmalloc_caches, n, 1);
  1805. init_tracking(kmalloc_caches, n);
  1806. #endif
  1807. init_kmem_cache_node(n, kmalloc_caches);
  1808. inc_slabs_node(kmalloc_caches, node, page->objects);
  1809. /*
  1810. * lockdep requires consistent irq usage for each lock
  1811. * so even though there cannot be a race this early in
  1812. * the boot sequence, we still disable irqs.
  1813. */
  1814. local_irq_save(flags);
  1815. add_partial(n, page, 0);
  1816. local_irq_restore(flags);
  1817. }
  1818. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1819. {
  1820. int node;
  1821. for_each_node_state(node, N_NORMAL_MEMORY) {
  1822. struct kmem_cache_node *n = s->node[node];
  1823. if (n)
  1824. kmem_cache_free(kmalloc_caches, n);
  1825. s->node[node] = NULL;
  1826. }
  1827. }
  1828. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1829. {
  1830. int node;
  1831. for_each_node_state(node, N_NORMAL_MEMORY) {
  1832. struct kmem_cache_node *n;
  1833. if (slab_state == DOWN) {
  1834. early_kmem_cache_node_alloc(gfpflags, node);
  1835. continue;
  1836. }
  1837. n = kmem_cache_alloc_node(kmalloc_caches,
  1838. gfpflags, node);
  1839. if (!n) {
  1840. free_kmem_cache_nodes(s);
  1841. return 0;
  1842. }
  1843. s->node[node] = n;
  1844. init_kmem_cache_node(n, s);
  1845. }
  1846. return 1;
  1847. }
  1848. #else
  1849. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1850. {
  1851. }
  1852. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1853. {
  1854. init_kmem_cache_node(&s->local_node, s);
  1855. return 1;
  1856. }
  1857. #endif
  1858. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1859. {
  1860. if (min < MIN_PARTIAL)
  1861. min = MIN_PARTIAL;
  1862. else if (min > MAX_PARTIAL)
  1863. min = MAX_PARTIAL;
  1864. s->min_partial = min;
  1865. }
  1866. /*
  1867. * calculate_sizes() determines the order and the distribution of data within
  1868. * a slab object.
  1869. */
  1870. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1871. {
  1872. unsigned long flags = s->flags;
  1873. unsigned long size = s->objsize;
  1874. unsigned long align = s->align;
  1875. int order;
  1876. /*
  1877. * Round up object size to the next word boundary. We can only
  1878. * place the free pointer at word boundaries and this determines
  1879. * the possible location of the free pointer.
  1880. */
  1881. size = ALIGN(size, sizeof(void *));
  1882. #ifdef CONFIG_SLUB_DEBUG
  1883. /*
  1884. * Determine if we can poison the object itself. If the user of
  1885. * the slab may touch the object after free or before allocation
  1886. * then we should never poison the object itself.
  1887. */
  1888. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1889. !s->ctor)
  1890. s->flags |= __OBJECT_POISON;
  1891. else
  1892. s->flags &= ~__OBJECT_POISON;
  1893. /*
  1894. * If we are Redzoning then check if there is some space between the
  1895. * end of the object and the free pointer. If not then add an
  1896. * additional word to have some bytes to store Redzone information.
  1897. */
  1898. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1899. size += sizeof(void *);
  1900. #endif
  1901. /*
  1902. * With that we have determined the number of bytes in actual use
  1903. * by the object. This is the potential offset to the free pointer.
  1904. */
  1905. s->inuse = size;
  1906. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1907. s->ctor)) {
  1908. /*
  1909. * Relocate free pointer after the object if it is not
  1910. * permitted to overwrite the first word of the object on
  1911. * kmem_cache_free.
  1912. *
  1913. * This is the case if we do RCU, have a constructor or
  1914. * destructor or are poisoning the objects.
  1915. */
  1916. s->offset = size;
  1917. size += sizeof(void *);
  1918. }
  1919. #ifdef CONFIG_SLUB_DEBUG
  1920. if (flags & SLAB_STORE_USER)
  1921. /*
  1922. * Need to store information about allocs and frees after
  1923. * the object.
  1924. */
  1925. size += 2 * sizeof(struct track);
  1926. if (flags & SLAB_RED_ZONE)
  1927. /*
  1928. * Add some empty padding so that we can catch
  1929. * overwrites from earlier objects rather than let
  1930. * tracking information or the free pointer be
  1931. * corrupted if a user writes before the start
  1932. * of the object.
  1933. */
  1934. size += sizeof(void *);
  1935. #endif
  1936. /*
  1937. * Determine the alignment based on various parameters that the
  1938. * user specified and the dynamic determination of cache line size
  1939. * on bootup.
  1940. */
  1941. align = calculate_alignment(flags, align, s->objsize);
  1942. s->align = align;
  1943. /*
  1944. * SLUB stores one object immediately after another beginning from
  1945. * offset 0. In order to align the objects we have to simply size
  1946. * each object to conform to the alignment.
  1947. */
  1948. size = ALIGN(size, align);
  1949. s->size = size;
  1950. if (forced_order >= 0)
  1951. order = forced_order;
  1952. else
  1953. order = calculate_order(size);
  1954. if (order < 0)
  1955. return 0;
  1956. s->allocflags = 0;
  1957. if (order)
  1958. s->allocflags |= __GFP_COMP;
  1959. if (s->flags & SLAB_CACHE_DMA)
  1960. s->allocflags |= SLUB_DMA;
  1961. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1962. s->allocflags |= __GFP_RECLAIMABLE;
  1963. /*
  1964. * Determine the number of objects per slab
  1965. */
  1966. s->oo = oo_make(order, size);
  1967. s->min = oo_make(get_order(size), size);
  1968. if (oo_objects(s->oo) > oo_objects(s->max))
  1969. s->max = s->oo;
  1970. return !!oo_objects(s->oo);
  1971. }
  1972. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1973. const char *name, size_t size,
  1974. size_t align, unsigned long flags,
  1975. void (*ctor)(void *))
  1976. {
  1977. memset(s, 0, kmem_size);
  1978. s->name = name;
  1979. s->ctor = ctor;
  1980. s->objsize = size;
  1981. s->align = align;
  1982. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1983. if (!calculate_sizes(s, -1))
  1984. goto error;
  1985. if (disable_higher_order_debug) {
  1986. /*
  1987. * Disable debugging flags that store metadata if the min slab
  1988. * order increased.
  1989. */
  1990. if (get_order(s->size) > get_order(s->objsize)) {
  1991. s->flags &= ~DEBUG_METADATA_FLAGS;
  1992. s->offset = 0;
  1993. if (!calculate_sizes(s, -1))
  1994. goto error;
  1995. }
  1996. }
  1997. /*
  1998. * The larger the object size is, the more pages we want on the partial
  1999. * list to avoid pounding the page allocator excessively.
  2000. */
  2001. set_min_partial(s, ilog2(s->size));
  2002. s->refcount = 1;
  2003. #ifdef CONFIG_NUMA
  2004. s->remote_node_defrag_ratio = 1000;
  2005. #endif
  2006. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2007. goto error;
  2008. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2009. return 1;
  2010. free_kmem_cache_nodes(s);
  2011. error:
  2012. if (flags & SLAB_PANIC)
  2013. panic("Cannot create slab %s size=%lu realsize=%u "
  2014. "order=%u offset=%u flags=%lx\n",
  2015. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2016. s->offset, flags);
  2017. return 0;
  2018. }
  2019. /*
  2020. * Check if a given pointer is valid
  2021. */
  2022. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2023. {
  2024. struct page *page;
  2025. if (!kern_ptr_validate(object, s->size))
  2026. return 0;
  2027. page = get_object_page(object);
  2028. if (!page || s != page->slab)
  2029. /* No slab or wrong slab */
  2030. return 0;
  2031. if (!check_valid_pointer(s, page, object))
  2032. return 0;
  2033. /*
  2034. * We could also check if the object is on the slabs freelist.
  2035. * But this would be too expensive and it seems that the main
  2036. * purpose of kmem_ptr_valid() is to check if the object belongs
  2037. * to a certain slab.
  2038. */
  2039. return 1;
  2040. }
  2041. EXPORT_SYMBOL(kmem_ptr_validate);
  2042. /*
  2043. * Determine the size of a slab object
  2044. */
  2045. unsigned int kmem_cache_size(struct kmem_cache *s)
  2046. {
  2047. return s->objsize;
  2048. }
  2049. EXPORT_SYMBOL(kmem_cache_size);
  2050. const char *kmem_cache_name(struct kmem_cache *s)
  2051. {
  2052. return s->name;
  2053. }
  2054. EXPORT_SYMBOL(kmem_cache_name);
  2055. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2056. const char *text)
  2057. {
  2058. #ifdef CONFIG_SLUB_DEBUG
  2059. void *addr = page_address(page);
  2060. void *p;
  2061. long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
  2062. GFP_ATOMIC);
  2063. if (!map)
  2064. return;
  2065. slab_err(s, page, "%s", text);
  2066. slab_lock(page);
  2067. for_each_free_object(p, s, page->freelist)
  2068. set_bit(slab_index(p, s, addr), map);
  2069. for_each_object(p, s, addr, page->objects) {
  2070. if (!test_bit(slab_index(p, s, addr), map)) {
  2071. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2072. p, p - addr);
  2073. print_tracking(s, p);
  2074. }
  2075. }
  2076. slab_unlock(page);
  2077. kfree(map);
  2078. #endif
  2079. }
  2080. /*
  2081. * Attempt to free all partial slabs on a node.
  2082. */
  2083. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2084. {
  2085. unsigned long flags;
  2086. struct page *page, *h;
  2087. spin_lock_irqsave(&n->list_lock, flags);
  2088. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2089. if (!page->inuse) {
  2090. list_del(&page->lru);
  2091. discard_slab(s, page);
  2092. n->nr_partial--;
  2093. } else {
  2094. list_slab_objects(s, page,
  2095. "Objects remaining on kmem_cache_close()");
  2096. }
  2097. }
  2098. spin_unlock_irqrestore(&n->list_lock, flags);
  2099. }
  2100. /*
  2101. * Release all resources used by a slab cache.
  2102. */
  2103. static inline int kmem_cache_close(struct kmem_cache *s)
  2104. {
  2105. int node;
  2106. flush_all(s);
  2107. free_percpu(s->cpu_slab);
  2108. /* Attempt to free all objects */
  2109. for_each_node_state(node, N_NORMAL_MEMORY) {
  2110. struct kmem_cache_node *n = get_node(s, node);
  2111. free_partial(s, n);
  2112. if (n->nr_partial || slabs_node(s, node))
  2113. return 1;
  2114. }
  2115. free_kmem_cache_nodes(s);
  2116. return 0;
  2117. }
  2118. /*
  2119. * Close a cache and release the kmem_cache structure
  2120. * (must be used for caches created using kmem_cache_create)
  2121. */
  2122. void kmem_cache_destroy(struct kmem_cache *s)
  2123. {
  2124. down_write(&slub_lock);
  2125. s->refcount--;
  2126. if (!s->refcount) {
  2127. list_del(&s->list);
  2128. up_write(&slub_lock);
  2129. if (kmem_cache_close(s)) {
  2130. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2131. "still has objects.\n", s->name, __func__);
  2132. dump_stack();
  2133. }
  2134. if (s->flags & SLAB_DESTROY_BY_RCU)
  2135. rcu_barrier();
  2136. sysfs_slab_remove(s);
  2137. } else
  2138. up_write(&slub_lock);
  2139. }
  2140. EXPORT_SYMBOL(kmem_cache_destroy);
  2141. /********************************************************************
  2142. * Kmalloc subsystem
  2143. *******************************************************************/
  2144. struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
  2145. EXPORT_SYMBOL(kmalloc_caches);
  2146. static int __init setup_slub_min_order(char *str)
  2147. {
  2148. get_option(&str, &slub_min_order);
  2149. return 1;
  2150. }
  2151. __setup("slub_min_order=", setup_slub_min_order);
  2152. static int __init setup_slub_max_order(char *str)
  2153. {
  2154. get_option(&str, &slub_max_order);
  2155. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2156. return 1;
  2157. }
  2158. __setup("slub_max_order=", setup_slub_max_order);
  2159. static int __init setup_slub_min_objects(char *str)
  2160. {
  2161. get_option(&str, &slub_min_objects);
  2162. return 1;
  2163. }
  2164. __setup("slub_min_objects=", setup_slub_min_objects);
  2165. static int __init setup_slub_nomerge(char *str)
  2166. {
  2167. slub_nomerge = 1;
  2168. return 1;
  2169. }
  2170. __setup("slub_nomerge", setup_slub_nomerge);
  2171. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2172. const char *name, int size, gfp_t gfp_flags)
  2173. {
  2174. unsigned int flags = 0;
  2175. if (gfp_flags & SLUB_DMA)
  2176. flags = SLAB_CACHE_DMA;
  2177. /*
  2178. * This function is called with IRQs disabled during early-boot on
  2179. * single CPU so there's no need to take slub_lock here.
  2180. */
  2181. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2182. flags, NULL))
  2183. goto panic;
  2184. list_add(&s->list, &slab_caches);
  2185. if (sysfs_slab_add(s))
  2186. goto panic;
  2187. return s;
  2188. panic:
  2189. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2190. }
  2191. #ifdef CONFIG_ZONE_DMA
  2192. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2193. static void sysfs_add_func(struct work_struct *w)
  2194. {
  2195. struct kmem_cache *s;
  2196. down_write(&slub_lock);
  2197. list_for_each_entry(s, &slab_caches, list) {
  2198. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2199. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2200. sysfs_slab_add(s);
  2201. }
  2202. }
  2203. up_write(&slub_lock);
  2204. }
  2205. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2206. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2207. {
  2208. struct kmem_cache *s;
  2209. char *text;
  2210. size_t realsize;
  2211. unsigned long slabflags;
  2212. int i;
  2213. s = kmalloc_caches_dma[index];
  2214. if (s)
  2215. return s;
  2216. /* Dynamically create dma cache */
  2217. if (flags & __GFP_WAIT)
  2218. down_write(&slub_lock);
  2219. else {
  2220. if (!down_write_trylock(&slub_lock))
  2221. goto out;
  2222. }
  2223. if (kmalloc_caches_dma[index])
  2224. goto unlock_out;
  2225. realsize = kmalloc_caches[index].objsize;
  2226. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2227. (unsigned int)realsize);
  2228. s = NULL;
  2229. for (i = 0; i < KMALLOC_CACHES; i++)
  2230. if (!kmalloc_caches[i].size)
  2231. break;
  2232. BUG_ON(i >= KMALLOC_CACHES);
  2233. s = kmalloc_caches + i;
  2234. /*
  2235. * Must defer sysfs creation to a workqueue because we don't know
  2236. * what context we are called from. Before sysfs comes up, we don't
  2237. * need to do anything because our sysfs initcall will start by
  2238. * adding all existing slabs to sysfs.
  2239. */
  2240. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2241. if (slab_state >= SYSFS)
  2242. slabflags |= __SYSFS_ADD_DEFERRED;
  2243. if (!text || !kmem_cache_open(s, flags, text,
  2244. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2245. s->size = 0;
  2246. kfree(text);
  2247. goto unlock_out;
  2248. }
  2249. list_add(&s->list, &slab_caches);
  2250. kmalloc_caches_dma[index] = s;
  2251. if (slab_state >= SYSFS)
  2252. schedule_work(&sysfs_add_work);
  2253. unlock_out:
  2254. up_write(&slub_lock);
  2255. out:
  2256. return kmalloc_caches_dma[index];
  2257. }
  2258. #endif
  2259. /*
  2260. * Conversion table for small slabs sizes / 8 to the index in the
  2261. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2262. * of two cache sizes there. The size of larger slabs can be determined using
  2263. * fls.
  2264. */
  2265. static s8 size_index[24] = {
  2266. 3, /* 8 */
  2267. 4, /* 16 */
  2268. 5, /* 24 */
  2269. 5, /* 32 */
  2270. 6, /* 40 */
  2271. 6, /* 48 */
  2272. 6, /* 56 */
  2273. 6, /* 64 */
  2274. 1, /* 72 */
  2275. 1, /* 80 */
  2276. 1, /* 88 */
  2277. 1, /* 96 */
  2278. 7, /* 104 */
  2279. 7, /* 112 */
  2280. 7, /* 120 */
  2281. 7, /* 128 */
  2282. 2, /* 136 */
  2283. 2, /* 144 */
  2284. 2, /* 152 */
  2285. 2, /* 160 */
  2286. 2, /* 168 */
  2287. 2, /* 176 */
  2288. 2, /* 184 */
  2289. 2 /* 192 */
  2290. };
  2291. static inline int size_index_elem(size_t bytes)
  2292. {
  2293. return (bytes - 1) / 8;
  2294. }
  2295. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2296. {
  2297. int index;
  2298. if (size <= 192) {
  2299. if (!size)
  2300. return ZERO_SIZE_PTR;
  2301. index = size_index[size_index_elem(size)];
  2302. } else
  2303. index = fls(size - 1);
  2304. #ifdef CONFIG_ZONE_DMA
  2305. if (unlikely((flags & SLUB_DMA)))
  2306. return dma_kmalloc_cache(index, flags);
  2307. #endif
  2308. return &kmalloc_caches[index];
  2309. }
  2310. void *__kmalloc(size_t size, gfp_t flags)
  2311. {
  2312. struct kmem_cache *s;
  2313. void *ret;
  2314. if (unlikely(size > SLUB_MAX_SIZE))
  2315. return kmalloc_large(size, flags);
  2316. s = get_slab(size, flags);
  2317. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2318. return s;
  2319. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2320. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2321. return ret;
  2322. }
  2323. EXPORT_SYMBOL(__kmalloc);
  2324. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2325. {
  2326. struct page *page;
  2327. void *ptr = NULL;
  2328. flags |= __GFP_COMP | __GFP_NOTRACK;
  2329. page = alloc_pages_node(node, flags, get_order(size));
  2330. if (page)
  2331. ptr = page_address(page);
  2332. kmemleak_alloc(ptr, size, 1, flags);
  2333. return ptr;
  2334. }
  2335. #ifdef CONFIG_NUMA
  2336. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2337. {
  2338. struct kmem_cache *s;
  2339. void *ret;
  2340. if (unlikely(size > SLUB_MAX_SIZE)) {
  2341. ret = kmalloc_large_node(size, flags, node);
  2342. trace_kmalloc_node(_RET_IP_, ret,
  2343. size, PAGE_SIZE << get_order(size),
  2344. flags, node);
  2345. return ret;
  2346. }
  2347. s = get_slab(size, flags);
  2348. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2349. return s;
  2350. ret = slab_alloc(s, flags, node, _RET_IP_);
  2351. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2352. return ret;
  2353. }
  2354. EXPORT_SYMBOL(__kmalloc_node);
  2355. #endif
  2356. size_t ksize(const void *object)
  2357. {
  2358. struct page *page;
  2359. struct kmem_cache *s;
  2360. if (unlikely(object == ZERO_SIZE_PTR))
  2361. return 0;
  2362. page = virt_to_head_page(object);
  2363. if (unlikely(!PageSlab(page))) {
  2364. WARN_ON(!PageCompound(page));
  2365. return PAGE_SIZE << compound_order(page);
  2366. }
  2367. s = page->slab;
  2368. #ifdef CONFIG_SLUB_DEBUG
  2369. /*
  2370. * Debugging requires use of the padding between object
  2371. * and whatever may come after it.
  2372. */
  2373. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2374. return s->objsize;
  2375. #endif
  2376. /*
  2377. * If we have the need to store the freelist pointer
  2378. * back there or track user information then we can
  2379. * only use the space before that information.
  2380. */
  2381. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2382. return s->inuse;
  2383. /*
  2384. * Else we can use all the padding etc for the allocation
  2385. */
  2386. return s->size;
  2387. }
  2388. EXPORT_SYMBOL(ksize);
  2389. void kfree(const void *x)
  2390. {
  2391. struct page *page;
  2392. void *object = (void *)x;
  2393. trace_kfree(_RET_IP_, x);
  2394. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2395. return;
  2396. page = virt_to_head_page(x);
  2397. if (unlikely(!PageSlab(page))) {
  2398. BUG_ON(!PageCompound(page));
  2399. kmemleak_free(x);
  2400. put_page(page);
  2401. return;
  2402. }
  2403. slab_free(page->slab, page, object, _RET_IP_);
  2404. }
  2405. EXPORT_SYMBOL(kfree);
  2406. /*
  2407. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2408. * the remaining slabs by the number of items in use. The slabs with the
  2409. * most items in use come first. New allocations will then fill those up
  2410. * and thus they can be removed from the partial lists.
  2411. *
  2412. * The slabs with the least items are placed last. This results in them
  2413. * being allocated from last increasing the chance that the last objects
  2414. * are freed in them.
  2415. */
  2416. int kmem_cache_shrink(struct kmem_cache *s)
  2417. {
  2418. int node;
  2419. int i;
  2420. struct kmem_cache_node *n;
  2421. struct page *page;
  2422. struct page *t;
  2423. int objects = oo_objects(s->max);
  2424. struct list_head *slabs_by_inuse =
  2425. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2426. unsigned long flags;
  2427. if (!slabs_by_inuse)
  2428. return -ENOMEM;
  2429. flush_all(s);
  2430. for_each_node_state(node, N_NORMAL_MEMORY) {
  2431. n = get_node(s, node);
  2432. if (!n->nr_partial)
  2433. continue;
  2434. for (i = 0; i < objects; i++)
  2435. INIT_LIST_HEAD(slabs_by_inuse + i);
  2436. spin_lock_irqsave(&n->list_lock, flags);
  2437. /*
  2438. * Build lists indexed by the items in use in each slab.
  2439. *
  2440. * Note that concurrent frees may occur while we hold the
  2441. * list_lock. page->inuse here is the upper limit.
  2442. */
  2443. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2444. if (!page->inuse && slab_trylock(page)) {
  2445. /*
  2446. * Must hold slab lock here because slab_free
  2447. * may have freed the last object and be
  2448. * waiting to release the slab.
  2449. */
  2450. list_del(&page->lru);
  2451. n->nr_partial--;
  2452. slab_unlock(page);
  2453. discard_slab(s, page);
  2454. } else {
  2455. list_move(&page->lru,
  2456. slabs_by_inuse + page->inuse);
  2457. }
  2458. }
  2459. /*
  2460. * Rebuild the partial list with the slabs filled up most
  2461. * first and the least used slabs at the end.
  2462. */
  2463. for (i = objects - 1; i >= 0; i--)
  2464. list_splice(slabs_by_inuse + i, n->partial.prev);
  2465. spin_unlock_irqrestore(&n->list_lock, flags);
  2466. }
  2467. kfree(slabs_by_inuse);
  2468. return 0;
  2469. }
  2470. EXPORT_SYMBOL(kmem_cache_shrink);
  2471. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2472. static int slab_mem_going_offline_callback(void *arg)
  2473. {
  2474. struct kmem_cache *s;
  2475. down_read(&slub_lock);
  2476. list_for_each_entry(s, &slab_caches, list)
  2477. kmem_cache_shrink(s);
  2478. up_read(&slub_lock);
  2479. return 0;
  2480. }
  2481. static void slab_mem_offline_callback(void *arg)
  2482. {
  2483. struct kmem_cache_node *n;
  2484. struct kmem_cache *s;
  2485. struct memory_notify *marg = arg;
  2486. int offline_node;
  2487. offline_node = marg->status_change_nid;
  2488. /*
  2489. * If the node still has available memory. we need kmem_cache_node
  2490. * for it yet.
  2491. */
  2492. if (offline_node < 0)
  2493. return;
  2494. down_read(&slub_lock);
  2495. list_for_each_entry(s, &slab_caches, list) {
  2496. n = get_node(s, offline_node);
  2497. if (n) {
  2498. /*
  2499. * if n->nr_slabs > 0, slabs still exist on the node
  2500. * that is going down. We were unable to free them,
  2501. * and offline_pages() function shouldn't call this
  2502. * callback. So, we must fail.
  2503. */
  2504. BUG_ON(slabs_node(s, offline_node));
  2505. s->node[offline_node] = NULL;
  2506. kmem_cache_free(kmalloc_caches, n);
  2507. }
  2508. }
  2509. up_read(&slub_lock);
  2510. }
  2511. static int slab_mem_going_online_callback(void *arg)
  2512. {
  2513. struct kmem_cache_node *n;
  2514. struct kmem_cache *s;
  2515. struct memory_notify *marg = arg;
  2516. int nid = marg->status_change_nid;
  2517. int ret = 0;
  2518. /*
  2519. * If the node's memory is already available, then kmem_cache_node is
  2520. * already created. Nothing to do.
  2521. */
  2522. if (nid < 0)
  2523. return 0;
  2524. /*
  2525. * We are bringing a node online. No memory is available yet. We must
  2526. * allocate a kmem_cache_node structure in order to bring the node
  2527. * online.
  2528. */
  2529. down_read(&slub_lock);
  2530. list_for_each_entry(s, &slab_caches, list) {
  2531. /*
  2532. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2533. * since memory is not yet available from the node that
  2534. * is brought up.
  2535. */
  2536. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2537. if (!n) {
  2538. ret = -ENOMEM;
  2539. goto out;
  2540. }
  2541. init_kmem_cache_node(n, s);
  2542. s->node[nid] = n;
  2543. }
  2544. out:
  2545. up_read(&slub_lock);
  2546. return ret;
  2547. }
  2548. static int slab_memory_callback(struct notifier_block *self,
  2549. unsigned long action, void *arg)
  2550. {
  2551. int ret = 0;
  2552. switch (action) {
  2553. case MEM_GOING_ONLINE:
  2554. ret = slab_mem_going_online_callback(arg);
  2555. break;
  2556. case MEM_GOING_OFFLINE:
  2557. ret = slab_mem_going_offline_callback(arg);
  2558. break;
  2559. case MEM_OFFLINE:
  2560. case MEM_CANCEL_ONLINE:
  2561. slab_mem_offline_callback(arg);
  2562. break;
  2563. case MEM_ONLINE:
  2564. case MEM_CANCEL_OFFLINE:
  2565. break;
  2566. }
  2567. if (ret)
  2568. ret = notifier_from_errno(ret);
  2569. else
  2570. ret = NOTIFY_OK;
  2571. return ret;
  2572. }
  2573. #endif /* CONFIG_MEMORY_HOTPLUG */
  2574. /********************************************************************
  2575. * Basic setup of slabs
  2576. *******************************************************************/
  2577. void __init kmem_cache_init(void)
  2578. {
  2579. int i;
  2580. int caches = 0;
  2581. #ifdef CONFIG_NUMA
  2582. /*
  2583. * Must first have the slab cache available for the allocations of the
  2584. * struct kmem_cache_node's. There is special bootstrap code in
  2585. * kmem_cache_open for slab_state == DOWN.
  2586. */
  2587. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2588. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2589. kmalloc_caches[0].refcount = -1;
  2590. caches++;
  2591. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2592. #endif
  2593. /* Able to allocate the per node structures */
  2594. slab_state = PARTIAL;
  2595. /* Caches that are not of the two-to-the-power-of size */
  2596. if (KMALLOC_MIN_SIZE <= 32) {
  2597. create_kmalloc_cache(&kmalloc_caches[1],
  2598. "kmalloc-96", 96, GFP_NOWAIT);
  2599. caches++;
  2600. }
  2601. if (KMALLOC_MIN_SIZE <= 64) {
  2602. create_kmalloc_cache(&kmalloc_caches[2],
  2603. "kmalloc-192", 192, GFP_NOWAIT);
  2604. caches++;
  2605. }
  2606. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2607. create_kmalloc_cache(&kmalloc_caches[i],
  2608. "kmalloc", 1 << i, GFP_NOWAIT);
  2609. caches++;
  2610. }
  2611. /*
  2612. * Patch up the size_index table if we have strange large alignment
  2613. * requirements for the kmalloc array. This is only the case for
  2614. * MIPS it seems. The standard arches will not generate any code here.
  2615. *
  2616. * Largest permitted alignment is 256 bytes due to the way we
  2617. * handle the index determination for the smaller caches.
  2618. *
  2619. * Make sure that nothing crazy happens if someone starts tinkering
  2620. * around with ARCH_KMALLOC_MINALIGN
  2621. */
  2622. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2623. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2624. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2625. int elem = size_index_elem(i);
  2626. if (elem >= ARRAY_SIZE(size_index))
  2627. break;
  2628. size_index[elem] = KMALLOC_SHIFT_LOW;
  2629. }
  2630. if (KMALLOC_MIN_SIZE == 64) {
  2631. /*
  2632. * The 96 byte size cache is not used if the alignment
  2633. * is 64 byte.
  2634. */
  2635. for (i = 64 + 8; i <= 96; i += 8)
  2636. size_index[size_index_elem(i)] = 7;
  2637. } else if (KMALLOC_MIN_SIZE == 128) {
  2638. /*
  2639. * The 192 byte sized cache is not used if the alignment
  2640. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2641. * instead.
  2642. */
  2643. for (i = 128 + 8; i <= 192; i += 8)
  2644. size_index[size_index_elem(i)] = 8;
  2645. }
  2646. slab_state = UP;
  2647. /* Provide the correct kmalloc names now that the caches are up */
  2648. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2649. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2650. BUG_ON(!s);
  2651. kmalloc_caches[i].name = s;
  2652. }
  2653. #ifdef CONFIG_SMP
  2654. register_cpu_notifier(&slab_notifier);
  2655. #endif
  2656. #ifdef CONFIG_NUMA
  2657. kmem_size = offsetof(struct kmem_cache, node) +
  2658. nr_node_ids * sizeof(struct kmem_cache_node *);
  2659. #else
  2660. kmem_size = sizeof(struct kmem_cache);
  2661. #endif
  2662. printk(KERN_INFO
  2663. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2664. " CPUs=%d, Nodes=%d\n",
  2665. caches, cache_line_size(),
  2666. slub_min_order, slub_max_order, slub_min_objects,
  2667. nr_cpu_ids, nr_node_ids);
  2668. }
  2669. void __init kmem_cache_init_late(void)
  2670. {
  2671. }
  2672. /*
  2673. * Find a mergeable slab cache
  2674. */
  2675. static int slab_unmergeable(struct kmem_cache *s)
  2676. {
  2677. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2678. return 1;
  2679. if (s->ctor)
  2680. return 1;
  2681. /*
  2682. * We may have set a slab to be unmergeable during bootstrap.
  2683. */
  2684. if (s->refcount < 0)
  2685. return 1;
  2686. return 0;
  2687. }
  2688. static struct kmem_cache *find_mergeable(size_t size,
  2689. size_t align, unsigned long flags, const char *name,
  2690. void (*ctor)(void *))
  2691. {
  2692. struct kmem_cache *s;
  2693. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2694. return NULL;
  2695. if (ctor)
  2696. return NULL;
  2697. size = ALIGN(size, sizeof(void *));
  2698. align = calculate_alignment(flags, align, size);
  2699. size = ALIGN(size, align);
  2700. flags = kmem_cache_flags(size, flags, name, NULL);
  2701. list_for_each_entry(s, &slab_caches, list) {
  2702. if (slab_unmergeable(s))
  2703. continue;
  2704. if (size > s->size)
  2705. continue;
  2706. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2707. continue;
  2708. /*
  2709. * Check if alignment is compatible.
  2710. * Courtesy of Adrian Drzewiecki
  2711. */
  2712. if ((s->size & ~(align - 1)) != s->size)
  2713. continue;
  2714. if (s->size - size >= sizeof(void *))
  2715. continue;
  2716. return s;
  2717. }
  2718. return NULL;
  2719. }
  2720. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2721. size_t align, unsigned long flags, void (*ctor)(void *))
  2722. {
  2723. struct kmem_cache *s;
  2724. if (WARN_ON(!name))
  2725. return NULL;
  2726. down_write(&slub_lock);
  2727. s = find_mergeable(size, align, flags, name, ctor);
  2728. if (s) {
  2729. s->refcount++;
  2730. /*
  2731. * Adjust the object sizes so that we clear
  2732. * the complete object on kzalloc.
  2733. */
  2734. s->objsize = max(s->objsize, (int)size);
  2735. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2736. up_write(&slub_lock);
  2737. if (sysfs_slab_alias(s, name)) {
  2738. down_write(&slub_lock);
  2739. s->refcount--;
  2740. up_write(&slub_lock);
  2741. goto err;
  2742. }
  2743. return s;
  2744. }
  2745. s = kmalloc(kmem_size, GFP_KERNEL);
  2746. if (s) {
  2747. if (kmem_cache_open(s, GFP_KERNEL, name,
  2748. size, align, flags, ctor)) {
  2749. list_add(&s->list, &slab_caches);
  2750. up_write(&slub_lock);
  2751. if (sysfs_slab_add(s)) {
  2752. down_write(&slub_lock);
  2753. list_del(&s->list);
  2754. up_write(&slub_lock);
  2755. kfree(s);
  2756. goto err;
  2757. }
  2758. return s;
  2759. }
  2760. kfree(s);
  2761. }
  2762. up_write(&slub_lock);
  2763. err:
  2764. if (flags & SLAB_PANIC)
  2765. panic("Cannot create slabcache %s\n", name);
  2766. else
  2767. s = NULL;
  2768. return s;
  2769. }
  2770. EXPORT_SYMBOL(kmem_cache_create);
  2771. #ifdef CONFIG_SMP
  2772. /*
  2773. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2774. * necessary.
  2775. */
  2776. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2777. unsigned long action, void *hcpu)
  2778. {
  2779. long cpu = (long)hcpu;
  2780. struct kmem_cache *s;
  2781. unsigned long flags;
  2782. switch (action) {
  2783. case CPU_UP_CANCELED:
  2784. case CPU_UP_CANCELED_FROZEN:
  2785. case CPU_DEAD:
  2786. case CPU_DEAD_FROZEN:
  2787. down_read(&slub_lock);
  2788. list_for_each_entry(s, &slab_caches, list) {
  2789. local_irq_save(flags);
  2790. __flush_cpu_slab(s, cpu);
  2791. local_irq_restore(flags);
  2792. }
  2793. up_read(&slub_lock);
  2794. break;
  2795. default:
  2796. break;
  2797. }
  2798. return NOTIFY_OK;
  2799. }
  2800. static struct notifier_block __cpuinitdata slab_notifier = {
  2801. .notifier_call = slab_cpuup_callback
  2802. };
  2803. #endif
  2804. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2805. {
  2806. struct kmem_cache *s;
  2807. void *ret;
  2808. if (unlikely(size > SLUB_MAX_SIZE))
  2809. return kmalloc_large(size, gfpflags);
  2810. s = get_slab(size, gfpflags);
  2811. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2812. return s;
  2813. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2814. /* Honor the call site pointer we recieved. */
  2815. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2816. return ret;
  2817. }
  2818. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2819. int node, unsigned long caller)
  2820. {
  2821. struct kmem_cache *s;
  2822. void *ret;
  2823. if (unlikely(size > SLUB_MAX_SIZE)) {
  2824. ret = kmalloc_large_node(size, gfpflags, node);
  2825. trace_kmalloc_node(caller, ret,
  2826. size, PAGE_SIZE << get_order(size),
  2827. gfpflags, node);
  2828. return ret;
  2829. }
  2830. s = get_slab(size, gfpflags);
  2831. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2832. return s;
  2833. ret = slab_alloc(s, gfpflags, node, caller);
  2834. /* Honor the call site pointer we recieved. */
  2835. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2836. return ret;
  2837. }
  2838. #ifdef CONFIG_SLUB_DEBUG
  2839. static int count_inuse(struct page *page)
  2840. {
  2841. return page->inuse;
  2842. }
  2843. static int count_total(struct page *page)
  2844. {
  2845. return page->objects;
  2846. }
  2847. static int validate_slab(struct kmem_cache *s, struct page *page,
  2848. unsigned long *map)
  2849. {
  2850. void *p;
  2851. void *addr = page_address(page);
  2852. if (!check_slab(s, page) ||
  2853. !on_freelist(s, page, NULL))
  2854. return 0;
  2855. /* Now we know that a valid freelist exists */
  2856. bitmap_zero(map, page->objects);
  2857. for_each_free_object(p, s, page->freelist) {
  2858. set_bit(slab_index(p, s, addr), map);
  2859. if (!check_object(s, page, p, 0))
  2860. return 0;
  2861. }
  2862. for_each_object(p, s, addr, page->objects)
  2863. if (!test_bit(slab_index(p, s, addr), map))
  2864. if (!check_object(s, page, p, 1))
  2865. return 0;
  2866. return 1;
  2867. }
  2868. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2869. unsigned long *map)
  2870. {
  2871. if (slab_trylock(page)) {
  2872. validate_slab(s, page, map);
  2873. slab_unlock(page);
  2874. } else
  2875. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2876. s->name, page);
  2877. }
  2878. static int validate_slab_node(struct kmem_cache *s,
  2879. struct kmem_cache_node *n, unsigned long *map)
  2880. {
  2881. unsigned long count = 0;
  2882. struct page *page;
  2883. unsigned long flags;
  2884. spin_lock_irqsave(&n->list_lock, flags);
  2885. list_for_each_entry(page, &n->partial, lru) {
  2886. validate_slab_slab(s, page, map);
  2887. count++;
  2888. }
  2889. if (count != n->nr_partial)
  2890. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2891. "counter=%ld\n", s->name, count, n->nr_partial);
  2892. if (!(s->flags & SLAB_STORE_USER))
  2893. goto out;
  2894. list_for_each_entry(page, &n->full, lru) {
  2895. validate_slab_slab(s, page, map);
  2896. count++;
  2897. }
  2898. if (count != atomic_long_read(&n->nr_slabs))
  2899. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2900. "counter=%ld\n", s->name, count,
  2901. atomic_long_read(&n->nr_slabs));
  2902. out:
  2903. spin_unlock_irqrestore(&n->list_lock, flags);
  2904. return count;
  2905. }
  2906. static long validate_slab_cache(struct kmem_cache *s)
  2907. {
  2908. int node;
  2909. unsigned long count = 0;
  2910. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2911. sizeof(unsigned long), GFP_KERNEL);
  2912. if (!map)
  2913. return -ENOMEM;
  2914. flush_all(s);
  2915. for_each_node_state(node, N_NORMAL_MEMORY) {
  2916. struct kmem_cache_node *n = get_node(s, node);
  2917. count += validate_slab_node(s, n, map);
  2918. }
  2919. kfree(map);
  2920. return count;
  2921. }
  2922. #ifdef SLUB_RESILIENCY_TEST
  2923. static void resiliency_test(void)
  2924. {
  2925. u8 *p;
  2926. printk(KERN_ERR "SLUB resiliency testing\n");
  2927. printk(KERN_ERR "-----------------------\n");
  2928. printk(KERN_ERR "A. Corruption after allocation\n");
  2929. p = kzalloc(16, GFP_KERNEL);
  2930. p[16] = 0x12;
  2931. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2932. " 0x12->0x%p\n\n", p + 16);
  2933. validate_slab_cache(kmalloc_caches + 4);
  2934. /* Hmmm... The next two are dangerous */
  2935. p = kzalloc(32, GFP_KERNEL);
  2936. p[32 + sizeof(void *)] = 0x34;
  2937. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2938. " 0x34 -> -0x%p\n", p);
  2939. printk(KERN_ERR
  2940. "If allocated object is overwritten then not detectable\n\n");
  2941. validate_slab_cache(kmalloc_caches + 5);
  2942. p = kzalloc(64, GFP_KERNEL);
  2943. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2944. *p = 0x56;
  2945. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2946. p);
  2947. printk(KERN_ERR
  2948. "If allocated object is overwritten then not detectable\n\n");
  2949. validate_slab_cache(kmalloc_caches + 6);
  2950. printk(KERN_ERR "\nB. Corruption after free\n");
  2951. p = kzalloc(128, GFP_KERNEL);
  2952. kfree(p);
  2953. *p = 0x78;
  2954. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2955. validate_slab_cache(kmalloc_caches + 7);
  2956. p = kzalloc(256, GFP_KERNEL);
  2957. kfree(p);
  2958. p[50] = 0x9a;
  2959. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2960. p);
  2961. validate_slab_cache(kmalloc_caches + 8);
  2962. p = kzalloc(512, GFP_KERNEL);
  2963. kfree(p);
  2964. p[512] = 0xab;
  2965. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2966. validate_slab_cache(kmalloc_caches + 9);
  2967. }
  2968. #else
  2969. static void resiliency_test(void) {};
  2970. #endif
  2971. /*
  2972. * Generate lists of code addresses where slabcache objects are allocated
  2973. * and freed.
  2974. */
  2975. struct location {
  2976. unsigned long count;
  2977. unsigned long addr;
  2978. long long sum_time;
  2979. long min_time;
  2980. long max_time;
  2981. long min_pid;
  2982. long max_pid;
  2983. DECLARE_BITMAP(cpus, NR_CPUS);
  2984. nodemask_t nodes;
  2985. };
  2986. struct loc_track {
  2987. unsigned long max;
  2988. unsigned long count;
  2989. struct location *loc;
  2990. };
  2991. static void free_loc_track(struct loc_track *t)
  2992. {
  2993. if (t->max)
  2994. free_pages((unsigned long)t->loc,
  2995. get_order(sizeof(struct location) * t->max));
  2996. }
  2997. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2998. {
  2999. struct location *l;
  3000. int order;
  3001. order = get_order(sizeof(struct location) * max);
  3002. l = (void *)__get_free_pages(flags, order);
  3003. if (!l)
  3004. return 0;
  3005. if (t->count) {
  3006. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3007. free_loc_track(t);
  3008. }
  3009. t->max = max;
  3010. t->loc = l;
  3011. return 1;
  3012. }
  3013. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3014. const struct track *track)
  3015. {
  3016. long start, end, pos;
  3017. struct location *l;
  3018. unsigned long caddr;
  3019. unsigned long age = jiffies - track->when;
  3020. start = -1;
  3021. end = t->count;
  3022. for ( ; ; ) {
  3023. pos = start + (end - start + 1) / 2;
  3024. /*
  3025. * There is nothing at "end". If we end up there
  3026. * we need to add something to before end.
  3027. */
  3028. if (pos == end)
  3029. break;
  3030. caddr = t->loc[pos].addr;
  3031. if (track->addr == caddr) {
  3032. l = &t->loc[pos];
  3033. l->count++;
  3034. if (track->when) {
  3035. l->sum_time += age;
  3036. if (age < l->min_time)
  3037. l->min_time = age;
  3038. if (age > l->max_time)
  3039. l->max_time = age;
  3040. if (track->pid < l->min_pid)
  3041. l->min_pid = track->pid;
  3042. if (track->pid > l->max_pid)
  3043. l->max_pid = track->pid;
  3044. cpumask_set_cpu(track->cpu,
  3045. to_cpumask(l->cpus));
  3046. }
  3047. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3048. return 1;
  3049. }
  3050. if (track->addr < caddr)
  3051. end = pos;
  3052. else
  3053. start = pos;
  3054. }
  3055. /*
  3056. * Not found. Insert new tracking element.
  3057. */
  3058. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3059. return 0;
  3060. l = t->loc + pos;
  3061. if (pos < t->count)
  3062. memmove(l + 1, l,
  3063. (t->count - pos) * sizeof(struct location));
  3064. t->count++;
  3065. l->count = 1;
  3066. l->addr = track->addr;
  3067. l->sum_time = age;
  3068. l->min_time = age;
  3069. l->max_time = age;
  3070. l->min_pid = track->pid;
  3071. l->max_pid = track->pid;
  3072. cpumask_clear(to_cpumask(l->cpus));
  3073. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3074. nodes_clear(l->nodes);
  3075. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3076. return 1;
  3077. }
  3078. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3079. struct page *page, enum track_item alloc,
  3080. long *map)
  3081. {
  3082. void *addr = page_address(page);
  3083. void *p;
  3084. bitmap_zero(map, page->objects);
  3085. for_each_free_object(p, s, page->freelist)
  3086. set_bit(slab_index(p, s, addr), map);
  3087. for_each_object(p, s, addr, page->objects)
  3088. if (!test_bit(slab_index(p, s, addr), map))
  3089. add_location(t, s, get_track(s, p, alloc));
  3090. }
  3091. static int list_locations(struct kmem_cache *s, char *buf,
  3092. enum track_item alloc)
  3093. {
  3094. int len = 0;
  3095. unsigned long i;
  3096. struct loc_track t = { 0, 0, NULL };
  3097. int node;
  3098. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3099. sizeof(unsigned long), GFP_KERNEL);
  3100. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3101. GFP_TEMPORARY)) {
  3102. kfree(map);
  3103. return sprintf(buf, "Out of memory\n");
  3104. }
  3105. /* Push back cpu slabs */
  3106. flush_all(s);
  3107. for_each_node_state(node, N_NORMAL_MEMORY) {
  3108. struct kmem_cache_node *n = get_node(s, node);
  3109. unsigned long flags;
  3110. struct page *page;
  3111. if (!atomic_long_read(&n->nr_slabs))
  3112. continue;
  3113. spin_lock_irqsave(&n->list_lock, flags);
  3114. list_for_each_entry(page, &n->partial, lru)
  3115. process_slab(&t, s, page, alloc, map);
  3116. list_for_each_entry(page, &n->full, lru)
  3117. process_slab(&t, s, page, alloc, map);
  3118. spin_unlock_irqrestore(&n->list_lock, flags);
  3119. }
  3120. for (i = 0; i < t.count; i++) {
  3121. struct location *l = &t.loc[i];
  3122. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3123. break;
  3124. len += sprintf(buf + len, "%7ld ", l->count);
  3125. if (l->addr)
  3126. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3127. else
  3128. len += sprintf(buf + len, "<not-available>");
  3129. if (l->sum_time != l->min_time) {
  3130. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3131. l->min_time,
  3132. (long)div_u64(l->sum_time, l->count),
  3133. l->max_time);
  3134. } else
  3135. len += sprintf(buf + len, " age=%ld",
  3136. l->min_time);
  3137. if (l->min_pid != l->max_pid)
  3138. len += sprintf(buf + len, " pid=%ld-%ld",
  3139. l->min_pid, l->max_pid);
  3140. else
  3141. len += sprintf(buf + len, " pid=%ld",
  3142. l->min_pid);
  3143. if (num_online_cpus() > 1 &&
  3144. !cpumask_empty(to_cpumask(l->cpus)) &&
  3145. len < PAGE_SIZE - 60) {
  3146. len += sprintf(buf + len, " cpus=");
  3147. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3148. to_cpumask(l->cpus));
  3149. }
  3150. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3151. len < PAGE_SIZE - 60) {
  3152. len += sprintf(buf + len, " nodes=");
  3153. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3154. l->nodes);
  3155. }
  3156. len += sprintf(buf + len, "\n");
  3157. }
  3158. free_loc_track(&t);
  3159. kfree(map);
  3160. if (!t.count)
  3161. len += sprintf(buf, "No data\n");
  3162. return len;
  3163. }
  3164. enum slab_stat_type {
  3165. SL_ALL, /* All slabs */
  3166. SL_PARTIAL, /* Only partially allocated slabs */
  3167. SL_CPU, /* Only slabs used for cpu caches */
  3168. SL_OBJECTS, /* Determine allocated objects not slabs */
  3169. SL_TOTAL /* Determine object capacity not slabs */
  3170. };
  3171. #define SO_ALL (1 << SL_ALL)
  3172. #define SO_PARTIAL (1 << SL_PARTIAL)
  3173. #define SO_CPU (1 << SL_CPU)
  3174. #define SO_OBJECTS (1 << SL_OBJECTS)
  3175. #define SO_TOTAL (1 << SL_TOTAL)
  3176. static ssize_t show_slab_objects(struct kmem_cache *s,
  3177. char *buf, unsigned long flags)
  3178. {
  3179. unsigned long total = 0;
  3180. int node;
  3181. int x;
  3182. unsigned long *nodes;
  3183. unsigned long *per_cpu;
  3184. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3185. if (!nodes)
  3186. return -ENOMEM;
  3187. per_cpu = nodes + nr_node_ids;
  3188. if (flags & SO_CPU) {
  3189. int cpu;
  3190. for_each_possible_cpu(cpu) {
  3191. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3192. if (!c || c->node < 0)
  3193. continue;
  3194. if (c->page) {
  3195. if (flags & SO_TOTAL)
  3196. x = c->page->objects;
  3197. else if (flags & SO_OBJECTS)
  3198. x = c->page->inuse;
  3199. else
  3200. x = 1;
  3201. total += x;
  3202. nodes[c->node] += x;
  3203. }
  3204. per_cpu[c->node]++;
  3205. }
  3206. }
  3207. if (flags & SO_ALL) {
  3208. for_each_node_state(node, N_NORMAL_MEMORY) {
  3209. struct kmem_cache_node *n = get_node(s, node);
  3210. if (flags & SO_TOTAL)
  3211. x = atomic_long_read(&n->total_objects);
  3212. else if (flags & SO_OBJECTS)
  3213. x = atomic_long_read(&n->total_objects) -
  3214. count_partial(n, count_free);
  3215. else
  3216. x = atomic_long_read(&n->nr_slabs);
  3217. total += x;
  3218. nodes[node] += x;
  3219. }
  3220. } else if (flags & SO_PARTIAL) {
  3221. for_each_node_state(node, N_NORMAL_MEMORY) {
  3222. struct kmem_cache_node *n = get_node(s, node);
  3223. if (flags & SO_TOTAL)
  3224. x = count_partial(n, count_total);
  3225. else if (flags & SO_OBJECTS)
  3226. x = count_partial(n, count_inuse);
  3227. else
  3228. x = n->nr_partial;
  3229. total += x;
  3230. nodes[node] += x;
  3231. }
  3232. }
  3233. x = sprintf(buf, "%lu", total);
  3234. #ifdef CONFIG_NUMA
  3235. for_each_node_state(node, N_NORMAL_MEMORY)
  3236. if (nodes[node])
  3237. x += sprintf(buf + x, " N%d=%lu",
  3238. node, nodes[node]);
  3239. #endif
  3240. kfree(nodes);
  3241. return x + sprintf(buf + x, "\n");
  3242. }
  3243. static int any_slab_objects(struct kmem_cache *s)
  3244. {
  3245. int node;
  3246. for_each_online_node(node) {
  3247. struct kmem_cache_node *n = get_node(s, node);
  3248. if (!n)
  3249. continue;
  3250. if (atomic_long_read(&n->total_objects))
  3251. return 1;
  3252. }
  3253. return 0;
  3254. }
  3255. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3256. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3257. struct slab_attribute {
  3258. struct attribute attr;
  3259. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3260. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3261. };
  3262. #define SLAB_ATTR_RO(_name) \
  3263. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3264. #define SLAB_ATTR(_name) \
  3265. static struct slab_attribute _name##_attr = \
  3266. __ATTR(_name, 0644, _name##_show, _name##_store)
  3267. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3268. {
  3269. return sprintf(buf, "%d\n", s->size);
  3270. }
  3271. SLAB_ATTR_RO(slab_size);
  3272. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3273. {
  3274. return sprintf(buf, "%d\n", s->align);
  3275. }
  3276. SLAB_ATTR_RO(align);
  3277. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3278. {
  3279. return sprintf(buf, "%d\n", s->objsize);
  3280. }
  3281. SLAB_ATTR_RO(object_size);
  3282. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3283. {
  3284. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3285. }
  3286. SLAB_ATTR_RO(objs_per_slab);
  3287. static ssize_t order_store(struct kmem_cache *s,
  3288. const char *buf, size_t length)
  3289. {
  3290. unsigned long order;
  3291. int err;
  3292. err = strict_strtoul(buf, 10, &order);
  3293. if (err)
  3294. return err;
  3295. if (order > slub_max_order || order < slub_min_order)
  3296. return -EINVAL;
  3297. calculate_sizes(s, order);
  3298. return length;
  3299. }
  3300. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3301. {
  3302. return sprintf(buf, "%d\n", oo_order(s->oo));
  3303. }
  3304. SLAB_ATTR(order);
  3305. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3306. {
  3307. return sprintf(buf, "%lu\n", s->min_partial);
  3308. }
  3309. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3310. size_t length)
  3311. {
  3312. unsigned long min;
  3313. int err;
  3314. err = strict_strtoul(buf, 10, &min);
  3315. if (err)
  3316. return err;
  3317. set_min_partial(s, min);
  3318. return length;
  3319. }
  3320. SLAB_ATTR(min_partial);
  3321. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3322. {
  3323. if (s->ctor) {
  3324. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3325. return n + sprintf(buf + n, "\n");
  3326. }
  3327. return 0;
  3328. }
  3329. SLAB_ATTR_RO(ctor);
  3330. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3331. {
  3332. return sprintf(buf, "%d\n", s->refcount - 1);
  3333. }
  3334. SLAB_ATTR_RO(aliases);
  3335. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3336. {
  3337. return show_slab_objects(s, buf, SO_ALL);
  3338. }
  3339. SLAB_ATTR_RO(slabs);
  3340. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3341. {
  3342. return show_slab_objects(s, buf, SO_PARTIAL);
  3343. }
  3344. SLAB_ATTR_RO(partial);
  3345. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3346. {
  3347. return show_slab_objects(s, buf, SO_CPU);
  3348. }
  3349. SLAB_ATTR_RO(cpu_slabs);
  3350. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3351. {
  3352. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3353. }
  3354. SLAB_ATTR_RO(objects);
  3355. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3356. {
  3357. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3358. }
  3359. SLAB_ATTR_RO(objects_partial);
  3360. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3361. {
  3362. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3363. }
  3364. SLAB_ATTR_RO(total_objects);
  3365. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3366. {
  3367. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3368. }
  3369. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3370. const char *buf, size_t length)
  3371. {
  3372. s->flags &= ~SLAB_DEBUG_FREE;
  3373. if (buf[0] == '1')
  3374. s->flags |= SLAB_DEBUG_FREE;
  3375. return length;
  3376. }
  3377. SLAB_ATTR(sanity_checks);
  3378. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3379. {
  3380. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3381. }
  3382. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3383. size_t length)
  3384. {
  3385. s->flags &= ~SLAB_TRACE;
  3386. if (buf[0] == '1')
  3387. s->flags |= SLAB_TRACE;
  3388. return length;
  3389. }
  3390. SLAB_ATTR(trace);
  3391. #ifdef CONFIG_FAILSLAB
  3392. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3393. {
  3394. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3395. }
  3396. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3397. size_t length)
  3398. {
  3399. s->flags &= ~SLAB_FAILSLAB;
  3400. if (buf[0] == '1')
  3401. s->flags |= SLAB_FAILSLAB;
  3402. return length;
  3403. }
  3404. SLAB_ATTR(failslab);
  3405. #endif
  3406. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3407. {
  3408. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3409. }
  3410. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3411. const char *buf, size_t length)
  3412. {
  3413. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3414. if (buf[0] == '1')
  3415. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3416. return length;
  3417. }
  3418. SLAB_ATTR(reclaim_account);
  3419. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3420. {
  3421. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3422. }
  3423. SLAB_ATTR_RO(hwcache_align);
  3424. #ifdef CONFIG_ZONE_DMA
  3425. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3426. {
  3427. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3428. }
  3429. SLAB_ATTR_RO(cache_dma);
  3430. #endif
  3431. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3432. {
  3433. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3434. }
  3435. SLAB_ATTR_RO(destroy_by_rcu);
  3436. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3437. {
  3438. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3439. }
  3440. static ssize_t red_zone_store(struct kmem_cache *s,
  3441. const char *buf, size_t length)
  3442. {
  3443. if (any_slab_objects(s))
  3444. return -EBUSY;
  3445. s->flags &= ~SLAB_RED_ZONE;
  3446. if (buf[0] == '1')
  3447. s->flags |= SLAB_RED_ZONE;
  3448. calculate_sizes(s, -1);
  3449. return length;
  3450. }
  3451. SLAB_ATTR(red_zone);
  3452. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3453. {
  3454. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3455. }
  3456. static ssize_t poison_store(struct kmem_cache *s,
  3457. const char *buf, size_t length)
  3458. {
  3459. if (any_slab_objects(s))
  3460. return -EBUSY;
  3461. s->flags &= ~SLAB_POISON;
  3462. if (buf[0] == '1')
  3463. s->flags |= SLAB_POISON;
  3464. calculate_sizes(s, -1);
  3465. return length;
  3466. }
  3467. SLAB_ATTR(poison);
  3468. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3469. {
  3470. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3471. }
  3472. static ssize_t store_user_store(struct kmem_cache *s,
  3473. const char *buf, size_t length)
  3474. {
  3475. if (any_slab_objects(s))
  3476. return -EBUSY;
  3477. s->flags &= ~SLAB_STORE_USER;
  3478. if (buf[0] == '1')
  3479. s->flags |= SLAB_STORE_USER;
  3480. calculate_sizes(s, -1);
  3481. return length;
  3482. }
  3483. SLAB_ATTR(store_user);
  3484. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3485. {
  3486. return 0;
  3487. }
  3488. static ssize_t validate_store(struct kmem_cache *s,
  3489. const char *buf, size_t length)
  3490. {
  3491. int ret = -EINVAL;
  3492. if (buf[0] == '1') {
  3493. ret = validate_slab_cache(s);
  3494. if (ret >= 0)
  3495. ret = length;
  3496. }
  3497. return ret;
  3498. }
  3499. SLAB_ATTR(validate);
  3500. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3501. {
  3502. return 0;
  3503. }
  3504. static ssize_t shrink_store(struct kmem_cache *s,
  3505. const char *buf, size_t length)
  3506. {
  3507. if (buf[0] == '1') {
  3508. int rc = kmem_cache_shrink(s);
  3509. if (rc)
  3510. return rc;
  3511. } else
  3512. return -EINVAL;
  3513. return length;
  3514. }
  3515. SLAB_ATTR(shrink);
  3516. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3517. {
  3518. if (!(s->flags & SLAB_STORE_USER))
  3519. return -ENOSYS;
  3520. return list_locations(s, buf, TRACK_ALLOC);
  3521. }
  3522. SLAB_ATTR_RO(alloc_calls);
  3523. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3524. {
  3525. if (!(s->flags & SLAB_STORE_USER))
  3526. return -ENOSYS;
  3527. return list_locations(s, buf, TRACK_FREE);
  3528. }
  3529. SLAB_ATTR_RO(free_calls);
  3530. #ifdef CONFIG_NUMA
  3531. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3532. {
  3533. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3534. }
  3535. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3536. const char *buf, size_t length)
  3537. {
  3538. unsigned long ratio;
  3539. int err;
  3540. err = strict_strtoul(buf, 10, &ratio);
  3541. if (err)
  3542. return err;
  3543. if (ratio <= 100)
  3544. s->remote_node_defrag_ratio = ratio * 10;
  3545. return length;
  3546. }
  3547. SLAB_ATTR(remote_node_defrag_ratio);
  3548. #endif
  3549. #ifdef CONFIG_SLUB_STATS
  3550. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3551. {
  3552. unsigned long sum = 0;
  3553. int cpu;
  3554. int len;
  3555. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3556. if (!data)
  3557. return -ENOMEM;
  3558. for_each_online_cpu(cpu) {
  3559. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3560. data[cpu] = x;
  3561. sum += x;
  3562. }
  3563. len = sprintf(buf, "%lu", sum);
  3564. #ifdef CONFIG_SMP
  3565. for_each_online_cpu(cpu) {
  3566. if (data[cpu] && len < PAGE_SIZE - 20)
  3567. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3568. }
  3569. #endif
  3570. kfree(data);
  3571. return len + sprintf(buf + len, "\n");
  3572. }
  3573. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3574. {
  3575. int cpu;
  3576. for_each_online_cpu(cpu)
  3577. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3578. }
  3579. #define STAT_ATTR(si, text) \
  3580. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3581. { \
  3582. return show_stat(s, buf, si); \
  3583. } \
  3584. static ssize_t text##_store(struct kmem_cache *s, \
  3585. const char *buf, size_t length) \
  3586. { \
  3587. if (buf[0] != '0') \
  3588. return -EINVAL; \
  3589. clear_stat(s, si); \
  3590. return length; \
  3591. } \
  3592. SLAB_ATTR(text); \
  3593. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3594. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3595. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3596. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3597. STAT_ATTR(FREE_FROZEN, free_frozen);
  3598. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3599. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3600. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3601. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3602. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3603. STAT_ATTR(FREE_SLAB, free_slab);
  3604. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3605. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3606. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3607. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3608. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3609. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3610. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3611. #endif
  3612. static struct attribute *slab_attrs[] = {
  3613. &slab_size_attr.attr,
  3614. &object_size_attr.attr,
  3615. &objs_per_slab_attr.attr,
  3616. &order_attr.attr,
  3617. &min_partial_attr.attr,
  3618. &objects_attr.attr,
  3619. &objects_partial_attr.attr,
  3620. &total_objects_attr.attr,
  3621. &slabs_attr.attr,
  3622. &partial_attr.attr,
  3623. &cpu_slabs_attr.attr,
  3624. &ctor_attr.attr,
  3625. &aliases_attr.attr,
  3626. &align_attr.attr,
  3627. &sanity_checks_attr.attr,
  3628. &trace_attr.attr,
  3629. &hwcache_align_attr.attr,
  3630. &reclaim_account_attr.attr,
  3631. &destroy_by_rcu_attr.attr,
  3632. &red_zone_attr.attr,
  3633. &poison_attr.attr,
  3634. &store_user_attr.attr,
  3635. &validate_attr.attr,
  3636. &shrink_attr.attr,
  3637. &alloc_calls_attr.attr,
  3638. &free_calls_attr.attr,
  3639. #ifdef CONFIG_ZONE_DMA
  3640. &cache_dma_attr.attr,
  3641. #endif
  3642. #ifdef CONFIG_NUMA
  3643. &remote_node_defrag_ratio_attr.attr,
  3644. #endif
  3645. #ifdef CONFIG_SLUB_STATS
  3646. &alloc_fastpath_attr.attr,
  3647. &alloc_slowpath_attr.attr,
  3648. &free_fastpath_attr.attr,
  3649. &free_slowpath_attr.attr,
  3650. &free_frozen_attr.attr,
  3651. &free_add_partial_attr.attr,
  3652. &free_remove_partial_attr.attr,
  3653. &alloc_from_partial_attr.attr,
  3654. &alloc_slab_attr.attr,
  3655. &alloc_refill_attr.attr,
  3656. &free_slab_attr.attr,
  3657. &cpuslab_flush_attr.attr,
  3658. &deactivate_full_attr.attr,
  3659. &deactivate_empty_attr.attr,
  3660. &deactivate_to_head_attr.attr,
  3661. &deactivate_to_tail_attr.attr,
  3662. &deactivate_remote_frees_attr.attr,
  3663. &order_fallback_attr.attr,
  3664. #endif
  3665. #ifdef CONFIG_FAILSLAB
  3666. &failslab_attr.attr,
  3667. #endif
  3668. NULL
  3669. };
  3670. static struct attribute_group slab_attr_group = {
  3671. .attrs = slab_attrs,
  3672. };
  3673. static ssize_t slab_attr_show(struct kobject *kobj,
  3674. struct attribute *attr,
  3675. char *buf)
  3676. {
  3677. struct slab_attribute *attribute;
  3678. struct kmem_cache *s;
  3679. int err;
  3680. attribute = to_slab_attr(attr);
  3681. s = to_slab(kobj);
  3682. if (!attribute->show)
  3683. return -EIO;
  3684. err = attribute->show(s, buf);
  3685. return err;
  3686. }
  3687. static ssize_t slab_attr_store(struct kobject *kobj,
  3688. struct attribute *attr,
  3689. const char *buf, size_t len)
  3690. {
  3691. struct slab_attribute *attribute;
  3692. struct kmem_cache *s;
  3693. int err;
  3694. attribute = to_slab_attr(attr);
  3695. s = to_slab(kobj);
  3696. if (!attribute->store)
  3697. return -EIO;
  3698. err = attribute->store(s, buf, len);
  3699. return err;
  3700. }
  3701. static void kmem_cache_release(struct kobject *kobj)
  3702. {
  3703. struct kmem_cache *s = to_slab(kobj);
  3704. kfree(s);
  3705. }
  3706. static const struct sysfs_ops slab_sysfs_ops = {
  3707. .show = slab_attr_show,
  3708. .store = slab_attr_store,
  3709. };
  3710. static struct kobj_type slab_ktype = {
  3711. .sysfs_ops = &slab_sysfs_ops,
  3712. .release = kmem_cache_release
  3713. };
  3714. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3715. {
  3716. struct kobj_type *ktype = get_ktype(kobj);
  3717. if (ktype == &slab_ktype)
  3718. return 1;
  3719. return 0;
  3720. }
  3721. static const struct kset_uevent_ops slab_uevent_ops = {
  3722. .filter = uevent_filter,
  3723. };
  3724. static struct kset *slab_kset;
  3725. #define ID_STR_LENGTH 64
  3726. /* Create a unique string id for a slab cache:
  3727. *
  3728. * Format :[flags-]size
  3729. */
  3730. static char *create_unique_id(struct kmem_cache *s)
  3731. {
  3732. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3733. char *p = name;
  3734. BUG_ON(!name);
  3735. *p++ = ':';
  3736. /*
  3737. * First flags affecting slabcache operations. We will only
  3738. * get here for aliasable slabs so we do not need to support
  3739. * too many flags. The flags here must cover all flags that
  3740. * are matched during merging to guarantee that the id is
  3741. * unique.
  3742. */
  3743. if (s->flags & SLAB_CACHE_DMA)
  3744. *p++ = 'd';
  3745. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3746. *p++ = 'a';
  3747. if (s->flags & SLAB_DEBUG_FREE)
  3748. *p++ = 'F';
  3749. if (!(s->flags & SLAB_NOTRACK))
  3750. *p++ = 't';
  3751. if (p != name + 1)
  3752. *p++ = '-';
  3753. p += sprintf(p, "%07d", s->size);
  3754. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3755. return name;
  3756. }
  3757. static int sysfs_slab_add(struct kmem_cache *s)
  3758. {
  3759. int err;
  3760. const char *name;
  3761. int unmergeable;
  3762. if (slab_state < SYSFS)
  3763. /* Defer until later */
  3764. return 0;
  3765. unmergeable = slab_unmergeable(s);
  3766. if (unmergeable) {
  3767. /*
  3768. * Slabcache can never be merged so we can use the name proper.
  3769. * This is typically the case for debug situations. In that
  3770. * case we can catch duplicate names easily.
  3771. */
  3772. sysfs_remove_link(&slab_kset->kobj, s->name);
  3773. name = s->name;
  3774. } else {
  3775. /*
  3776. * Create a unique name for the slab as a target
  3777. * for the symlinks.
  3778. */
  3779. name = create_unique_id(s);
  3780. }
  3781. s->kobj.kset = slab_kset;
  3782. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3783. if (err) {
  3784. kobject_put(&s->kobj);
  3785. return err;
  3786. }
  3787. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3788. if (err) {
  3789. kobject_del(&s->kobj);
  3790. kobject_put(&s->kobj);
  3791. return err;
  3792. }
  3793. kobject_uevent(&s->kobj, KOBJ_ADD);
  3794. if (!unmergeable) {
  3795. /* Setup first alias */
  3796. sysfs_slab_alias(s, s->name);
  3797. kfree(name);
  3798. }
  3799. return 0;
  3800. }
  3801. static void sysfs_slab_remove(struct kmem_cache *s)
  3802. {
  3803. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3804. kobject_del(&s->kobj);
  3805. kobject_put(&s->kobj);
  3806. }
  3807. /*
  3808. * Need to buffer aliases during bootup until sysfs becomes
  3809. * available lest we lose that information.
  3810. */
  3811. struct saved_alias {
  3812. struct kmem_cache *s;
  3813. const char *name;
  3814. struct saved_alias *next;
  3815. };
  3816. static struct saved_alias *alias_list;
  3817. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3818. {
  3819. struct saved_alias *al;
  3820. if (slab_state == SYSFS) {
  3821. /*
  3822. * If we have a leftover link then remove it.
  3823. */
  3824. sysfs_remove_link(&slab_kset->kobj, name);
  3825. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3826. }
  3827. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3828. if (!al)
  3829. return -ENOMEM;
  3830. al->s = s;
  3831. al->name = name;
  3832. al->next = alias_list;
  3833. alias_list = al;
  3834. return 0;
  3835. }
  3836. static int __init slab_sysfs_init(void)
  3837. {
  3838. struct kmem_cache *s;
  3839. int err;
  3840. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3841. if (!slab_kset) {
  3842. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3843. return -ENOSYS;
  3844. }
  3845. slab_state = SYSFS;
  3846. list_for_each_entry(s, &slab_caches, list) {
  3847. err = sysfs_slab_add(s);
  3848. if (err)
  3849. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3850. " to sysfs\n", s->name);
  3851. }
  3852. while (alias_list) {
  3853. struct saved_alias *al = alias_list;
  3854. alias_list = alias_list->next;
  3855. err = sysfs_slab_alias(al->s, al->name);
  3856. if (err)
  3857. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3858. " %s to sysfs\n", s->name);
  3859. kfree(al);
  3860. }
  3861. resiliency_test();
  3862. return 0;
  3863. }
  3864. __initcall(slab_sysfs_init);
  3865. #endif
  3866. /*
  3867. * The /proc/slabinfo ABI
  3868. */
  3869. #ifdef CONFIG_SLABINFO
  3870. static void print_slabinfo_header(struct seq_file *m)
  3871. {
  3872. seq_puts(m, "slabinfo - version: 2.1\n");
  3873. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3874. "<objperslab> <pagesperslab>");
  3875. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3876. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3877. seq_putc(m, '\n');
  3878. }
  3879. static void *s_start(struct seq_file *m, loff_t *pos)
  3880. {
  3881. loff_t n = *pos;
  3882. down_read(&slub_lock);
  3883. if (!n)
  3884. print_slabinfo_header(m);
  3885. return seq_list_start(&slab_caches, *pos);
  3886. }
  3887. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3888. {
  3889. return seq_list_next(p, &slab_caches, pos);
  3890. }
  3891. static void s_stop(struct seq_file *m, void *p)
  3892. {
  3893. up_read(&slub_lock);
  3894. }
  3895. static int s_show(struct seq_file *m, void *p)
  3896. {
  3897. unsigned long nr_partials = 0;
  3898. unsigned long nr_slabs = 0;
  3899. unsigned long nr_inuse = 0;
  3900. unsigned long nr_objs = 0;
  3901. unsigned long nr_free = 0;
  3902. struct kmem_cache *s;
  3903. int node;
  3904. s = list_entry(p, struct kmem_cache, list);
  3905. for_each_online_node(node) {
  3906. struct kmem_cache_node *n = get_node(s, node);
  3907. if (!n)
  3908. continue;
  3909. nr_partials += n->nr_partial;
  3910. nr_slabs += atomic_long_read(&n->nr_slabs);
  3911. nr_objs += atomic_long_read(&n->total_objects);
  3912. nr_free += count_partial(n, count_free);
  3913. }
  3914. nr_inuse = nr_objs - nr_free;
  3915. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3916. nr_objs, s->size, oo_objects(s->oo),
  3917. (1 << oo_order(s->oo)));
  3918. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3919. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3920. 0UL);
  3921. seq_putc(m, '\n');
  3922. return 0;
  3923. }
  3924. static const struct seq_operations slabinfo_op = {
  3925. .start = s_start,
  3926. .next = s_next,
  3927. .stop = s_stop,
  3928. .show = s_show,
  3929. };
  3930. static int slabinfo_open(struct inode *inode, struct file *file)
  3931. {
  3932. return seq_open(file, &slabinfo_op);
  3933. }
  3934. static const struct file_operations proc_slabinfo_operations = {
  3935. .open = slabinfo_open,
  3936. .read = seq_read,
  3937. .llseek = seq_lseek,
  3938. .release = seq_release,
  3939. };
  3940. static int __init slab_proc_init(void)
  3941. {
  3942. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3943. return 0;
  3944. }
  3945. module_init(slab_proc_init);
  3946. #endif /* CONFIG_SLABINFO */