rt2800pci.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. iounmap(base_addr);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
  84. #ifdef CONFIG_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  118. {
  119. case 0:
  120. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  121. break;
  122. case 1:
  123. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  124. break;
  125. default:
  126. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  127. break;
  128. }
  129. eeprom.reg_data_in = 0;
  130. eeprom.reg_data_out = 0;
  131. eeprom.reg_data_clock = 0;
  132. eeprom.reg_chip_select = 0;
  133. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  134. EEPROM_SIZE / sizeof(u16));
  135. }
  136. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  137. {
  138. return rt2800_efuse_detect(rt2x00dev);
  139. }
  140. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  141. {
  142. rt2800_read_eeprom_efuse(rt2x00dev);
  143. }
  144. #else
  145. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  146. {
  147. }
  148. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  149. {
  150. return 0;
  151. }
  152. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  153. {
  154. }
  155. #endif /* CONFIG_PCI */
  156. /*
  157. * Queue handlers.
  158. */
  159. static void rt2800pci_start_queue(struct data_queue *queue)
  160. {
  161. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  162. u32 reg;
  163. switch (queue->qid) {
  164. case QID_RX:
  165. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  166. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  167. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  168. break;
  169. case QID_BEACON:
  170. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  171. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  172. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  173. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  174. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  175. break;
  176. default:
  177. break;
  178. };
  179. }
  180. static void rt2800pci_kick_queue(struct data_queue *queue)
  181. {
  182. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  183. struct queue_entry *entry;
  184. switch (queue->qid) {
  185. case QID_AC_VO:
  186. case QID_AC_VI:
  187. case QID_AC_BE:
  188. case QID_AC_BK:
  189. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  190. rt2800_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), entry->entry_idx);
  191. break;
  192. case QID_MGMT:
  193. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  194. rt2800_register_write(rt2x00dev, TX_CTX_IDX(5), entry->entry_idx);
  195. break;
  196. default:
  197. break;
  198. }
  199. }
  200. static void rt2800pci_stop_queue(struct data_queue *queue)
  201. {
  202. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  203. u32 reg;
  204. switch (queue->qid) {
  205. case QID_RX:
  206. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  207. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  208. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  209. break;
  210. case QID_BEACON:
  211. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  212. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  213. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  214. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  215. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  216. break;
  217. default:
  218. break;
  219. }
  220. }
  221. /*
  222. * Firmware functions
  223. */
  224. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  225. {
  226. return FIRMWARE_RT2860;
  227. }
  228. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  229. const u8 *data, const size_t len)
  230. {
  231. u32 reg;
  232. /*
  233. * enable Host program ram write selection
  234. */
  235. reg = 0;
  236. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  237. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  238. /*
  239. * Write firmware to device.
  240. */
  241. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  242. data, len);
  243. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  244. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  245. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  246. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  247. return 0;
  248. }
  249. /*
  250. * Initialization functions.
  251. */
  252. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  253. {
  254. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  255. u32 word;
  256. if (entry->queue->qid == QID_RX) {
  257. rt2x00_desc_read(entry_priv->desc, 1, &word);
  258. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  259. } else {
  260. rt2x00_desc_read(entry_priv->desc, 1, &word);
  261. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  262. }
  263. }
  264. static void rt2800pci_clear_entry(struct queue_entry *entry)
  265. {
  266. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  267. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  268. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  269. u32 word;
  270. if (entry->queue->qid == QID_RX) {
  271. rt2x00_desc_read(entry_priv->desc, 0, &word);
  272. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  273. rt2x00_desc_write(entry_priv->desc, 0, word);
  274. rt2x00_desc_read(entry_priv->desc, 1, &word);
  275. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  276. rt2x00_desc_write(entry_priv->desc, 1, word);
  277. /*
  278. * Set RX IDX in register to inform hardware that we have
  279. * handled this entry and it is available for reuse again.
  280. */
  281. rt2800_register_write(rt2x00dev, RX_CRX_IDX,
  282. entry->entry_idx);
  283. } else {
  284. rt2x00_desc_read(entry_priv->desc, 1, &word);
  285. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  286. rt2x00_desc_write(entry_priv->desc, 1, word);
  287. }
  288. }
  289. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  290. {
  291. struct queue_entry_priv_pci *entry_priv;
  292. u32 reg;
  293. /*
  294. * Initialize registers.
  295. */
  296. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  297. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  298. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  299. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  300. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  301. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  302. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  303. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  304. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  305. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  306. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  307. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  308. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  309. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  310. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  311. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  312. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  313. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  314. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  315. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  316. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  317. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  318. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  319. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  320. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  321. /*
  322. * Enable global DMA configuration
  323. */
  324. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  325. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  326. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  327. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  328. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  329. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  330. return 0;
  331. }
  332. /*
  333. * Device state switch handlers.
  334. */
  335. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  336. enum dev_state state)
  337. {
  338. int mask = (state == STATE_RADIO_IRQ_ON) ||
  339. (state == STATE_RADIO_IRQ_ON_ISR);
  340. u32 reg;
  341. /*
  342. * When interrupts are being enabled, the interrupt registers
  343. * should clear the register to assure a clean state.
  344. */
  345. if (state == STATE_RADIO_IRQ_ON) {
  346. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  347. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  348. }
  349. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  350. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
  351. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
  352. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  353. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
  354. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
  355. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
  356. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
  357. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
  358. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
  359. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
  360. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
  361. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  362. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  363. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  364. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  365. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
  366. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
  367. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
  368. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  369. }
  370. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  371. {
  372. u32 reg;
  373. /*
  374. * Reset DMA indexes
  375. */
  376. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  377. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  378. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  379. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  380. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  381. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  382. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  383. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  384. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  385. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  386. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  387. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  388. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  389. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  390. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  391. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  392. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  393. return 0;
  394. }
  395. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  396. {
  397. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  398. rt2800pci_init_queues(rt2x00dev)))
  399. return -EIO;
  400. return rt2800_enable_radio(rt2x00dev);
  401. }
  402. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  403. {
  404. u32 reg;
  405. rt2800_disable_radio(rt2x00dev);
  406. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  407. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  408. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  409. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  410. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  411. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  412. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  413. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  414. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  415. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  416. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  417. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  418. }
  419. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  420. enum dev_state state)
  421. {
  422. /*
  423. * Always put the device to sleep (even when we intend to wakeup!)
  424. * if the device is booting and wasn't asleep it will return
  425. * failure when attempting to wakeup.
  426. */
  427. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
  428. if (state == STATE_AWAKE) {
  429. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  430. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  431. }
  432. return 0;
  433. }
  434. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  435. enum dev_state state)
  436. {
  437. int retval = 0;
  438. switch (state) {
  439. case STATE_RADIO_ON:
  440. /*
  441. * Before the radio can be enabled, the device first has
  442. * to be woken up. After that it needs a bit of time
  443. * to be fully awake and then the radio can be enabled.
  444. */
  445. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  446. msleep(1);
  447. retval = rt2800pci_enable_radio(rt2x00dev);
  448. break;
  449. case STATE_RADIO_OFF:
  450. /*
  451. * After the radio has been disabled, the device should
  452. * be put to sleep for powersaving.
  453. */
  454. rt2800pci_disable_radio(rt2x00dev);
  455. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  456. break;
  457. case STATE_RADIO_IRQ_ON:
  458. case STATE_RADIO_IRQ_ON_ISR:
  459. case STATE_RADIO_IRQ_OFF:
  460. case STATE_RADIO_IRQ_OFF_ISR:
  461. rt2800pci_toggle_irq(rt2x00dev, state);
  462. break;
  463. case STATE_DEEP_SLEEP:
  464. case STATE_SLEEP:
  465. case STATE_STANDBY:
  466. case STATE_AWAKE:
  467. retval = rt2800pci_set_state(rt2x00dev, state);
  468. break;
  469. default:
  470. retval = -ENOTSUPP;
  471. break;
  472. }
  473. if (unlikely(retval))
  474. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  475. state, retval);
  476. return retval;
  477. }
  478. /*
  479. * TX descriptor initialization
  480. */
  481. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  482. {
  483. return (__le32 *) entry->skb->data;
  484. }
  485. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  486. struct txentry_desc *txdesc)
  487. {
  488. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  489. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  490. __le32 *txd = entry_priv->desc;
  491. u32 word;
  492. /*
  493. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  494. * must contains a TXWI structure + 802.11 header + padding + 802.11
  495. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  496. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  497. * data. It means that LAST_SEC0 is always 0.
  498. */
  499. /*
  500. * Initialize TX descriptor
  501. */
  502. rt2x00_desc_read(txd, 0, &word);
  503. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  504. rt2x00_desc_write(txd, 0, word);
  505. rt2x00_desc_read(txd, 1, &word);
  506. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  507. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  508. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  509. rt2x00_set_field32(&word, TXD_W1_BURST,
  510. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  511. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  512. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  513. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  514. rt2x00_desc_write(txd, 1, word);
  515. rt2x00_desc_read(txd, 2, &word);
  516. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  517. skbdesc->skb_dma + TXWI_DESC_SIZE);
  518. rt2x00_desc_write(txd, 2, word);
  519. rt2x00_desc_read(txd, 3, &word);
  520. rt2x00_set_field32(&word, TXD_W3_WIV,
  521. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  522. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  523. rt2x00_desc_write(txd, 3, word);
  524. /*
  525. * Register descriptor details in skb frame descriptor.
  526. */
  527. skbdesc->desc = txd;
  528. skbdesc->desc_len = TXD_DESC_SIZE;
  529. }
  530. /*
  531. * RX control handlers
  532. */
  533. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  534. struct rxdone_entry_desc *rxdesc)
  535. {
  536. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  537. __le32 *rxd = entry_priv->desc;
  538. u32 word;
  539. rt2x00_desc_read(rxd, 3, &word);
  540. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  541. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  542. /*
  543. * Unfortunately we don't know the cipher type used during
  544. * decryption. This prevents us from correct providing
  545. * correct statistics through debugfs.
  546. */
  547. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  548. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  549. /*
  550. * Hardware has stripped IV/EIV data from 802.11 frame during
  551. * decryption. Unfortunately the descriptor doesn't contain
  552. * any fields with the EIV/IV data either, so they can't
  553. * be restored by rt2x00lib.
  554. */
  555. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  556. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  557. rxdesc->flags |= RX_FLAG_DECRYPTED;
  558. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  559. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  560. }
  561. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  562. rxdesc->dev_flags |= RXDONE_MY_BSS;
  563. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  564. rxdesc->dev_flags |= RXDONE_L2PAD;
  565. /*
  566. * Process the RXWI structure that is at the start of the buffer.
  567. */
  568. rt2800_process_rxwi(entry, rxdesc);
  569. }
  570. /*
  571. * Interrupt functions.
  572. */
  573. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  574. {
  575. struct ieee80211_conf conf = { .flags = 0 };
  576. struct rt2x00lib_conf libconf = { .conf = &conf };
  577. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  578. }
  579. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  580. {
  581. struct data_queue *queue;
  582. struct queue_entry *entry;
  583. u32 status;
  584. u8 qid;
  585. while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
  586. /* Now remove the tx status from the FIFO */
  587. if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
  588. sizeof(status)) != sizeof(status)) {
  589. WARN_ON(1);
  590. break;
  591. }
  592. qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
  593. if (qid >= QID_RX) {
  594. /*
  595. * Unknown queue, this shouldn't happen. Just drop
  596. * this tx status.
  597. */
  598. WARNING(rt2x00dev, "Got TX status report with "
  599. "unexpected pid %u, dropping\n", qid);
  600. break;
  601. }
  602. queue = rt2x00queue_get_queue(rt2x00dev, qid);
  603. if (unlikely(queue == NULL)) {
  604. /*
  605. * The queue is NULL, this shouldn't happen. Stop
  606. * processing here and drop the tx status
  607. */
  608. WARNING(rt2x00dev, "Got TX status for an unavailable "
  609. "queue %u, dropping\n", qid);
  610. break;
  611. }
  612. if (rt2x00queue_empty(queue)) {
  613. /*
  614. * The queue is empty. Stop processing here
  615. * and drop the tx status.
  616. */
  617. WARNING(rt2x00dev, "Got TX status for an empty "
  618. "queue %u, dropping\n", qid);
  619. break;
  620. }
  621. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  622. rt2800_txdone_entry(entry, status);
  623. }
  624. }
  625. static void rt2800pci_txstatus_tasklet(unsigned long data)
  626. {
  627. rt2800pci_txdone((struct rt2x00_dev *)data);
  628. }
  629. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  630. {
  631. struct rt2x00_dev *rt2x00dev = dev_instance;
  632. u32 reg = rt2x00dev->irqvalue[0];
  633. /*
  634. * 1 - Pre TBTT interrupt.
  635. */
  636. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  637. rt2x00lib_pretbtt(rt2x00dev);
  638. /*
  639. * 2 - Beacondone interrupt.
  640. */
  641. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  642. rt2x00lib_beacondone(rt2x00dev);
  643. /*
  644. * 3 - Rx ring done interrupt.
  645. */
  646. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  647. rt2x00pci_rxdone(rt2x00dev);
  648. /*
  649. * 4 - Auto wakeup interrupt.
  650. */
  651. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  652. rt2800pci_wakeup(rt2x00dev);
  653. /* Enable interrupts again. */
  654. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  655. STATE_RADIO_IRQ_ON_ISR);
  656. return IRQ_HANDLED;
  657. }
  658. static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
  659. {
  660. u32 status;
  661. int i;
  662. /*
  663. * The TX_FIFO_STATUS interrupt needs special care. We should
  664. * read TX_STA_FIFO but we should do it immediately as otherwise
  665. * the register can overflow and we would lose status reports.
  666. *
  667. * Hence, read the TX_STA_FIFO register and copy all tx status
  668. * reports into a kernel FIFO which is handled in the txstatus
  669. * tasklet. We use a tasklet to process the tx status reports
  670. * because we can schedule the tasklet multiple times (when the
  671. * interrupt fires again during tx status processing).
  672. *
  673. * Furthermore we don't disable the TX_FIFO_STATUS
  674. * interrupt here but leave it enabled so that the TX_STA_FIFO
  675. * can also be read while the interrupt thread gets executed.
  676. *
  677. * Since we have only one producer and one consumer we don't
  678. * need to lock the kfifo.
  679. */
  680. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  681. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
  682. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  683. break;
  684. if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
  685. WARNING(rt2x00dev, "TX status FIFO overrun,"
  686. " drop tx status report.\n");
  687. break;
  688. }
  689. if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
  690. sizeof(status)) != sizeof(status)) {
  691. WARNING(rt2x00dev, "TX status FIFO overrun,"
  692. "drop tx status report.\n");
  693. break;
  694. }
  695. }
  696. /* Schedule the tasklet for processing the tx status. */
  697. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  698. }
  699. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  700. {
  701. struct rt2x00_dev *rt2x00dev = dev_instance;
  702. u32 reg;
  703. irqreturn_t ret = IRQ_HANDLED;
  704. /* Read status and ACK all interrupts */
  705. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  706. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  707. if (!reg)
  708. return IRQ_NONE;
  709. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  710. return IRQ_HANDLED;
  711. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  712. rt2800pci_txstatus_interrupt(rt2x00dev);
  713. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
  714. rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
  715. rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
  716. rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
  717. /*
  718. * All other interrupts are handled in the interrupt thread.
  719. * Store irqvalue for use in the interrupt thread.
  720. */
  721. rt2x00dev->irqvalue[0] = reg;
  722. /*
  723. * Disable interrupts, will be enabled again in the
  724. * interrupt thread.
  725. */
  726. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  727. STATE_RADIO_IRQ_OFF_ISR);
  728. /*
  729. * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
  730. * tx status reports.
  731. */
  732. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  733. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  734. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  735. ret = IRQ_WAKE_THREAD;
  736. }
  737. return ret;
  738. }
  739. /*
  740. * Device probe functions.
  741. */
  742. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  743. {
  744. /*
  745. * Read EEPROM into buffer
  746. */
  747. if (rt2x00_is_soc(rt2x00dev))
  748. rt2800pci_read_eeprom_soc(rt2x00dev);
  749. else if (rt2800pci_efuse_detect(rt2x00dev))
  750. rt2800pci_read_eeprom_efuse(rt2x00dev);
  751. else
  752. rt2800pci_read_eeprom_pci(rt2x00dev);
  753. return rt2800_validate_eeprom(rt2x00dev);
  754. }
  755. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  756. {
  757. int retval;
  758. /*
  759. * Allocate eeprom data.
  760. */
  761. retval = rt2800pci_validate_eeprom(rt2x00dev);
  762. if (retval)
  763. return retval;
  764. retval = rt2800_init_eeprom(rt2x00dev);
  765. if (retval)
  766. return retval;
  767. /*
  768. * Initialize hw specifications.
  769. */
  770. retval = rt2800_probe_hw_mode(rt2x00dev);
  771. if (retval)
  772. return retval;
  773. /*
  774. * This device has multiple filters for control frames
  775. * and has a separate filter for PS Poll frames.
  776. */
  777. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  778. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  779. /*
  780. * This device has a pre tbtt interrupt and thus fetches
  781. * a new beacon directly prior to transmission.
  782. */
  783. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  784. /*
  785. * This device requires firmware.
  786. */
  787. if (!rt2x00_is_soc(rt2x00dev))
  788. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  789. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  790. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  791. __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
  792. __set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags);
  793. if (!modparam_nohwcrypt)
  794. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  795. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  796. /*
  797. * Set the rssi offset.
  798. */
  799. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  800. return 0;
  801. }
  802. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  803. .tx = rt2x00mac_tx,
  804. .start = rt2x00mac_start,
  805. .stop = rt2x00mac_stop,
  806. .add_interface = rt2x00mac_add_interface,
  807. .remove_interface = rt2x00mac_remove_interface,
  808. .config = rt2x00mac_config,
  809. .configure_filter = rt2x00mac_configure_filter,
  810. .set_key = rt2x00mac_set_key,
  811. .sw_scan_start = rt2x00mac_sw_scan_start,
  812. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  813. .get_stats = rt2x00mac_get_stats,
  814. .get_tkip_seq = rt2800_get_tkip_seq,
  815. .set_rts_threshold = rt2800_set_rts_threshold,
  816. .bss_info_changed = rt2x00mac_bss_info_changed,
  817. .conf_tx = rt2800_conf_tx,
  818. .get_tsf = rt2800_get_tsf,
  819. .rfkill_poll = rt2x00mac_rfkill_poll,
  820. .ampdu_action = rt2800_ampdu_action,
  821. .flush = rt2x00mac_flush,
  822. .get_survey = rt2800_get_survey,
  823. };
  824. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  825. .register_read = rt2x00pci_register_read,
  826. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  827. .register_write = rt2x00pci_register_write,
  828. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  829. .register_multiread = rt2x00pci_register_multiread,
  830. .register_multiwrite = rt2x00pci_register_multiwrite,
  831. .regbusy_read = rt2x00pci_regbusy_read,
  832. .drv_write_firmware = rt2800pci_write_firmware,
  833. .drv_init_registers = rt2800pci_init_registers,
  834. .drv_get_txwi = rt2800pci_get_txwi,
  835. };
  836. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  837. .irq_handler = rt2800pci_interrupt,
  838. .irq_handler_thread = rt2800pci_interrupt_thread,
  839. .txstatus_tasklet = rt2800pci_txstatus_tasklet,
  840. .probe_hw = rt2800pci_probe_hw,
  841. .get_firmware_name = rt2800pci_get_firmware_name,
  842. .check_firmware = rt2800_check_firmware,
  843. .load_firmware = rt2800_load_firmware,
  844. .initialize = rt2x00pci_initialize,
  845. .uninitialize = rt2x00pci_uninitialize,
  846. .get_entry_state = rt2800pci_get_entry_state,
  847. .clear_entry = rt2800pci_clear_entry,
  848. .set_device_state = rt2800pci_set_device_state,
  849. .rfkill_poll = rt2800_rfkill_poll,
  850. .link_stats = rt2800_link_stats,
  851. .reset_tuner = rt2800_reset_tuner,
  852. .link_tuner = rt2800_link_tuner,
  853. .start_queue = rt2800pci_start_queue,
  854. .kick_queue = rt2800pci_kick_queue,
  855. .stop_queue = rt2800pci_stop_queue,
  856. .write_tx_desc = rt2800pci_write_tx_desc,
  857. .write_tx_data = rt2800_write_tx_data,
  858. .write_beacon = rt2800_write_beacon,
  859. .fill_rxdone = rt2800pci_fill_rxdone,
  860. .config_shared_key = rt2800_config_shared_key,
  861. .config_pairwise_key = rt2800_config_pairwise_key,
  862. .config_filter = rt2800_config_filter,
  863. .config_intf = rt2800_config_intf,
  864. .config_erp = rt2800_config_erp,
  865. .config_ant = rt2800_config_ant,
  866. .config = rt2800_config,
  867. };
  868. static const struct data_queue_desc rt2800pci_queue_rx = {
  869. .entry_num = 128,
  870. .data_size = AGGREGATION_SIZE,
  871. .desc_size = RXD_DESC_SIZE,
  872. .priv_size = sizeof(struct queue_entry_priv_pci),
  873. };
  874. static const struct data_queue_desc rt2800pci_queue_tx = {
  875. .entry_num = 64,
  876. .data_size = AGGREGATION_SIZE,
  877. .desc_size = TXD_DESC_SIZE,
  878. .priv_size = sizeof(struct queue_entry_priv_pci),
  879. };
  880. static const struct data_queue_desc rt2800pci_queue_bcn = {
  881. .entry_num = 8,
  882. .data_size = 0, /* No DMA required for beacons */
  883. .desc_size = TXWI_DESC_SIZE,
  884. .priv_size = sizeof(struct queue_entry_priv_pci),
  885. };
  886. static const struct rt2x00_ops rt2800pci_ops = {
  887. .name = KBUILD_MODNAME,
  888. .max_sta_intf = 1,
  889. .max_ap_intf = 8,
  890. .eeprom_size = EEPROM_SIZE,
  891. .rf_size = RF_SIZE,
  892. .tx_queues = NUM_TX_QUEUES,
  893. .extra_tx_headroom = TXWI_DESC_SIZE,
  894. .rx = &rt2800pci_queue_rx,
  895. .tx = &rt2800pci_queue_tx,
  896. .bcn = &rt2800pci_queue_bcn,
  897. .lib = &rt2800pci_rt2x00_ops,
  898. .drv = &rt2800pci_rt2800_ops,
  899. .hw = &rt2800pci_mac80211_ops,
  900. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  901. .debugfs = &rt2800_rt2x00debug,
  902. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  903. };
  904. /*
  905. * RT2800pci module information.
  906. */
  907. #ifdef CONFIG_PCI
  908. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  909. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  910. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  911. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  912. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  913. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  914. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  915. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  916. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  917. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  918. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  919. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  920. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  921. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  922. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  923. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  924. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  925. #ifdef CONFIG_RT2800PCI_RT33XX
  926. { PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops) },
  927. #endif
  928. #ifdef CONFIG_RT2800PCI_RT35XX
  929. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  930. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  931. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  932. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  933. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  934. #endif
  935. { 0, }
  936. };
  937. #endif /* CONFIG_PCI */
  938. MODULE_AUTHOR(DRV_PROJECT);
  939. MODULE_VERSION(DRV_VERSION);
  940. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  941. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  942. #ifdef CONFIG_PCI
  943. MODULE_FIRMWARE(FIRMWARE_RT2860);
  944. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  945. #endif /* CONFIG_PCI */
  946. MODULE_LICENSE("GPL");
  947. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  948. static int rt2800soc_probe(struct platform_device *pdev)
  949. {
  950. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  951. }
  952. static struct platform_driver rt2800soc_driver = {
  953. .driver = {
  954. .name = "rt2800_wmac",
  955. .owner = THIS_MODULE,
  956. .mod_name = KBUILD_MODNAME,
  957. },
  958. .probe = rt2800soc_probe,
  959. .remove = __devexit_p(rt2x00soc_remove),
  960. .suspend = rt2x00soc_suspend,
  961. .resume = rt2x00soc_resume,
  962. };
  963. #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
  964. #ifdef CONFIG_PCI
  965. static struct pci_driver rt2800pci_driver = {
  966. .name = KBUILD_MODNAME,
  967. .id_table = rt2800pci_device_table,
  968. .probe = rt2x00pci_probe,
  969. .remove = __devexit_p(rt2x00pci_remove),
  970. .suspend = rt2x00pci_suspend,
  971. .resume = rt2x00pci_resume,
  972. };
  973. #endif /* CONFIG_PCI */
  974. static int __init rt2800pci_init(void)
  975. {
  976. int ret = 0;
  977. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  978. ret = platform_driver_register(&rt2800soc_driver);
  979. if (ret)
  980. return ret;
  981. #endif
  982. #ifdef CONFIG_PCI
  983. ret = pci_register_driver(&rt2800pci_driver);
  984. if (ret) {
  985. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  986. platform_driver_unregister(&rt2800soc_driver);
  987. #endif
  988. return ret;
  989. }
  990. #endif
  991. return ret;
  992. }
  993. static void __exit rt2800pci_exit(void)
  994. {
  995. #ifdef CONFIG_PCI
  996. pci_unregister_driver(&rt2800pci_driver);
  997. #endif
  998. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  999. platform_driver_unregister(&rt2800soc_driver);
  1000. #endif
  1001. }
  1002. module_init(rt2800pci_init);
  1003. module_exit(rt2800pci_exit);