processor_perflib.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822
  1. /*
  2. * processor_perflib.c - ACPI Processor P-States Library ($Revision: 71 $)
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. *
  10. *
  11. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or (at
  16. * your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful, but
  19. * WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, write to the Free Software Foundation, Inc.,
  25. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  26. *
  27. */
  28. #include <linux/kernel.h>
  29. #include <linux/module.h>
  30. #include <linux/init.h>
  31. #include <linux/cpufreq.h>
  32. #ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF
  33. #include <linux/proc_fs.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/mutex.h>
  36. #include <asm/uaccess.h>
  37. #endif
  38. #include <acpi/acpi_bus.h>
  39. #include <acpi/processor.h>
  40. #define ACPI_PROCESSOR_COMPONENT 0x01000000
  41. #define ACPI_PROCESSOR_CLASS "processor"
  42. #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
  43. #define ACPI_PROCESSOR_FILE_PERFORMANCE "performance"
  44. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  45. ACPI_MODULE_NAME("acpi_processor")
  46. static DEFINE_MUTEX(performance_mutex);
  47. /*
  48. * _PPC support is implemented as a CPUfreq policy notifier:
  49. * This means each time a CPUfreq driver registered also with
  50. * the ACPI core is asked to change the speed policy, the maximum
  51. * value is adjusted so that it is within the platform limit.
  52. *
  53. * Also, when a new platform limit value is detected, the CPUfreq
  54. * policy is adjusted accordingly.
  55. */
  56. #define PPC_REGISTERED 1
  57. #define PPC_IN_USE 2
  58. static int acpi_processor_ppc_status = 0;
  59. static int acpi_processor_ppc_notifier(struct notifier_block *nb,
  60. unsigned long event, void *data)
  61. {
  62. struct cpufreq_policy *policy = data;
  63. struct acpi_processor *pr;
  64. unsigned int ppc = 0;
  65. mutex_lock(&performance_mutex);
  66. if (event != CPUFREQ_INCOMPATIBLE)
  67. goto out;
  68. pr = processors[policy->cpu];
  69. if (!pr || !pr->performance)
  70. goto out;
  71. ppc = (unsigned int)pr->performance_platform_limit;
  72. if (ppc >= pr->performance->state_count)
  73. goto out;
  74. cpufreq_verify_within_limits(policy, 0,
  75. pr->performance->states[ppc].
  76. core_frequency * 1000);
  77. out:
  78. mutex_unlock(&performance_mutex);
  79. return 0;
  80. }
  81. static struct notifier_block acpi_ppc_notifier_block = {
  82. .notifier_call = acpi_processor_ppc_notifier,
  83. };
  84. static int acpi_processor_get_platform_limit(struct acpi_processor *pr)
  85. {
  86. acpi_status status = 0;
  87. unsigned long ppc = 0;
  88. if (!pr)
  89. return -EINVAL;
  90. /*
  91. * _PPC indicates the maximum state currently supported by the platform
  92. * (e.g. 0 = states 0..n; 1 = states 1..n; etc.
  93. */
  94. status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc);
  95. if (status != AE_NOT_FOUND)
  96. acpi_processor_ppc_status |= PPC_IN_USE;
  97. if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
  98. ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PPC"));
  99. return -ENODEV;
  100. }
  101. pr->performance_platform_limit = (int)ppc;
  102. return 0;
  103. }
  104. int acpi_processor_ppc_has_changed(struct acpi_processor *pr)
  105. {
  106. int ret = acpi_processor_get_platform_limit(pr);
  107. if (ret < 0)
  108. return (ret);
  109. else
  110. return cpufreq_update_policy(pr->id);
  111. }
  112. void acpi_processor_ppc_init(void)
  113. {
  114. if (!cpufreq_register_notifier
  115. (&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER))
  116. acpi_processor_ppc_status |= PPC_REGISTERED;
  117. else
  118. printk(KERN_DEBUG
  119. "Warning: Processor Platform Limit not supported.\n");
  120. }
  121. void acpi_processor_ppc_exit(void)
  122. {
  123. if (acpi_processor_ppc_status & PPC_REGISTERED)
  124. cpufreq_unregister_notifier(&acpi_ppc_notifier_block,
  125. CPUFREQ_POLICY_NOTIFIER);
  126. acpi_processor_ppc_status &= ~PPC_REGISTERED;
  127. }
  128. static int acpi_processor_get_performance_control(struct acpi_processor *pr)
  129. {
  130. int result = 0;
  131. acpi_status status = 0;
  132. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  133. union acpi_object *pct = NULL;
  134. union acpi_object obj = { 0 };
  135. status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer);
  136. if (ACPI_FAILURE(status)) {
  137. ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PCT"));
  138. return -ENODEV;
  139. }
  140. pct = (union acpi_object *)buffer.pointer;
  141. if (!pct || (pct->type != ACPI_TYPE_PACKAGE)
  142. || (pct->package.count != 2)) {
  143. printk(KERN_ERR PREFIX "Invalid _PCT data\n");
  144. result = -EFAULT;
  145. goto end;
  146. }
  147. /*
  148. * control_register
  149. */
  150. obj = pct->package.elements[0];
  151. if ((obj.type != ACPI_TYPE_BUFFER)
  152. || (obj.buffer.length < sizeof(struct acpi_pct_register))
  153. || (obj.buffer.pointer == NULL)) {
  154. printk(KERN_ERR PREFIX "Invalid _PCT data (control_register)\n");
  155. result = -EFAULT;
  156. goto end;
  157. }
  158. memcpy(&pr->performance->control_register, obj.buffer.pointer,
  159. sizeof(struct acpi_pct_register));
  160. /*
  161. * status_register
  162. */
  163. obj = pct->package.elements[1];
  164. if ((obj.type != ACPI_TYPE_BUFFER)
  165. || (obj.buffer.length < sizeof(struct acpi_pct_register))
  166. || (obj.buffer.pointer == NULL)) {
  167. printk(KERN_ERR PREFIX "Invalid _PCT data (status_register)\n");
  168. result = -EFAULT;
  169. goto end;
  170. }
  171. memcpy(&pr->performance->status_register, obj.buffer.pointer,
  172. sizeof(struct acpi_pct_register));
  173. end:
  174. kfree(buffer.pointer);
  175. return result;
  176. }
  177. static int acpi_processor_get_performance_states(struct acpi_processor *pr)
  178. {
  179. int result = 0;
  180. acpi_status status = AE_OK;
  181. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  182. struct acpi_buffer format = { sizeof("NNNNNN"), "NNNNNN" };
  183. struct acpi_buffer state = { 0, NULL };
  184. union acpi_object *pss = NULL;
  185. int i;
  186. status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
  187. if (ACPI_FAILURE(status)) {
  188. ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PSS"));
  189. return -ENODEV;
  190. }
  191. pss = buffer.pointer;
  192. if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) {
  193. printk(KERN_ERR PREFIX "Invalid _PSS data\n");
  194. result = -EFAULT;
  195. goto end;
  196. }
  197. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n",
  198. pss->package.count));
  199. pr->performance->state_count = pss->package.count;
  200. pr->performance->states =
  201. kmalloc(sizeof(struct acpi_processor_px) * pss->package.count,
  202. GFP_KERNEL);
  203. if (!pr->performance->states) {
  204. result = -ENOMEM;
  205. goto end;
  206. }
  207. for (i = 0; i < pr->performance->state_count; i++) {
  208. struct acpi_processor_px *px = &(pr->performance->states[i]);
  209. state.length = sizeof(struct acpi_processor_px);
  210. state.pointer = px;
  211. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i));
  212. status = acpi_extract_package(&(pss->package.elements[i]),
  213. &format, &state);
  214. if (ACPI_FAILURE(status)) {
  215. ACPI_EXCEPTION((AE_INFO, status, "Invalid _PSS data"));
  216. result = -EFAULT;
  217. kfree(pr->performance->states);
  218. goto end;
  219. }
  220. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  221. "State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n",
  222. i,
  223. (u32) px->core_frequency,
  224. (u32) px->power,
  225. (u32) px->transition_latency,
  226. (u32) px->bus_master_latency,
  227. (u32) px->control, (u32) px->status));
  228. if (!px->core_frequency) {
  229. printk(KERN_ERR PREFIX
  230. "Invalid _PSS data: freq is zero\n");
  231. result = -EFAULT;
  232. kfree(pr->performance->states);
  233. goto end;
  234. }
  235. }
  236. end:
  237. kfree(buffer.pointer);
  238. return result;
  239. }
  240. static int acpi_processor_get_performance_info(struct acpi_processor *pr)
  241. {
  242. int result = 0;
  243. acpi_status status = AE_OK;
  244. acpi_handle handle = NULL;
  245. if (!pr || !pr->performance || !pr->handle)
  246. return -EINVAL;
  247. status = acpi_get_handle(pr->handle, "_PCT", &handle);
  248. if (ACPI_FAILURE(status)) {
  249. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  250. "ACPI-based processor performance control unavailable\n"));
  251. return -ENODEV;
  252. }
  253. result = acpi_processor_get_performance_control(pr);
  254. if (result)
  255. return result;
  256. result = acpi_processor_get_performance_states(pr);
  257. if (result)
  258. return result;
  259. return 0;
  260. }
  261. int acpi_processor_notify_smm(struct module *calling_module)
  262. {
  263. acpi_status status;
  264. static int is_done = 0;
  265. if (!(acpi_processor_ppc_status & PPC_REGISTERED))
  266. return -EBUSY;
  267. if (!try_module_get(calling_module))
  268. return -EINVAL;
  269. /* is_done is set to negative if an error occured,
  270. * and to postitive if _no_ error occured, but SMM
  271. * was already notified. This avoids double notification
  272. * which might lead to unexpected results...
  273. */
  274. if (is_done > 0) {
  275. module_put(calling_module);
  276. return 0;
  277. } else if (is_done < 0) {
  278. module_put(calling_module);
  279. return is_done;
  280. }
  281. is_done = -EIO;
  282. /* Can't write pstate_cnt to smi_cmd if either value is zero */
  283. if ((!acpi_fadt.smi_cmd) || (!acpi_fadt.pstate_cnt)) {
  284. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No SMI port or pstate_cnt\n"));
  285. module_put(calling_module);
  286. return 0;
  287. }
  288. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  289. "Writing pstate_cnt [0x%x] to smi_cmd [0x%x]\n",
  290. acpi_fadt.pstate_cnt, acpi_fadt.smi_cmd));
  291. /* FADT v1 doesn't support pstate_cnt, many BIOS vendors use
  292. * it anyway, so we need to support it... */
  293. if (acpi_fadt_is_v1) {
  294. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  295. "Using v1.0 FADT reserved value for pstate_cnt\n"));
  296. }
  297. status = acpi_os_write_port(acpi_fadt.smi_cmd,
  298. (u32) acpi_fadt.pstate_cnt, 8);
  299. if (ACPI_FAILURE(status)) {
  300. ACPI_EXCEPTION((AE_INFO, status,
  301. "Failed to write pstate_cnt [0x%x] to "
  302. "smi_cmd [0x%x]", acpi_fadt.pstate_cnt,
  303. acpi_fadt.smi_cmd));
  304. module_put(calling_module);
  305. return status;
  306. }
  307. /* Success. If there's no _PPC, we need to fear nothing, so
  308. * we can allow the cpufreq driver to be rmmod'ed. */
  309. is_done = 1;
  310. if (!(acpi_processor_ppc_status & PPC_IN_USE))
  311. module_put(calling_module);
  312. return 0;
  313. }
  314. EXPORT_SYMBOL(acpi_processor_notify_smm);
  315. #ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF
  316. /* /proc/acpi/processor/../performance interface (DEPRECATED) */
  317. static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file);
  318. static struct file_operations acpi_processor_perf_fops = {
  319. .open = acpi_processor_perf_open_fs,
  320. .read = seq_read,
  321. .llseek = seq_lseek,
  322. .release = single_release,
  323. };
  324. static int acpi_processor_perf_seq_show(struct seq_file *seq, void *offset)
  325. {
  326. struct acpi_processor *pr = seq->private;
  327. int i;
  328. if (!pr)
  329. goto end;
  330. if (!pr->performance) {
  331. seq_puts(seq, "<not supported>\n");
  332. goto end;
  333. }
  334. seq_printf(seq, "state count: %d\n"
  335. "active state: P%d\n",
  336. pr->performance->state_count, pr->performance->state);
  337. seq_puts(seq, "states:\n");
  338. for (i = 0; i < pr->performance->state_count; i++)
  339. seq_printf(seq,
  340. " %cP%d: %d MHz, %d mW, %d uS\n",
  341. (i == pr->performance->state ? '*' : ' '), i,
  342. (u32) pr->performance->states[i].core_frequency,
  343. (u32) pr->performance->states[i].power,
  344. (u32) pr->performance->states[i].transition_latency);
  345. end:
  346. return 0;
  347. }
  348. static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file)
  349. {
  350. return single_open(file, acpi_processor_perf_seq_show,
  351. PDE(inode)->data);
  352. }
  353. static ssize_t
  354. acpi_processor_write_performance(struct file *file,
  355. const char __user * buffer,
  356. size_t count, loff_t * data)
  357. {
  358. int result = 0;
  359. struct seq_file *m = file->private_data;
  360. struct acpi_processor *pr = m->private;
  361. struct acpi_processor_performance *perf;
  362. char state_string[12] = { '\0' };
  363. unsigned int new_state = 0;
  364. struct cpufreq_policy policy;
  365. if (!pr || (count > sizeof(state_string) - 1))
  366. return -EINVAL;
  367. perf = pr->performance;
  368. if (!perf)
  369. return -EINVAL;
  370. if (copy_from_user(state_string, buffer, count))
  371. return -EFAULT;
  372. state_string[count] = '\0';
  373. new_state = simple_strtoul(state_string, NULL, 0);
  374. if (new_state >= perf->state_count)
  375. return -EINVAL;
  376. cpufreq_get_policy(&policy, pr->id);
  377. policy.cpu = pr->id;
  378. policy.min = perf->states[new_state].core_frequency * 1000;
  379. policy.max = perf->states[new_state].core_frequency * 1000;
  380. result = cpufreq_set_policy(&policy);
  381. if (result)
  382. return result;
  383. return count;
  384. }
  385. static void acpi_cpufreq_add_file(struct acpi_processor *pr)
  386. {
  387. struct proc_dir_entry *entry = NULL;
  388. struct acpi_device *device = NULL;
  389. if (acpi_bus_get_device(pr->handle, &device))
  390. return;
  391. /* add file 'performance' [R/W] */
  392. entry = create_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE,
  393. S_IFREG | S_IRUGO | S_IWUSR,
  394. acpi_device_dir(device));
  395. if (entry){
  396. acpi_processor_perf_fops.write = acpi_processor_write_performance;
  397. entry->proc_fops = &acpi_processor_perf_fops;
  398. entry->data = acpi_driver_data(device);
  399. entry->owner = THIS_MODULE;
  400. }
  401. return;
  402. }
  403. static void acpi_cpufreq_remove_file(struct acpi_processor *pr)
  404. {
  405. struct acpi_device *device = NULL;
  406. if (acpi_bus_get_device(pr->handle, &device))
  407. return;
  408. /* remove file 'performance' */
  409. remove_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE,
  410. acpi_device_dir(device));
  411. return;
  412. }
  413. #else
  414. static void acpi_cpufreq_add_file(struct acpi_processor *pr)
  415. {
  416. return;
  417. }
  418. static void acpi_cpufreq_remove_file(struct acpi_processor *pr)
  419. {
  420. return;
  421. }
  422. #endif /* CONFIG_X86_ACPI_CPUFREQ_PROC_INTF */
  423. static int acpi_processor_get_psd(struct acpi_processor *pr)
  424. {
  425. int result = 0;
  426. acpi_status status = AE_OK;
  427. struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
  428. struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
  429. struct acpi_buffer state = {0, NULL};
  430. union acpi_object *psd = NULL;
  431. struct acpi_psd_package *pdomain;
  432. status = acpi_evaluate_object(pr->handle, "_PSD", NULL, &buffer);
  433. if (ACPI_FAILURE(status)) {
  434. return -ENODEV;
  435. }
  436. psd = buffer.pointer;
  437. if (!psd || (psd->type != ACPI_TYPE_PACKAGE)) {
  438. ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n"));
  439. result = -EFAULT;
  440. goto end;
  441. }
  442. if (psd->package.count != 1) {
  443. ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n"));
  444. result = -EFAULT;
  445. goto end;
  446. }
  447. pdomain = &(pr->performance->domain_info);
  448. state.length = sizeof(struct acpi_psd_package);
  449. state.pointer = pdomain;
  450. status = acpi_extract_package(&(psd->package.elements[0]),
  451. &format, &state);
  452. if (ACPI_FAILURE(status)) {
  453. ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n"));
  454. result = -EFAULT;
  455. goto end;
  456. }
  457. if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
  458. ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown _PSD:num_entries\n"));
  459. result = -EFAULT;
  460. goto end;
  461. }
  462. if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
  463. ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown _PSD:revision\n"));
  464. result = -EFAULT;
  465. goto end;
  466. }
  467. end:
  468. kfree(buffer.pointer);
  469. return result;
  470. }
  471. int acpi_processor_preregister_performance(
  472. struct acpi_processor_performance **performance)
  473. {
  474. int count, count_target;
  475. int retval = 0;
  476. unsigned int i, j;
  477. cpumask_t covered_cpus;
  478. struct acpi_processor *pr;
  479. struct acpi_psd_package *pdomain;
  480. struct acpi_processor *match_pr;
  481. struct acpi_psd_package *match_pdomain;
  482. mutex_lock(&performance_mutex);
  483. retval = 0;
  484. /* Call _PSD for all CPUs */
  485. for_each_possible_cpu(i) {
  486. pr = processors[i];
  487. if (!pr) {
  488. /* Look only at processors in ACPI namespace */
  489. continue;
  490. }
  491. if (pr->performance) {
  492. retval = -EBUSY;
  493. continue;
  494. }
  495. if (!performance || !performance[i]) {
  496. retval = -EINVAL;
  497. continue;
  498. }
  499. pr->performance = performance[i];
  500. cpu_set(i, pr->performance->shared_cpu_map);
  501. if (acpi_processor_get_psd(pr)) {
  502. retval = -EINVAL;
  503. continue;
  504. }
  505. }
  506. if (retval)
  507. goto err_ret;
  508. /*
  509. * Now that we have _PSD data from all CPUs, lets setup P-state
  510. * domain info.
  511. */
  512. for_each_possible_cpu(i) {
  513. pr = processors[i];
  514. if (!pr)
  515. continue;
  516. /* Basic validity check for domain info */
  517. pdomain = &(pr->performance->domain_info);
  518. if ((pdomain->revision != ACPI_PSD_REV0_REVISION) ||
  519. (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES)) {
  520. retval = -EINVAL;
  521. goto err_ret;
  522. }
  523. if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
  524. pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
  525. pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
  526. retval = -EINVAL;
  527. goto err_ret;
  528. }
  529. }
  530. cpus_clear(covered_cpus);
  531. for_each_possible_cpu(i) {
  532. pr = processors[i];
  533. if (!pr)
  534. continue;
  535. if (cpu_isset(i, covered_cpus))
  536. continue;
  537. pdomain = &(pr->performance->domain_info);
  538. cpu_set(i, pr->performance->shared_cpu_map);
  539. cpu_set(i, covered_cpus);
  540. if (pdomain->num_processors <= 1)
  541. continue;
  542. /* Validate the Domain info */
  543. count_target = pdomain->num_processors;
  544. count = 1;
  545. if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
  546. pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL;
  547. else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
  548. pr->performance->shared_type = CPUFREQ_SHARED_TYPE_HW;
  549. else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
  550. pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ANY;
  551. for_each_possible_cpu(j) {
  552. if (i == j)
  553. continue;
  554. match_pr = processors[j];
  555. if (!match_pr)
  556. continue;
  557. match_pdomain = &(match_pr->performance->domain_info);
  558. if (match_pdomain->domain != pdomain->domain)
  559. continue;
  560. /* Here i and j are in the same domain */
  561. if (match_pdomain->num_processors != count_target) {
  562. retval = -EINVAL;
  563. goto err_ret;
  564. }
  565. if (pdomain->coord_type != match_pdomain->coord_type) {
  566. retval = -EINVAL;
  567. goto err_ret;
  568. }
  569. cpu_set(j, covered_cpus);
  570. cpu_set(j, pr->performance->shared_cpu_map);
  571. count++;
  572. }
  573. for_each_possible_cpu(j) {
  574. if (i == j)
  575. continue;
  576. match_pr = processors[j];
  577. if (!match_pr)
  578. continue;
  579. match_pdomain = &(match_pr->performance->domain_info);
  580. if (match_pdomain->domain != pdomain->domain)
  581. continue;
  582. match_pr->performance->shared_type =
  583. pr->performance->shared_type;
  584. match_pr->performance->shared_cpu_map =
  585. pr->performance->shared_cpu_map;
  586. }
  587. }
  588. err_ret:
  589. for_each_possible_cpu(i) {
  590. pr = processors[i];
  591. if (!pr || !pr->performance)
  592. continue;
  593. /* Assume no coordination on any error parsing domain info */
  594. if (retval) {
  595. cpus_clear(pr->performance->shared_cpu_map);
  596. cpu_set(i, pr->performance->shared_cpu_map);
  597. pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL;
  598. }
  599. pr->performance = NULL; /* Will be set for real in register */
  600. }
  601. mutex_unlock(&performance_mutex);
  602. return retval;
  603. }
  604. EXPORT_SYMBOL(acpi_processor_preregister_performance);
  605. int
  606. acpi_processor_register_performance(struct acpi_processor_performance
  607. *performance, unsigned int cpu)
  608. {
  609. struct acpi_processor *pr;
  610. if (!(acpi_processor_ppc_status & PPC_REGISTERED))
  611. return -EINVAL;
  612. mutex_lock(&performance_mutex);
  613. pr = processors[cpu];
  614. if (!pr) {
  615. mutex_unlock(&performance_mutex);
  616. return -ENODEV;
  617. }
  618. if (pr->performance) {
  619. mutex_unlock(&performance_mutex);
  620. return -EBUSY;
  621. }
  622. WARN_ON(!performance);
  623. pr->performance = performance;
  624. if (acpi_processor_get_performance_info(pr)) {
  625. pr->performance = NULL;
  626. mutex_unlock(&performance_mutex);
  627. return -EIO;
  628. }
  629. acpi_cpufreq_add_file(pr);
  630. mutex_unlock(&performance_mutex);
  631. return 0;
  632. }
  633. EXPORT_SYMBOL(acpi_processor_register_performance);
  634. void
  635. acpi_processor_unregister_performance(struct acpi_processor_performance
  636. *performance, unsigned int cpu)
  637. {
  638. struct acpi_processor *pr;
  639. mutex_lock(&performance_mutex);
  640. pr = processors[cpu];
  641. if (!pr) {
  642. mutex_unlock(&performance_mutex);
  643. return;
  644. }
  645. if (pr->performance)
  646. kfree(pr->performance->states);
  647. pr->performance = NULL;
  648. acpi_cpufreq_remove_file(pr);
  649. mutex_unlock(&performance_mutex);
  650. return;
  651. }
  652. EXPORT_SYMBOL(acpi_processor_unregister_performance);