mxc_nand.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. /*
  2. * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
  3. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17. * MA 02110-1301, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/nand.h>
  25. #include <linux/mtd/partitions.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/clk.h>
  30. #include <linux/err.h>
  31. #include <linux/io.h>
  32. #include <linux/irq.h>
  33. #include <linux/completion.h>
  34. #include <asm/mach/flash.h>
  35. #include <mach/mxc_nand.h>
  36. #include <mach/hardware.h>
  37. #define DRIVER_NAME "mxc_nand"
  38. #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
  39. #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
  40. #define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53())
  41. #define nfc_is_v3() nfc_is_v3_2()
  42. /* Addresses for NFC registers */
  43. #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
  44. #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
  45. #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
  46. #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
  47. #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
  48. #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
  49. #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
  50. #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
  51. #define NFC_V1_V2_WRPROT (host->regs + 0x12)
  52. #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
  53. #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
  54. #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
  55. #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
  56. #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
  57. #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
  58. #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
  59. #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
  60. #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
  61. #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
  62. #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
  63. #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
  64. #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
  65. #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
  66. #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
  67. #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
  68. #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
  69. #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
  70. #define NFC_V1_V2_CONFIG1_RST (1 << 6)
  71. #define NFC_V1_V2_CONFIG1_CE (1 << 7)
  72. #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
  73. #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
  74. #define NFC_V2_CONFIG1_FP_INT (1 << 11)
  75. #define NFC_V1_V2_CONFIG2_INT (1 << 15)
  76. /*
  77. * Operation modes for the NFC. Valid for v1, v2 and v3
  78. * type controllers.
  79. */
  80. #define NFC_CMD (1 << 0)
  81. #define NFC_ADDR (1 << 1)
  82. #define NFC_INPUT (1 << 2)
  83. #define NFC_OUTPUT (1 << 3)
  84. #define NFC_ID (1 << 4)
  85. #define NFC_STATUS (1 << 5)
  86. #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
  87. #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
  88. #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
  89. #define NFC_V3_CONFIG1_SP_EN (1 << 0)
  90. #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
  91. #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
  92. #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
  93. #define NFC_V3_WRPROT (host->regs_ip + 0x0)
  94. #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
  95. #define NFC_V3_WRPROT_LOCK (1 << 1)
  96. #define NFC_V3_WRPROT_UNLOCK (1 << 2)
  97. #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
  98. #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
  99. #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
  100. #define NFC_V3_CONFIG2_PS_512 (0 << 0)
  101. #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
  102. #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
  103. #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
  104. #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
  105. #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
  106. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
  107. #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
  108. #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
  109. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
  110. #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
  111. #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
  112. #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
  113. #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
  114. #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
  115. #define NFC_V3_CONFIG3_FW8 (1 << 3)
  116. #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
  117. #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
  118. #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
  119. #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
  120. #define NFC_V3_IPC (host->regs_ip + 0x2C)
  121. #define NFC_V3_IPC_CREQ (1 << 0)
  122. #define NFC_V3_IPC_INT (1 << 31)
  123. #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
  124. struct mxc_nand_host;
  125. struct mxc_nand_devtype_data {
  126. void (*preset)(struct mtd_info *);
  127. void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
  128. void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
  129. void (*send_page)(struct mtd_info *, unsigned int);
  130. void (*send_read_id)(struct mxc_nand_host *);
  131. uint16_t (*get_dev_status)(struct mxc_nand_host *);
  132. int (*check_int)(struct mxc_nand_host *);
  133. void (*irq_control)(struct mxc_nand_host *, int);
  134. };
  135. struct mxc_nand_host {
  136. struct mtd_info mtd;
  137. struct nand_chip nand;
  138. struct device *dev;
  139. void *spare0;
  140. void *main_area0;
  141. void __iomem *base;
  142. void __iomem *regs;
  143. void __iomem *regs_axi;
  144. void __iomem *regs_ip;
  145. int status_request;
  146. struct clk *clk;
  147. int clk_act;
  148. int irq;
  149. int eccsize;
  150. int active_cs;
  151. struct completion op_completion;
  152. uint8_t *data_buf;
  153. unsigned int buf_start;
  154. int spare_len;
  155. const struct mxc_nand_devtype_data *devtype_data;
  156. /*
  157. * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
  158. * (CONFIG1:INT_MSK is set). To handle this the driver uses
  159. * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
  160. */
  161. int irqpending_quirk;
  162. };
  163. /* OOB placement block for use with hardware ecc generation */
  164. static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
  165. .eccbytes = 5,
  166. .eccpos = {6, 7, 8, 9, 10},
  167. .oobfree = {{0, 5}, {12, 4}, }
  168. };
  169. static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
  170. .eccbytes = 20,
  171. .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
  172. 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
  173. .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
  174. };
  175. /* OOB description for 512 byte pages with 16 byte OOB */
  176. static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
  177. .eccbytes = 1 * 9,
  178. .eccpos = {
  179. 7, 8, 9, 10, 11, 12, 13, 14, 15
  180. },
  181. .oobfree = {
  182. {.offset = 0, .length = 5}
  183. }
  184. };
  185. /* OOB description for 2048 byte pages with 64 byte OOB */
  186. static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
  187. .eccbytes = 4 * 9,
  188. .eccpos = {
  189. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  190. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  191. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  192. 55, 56, 57, 58, 59, 60, 61, 62, 63
  193. },
  194. .oobfree = {
  195. {.offset = 2, .length = 4},
  196. {.offset = 16, .length = 7},
  197. {.offset = 32, .length = 7},
  198. {.offset = 48, .length = 7}
  199. }
  200. };
  201. /* OOB description for 4096 byte pages with 128 byte OOB */
  202. static struct nand_ecclayout nandv2_hw_eccoob_4k = {
  203. .eccbytes = 8 * 9,
  204. .eccpos = {
  205. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  206. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  207. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  208. 55, 56, 57, 58, 59, 60, 61, 62, 63,
  209. 71, 72, 73, 74, 75, 76, 77, 78, 79,
  210. 87, 88, 89, 90, 91, 92, 93, 94, 95,
  211. 103, 104, 105, 106, 107, 108, 109, 110, 111,
  212. 119, 120, 121, 122, 123, 124, 125, 126, 127,
  213. },
  214. .oobfree = {
  215. {.offset = 2, .length = 4},
  216. {.offset = 16, .length = 7},
  217. {.offset = 32, .length = 7},
  218. {.offset = 48, .length = 7},
  219. {.offset = 64, .length = 7},
  220. {.offset = 80, .length = 7},
  221. {.offset = 96, .length = 7},
  222. {.offset = 112, .length = 7},
  223. }
  224. };
  225. static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
  226. static int check_int_v3(struct mxc_nand_host *host)
  227. {
  228. uint32_t tmp;
  229. tmp = readl(NFC_V3_IPC);
  230. if (!(tmp & NFC_V3_IPC_INT))
  231. return 0;
  232. tmp &= ~NFC_V3_IPC_INT;
  233. writel(tmp, NFC_V3_IPC);
  234. return 1;
  235. }
  236. static int check_int_v1_v2(struct mxc_nand_host *host)
  237. {
  238. uint32_t tmp;
  239. tmp = readw(NFC_V1_V2_CONFIG2);
  240. if (!(tmp & NFC_V1_V2_CONFIG2_INT))
  241. return 0;
  242. if (!host->irqpending_quirk)
  243. writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
  244. return 1;
  245. }
  246. static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
  247. {
  248. uint16_t tmp;
  249. tmp = readw(NFC_V1_V2_CONFIG1);
  250. if (activate)
  251. tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
  252. else
  253. tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
  254. writew(tmp, NFC_V1_V2_CONFIG1);
  255. }
  256. static void irq_control_v3(struct mxc_nand_host *host, int activate)
  257. {
  258. uint32_t tmp;
  259. tmp = readl(NFC_V3_CONFIG2);
  260. if (activate)
  261. tmp &= ~NFC_V3_CONFIG2_INT_MSK;
  262. else
  263. tmp |= NFC_V3_CONFIG2_INT_MSK;
  264. writel(tmp, NFC_V3_CONFIG2);
  265. }
  266. static void irq_control(struct mxc_nand_host *host, int activate)
  267. {
  268. if (host->irqpending_quirk) {
  269. if (activate)
  270. enable_irq(host->irq);
  271. else
  272. disable_irq_nosync(host->irq);
  273. } else {
  274. host->devtype_data->irq_control(host, activate);
  275. }
  276. }
  277. static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
  278. {
  279. struct mxc_nand_host *host = dev_id;
  280. if (!host->devtype_data->check_int(host))
  281. return IRQ_NONE;
  282. irq_control(host, 0);
  283. complete(&host->op_completion);
  284. return IRQ_HANDLED;
  285. }
  286. /* This function polls the NANDFC to wait for the basic operation to
  287. * complete by checking the INT bit of config2 register.
  288. */
  289. static void wait_op_done(struct mxc_nand_host *host, int useirq)
  290. {
  291. int max_retries = 8000;
  292. if (useirq) {
  293. if (!host->devtype_data->check_int(host)) {
  294. INIT_COMPLETION(host->op_completion);
  295. irq_control(host, 1);
  296. wait_for_completion(&host->op_completion);
  297. }
  298. } else {
  299. while (max_retries-- > 0) {
  300. if (host->devtype_data->check_int(host))
  301. break;
  302. udelay(1);
  303. }
  304. if (max_retries < 0)
  305. pr_debug("%s: INT not set\n", __func__);
  306. }
  307. }
  308. static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  309. {
  310. /* fill command */
  311. writel(cmd, NFC_V3_FLASH_CMD);
  312. /* send out command */
  313. writel(NFC_CMD, NFC_V3_LAUNCH);
  314. /* Wait for operation to complete */
  315. wait_op_done(host, useirq);
  316. }
  317. /* This function issues the specified command to the NAND device and
  318. * waits for completion. */
  319. static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  320. {
  321. pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
  322. writew(cmd, NFC_V1_V2_FLASH_CMD);
  323. writew(NFC_CMD, NFC_V1_V2_CONFIG2);
  324. if (host->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
  325. int max_retries = 100;
  326. /* Reset completion is indicated by NFC_CONFIG2 */
  327. /* being set to 0 */
  328. while (max_retries-- > 0) {
  329. if (readw(NFC_V1_V2_CONFIG2) == 0) {
  330. break;
  331. }
  332. udelay(1);
  333. }
  334. if (max_retries < 0)
  335. pr_debug("%s: RESET failed\n", __func__);
  336. } else {
  337. /* Wait for operation to complete */
  338. wait_op_done(host, useirq);
  339. }
  340. }
  341. static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
  342. {
  343. /* fill address */
  344. writel(addr, NFC_V3_FLASH_ADDR0);
  345. /* send out address */
  346. writel(NFC_ADDR, NFC_V3_LAUNCH);
  347. wait_op_done(host, 0);
  348. }
  349. /* This function sends an address (or partial address) to the
  350. * NAND device. The address is used to select the source/destination for
  351. * a NAND command. */
  352. static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
  353. {
  354. pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
  355. writew(addr, NFC_V1_V2_FLASH_ADDR);
  356. writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
  357. /* Wait for operation to complete */
  358. wait_op_done(host, islast);
  359. }
  360. static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
  361. {
  362. struct nand_chip *nand_chip = mtd->priv;
  363. struct mxc_nand_host *host = nand_chip->priv;
  364. uint32_t tmp;
  365. tmp = readl(NFC_V3_CONFIG1);
  366. tmp &= ~(7 << 4);
  367. writel(tmp, NFC_V3_CONFIG1);
  368. /* transfer data from NFC ram to nand */
  369. writel(ops, NFC_V3_LAUNCH);
  370. wait_op_done(host, false);
  371. }
  372. static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
  373. {
  374. struct nand_chip *nand_chip = mtd->priv;
  375. struct mxc_nand_host *host = nand_chip->priv;
  376. int bufs, i;
  377. if (nfc_is_v1() && mtd->writesize > 512)
  378. bufs = 4;
  379. else
  380. bufs = 1;
  381. for (i = 0; i < bufs; i++) {
  382. /* NANDFC buffer 0 is used for page read/write */
  383. writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
  384. writew(ops, NFC_V1_V2_CONFIG2);
  385. /* Wait for operation to complete */
  386. wait_op_done(host, true);
  387. }
  388. }
  389. static void send_read_id_v3(struct mxc_nand_host *host)
  390. {
  391. /* Read ID into main buffer */
  392. writel(NFC_ID, NFC_V3_LAUNCH);
  393. wait_op_done(host, true);
  394. memcpy(host->data_buf, host->main_area0, 16);
  395. }
  396. /* Request the NANDFC to perform a read of the NAND device ID. */
  397. static void send_read_id_v1_v2(struct mxc_nand_host *host)
  398. {
  399. struct nand_chip *this = &host->nand;
  400. /* NANDFC buffer 0 is used for device ID output */
  401. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  402. writew(NFC_ID, NFC_V1_V2_CONFIG2);
  403. /* Wait for operation to complete */
  404. wait_op_done(host, true);
  405. memcpy(host->data_buf, host->main_area0, 16);
  406. if (this->options & NAND_BUSWIDTH_16) {
  407. /* compress the ID info */
  408. host->data_buf[1] = host->data_buf[2];
  409. host->data_buf[2] = host->data_buf[4];
  410. host->data_buf[3] = host->data_buf[6];
  411. host->data_buf[4] = host->data_buf[8];
  412. host->data_buf[5] = host->data_buf[10];
  413. }
  414. }
  415. static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
  416. {
  417. writew(NFC_STATUS, NFC_V3_LAUNCH);
  418. wait_op_done(host, true);
  419. return readl(NFC_V3_CONFIG1) >> 16;
  420. }
  421. /* This function requests the NANDFC to perform a read of the
  422. * NAND device status and returns the current status. */
  423. static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
  424. {
  425. void __iomem *main_buf = host->main_area0;
  426. uint32_t store;
  427. uint16_t ret;
  428. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  429. /*
  430. * The device status is stored in main_area0. To
  431. * prevent corruption of the buffer save the value
  432. * and restore it afterwards.
  433. */
  434. store = readl(main_buf);
  435. writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
  436. wait_op_done(host, true);
  437. ret = readw(main_buf);
  438. writel(store, main_buf);
  439. return ret;
  440. }
  441. /* This functions is used by upper layer to checks if device is ready */
  442. static int mxc_nand_dev_ready(struct mtd_info *mtd)
  443. {
  444. /*
  445. * NFC handles R/B internally. Therefore, this function
  446. * always returns status as ready.
  447. */
  448. return 1;
  449. }
  450. static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  451. {
  452. /*
  453. * If HW ECC is enabled, we turn it on during init. There is
  454. * no need to enable again here.
  455. */
  456. }
  457. static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
  458. u_char *read_ecc, u_char *calc_ecc)
  459. {
  460. struct nand_chip *nand_chip = mtd->priv;
  461. struct mxc_nand_host *host = nand_chip->priv;
  462. /*
  463. * 1-Bit errors are automatically corrected in HW. No need for
  464. * additional correction. 2-Bit errors cannot be corrected by
  465. * HW ECC, so we need to return failure
  466. */
  467. uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
  468. if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
  469. pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
  470. return -1;
  471. }
  472. return 0;
  473. }
  474. static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
  475. u_char *read_ecc, u_char *calc_ecc)
  476. {
  477. struct nand_chip *nand_chip = mtd->priv;
  478. struct mxc_nand_host *host = nand_chip->priv;
  479. u32 ecc_stat, err;
  480. int no_subpages = 1;
  481. int ret = 0;
  482. u8 ecc_bit_mask, err_limit;
  483. ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
  484. err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
  485. no_subpages = mtd->writesize >> 9;
  486. if (nfc_is_v21())
  487. ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
  488. else
  489. ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
  490. do {
  491. err = ecc_stat & ecc_bit_mask;
  492. if (err > err_limit) {
  493. printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
  494. return -1;
  495. } else {
  496. ret += err;
  497. }
  498. ecc_stat >>= 4;
  499. } while (--no_subpages);
  500. mtd->ecc_stats.corrected += ret;
  501. pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
  502. return ret;
  503. }
  504. static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
  505. u_char *ecc_code)
  506. {
  507. return 0;
  508. }
  509. static u_char mxc_nand_read_byte(struct mtd_info *mtd)
  510. {
  511. struct nand_chip *nand_chip = mtd->priv;
  512. struct mxc_nand_host *host = nand_chip->priv;
  513. uint8_t ret;
  514. /* Check for status request */
  515. if (host->status_request)
  516. return host->devtype_data->get_dev_status(host) & 0xFF;
  517. ret = *(uint8_t *)(host->data_buf + host->buf_start);
  518. host->buf_start++;
  519. return ret;
  520. }
  521. static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
  522. {
  523. struct nand_chip *nand_chip = mtd->priv;
  524. struct mxc_nand_host *host = nand_chip->priv;
  525. uint16_t ret;
  526. ret = *(uint16_t *)(host->data_buf + host->buf_start);
  527. host->buf_start += 2;
  528. return ret;
  529. }
  530. /* Write data of length len to buffer buf. The data to be
  531. * written on NAND Flash is first copied to RAMbuffer. After the Data Input
  532. * Operation by the NFC, the data is written to NAND Flash */
  533. static void mxc_nand_write_buf(struct mtd_info *mtd,
  534. const u_char *buf, int len)
  535. {
  536. struct nand_chip *nand_chip = mtd->priv;
  537. struct mxc_nand_host *host = nand_chip->priv;
  538. u16 col = host->buf_start;
  539. int n = mtd->oobsize + mtd->writesize - col;
  540. n = min(n, len);
  541. memcpy(host->data_buf + col, buf, n);
  542. host->buf_start += n;
  543. }
  544. /* Read the data buffer from the NAND Flash. To read the data from NAND
  545. * Flash first the data output cycle is initiated by the NFC, which copies
  546. * the data to RAMbuffer. This data of length len is then copied to buffer buf.
  547. */
  548. static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  549. {
  550. struct nand_chip *nand_chip = mtd->priv;
  551. struct mxc_nand_host *host = nand_chip->priv;
  552. u16 col = host->buf_start;
  553. int n = mtd->oobsize + mtd->writesize - col;
  554. n = min(n, len);
  555. memcpy(buf, host->data_buf + col, n);
  556. host->buf_start += n;
  557. }
  558. /* Used by the upper layer to verify the data in NAND Flash
  559. * with the data in the buf. */
  560. static int mxc_nand_verify_buf(struct mtd_info *mtd,
  561. const u_char *buf, int len)
  562. {
  563. return -EFAULT;
  564. }
  565. /* This function is used by upper layer for select and
  566. * deselect of the NAND chip */
  567. static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
  568. {
  569. struct nand_chip *nand_chip = mtd->priv;
  570. struct mxc_nand_host *host = nand_chip->priv;
  571. if (chip == -1) {
  572. /* Disable the NFC clock */
  573. if (host->clk_act) {
  574. clk_disable(host->clk);
  575. host->clk_act = 0;
  576. }
  577. return;
  578. }
  579. if (!host->clk_act) {
  580. /* Enable the NFC clock */
  581. clk_enable(host->clk);
  582. host->clk_act = 1;
  583. }
  584. if (nfc_is_v21()) {
  585. host->active_cs = chip;
  586. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  587. }
  588. }
  589. /*
  590. * Function to transfer data to/from spare area.
  591. */
  592. static void copy_spare(struct mtd_info *mtd, bool bfrom)
  593. {
  594. struct nand_chip *this = mtd->priv;
  595. struct mxc_nand_host *host = this->priv;
  596. u16 i, j;
  597. u16 n = mtd->writesize >> 9;
  598. u8 *d = host->data_buf + mtd->writesize;
  599. u8 *s = host->spare0;
  600. u16 t = host->spare_len;
  601. j = (mtd->oobsize / n >> 1) << 1;
  602. if (bfrom) {
  603. for (i = 0; i < n - 1; i++)
  604. memcpy(d + i * j, s + i * t, j);
  605. /* the last section */
  606. memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
  607. } else {
  608. for (i = 0; i < n - 1; i++)
  609. memcpy(&s[i * t], &d[i * j], j);
  610. /* the last section */
  611. memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
  612. }
  613. }
  614. static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
  615. {
  616. struct nand_chip *nand_chip = mtd->priv;
  617. struct mxc_nand_host *host = nand_chip->priv;
  618. /* Write out column address, if necessary */
  619. if (column != -1) {
  620. /*
  621. * MXC NANDFC can only perform full page+spare or
  622. * spare-only read/write. When the upper layers
  623. * perform a read/write buf operation, the saved column
  624. * address is used to index into the full page.
  625. */
  626. host->devtype_data->send_addr(host, 0, page_addr == -1);
  627. if (mtd->writesize > 512)
  628. /* another col addr cycle for 2k page */
  629. host->devtype_data->send_addr(host, 0, false);
  630. }
  631. /* Write out page address, if necessary */
  632. if (page_addr != -1) {
  633. /* paddr_0 - p_addr_7 */
  634. host->devtype_data->send_addr(host, (page_addr & 0xff), false);
  635. if (mtd->writesize > 512) {
  636. if (mtd->size >= 0x10000000) {
  637. /* paddr_8 - paddr_15 */
  638. host->devtype_data->send_addr(host,
  639. (page_addr >> 8) & 0xff,
  640. false);
  641. host->devtype_data->send_addr(host,
  642. (page_addr >> 16) & 0xff,
  643. true);
  644. } else
  645. /* paddr_8 - paddr_15 */
  646. host->devtype_data->send_addr(host,
  647. (page_addr >> 8) & 0xff, true);
  648. } else {
  649. /* One more address cycle for higher density devices */
  650. if (mtd->size >= 0x4000000) {
  651. /* paddr_8 - paddr_15 */
  652. host->devtype_data->send_addr(host,
  653. (page_addr >> 8) & 0xff,
  654. false);
  655. host->devtype_data->send_addr(host,
  656. (page_addr >> 16) & 0xff,
  657. true);
  658. } else
  659. /* paddr_8 - paddr_15 */
  660. host->devtype_data->send_addr(host,
  661. (page_addr >> 8) & 0xff, true);
  662. }
  663. }
  664. }
  665. /*
  666. * v2 and v3 type controllers can do 4bit or 8bit ecc depending
  667. * on how much oob the nand chip has. For 8bit ecc we need at least
  668. * 26 bytes of oob data per 512 byte block.
  669. */
  670. static int get_eccsize(struct mtd_info *mtd)
  671. {
  672. int oobbytes_per_512 = 0;
  673. oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
  674. if (oobbytes_per_512 < 26)
  675. return 4;
  676. else
  677. return 8;
  678. }
  679. static void preset_v1_v2(struct mtd_info *mtd)
  680. {
  681. struct nand_chip *nand_chip = mtd->priv;
  682. struct mxc_nand_host *host = nand_chip->priv;
  683. uint16_t config1 = 0;
  684. if (nand_chip->ecc.mode == NAND_ECC_HW)
  685. config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
  686. if (nfc_is_v21())
  687. config1 |= NFC_V2_CONFIG1_FP_INT;
  688. if (!host->irqpending_quirk)
  689. config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
  690. if (nfc_is_v21() && mtd->writesize) {
  691. uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
  692. host->eccsize = get_eccsize(mtd);
  693. if (host->eccsize == 4)
  694. config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
  695. config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
  696. } else {
  697. host->eccsize = 1;
  698. }
  699. writew(config1, NFC_V1_V2_CONFIG1);
  700. /* preset operation */
  701. /* Unlock the internal RAM Buffer */
  702. writew(0x2, NFC_V1_V2_CONFIG);
  703. /* Blocks to be unlocked */
  704. if (nfc_is_v21()) {
  705. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
  706. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
  707. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
  708. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
  709. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
  710. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
  711. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
  712. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
  713. } else if (nfc_is_v1()) {
  714. writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
  715. writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
  716. } else
  717. BUG();
  718. /* Unlock Block Command for given address range */
  719. writew(0x4, NFC_V1_V2_WRPROT);
  720. }
  721. static void preset_v3(struct mtd_info *mtd)
  722. {
  723. struct nand_chip *chip = mtd->priv;
  724. struct mxc_nand_host *host = chip->priv;
  725. uint32_t config2, config3;
  726. int i, addr_phases;
  727. writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
  728. writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
  729. /* Unlock the internal RAM Buffer */
  730. writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
  731. NFC_V3_WRPROT);
  732. /* Blocks to be unlocked */
  733. for (i = 0; i < NAND_MAX_CHIPS; i++)
  734. writel(0x0 | (0xffff << 16),
  735. NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
  736. writel(0, NFC_V3_IPC);
  737. config2 = NFC_V3_CONFIG2_ONE_CYCLE |
  738. NFC_V3_CONFIG2_2CMD_PHASES |
  739. NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
  740. NFC_V3_CONFIG2_ST_CMD(0x70) |
  741. NFC_V3_CONFIG2_INT_MSK |
  742. NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
  743. if (chip->ecc.mode == NAND_ECC_HW)
  744. config2 |= NFC_V3_CONFIG2_ECC_EN;
  745. addr_phases = fls(chip->pagemask) >> 3;
  746. if (mtd->writesize == 2048) {
  747. config2 |= NFC_V3_CONFIG2_PS_2048;
  748. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  749. } else if (mtd->writesize == 4096) {
  750. config2 |= NFC_V3_CONFIG2_PS_4096;
  751. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  752. } else {
  753. config2 |= NFC_V3_CONFIG2_PS_512;
  754. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
  755. }
  756. if (mtd->writesize) {
  757. config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
  758. host->eccsize = get_eccsize(mtd);
  759. if (host->eccsize == 8)
  760. config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
  761. }
  762. writel(config2, NFC_V3_CONFIG2);
  763. config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
  764. NFC_V3_CONFIG3_NO_SDMA |
  765. NFC_V3_CONFIG3_RBB_MODE |
  766. NFC_V3_CONFIG3_SBB(6) | /* Reset default */
  767. NFC_V3_CONFIG3_ADD_OP(0);
  768. if (!(chip->options & NAND_BUSWIDTH_16))
  769. config3 |= NFC_V3_CONFIG3_FW8;
  770. writel(config3, NFC_V3_CONFIG3);
  771. writel(0, NFC_V3_DELAY_LINE);
  772. }
  773. /* Used by the upper layer to write command to NAND Flash for
  774. * different operations to be carried out on NAND Flash */
  775. static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
  776. int column, int page_addr)
  777. {
  778. struct nand_chip *nand_chip = mtd->priv;
  779. struct mxc_nand_host *host = nand_chip->priv;
  780. pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
  781. command, column, page_addr);
  782. /* Reset command state information */
  783. host->status_request = false;
  784. /* Command pre-processing step */
  785. switch (command) {
  786. case NAND_CMD_RESET:
  787. host->devtype_data->preset(mtd);
  788. host->devtype_data->send_cmd(host, command, false);
  789. break;
  790. case NAND_CMD_STATUS:
  791. host->buf_start = 0;
  792. host->status_request = true;
  793. host->devtype_data->send_cmd(host, command, true);
  794. mxc_do_addr_cycle(mtd, column, page_addr);
  795. break;
  796. case NAND_CMD_READ0:
  797. case NAND_CMD_READOOB:
  798. if (command == NAND_CMD_READ0)
  799. host->buf_start = column;
  800. else
  801. host->buf_start = column + mtd->writesize;
  802. command = NAND_CMD_READ0; /* only READ0 is valid */
  803. host->devtype_data->send_cmd(host, command, false);
  804. mxc_do_addr_cycle(mtd, column, page_addr);
  805. if (mtd->writesize > 512)
  806. host->devtype_data->send_cmd(host,
  807. NAND_CMD_READSTART, true);
  808. host->devtype_data->send_page(mtd, NFC_OUTPUT);
  809. memcpy(host->data_buf, host->main_area0, mtd->writesize);
  810. copy_spare(mtd, true);
  811. break;
  812. case NAND_CMD_SEQIN:
  813. if (column >= mtd->writesize)
  814. /* call ourself to read a page */
  815. mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
  816. host->buf_start = column;
  817. host->devtype_data->send_cmd(host, command, false);
  818. mxc_do_addr_cycle(mtd, column, page_addr);
  819. break;
  820. case NAND_CMD_PAGEPROG:
  821. memcpy(host->main_area0, host->data_buf, mtd->writesize);
  822. copy_spare(mtd, false);
  823. host->devtype_data->send_page(mtd, NFC_INPUT);
  824. host->devtype_data->send_cmd(host, command, true);
  825. mxc_do_addr_cycle(mtd, column, page_addr);
  826. break;
  827. case NAND_CMD_READID:
  828. host->devtype_data->send_cmd(host, command, true);
  829. mxc_do_addr_cycle(mtd, column, page_addr);
  830. host->devtype_data->send_read_id(host);
  831. host->buf_start = column;
  832. break;
  833. case NAND_CMD_ERASE1:
  834. case NAND_CMD_ERASE2:
  835. host->devtype_data->send_cmd(host, command, false);
  836. mxc_do_addr_cycle(mtd, column, page_addr);
  837. break;
  838. }
  839. }
  840. /*
  841. * The generic flash bbt decriptors overlap with our ecc
  842. * hardware, so define some i.MX specific ones.
  843. */
  844. static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
  845. static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
  846. static struct nand_bbt_descr bbt_main_descr = {
  847. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  848. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  849. .offs = 0,
  850. .len = 4,
  851. .veroffs = 4,
  852. .maxblocks = 4,
  853. .pattern = bbt_pattern,
  854. };
  855. static struct nand_bbt_descr bbt_mirror_descr = {
  856. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  857. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  858. .offs = 0,
  859. .len = 4,
  860. .veroffs = 4,
  861. .maxblocks = 4,
  862. .pattern = mirror_pattern,
  863. };
  864. /* v1: i.MX21, i.MX27, i.MX31 */
  865. static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
  866. .preset = preset_v1_v2,
  867. .send_cmd = send_cmd_v1_v2,
  868. .send_addr = send_addr_v1_v2,
  869. .send_page = send_page_v1_v2,
  870. .send_read_id = send_read_id_v1_v2,
  871. .get_dev_status = get_dev_status_v1_v2,
  872. .check_int = check_int_v1_v2,
  873. .irq_control = irq_control_v1_v2,
  874. };
  875. /* v21: i.MX25, i.MX35 */
  876. static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
  877. .preset = preset_v1_v2,
  878. .send_cmd = send_cmd_v1_v2,
  879. .send_addr = send_addr_v1_v2,
  880. .send_page = send_page_v1_v2,
  881. .send_read_id = send_read_id_v1_v2,
  882. .get_dev_status = get_dev_status_v1_v2,
  883. .check_int = check_int_v1_v2,
  884. .irq_control = irq_control_v1_v2,
  885. };
  886. /* v3: i.MX51, i.MX53 */
  887. static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
  888. .preset = preset_v3,
  889. .send_cmd = send_cmd_v3,
  890. .send_addr = send_addr_v3,
  891. .send_page = send_page_v3,
  892. .send_read_id = send_read_id_v3,
  893. .get_dev_status = get_dev_status_v3,
  894. .check_int = check_int_v3,
  895. .irq_control = irq_control_v3,
  896. };
  897. static int __init mxcnd_probe(struct platform_device *pdev)
  898. {
  899. struct nand_chip *this;
  900. struct mtd_info *mtd;
  901. struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
  902. struct mxc_nand_host *host;
  903. struct resource *res;
  904. int err = 0;
  905. struct nand_ecclayout *oob_smallpage, *oob_largepage;
  906. /* Allocate memory for MTD device structure and private data */
  907. host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
  908. NAND_MAX_OOBSIZE, GFP_KERNEL);
  909. if (!host)
  910. return -ENOMEM;
  911. host->data_buf = (uint8_t *)(host + 1);
  912. host->dev = &pdev->dev;
  913. /* structures must be linked */
  914. this = &host->nand;
  915. mtd = &host->mtd;
  916. mtd->priv = this;
  917. mtd->owner = THIS_MODULE;
  918. mtd->dev.parent = &pdev->dev;
  919. mtd->name = DRIVER_NAME;
  920. /* 50 us command delay time */
  921. this->chip_delay = 5;
  922. this->priv = host;
  923. this->dev_ready = mxc_nand_dev_ready;
  924. this->cmdfunc = mxc_nand_command;
  925. this->select_chip = mxc_nand_select_chip;
  926. this->read_byte = mxc_nand_read_byte;
  927. this->read_word = mxc_nand_read_word;
  928. this->write_buf = mxc_nand_write_buf;
  929. this->read_buf = mxc_nand_read_buf;
  930. this->verify_buf = mxc_nand_verify_buf;
  931. host->clk = clk_get(&pdev->dev, "nfc");
  932. if (IS_ERR(host->clk)) {
  933. err = PTR_ERR(host->clk);
  934. goto eclk;
  935. }
  936. clk_enable(host->clk);
  937. host->clk_act = 1;
  938. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  939. if (!res) {
  940. err = -ENODEV;
  941. goto eres;
  942. }
  943. host->base = ioremap(res->start, resource_size(res));
  944. if (!host->base) {
  945. err = -ENOMEM;
  946. goto eres;
  947. }
  948. host->main_area0 = host->base;
  949. if (nfc_is_v1()) {
  950. host->devtype_data = &imx21_nand_devtype_data;
  951. if (cpu_is_mx21())
  952. host->irqpending_quirk = 1;
  953. host->regs = host->base + 0xe00;
  954. host->spare0 = host->base + 0x800;
  955. host->spare_len = 16;
  956. oob_smallpage = &nandv1_hw_eccoob_smallpage;
  957. oob_largepage = &nandv1_hw_eccoob_largepage;
  958. this->ecc.bytes = 3;
  959. host->eccsize = 1;
  960. } else if (nfc_is_v21()) {
  961. host->devtype_data = &imx25_nand_devtype_data;
  962. host->regs = host->base + 0x1e00;
  963. host->spare0 = host->base + 0x1000;
  964. host->spare_len = 64;
  965. oob_smallpage = &nandv2_hw_eccoob_smallpage;
  966. oob_largepage = &nandv2_hw_eccoob_largepage;
  967. this->ecc.bytes = 9;
  968. } else if (nfc_is_v3_2()) {
  969. host->devtype_data = &imx51_nand_devtype_data;
  970. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  971. if (!res) {
  972. err = -ENODEV;
  973. goto eirq;
  974. }
  975. host->regs_ip = ioremap(res->start, resource_size(res));
  976. if (!host->regs_ip) {
  977. err = -ENOMEM;
  978. goto eirq;
  979. }
  980. host->regs_axi = host->base + 0x1e00;
  981. host->spare0 = host->base + 0x1000;
  982. host->spare_len = 64;
  983. oob_smallpage = &nandv2_hw_eccoob_smallpage;
  984. oob_largepage = &nandv2_hw_eccoob_largepage;
  985. } else
  986. BUG();
  987. this->ecc.size = 512;
  988. this->ecc.layout = oob_smallpage;
  989. if (pdata->hw_ecc) {
  990. this->ecc.calculate = mxc_nand_calculate_ecc;
  991. this->ecc.hwctl = mxc_nand_enable_hwecc;
  992. if (nfc_is_v1())
  993. this->ecc.correct = mxc_nand_correct_data_v1;
  994. else
  995. this->ecc.correct = mxc_nand_correct_data_v2_v3;
  996. this->ecc.mode = NAND_ECC_HW;
  997. } else {
  998. this->ecc.mode = NAND_ECC_SOFT;
  999. }
  1000. /* NAND bus width determines access funtions used by upper layer */
  1001. if (pdata->width == 2)
  1002. this->options |= NAND_BUSWIDTH_16;
  1003. if (pdata->flash_bbt) {
  1004. this->bbt_td = &bbt_main_descr;
  1005. this->bbt_md = &bbt_mirror_descr;
  1006. /* update flash based bbt */
  1007. this->bbt_options |= NAND_BBT_USE_FLASH;
  1008. }
  1009. init_completion(&host->op_completion);
  1010. host->irq = platform_get_irq(pdev, 0);
  1011. /*
  1012. * Use host->devtype_data->irq_control() here instead of irq_control()
  1013. * because we must not disable_irq_nosync without having requested the
  1014. * irq.
  1015. */
  1016. host->devtype_data->irq_control(host, 0);
  1017. err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
  1018. if (err)
  1019. goto eirq;
  1020. /*
  1021. * Now that we "own" the interrupt make sure the interrupt mask bit is
  1022. * cleared on i.MX21. Otherwise we can't read the interrupt status bit
  1023. * on this machine.
  1024. */
  1025. if (host->irqpending_quirk) {
  1026. disable_irq_nosync(host->irq);
  1027. host->devtype_data->irq_control(host, 1);
  1028. }
  1029. /* first scan to find the device and get the page size */
  1030. if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
  1031. err = -ENXIO;
  1032. goto escan;
  1033. }
  1034. /* Call preset again, with correct writesize this time */
  1035. host->devtype_data->preset(mtd);
  1036. if (mtd->writesize == 2048)
  1037. this->ecc.layout = oob_largepage;
  1038. if (nfc_is_v21() && mtd->writesize == 4096)
  1039. this->ecc.layout = &nandv2_hw_eccoob_4k;
  1040. /* second phase scan */
  1041. if (nand_scan_tail(mtd)) {
  1042. err = -ENXIO;
  1043. goto escan;
  1044. }
  1045. if (this->ecc.mode == NAND_ECC_HW) {
  1046. if (nfc_is_v1())
  1047. this->ecc.strength = 1;
  1048. else
  1049. this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
  1050. }
  1051. /* Register the partitions */
  1052. mtd_device_parse_register(mtd, part_probes, NULL, pdata->parts,
  1053. pdata->nr_parts);
  1054. platform_set_drvdata(pdev, host);
  1055. return 0;
  1056. escan:
  1057. free_irq(host->irq, host);
  1058. eirq:
  1059. if (host->regs_ip)
  1060. iounmap(host->regs_ip);
  1061. iounmap(host->base);
  1062. eres:
  1063. clk_put(host->clk);
  1064. eclk:
  1065. kfree(host);
  1066. return err;
  1067. }
  1068. static int __devexit mxcnd_remove(struct platform_device *pdev)
  1069. {
  1070. struct mxc_nand_host *host = platform_get_drvdata(pdev);
  1071. clk_put(host->clk);
  1072. platform_set_drvdata(pdev, NULL);
  1073. nand_release(&host->mtd);
  1074. free_irq(host->irq, host);
  1075. if (host->regs_ip)
  1076. iounmap(host->regs_ip);
  1077. iounmap(host->base);
  1078. kfree(host);
  1079. return 0;
  1080. }
  1081. static struct platform_driver mxcnd_driver = {
  1082. .driver = {
  1083. .name = DRIVER_NAME,
  1084. .owner = THIS_MODULE,
  1085. },
  1086. .remove = __devexit_p(mxcnd_remove),
  1087. };
  1088. static int __init mxc_nd_init(void)
  1089. {
  1090. return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
  1091. }
  1092. static void __exit mxc_nd_cleanup(void)
  1093. {
  1094. /* Unregister the device structure */
  1095. platform_driver_unregister(&mxcnd_driver);
  1096. }
  1097. module_init(mxc_nd_init);
  1098. module_exit(mxc_nd_cleanup);
  1099. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  1100. MODULE_DESCRIPTION("MXC NAND MTD driver");
  1101. MODULE_LICENSE("GPL");