kv_dpm.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "drmP.h"
  24. #include "radeon.h"
  25. #include "cikd.h"
  26. #include "r600_dpm.h"
  27. #include "kv_dpm.h"
  28. #include "radeon_asic.h"
  29. #include <linux/seq_file.h>
  30. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  31. #define KV_MINIMUM_ENGINE_CLOCK 800
  32. #define SMC_RAM_END 0x40000
  33. static void kv_init_graphics_levels(struct radeon_device *rdev);
  34. static int kv_calculate_ds_divider(struct radeon_device *rdev);
  35. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
  36. static int kv_calculate_dpm_settings(struct radeon_device *rdev);
  37. static void kv_enable_new_levels(struct radeon_device *rdev);
  38. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  39. struct radeon_ps *new_rps);
  40. static int kv_set_enabled_levels(struct radeon_device *rdev);
  41. static int kv_force_dpm_highest(struct radeon_device *rdev);
  42. static int kv_force_dpm_lowest(struct radeon_device *rdev);
  43. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  44. struct radeon_ps *new_rps,
  45. struct radeon_ps *old_rps);
  46. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  47. int min_temp, int max_temp);
  48. static int kv_init_fps_limits(struct radeon_device *rdev);
  49. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
  50. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
  51. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
  52. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);
  53. extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
  54. extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
  55. extern void cik_update_cg(struct radeon_device *rdev,
  56. u32 block, bool enable);
  57. static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
  58. {
  59. { 0, 4, 1 },
  60. { 1, 4, 1 },
  61. { 2, 5, 1 },
  62. { 3, 4, 2 },
  63. { 4, 1, 1 },
  64. { 5, 5, 2 },
  65. { 6, 6, 1 },
  66. { 7, 9, 2 },
  67. { 0xffffffff }
  68. };
  69. static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
  70. {
  71. { 0, 4, 1 },
  72. { 0xffffffff }
  73. };
  74. static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
  75. {
  76. { 0, 4, 1 },
  77. { 0xffffffff }
  78. };
  79. static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
  80. {
  81. { 0, 4, 1 },
  82. { 0xffffffff }
  83. };
  84. static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
  85. {
  86. { 0, 4, 1 },
  87. { 0xffffffff }
  88. };
  89. static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
  90. {
  91. { 0, 4, 1 },
  92. { 1, 4, 1 },
  93. { 2, 5, 1 },
  94. { 3, 4, 1 },
  95. { 4, 1, 1 },
  96. { 5, 5, 1 },
  97. { 6, 6, 1 },
  98. { 7, 9, 1 },
  99. { 8, 4, 1 },
  100. { 9, 2, 1 },
  101. { 10, 3, 1 },
  102. { 11, 6, 1 },
  103. { 12, 8, 2 },
  104. { 13, 1, 1 },
  105. { 14, 2, 1 },
  106. { 15, 3, 1 },
  107. { 16, 1, 1 },
  108. { 17, 4, 1 },
  109. { 18, 3, 1 },
  110. { 19, 1, 1 },
  111. { 20, 8, 1 },
  112. { 21, 5, 1 },
  113. { 22, 1, 1 },
  114. { 23, 1, 1 },
  115. { 24, 4, 1 },
  116. { 27, 6, 1 },
  117. { 28, 1, 1 },
  118. { 0xffffffff }
  119. };
  120. static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
  121. {
  122. { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  123. };
  124. static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
  125. {
  126. { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  127. };
  128. static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
  129. {
  130. { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  131. };
  132. static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
  133. {
  134. { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  135. };
  136. static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
  137. {
  138. { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  139. };
  140. static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
  141. {
  142. { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  143. };
  144. static const struct kv_pt_config_reg didt_config_kv[] =
  145. {
  146. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  147. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  148. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  149. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  150. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  151. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  152. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  153. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  154. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  155. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  156. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  157. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  158. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  159. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  160. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  161. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  162. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  163. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  164. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  165. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  166. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  167. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  168. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  169. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  170. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  171. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  172. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  173. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  174. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  175. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  176. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  177. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  178. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  179. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  180. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  181. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  182. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  183. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  184. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  185. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  186. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  187. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  188. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  189. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  190. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  191. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  192. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  193. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  194. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  195. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  196. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  197. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  198. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  199. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  200. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  201. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  202. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  203. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  204. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  205. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  206. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  207. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  208. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  209. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  210. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  211. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  212. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  213. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  214. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  215. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  216. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  217. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  218. { 0xFFFFFFFF }
  219. };
  220. static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
  221. {
  222. struct kv_ps *ps = rps->ps_priv;
  223. return ps;
  224. }
  225. static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
  226. {
  227. struct kv_power_info *pi = rdev->pm.dpm.priv;
  228. return pi;
  229. }
  230. #if 0
  231. static void kv_program_local_cac_table(struct radeon_device *rdev,
  232. const struct kv_lcac_config_values *local_cac_table,
  233. const struct kv_lcac_config_reg *local_cac_reg)
  234. {
  235. u32 i, count, data;
  236. const struct kv_lcac_config_values *values = local_cac_table;
  237. while (values->block_id != 0xffffffff) {
  238. count = values->signal_id;
  239. for (i = 0; i < count; i++) {
  240. data = ((values->block_id << local_cac_reg->block_shift) &
  241. local_cac_reg->block_mask);
  242. data |= ((i << local_cac_reg->signal_shift) &
  243. local_cac_reg->signal_mask);
  244. data |= ((values->t << local_cac_reg->t_shift) &
  245. local_cac_reg->t_mask);
  246. data |= ((1 << local_cac_reg->enable_shift) &
  247. local_cac_reg->enable_mask);
  248. WREG32_SMC(local_cac_reg->cntl, data);
  249. }
  250. values++;
  251. }
  252. }
  253. #endif
  254. static int kv_program_pt_config_registers(struct radeon_device *rdev,
  255. const struct kv_pt_config_reg *cac_config_regs)
  256. {
  257. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  258. u32 data;
  259. u32 cache = 0;
  260. if (config_regs == NULL)
  261. return -EINVAL;
  262. while (config_regs->offset != 0xFFFFFFFF) {
  263. if (config_regs->type == KV_CONFIGREG_CACHE) {
  264. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  265. } else {
  266. switch (config_regs->type) {
  267. case KV_CONFIGREG_SMC_IND:
  268. data = RREG32_SMC(config_regs->offset);
  269. break;
  270. case KV_CONFIGREG_DIDT_IND:
  271. data = RREG32_DIDT(config_regs->offset);
  272. break;
  273. default:
  274. data = RREG32(config_regs->offset << 2);
  275. break;
  276. }
  277. data &= ~config_regs->mask;
  278. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  279. data |= cache;
  280. cache = 0;
  281. switch (config_regs->type) {
  282. case KV_CONFIGREG_SMC_IND:
  283. WREG32_SMC(config_regs->offset, data);
  284. break;
  285. case KV_CONFIGREG_DIDT_IND:
  286. WREG32_DIDT(config_regs->offset, data);
  287. break;
  288. default:
  289. WREG32(config_regs->offset << 2, data);
  290. break;
  291. }
  292. }
  293. config_regs++;
  294. }
  295. return 0;
  296. }
  297. static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
  298. {
  299. struct kv_power_info *pi = kv_get_pi(rdev);
  300. u32 data;
  301. if (pi->caps_sq_ramping) {
  302. data = RREG32_DIDT(DIDT_SQ_CTRL0);
  303. if (enable)
  304. data |= DIDT_CTRL_EN;
  305. else
  306. data &= ~DIDT_CTRL_EN;
  307. WREG32_DIDT(DIDT_SQ_CTRL0, data);
  308. }
  309. if (pi->caps_db_ramping) {
  310. data = RREG32_DIDT(DIDT_DB_CTRL0);
  311. if (enable)
  312. data |= DIDT_CTRL_EN;
  313. else
  314. data &= ~DIDT_CTRL_EN;
  315. WREG32_DIDT(DIDT_DB_CTRL0, data);
  316. }
  317. if (pi->caps_td_ramping) {
  318. data = RREG32_DIDT(DIDT_TD_CTRL0);
  319. if (enable)
  320. data |= DIDT_CTRL_EN;
  321. else
  322. data &= ~DIDT_CTRL_EN;
  323. WREG32_DIDT(DIDT_TD_CTRL0, data);
  324. }
  325. if (pi->caps_tcp_ramping) {
  326. data = RREG32_DIDT(DIDT_TCP_CTRL0);
  327. if (enable)
  328. data |= DIDT_CTRL_EN;
  329. else
  330. data &= ~DIDT_CTRL_EN;
  331. WREG32_DIDT(DIDT_TCP_CTRL0, data);
  332. }
  333. }
  334. static int kv_enable_didt(struct radeon_device *rdev, bool enable)
  335. {
  336. struct kv_power_info *pi = kv_get_pi(rdev);
  337. int ret;
  338. if (pi->caps_sq_ramping ||
  339. pi->caps_db_ramping ||
  340. pi->caps_td_ramping ||
  341. pi->caps_tcp_ramping) {
  342. cik_enter_rlc_safe_mode(rdev);
  343. if (enable) {
  344. ret = kv_program_pt_config_registers(rdev, didt_config_kv);
  345. if (ret) {
  346. cik_exit_rlc_safe_mode(rdev);
  347. return ret;
  348. }
  349. }
  350. kv_do_enable_didt(rdev, enable);
  351. cik_exit_rlc_safe_mode(rdev);
  352. }
  353. return 0;
  354. }
  355. #if 0
  356. static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev)
  357. {
  358. struct kv_power_info *pi = kv_get_pi(rdev);
  359. if (pi->caps_cac) {
  360. WREG32_SMC(LCAC_SX0_OVR_SEL, 0);
  361. WREG32_SMC(LCAC_SX0_OVR_VAL, 0);
  362. kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
  363. WREG32_SMC(LCAC_MC0_OVR_SEL, 0);
  364. WREG32_SMC(LCAC_MC0_OVR_VAL, 0);
  365. kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
  366. WREG32_SMC(LCAC_MC1_OVR_SEL, 0);
  367. WREG32_SMC(LCAC_MC1_OVR_VAL, 0);
  368. kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
  369. WREG32_SMC(LCAC_MC2_OVR_SEL, 0);
  370. WREG32_SMC(LCAC_MC2_OVR_VAL, 0);
  371. kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
  372. WREG32_SMC(LCAC_MC3_OVR_SEL, 0);
  373. WREG32_SMC(LCAC_MC3_OVR_VAL, 0);
  374. kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
  375. WREG32_SMC(LCAC_CPL_OVR_SEL, 0);
  376. WREG32_SMC(LCAC_CPL_OVR_VAL, 0);
  377. kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
  378. }
  379. }
  380. #endif
  381. static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
  382. {
  383. struct kv_power_info *pi = kv_get_pi(rdev);
  384. int ret = 0;
  385. if (pi->caps_cac) {
  386. if (enable) {
  387. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
  388. if (ret)
  389. pi->cac_enabled = false;
  390. else
  391. pi->cac_enabled = true;
  392. } else if (pi->cac_enabled) {
  393. kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
  394. pi->cac_enabled = false;
  395. }
  396. }
  397. return ret;
  398. }
  399. static int kv_process_firmware_header(struct radeon_device *rdev)
  400. {
  401. struct kv_power_info *pi = kv_get_pi(rdev);
  402. u32 tmp;
  403. int ret;
  404. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  405. offsetof(SMU7_Firmware_Header, DpmTable),
  406. &tmp, pi->sram_end);
  407. if (ret == 0)
  408. pi->dpm_table_start = tmp;
  409. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  410. offsetof(SMU7_Firmware_Header, SoftRegisters),
  411. &tmp, pi->sram_end);
  412. if (ret == 0)
  413. pi->soft_regs_start = tmp;
  414. return ret;
  415. }
  416. static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
  417. {
  418. struct kv_power_info *pi = kv_get_pi(rdev);
  419. int ret;
  420. pi->graphics_voltage_change_enable = 1;
  421. ret = kv_copy_bytes_to_smc(rdev,
  422. pi->dpm_table_start +
  423. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  424. &pi->graphics_voltage_change_enable,
  425. sizeof(u8), pi->sram_end);
  426. return ret;
  427. }
  428. static int kv_set_dpm_interval(struct radeon_device *rdev)
  429. {
  430. struct kv_power_info *pi = kv_get_pi(rdev);
  431. int ret;
  432. pi->graphics_interval = 1;
  433. ret = kv_copy_bytes_to_smc(rdev,
  434. pi->dpm_table_start +
  435. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  436. &pi->graphics_interval,
  437. sizeof(u8), pi->sram_end);
  438. return ret;
  439. }
  440. static int kv_set_dpm_boot_state(struct radeon_device *rdev)
  441. {
  442. struct kv_power_info *pi = kv_get_pi(rdev);
  443. int ret;
  444. ret = kv_copy_bytes_to_smc(rdev,
  445. pi->dpm_table_start +
  446. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  447. &pi->graphics_boot_level,
  448. sizeof(u8), pi->sram_end);
  449. return ret;
  450. }
  451. static void kv_program_vc(struct radeon_device *rdev)
  452. {
  453. WREG32_SMC(CG_FTV_0, 0x3FFFC000);
  454. }
  455. static void kv_clear_vc(struct radeon_device *rdev)
  456. {
  457. WREG32_SMC(CG_FTV_0, 0);
  458. }
  459. static int kv_set_divider_value(struct radeon_device *rdev,
  460. u32 index, u32 sclk)
  461. {
  462. struct kv_power_info *pi = kv_get_pi(rdev);
  463. struct atom_clock_dividers dividers;
  464. int ret;
  465. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  466. sclk, false, &dividers);
  467. if (ret)
  468. return ret;
  469. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  470. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  471. return 0;
  472. }
  473. static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
  474. u16 voltage)
  475. {
  476. return 6200 - (voltage * 25);
  477. }
  478. static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
  479. u32 vid_2bit)
  480. {
  481. struct kv_power_info *pi = kv_get_pi(rdev);
  482. u32 vid_8bit = sumo_convert_vid2_to_vid7(rdev,
  483. &pi->sys_info.vid_mapping_table,
  484. vid_2bit);
  485. return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
  486. }
  487. static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
  488. {
  489. struct kv_power_info *pi = kv_get_pi(rdev);
  490. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  491. pi->graphics_level[index].MinVddNb =
  492. cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));
  493. return 0;
  494. }
  495. static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
  496. {
  497. struct kv_power_info *pi = kv_get_pi(rdev);
  498. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  499. return 0;
  500. }
  501. static void kv_dpm_power_level_enable(struct radeon_device *rdev,
  502. u32 index, bool enable)
  503. {
  504. struct kv_power_info *pi = kv_get_pi(rdev);
  505. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  506. }
  507. static void kv_start_dpm(struct radeon_device *rdev)
  508. {
  509. u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
  510. tmp |= GLOBAL_PWRMGT_EN;
  511. WREG32_SMC(GENERAL_PWRMGT, tmp);
  512. kv_smc_dpm_enable(rdev, true);
  513. }
  514. static void kv_stop_dpm(struct radeon_device *rdev)
  515. {
  516. kv_smc_dpm_enable(rdev, false);
  517. }
  518. static void kv_start_am(struct radeon_device *rdev)
  519. {
  520. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  521. sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
  522. sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;
  523. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  524. }
  525. static void kv_reset_am(struct radeon_device *rdev)
  526. {
  527. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  528. sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
  529. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  530. }
  531. static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
  532. {
  533. return kv_notify_message_to_smu(rdev, freeze ?
  534. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  535. }
  536. static int kv_force_lowest_valid(struct radeon_device *rdev)
  537. {
  538. return kv_force_dpm_lowest(rdev);
  539. }
  540. static int kv_unforce_levels(struct radeon_device *rdev)
  541. {
  542. return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
  543. }
  544. static int kv_update_sclk_t(struct radeon_device *rdev)
  545. {
  546. struct kv_power_info *pi = kv_get_pi(rdev);
  547. u32 low_sclk_interrupt_t = 0;
  548. int ret = 0;
  549. if (pi->caps_sclk_throttle_low_notification) {
  550. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  551. ret = kv_copy_bytes_to_smc(rdev,
  552. pi->dpm_table_start +
  553. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  554. (u8 *)&low_sclk_interrupt_t,
  555. sizeof(u32), pi->sram_end);
  556. }
  557. return ret;
  558. }
  559. static int kv_program_bootup_state(struct radeon_device *rdev)
  560. {
  561. struct kv_power_info *pi = kv_get_pi(rdev);
  562. u32 i;
  563. struct radeon_clock_voltage_dependency_table *table =
  564. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  565. if (table && table->count) {
  566. for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
  567. if ((table->entries[i].clk == pi->boot_pl.sclk) ||
  568. (i == 0))
  569. break;
  570. }
  571. pi->graphics_boot_level = (u8)i;
  572. kv_dpm_power_level_enable(rdev, i, true);
  573. } else {
  574. struct sumo_sclk_voltage_mapping_table *table =
  575. &pi->sys_info.sclk_voltage_mapping_table;
  576. if (table->num_max_dpm_entries == 0)
  577. return -EINVAL;
  578. for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
  579. if ((table->entries[i].sclk_frequency == pi->boot_pl.sclk) ||
  580. (i == 0))
  581. break;
  582. }
  583. pi->graphics_boot_level = (u8)i;
  584. kv_dpm_power_level_enable(rdev, i, true);
  585. }
  586. return 0;
  587. }
  588. static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
  589. {
  590. struct kv_power_info *pi = kv_get_pi(rdev);
  591. int ret;
  592. pi->graphics_therm_throttle_enable = 1;
  593. ret = kv_copy_bytes_to_smc(rdev,
  594. pi->dpm_table_start +
  595. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  596. &pi->graphics_therm_throttle_enable,
  597. sizeof(u8), pi->sram_end);
  598. return ret;
  599. }
  600. static int kv_upload_dpm_settings(struct radeon_device *rdev)
  601. {
  602. struct kv_power_info *pi = kv_get_pi(rdev);
  603. int ret;
  604. ret = kv_copy_bytes_to_smc(rdev,
  605. pi->dpm_table_start +
  606. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  607. (u8 *)&pi->graphics_level,
  608. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  609. pi->sram_end);
  610. if (ret)
  611. return ret;
  612. ret = kv_copy_bytes_to_smc(rdev,
  613. pi->dpm_table_start +
  614. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  615. &pi->graphics_dpm_level_count,
  616. sizeof(u8), pi->sram_end);
  617. return ret;
  618. }
  619. static u32 kv_get_clock_difference(u32 a, u32 b)
  620. {
  621. return (a >= b) ? a - b : b - a;
  622. }
  623. static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
  624. {
  625. struct kv_power_info *pi = kv_get_pi(rdev);
  626. u32 value;
  627. if (pi->caps_enable_dfs_bypass) {
  628. if (kv_get_clock_difference(clk, 40000) < 200)
  629. value = 3;
  630. else if (kv_get_clock_difference(clk, 30000) < 200)
  631. value = 2;
  632. else if (kv_get_clock_difference(clk, 20000) < 200)
  633. value = 7;
  634. else if (kv_get_clock_difference(clk, 15000) < 200)
  635. value = 6;
  636. else if (kv_get_clock_difference(clk, 10000) < 200)
  637. value = 8;
  638. else
  639. value = 0;
  640. } else {
  641. value = 0;
  642. }
  643. return value;
  644. }
  645. static int kv_populate_uvd_table(struct radeon_device *rdev)
  646. {
  647. struct kv_power_info *pi = kv_get_pi(rdev);
  648. struct radeon_uvd_clock_voltage_dependency_table *table =
  649. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  650. struct atom_clock_dividers dividers;
  651. int ret;
  652. u32 i;
  653. if (table == NULL || table->count == 0)
  654. return 0;
  655. pi->uvd_level_count = 0;
  656. for (i = 0; i < table->count; i++) {
  657. if (pi->high_voltage_t &&
  658. (pi->high_voltage_t < table->entries[i].v))
  659. break;
  660. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  661. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  662. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  663. pi->uvd_level[i].VClkBypassCntl =
  664. (u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
  665. pi->uvd_level[i].DClkBypassCntl =
  666. (u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);
  667. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  668. table->entries[i].vclk, false, &dividers);
  669. if (ret)
  670. return ret;
  671. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  672. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  673. table->entries[i].dclk, false, &dividers);
  674. if (ret)
  675. return ret;
  676. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  677. pi->uvd_level_count++;
  678. }
  679. ret = kv_copy_bytes_to_smc(rdev,
  680. pi->dpm_table_start +
  681. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  682. (u8 *)&pi->uvd_level_count,
  683. sizeof(u8), pi->sram_end);
  684. if (ret)
  685. return ret;
  686. pi->uvd_interval = 1;
  687. ret = kv_copy_bytes_to_smc(rdev,
  688. pi->dpm_table_start +
  689. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  690. &pi->uvd_interval,
  691. sizeof(u8), pi->sram_end);
  692. if (ret)
  693. return ret;
  694. ret = kv_copy_bytes_to_smc(rdev,
  695. pi->dpm_table_start +
  696. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  697. (u8 *)&pi->uvd_level,
  698. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  699. pi->sram_end);
  700. return ret;
  701. }
  702. static int kv_populate_vce_table(struct radeon_device *rdev)
  703. {
  704. struct kv_power_info *pi = kv_get_pi(rdev);
  705. int ret;
  706. u32 i;
  707. struct radeon_vce_clock_voltage_dependency_table *table =
  708. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  709. struct atom_clock_dividers dividers;
  710. if (table == NULL || table->count == 0)
  711. return 0;
  712. pi->vce_level_count = 0;
  713. for (i = 0; i < table->count; i++) {
  714. if (pi->high_voltage_t &&
  715. pi->high_voltage_t < table->entries[i].v)
  716. break;
  717. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  718. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  719. pi->vce_level[i].ClkBypassCntl =
  720. (u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);
  721. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  722. table->entries[i].evclk, false, &dividers);
  723. if (ret)
  724. return ret;
  725. pi->vce_level[i].Divider = (u8)dividers.post_div;
  726. pi->vce_level_count++;
  727. }
  728. ret = kv_copy_bytes_to_smc(rdev,
  729. pi->dpm_table_start +
  730. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  731. (u8 *)&pi->vce_level_count,
  732. sizeof(u8),
  733. pi->sram_end);
  734. if (ret)
  735. return ret;
  736. pi->vce_interval = 1;
  737. ret = kv_copy_bytes_to_smc(rdev,
  738. pi->dpm_table_start +
  739. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  740. (u8 *)&pi->vce_interval,
  741. sizeof(u8),
  742. pi->sram_end);
  743. if (ret)
  744. return ret;
  745. ret = kv_copy_bytes_to_smc(rdev,
  746. pi->dpm_table_start +
  747. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  748. (u8 *)&pi->vce_level,
  749. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  750. pi->sram_end);
  751. return ret;
  752. }
  753. static int kv_populate_samu_table(struct radeon_device *rdev)
  754. {
  755. struct kv_power_info *pi = kv_get_pi(rdev);
  756. struct radeon_clock_voltage_dependency_table *table =
  757. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  758. struct atom_clock_dividers dividers;
  759. int ret;
  760. u32 i;
  761. if (table == NULL || table->count == 0)
  762. return 0;
  763. pi->samu_level_count = 0;
  764. for (i = 0; i < table->count; i++) {
  765. if (pi->high_voltage_t &&
  766. pi->high_voltage_t < table->entries[i].v)
  767. break;
  768. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  769. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  770. pi->samu_level[i].ClkBypassCntl =
  771. (u8)kv_get_clk_bypass(rdev, table->entries[i].clk);
  772. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  773. table->entries[i].clk, false, &dividers);
  774. if (ret)
  775. return ret;
  776. pi->samu_level[i].Divider = (u8)dividers.post_div;
  777. pi->samu_level_count++;
  778. }
  779. ret = kv_copy_bytes_to_smc(rdev,
  780. pi->dpm_table_start +
  781. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  782. (u8 *)&pi->samu_level_count,
  783. sizeof(u8),
  784. pi->sram_end);
  785. if (ret)
  786. return ret;
  787. pi->samu_interval = 1;
  788. ret = kv_copy_bytes_to_smc(rdev,
  789. pi->dpm_table_start +
  790. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  791. (u8 *)&pi->samu_interval,
  792. sizeof(u8),
  793. pi->sram_end);
  794. if (ret)
  795. return ret;
  796. ret = kv_copy_bytes_to_smc(rdev,
  797. pi->dpm_table_start +
  798. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  799. (u8 *)&pi->samu_level,
  800. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  801. pi->sram_end);
  802. if (ret)
  803. return ret;
  804. return ret;
  805. }
  806. static int kv_populate_acp_table(struct radeon_device *rdev)
  807. {
  808. struct kv_power_info *pi = kv_get_pi(rdev);
  809. struct radeon_clock_voltage_dependency_table *table =
  810. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  811. struct atom_clock_dividers dividers;
  812. int ret;
  813. u32 i;
  814. if (table == NULL || table->count == 0)
  815. return 0;
  816. pi->acp_level_count = 0;
  817. for (i = 0; i < table->count; i++) {
  818. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  819. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  820. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  821. table->entries[i].clk, false, &dividers);
  822. if (ret)
  823. return ret;
  824. pi->acp_level[i].Divider = (u8)dividers.post_div;
  825. pi->acp_level_count++;
  826. }
  827. ret = kv_copy_bytes_to_smc(rdev,
  828. pi->dpm_table_start +
  829. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  830. (u8 *)&pi->acp_level_count,
  831. sizeof(u8),
  832. pi->sram_end);
  833. if (ret)
  834. return ret;
  835. pi->acp_interval = 1;
  836. ret = kv_copy_bytes_to_smc(rdev,
  837. pi->dpm_table_start +
  838. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  839. (u8 *)&pi->acp_interval,
  840. sizeof(u8),
  841. pi->sram_end);
  842. if (ret)
  843. return ret;
  844. ret = kv_copy_bytes_to_smc(rdev,
  845. pi->dpm_table_start +
  846. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  847. (u8 *)&pi->acp_level,
  848. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  849. pi->sram_end);
  850. if (ret)
  851. return ret;
  852. return ret;
  853. }
  854. static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
  855. {
  856. struct kv_power_info *pi = kv_get_pi(rdev);
  857. u32 i;
  858. struct radeon_clock_voltage_dependency_table *table =
  859. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  860. if (table && table->count) {
  861. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  862. if (pi->caps_enable_dfs_bypass) {
  863. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  864. pi->graphics_level[i].ClkBypassCntl = 3;
  865. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  866. pi->graphics_level[i].ClkBypassCntl = 2;
  867. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  868. pi->graphics_level[i].ClkBypassCntl = 7;
  869. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  870. pi->graphics_level[i].ClkBypassCntl = 6;
  871. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  872. pi->graphics_level[i].ClkBypassCntl = 8;
  873. else
  874. pi->graphics_level[i].ClkBypassCntl = 0;
  875. } else {
  876. pi->graphics_level[i].ClkBypassCntl = 0;
  877. }
  878. }
  879. } else {
  880. struct sumo_sclk_voltage_mapping_table *table =
  881. &pi->sys_info.sclk_voltage_mapping_table;
  882. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  883. if (pi->caps_enable_dfs_bypass) {
  884. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  885. pi->graphics_level[i].ClkBypassCntl = 3;
  886. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  887. pi->graphics_level[i].ClkBypassCntl = 2;
  888. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  889. pi->graphics_level[i].ClkBypassCntl = 7;
  890. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  891. pi->graphics_level[i].ClkBypassCntl = 6;
  892. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  893. pi->graphics_level[i].ClkBypassCntl = 8;
  894. else
  895. pi->graphics_level[i].ClkBypassCntl = 0;
  896. } else {
  897. pi->graphics_level[i].ClkBypassCntl = 0;
  898. }
  899. }
  900. }
  901. }
  902. static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
  903. {
  904. return kv_notify_message_to_smu(rdev, enable ?
  905. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  906. }
  907. static void kv_update_current_ps(struct radeon_device *rdev,
  908. struct radeon_ps *rps)
  909. {
  910. struct kv_ps *new_ps = kv_get_ps(rps);
  911. struct kv_power_info *pi = kv_get_pi(rdev);
  912. pi->current_rps = *rps;
  913. pi->current_ps = *new_ps;
  914. pi->current_rps.ps_priv = &pi->current_ps;
  915. }
  916. static void kv_update_requested_ps(struct radeon_device *rdev,
  917. struct radeon_ps *rps)
  918. {
  919. struct kv_ps *new_ps = kv_get_ps(rps);
  920. struct kv_power_info *pi = kv_get_pi(rdev);
  921. pi->requested_rps = *rps;
  922. pi->requested_ps = *new_ps;
  923. pi->requested_rps.ps_priv = &pi->requested_ps;
  924. }
  925. int kv_dpm_enable(struct radeon_device *rdev)
  926. {
  927. struct kv_power_info *pi = kv_get_pi(rdev);
  928. int ret;
  929. ret = kv_process_firmware_header(rdev);
  930. if (ret) {
  931. DRM_ERROR("kv_process_firmware_header failed\n");
  932. return ret;
  933. }
  934. kv_init_fps_limits(rdev);
  935. kv_init_graphics_levels(rdev);
  936. ret = kv_program_bootup_state(rdev);
  937. if (ret) {
  938. DRM_ERROR("kv_program_bootup_state failed\n");
  939. return ret;
  940. }
  941. kv_calculate_dfs_bypass_settings(rdev);
  942. ret = kv_upload_dpm_settings(rdev);
  943. if (ret) {
  944. DRM_ERROR("kv_upload_dpm_settings failed\n");
  945. return ret;
  946. }
  947. ret = kv_populate_uvd_table(rdev);
  948. if (ret) {
  949. DRM_ERROR("kv_populate_uvd_table failed\n");
  950. return ret;
  951. }
  952. ret = kv_populate_vce_table(rdev);
  953. if (ret) {
  954. DRM_ERROR("kv_populate_vce_table failed\n");
  955. return ret;
  956. }
  957. ret = kv_populate_samu_table(rdev);
  958. if (ret) {
  959. DRM_ERROR("kv_populate_samu_table failed\n");
  960. return ret;
  961. }
  962. ret = kv_populate_acp_table(rdev);
  963. if (ret) {
  964. DRM_ERROR("kv_populate_acp_table failed\n");
  965. return ret;
  966. }
  967. kv_program_vc(rdev);
  968. #if 0
  969. kv_initialize_hardware_cac_manager(rdev);
  970. #endif
  971. kv_start_am(rdev);
  972. if (pi->enable_auto_thermal_throttling) {
  973. ret = kv_enable_auto_thermal_throttling(rdev);
  974. if (ret) {
  975. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  976. return ret;
  977. }
  978. }
  979. ret = kv_enable_dpm_voltage_scaling(rdev);
  980. if (ret) {
  981. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  982. return ret;
  983. }
  984. ret = kv_set_dpm_interval(rdev);
  985. if (ret) {
  986. DRM_ERROR("kv_set_dpm_interval failed\n");
  987. return ret;
  988. }
  989. ret = kv_set_dpm_boot_state(rdev);
  990. if (ret) {
  991. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  992. return ret;
  993. }
  994. ret = kv_enable_ulv(rdev, true);
  995. if (ret) {
  996. DRM_ERROR("kv_enable_ulv failed\n");
  997. return ret;
  998. }
  999. kv_start_dpm(rdev);
  1000. ret = kv_enable_didt(rdev, true);
  1001. if (ret) {
  1002. DRM_ERROR("kv_enable_didt failed\n");
  1003. return ret;
  1004. }
  1005. ret = kv_enable_smc_cac(rdev, true);
  1006. if (ret) {
  1007. DRM_ERROR("kv_enable_smc_cac failed\n");
  1008. return ret;
  1009. }
  1010. if (rdev->irq.installed &&
  1011. r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
  1012. ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
  1013. if (ret) {
  1014. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  1015. return ret;
  1016. }
  1017. rdev->irq.dpm_thermal = true;
  1018. radeon_irq_set(rdev);
  1019. }
  1020. /* powerdown unused blocks for now */
  1021. kv_dpm_powergate_acp(rdev, true);
  1022. kv_dpm_powergate_samu(rdev, true);
  1023. kv_dpm_powergate_vce(rdev, true);
  1024. kv_dpm_powergate_uvd(rdev, true);
  1025. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1026. return ret;
  1027. }
  1028. void kv_dpm_disable(struct radeon_device *rdev)
  1029. {
  1030. kv_enable_smc_cac(rdev, false);
  1031. kv_enable_didt(rdev, false);
  1032. kv_clear_vc(rdev);
  1033. kv_stop_dpm(rdev);
  1034. kv_enable_ulv(rdev, false);
  1035. kv_reset_am(rdev);
  1036. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1037. }
  1038. #if 0
  1039. static int kv_write_smc_soft_register(struct radeon_device *rdev,
  1040. u16 reg_offset, u32 value)
  1041. {
  1042. struct kv_power_info *pi = kv_get_pi(rdev);
  1043. return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset,
  1044. (u8 *)&value, sizeof(u16), pi->sram_end);
  1045. }
  1046. static int kv_read_smc_soft_register(struct radeon_device *rdev,
  1047. u16 reg_offset, u32 *value)
  1048. {
  1049. struct kv_power_info *pi = kv_get_pi(rdev);
  1050. return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset,
  1051. value, pi->sram_end);
  1052. }
  1053. #endif
  1054. static void kv_init_sclk_t(struct radeon_device *rdev)
  1055. {
  1056. struct kv_power_info *pi = kv_get_pi(rdev);
  1057. pi->low_sclk_interrupt_t = 0;
  1058. }
  1059. static int kv_init_fps_limits(struct radeon_device *rdev)
  1060. {
  1061. struct kv_power_info *pi = kv_get_pi(rdev);
  1062. int ret = 0;
  1063. if (pi->caps_fps) {
  1064. u16 tmp;
  1065. tmp = 45;
  1066. pi->fps_high_t = cpu_to_be16(tmp);
  1067. ret = kv_copy_bytes_to_smc(rdev,
  1068. pi->dpm_table_start +
  1069. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1070. (u8 *)&pi->fps_high_t,
  1071. sizeof(u16), pi->sram_end);
  1072. tmp = 30;
  1073. pi->fps_low_t = cpu_to_be16(tmp);
  1074. ret = kv_copy_bytes_to_smc(rdev,
  1075. pi->dpm_table_start +
  1076. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1077. (u8 *)&pi->fps_low_t,
  1078. sizeof(u16), pi->sram_end);
  1079. }
  1080. return ret;
  1081. }
  1082. static void kv_init_powergate_state(struct radeon_device *rdev)
  1083. {
  1084. struct kv_power_info *pi = kv_get_pi(rdev);
  1085. pi->uvd_power_gated = false;
  1086. pi->vce_power_gated = false;
  1087. pi->samu_power_gated = false;
  1088. pi->acp_power_gated = false;
  1089. }
  1090. static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
  1091. {
  1092. return kv_notify_message_to_smu(rdev, enable ?
  1093. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1094. }
  1095. #if 0
  1096. static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
  1097. {
  1098. return kv_notify_message_to_smu(rdev, enable ?
  1099. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1100. }
  1101. #endif
  1102. static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
  1103. {
  1104. return kv_notify_message_to_smu(rdev, enable ?
  1105. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1106. }
  1107. static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
  1108. {
  1109. return kv_notify_message_to_smu(rdev, enable ?
  1110. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1111. }
  1112. static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
  1113. {
  1114. struct kv_power_info *pi = kv_get_pi(rdev);
  1115. struct radeon_uvd_clock_voltage_dependency_table *table =
  1116. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1117. int ret;
  1118. if (!gate) {
  1119. if (!pi->caps_uvd_dpm || table->count || pi->caps_stable_p_state)
  1120. pi->uvd_boot_level = table->count - 1;
  1121. else
  1122. pi->uvd_boot_level = 0;
  1123. ret = kv_copy_bytes_to_smc(rdev,
  1124. pi->dpm_table_start +
  1125. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1126. (uint8_t *)&pi->uvd_boot_level,
  1127. sizeof(u8), pi->sram_end);
  1128. if (ret)
  1129. return ret;
  1130. if (!pi->caps_uvd_dpm ||
  1131. pi->caps_stable_p_state)
  1132. kv_send_msg_to_smc_with_parameter(rdev,
  1133. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1134. (1 << pi->uvd_boot_level));
  1135. }
  1136. return kv_enable_uvd_dpm(rdev, !gate);
  1137. }
  1138. #if 0
  1139. static u8 kv_get_vce_boot_level(struct radeon_device *rdev)
  1140. {
  1141. u8 i;
  1142. struct radeon_vce_clock_voltage_dependency_table *table =
  1143. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1144. for (i = 0; i < table->count; i++) {
  1145. if (table->entries[i].evclk >= 0) /* XXX */
  1146. break;
  1147. }
  1148. return i;
  1149. }
  1150. static int kv_update_vce_dpm(struct radeon_device *rdev,
  1151. struct radeon_ps *radeon_new_state,
  1152. struct radeon_ps *radeon_current_state)
  1153. {
  1154. struct kv_power_info *pi = kv_get_pi(rdev);
  1155. struct radeon_vce_clock_voltage_dependency_table *table =
  1156. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1157. int ret;
  1158. if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
  1159. if (pi->caps_stable_p_state)
  1160. pi->vce_boot_level = table->count - 1;
  1161. else
  1162. pi->vce_boot_level = kv_get_vce_boot_level(rdev);
  1163. ret = kv_copy_bytes_to_smc(rdev,
  1164. pi->dpm_table_start +
  1165. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1166. (u8 *)&pi->vce_boot_level,
  1167. sizeof(u8),
  1168. pi->sram_end);
  1169. if (ret)
  1170. return ret;
  1171. if (pi->caps_stable_p_state)
  1172. kv_send_msg_to_smc_with_parameter(rdev,
  1173. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1174. (1 << pi->vce_boot_level));
  1175. kv_enable_vce_dpm(rdev, true);
  1176. } else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
  1177. kv_enable_vce_dpm(rdev, false);
  1178. }
  1179. return 0;
  1180. }
  1181. #endif
  1182. static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
  1183. {
  1184. struct kv_power_info *pi = kv_get_pi(rdev);
  1185. struct radeon_clock_voltage_dependency_table *table =
  1186. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1187. int ret;
  1188. if (!gate) {
  1189. if (pi->caps_stable_p_state)
  1190. pi->samu_boot_level = table->count - 1;
  1191. else
  1192. pi->samu_boot_level = 0;
  1193. ret = kv_copy_bytes_to_smc(rdev,
  1194. pi->dpm_table_start +
  1195. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1196. (u8 *)&pi->samu_boot_level,
  1197. sizeof(u8),
  1198. pi->sram_end);
  1199. if (ret)
  1200. return ret;
  1201. if (pi->caps_stable_p_state)
  1202. kv_send_msg_to_smc_with_parameter(rdev,
  1203. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1204. (1 << pi->samu_boot_level));
  1205. }
  1206. return kv_enable_samu_dpm(rdev, !gate);
  1207. }
  1208. static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
  1209. {
  1210. struct kv_power_info *pi = kv_get_pi(rdev);
  1211. struct radeon_clock_voltage_dependency_table *table =
  1212. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1213. int ret;
  1214. if (!gate) {
  1215. if (pi->caps_stable_p_state)
  1216. pi->acp_boot_level = table->count - 1;
  1217. else
  1218. pi->acp_boot_level = 0;
  1219. ret = kv_copy_bytes_to_smc(rdev,
  1220. pi->dpm_table_start +
  1221. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1222. (u8 *)&pi->acp_boot_level,
  1223. sizeof(u8),
  1224. pi->sram_end);
  1225. if (ret)
  1226. return ret;
  1227. if (pi->caps_stable_p_state)
  1228. kv_send_msg_to_smc_with_parameter(rdev,
  1229. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1230. (1 << pi->acp_boot_level));
  1231. }
  1232. return kv_enable_acp_dpm(rdev, !gate);
  1233. }
  1234. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
  1235. {
  1236. struct kv_power_info *pi = kv_get_pi(rdev);
  1237. if (pi->uvd_power_gated == gate)
  1238. return;
  1239. pi->uvd_power_gated = gate;
  1240. if (gate) {
  1241. uvd_v1_0_stop(rdev);
  1242. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
  1243. kv_update_uvd_dpm(rdev, gate);
  1244. if (pi->caps_uvd_pg)
  1245. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
  1246. } else {
  1247. if (pi->caps_uvd_pg)
  1248. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
  1249. uvd_v4_2_resume(rdev);
  1250. uvd_v1_0_start(rdev);
  1251. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
  1252. kv_update_uvd_dpm(rdev, gate);
  1253. }
  1254. }
  1255. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
  1256. {
  1257. struct kv_power_info *pi = kv_get_pi(rdev);
  1258. if (pi->vce_power_gated == gate)
  1259. return;
  1260. pi->vce_power_gated = gate;
  1261. if (gate) {
  1262. if (pi->caps_vce_pg)
  1263. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
  1264. } else {
  1265. if (pi->caps_vce_pg)
  1266. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
  1267. }
  1268. }
  1269. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
  1270. {
  1271. struct kv_power_info *pi = kv_get_pi(rdev);
  1272. if (pi->samu_power_gated == gate)
  1273. return;
  1274. pi->samu_power_gated = gate;
  1275. if (gate) {
  1276. kv_update_samu_dpm(rdev, true);
  1277. if (pi->caps_samu_pg)
  1278. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
  1279. } else {
  1280. if (pi->caps_samu_pg)
  1281. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
  1282. kv_update_samu_dpm(rdev, false);
  1283. }
  1284. }
  1285. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
  1286. {
  1287. struct kv_power_info *pi = kv_get_pi(rdev);
  1288. if (pi->acp_power_gated == gate)
  1289. return;
  1290. if (rdev->family == CHIP_KABINI)
  1291. return;
  1292. pi->acp_power_gated = gate;
  1293. if (gate) {
  1294. kv_update_acp_dpm(rdev, true);
  1295. if (pi->caps_acp_pg)
  1296. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
  1297. } else {
  1298. if (pi->caps_acp_pg)
  1299. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
  1300. kv_update_acp_dpm(rdev, false);
  1301. }
  1302. }
  1303. static void kv_set_valid_clock_range(struct radeon_device *rdev,
  1304. struct radeon_ps *new_rps)
  1305. {
  1306. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1307. struct kv_power_info *pi = kv_get_pi(rdev);
  1308. u32 i;
  1309. struct radeon_clock_voltage_dependency_table *table =
  1310. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1311. if (table && table->count) {
  1312. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1313. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1314. (i == (pi->graphics_dpm_level_count - 1))) {
  1315. pi->lowest_valid = i;
  1316. break;
  1317. }
  1318. }
  1319. for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
  1320. if ((table->entries[i].clk <= new_ps->levels[new_ps->num_levels -1].sclk) ||
  1321. (i == 0)) {
  1322. pi->highest_valid = i;
  1323. break;
  1324. }
  1325. }
  1326. if (pi->lowest_valid > pi->highest_valid) {
  1327. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1328. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1329. pi->highest_valid = pi->lowest_valid;
  1330. else
  1331. pi->lowest_valid = pi->highest_valid;
  1332. }
  1333. } else {
  1334. struct sumo_sclk_voltage_mapping_table *table =
  1335. &pi->sys_info.sclk_voltage_mapping_table;
  1336. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1337. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1338. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1339. pi->lowest_valid = i;
  1340. break;
  1341. }
  1342. }
  1343. for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
  1344. if (table->entries[i].sclk_frequency <=
  1345. new_ps->levels[new_ps->num_levels - 1].sclk ||
  1346. i == 0) {
  1347. pi->highest_valid = i;
  1348. break;
  1349. }
  1350. }
  1351. if (pi->lowest_valid > pi->highest_valid) {
  1352. if ((new_ps->levels[0].sclk -
  1353. table->entries[pi->highest_valid].sclk_frequency) >
  1354. (table->entries[pi->lowest_valid].sclk_frequency -
  1355. new_ps->levels[new_ps->num_levels -1].sclk))
  1356. pi->highest_valid = pi->lowest_valid;
  1357. else
  1358. pi->lowest_valid = pi->highest_valid;
  1359. }
  1360. }
  1361. }
  1362. static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
  1363. struct radeon_ps *new_rps)
  1364. {
  1365. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1366. struct kv_power_info *pi = kv_get_pi(rdev);
  1367. int ret = 0;
  1368. u8 clk_bypass_cntl;
  1369. if (pi->caps_enable_dfs_bypass) {
  1370. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1371. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1372. ret = kv_copy_bytes_to_smc(rdev,
  1373. (pi->dpm_table_start +
  1374. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1375. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1376. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1377. &clk_bypass_cntl,
  1378. sizeof(u8), pi->sram_end);
  1379. }
  1380. return ret;
  1381. }
  1382. static int kv_enable_nb_dpm(struct radeon_device *rdev)
  1383. {
  1384. struct kv_power_info *pi = kv_get_pi(rdev);
  1385. int ret = 0;
  1386. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1387. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
  1388. if (ret == 0)
  1389. pi->nb_dpm_enabled = true;
  1390. }
  1391. return ret;
  1392. }
  1393. int kv_dpm_force_performance_level(struct radeon_device *rdev,
  1394. enum radeon_dpm_forced_level level)
  1395. {
  1396. int ret;
  1397. if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
  1398. ret = kv_force_dpm_highest(rdev);
  1399. if (ret)
  1400. return ret;
  1401. } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
  1402. ret = kv_force_dpm_lowest(rdev);
  1403. if (ret)
  1404. return ret;
  1405. } else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
  1406. ret = kv_unforce_levels(rdev);
  1407. if (ret)
  1408. return ret;
  1409. }
  1410. rdev->pm.dpm.forced_level = level;
  1411. return 0;
  1412. }
  1413. int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
  1414. {
  1415. struct kv_power_info *pi = kv_get_pi(rdev);
  1416. struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
  1417. struct radeon_ps *new_ps = &requested_ps;
  1418. kv_update_requested_ps(rdev, new_ps);
  1419. kv_apply_state_adjust_rules(rdev,
  1420. &pi->requested_rps,
  1421. &pi->current_rps);
  1422. return 0;
  1423. }
  1424. int kv_dpm_set_power_state(struct radeon_device *rdev)
  1425. {
  1426. struct kv_power_info *pi = kv_get_pi(rdev);
  1427. struct radeon_ps *new_ps = &pi->requested_rps;
  1428. /*struct radeon_ps *old_ps = &pi->current_rps;*/
  1429. int ret;
  1430. if (rdev->family == CHIP_KABINI) {
  1431. if (pi->enable_dpm) {
  1432. kv_set_valid_clock_range(rdev, new_ps);
  1433. kv_update_dfs_bypass_settings(rdev, new_ps);
  1434. ret = kv_calculate_ds_divider(rdev);
  1435. if (ret) {
  1436. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1437. return ret;
  1438. }
  1439. kv_calculate_nbps_level_settings(rdev);
  1440. kv_calculate_dpm_settings(rdev);
  1441. kv_force_lowest_valid(rdev);
  1442. kv_enable_new_levels(rdev);
  1443. kv_upload_dpm_settings(rdev);
  1444. kv_program_nbps_index_settings(rdev, new_ps);
  1445. kv_unforce_levels(rdev);
  1446. kv_set_enabled_levels(rdev);
  1447. kv_force_lowest_valid(rdev);
  1448. kv_unforce_levels(rdev);
  1449. #if 0
  1450. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1451. if (ret) {
  1452. DRM_ERROR("kv_update_vce_dpm failed\n");
  1453. return ret;
  1454. }
  1455. #endif
  1456. kv_update_sclk_t(rdev);
  1457. }
  1458. } else {
  1459. if (pi->enable_dpm) {
  1460. kv_set_valid_clock_range(rdev, new_ps);
  1461. kv_update_dfs_bypass_settings(rdev, new_ps);
  1462. ret = kv_calculate_ds_divider(rdev);
  1463. if (ret) {
  1464. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1465. return ret;
  1466. }
  1467. kv_calculate_nbps_level_settings(rdev);
  1468. kv_calculate_dpm_settings(rdev);
  1469. kv_freeze_sclk_dpm(rdev, true);
  1470. kv_upload_dpm_settings(rdev);
  1471. kv_program_nbps_index_settings(rdev, new_ps);
  1472. kv_freeze_sclk_dpm(rdev, false);
  1473. kv_set_enabled_levels(rdev);
  1474. #if 0
  1475. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1476. if (ret) {
  1477. DRM_ERROR("kv_update_vce_dpm failed\n");
  1478. return ret;
  1479. }
  1480. #endif
  1481. kv_update_sclk_t(rdev);
  1482. kv_enable_nb_dpm(rdev);
  1483. }
  1484. }
  1485. rdev->pm.dpm.forced_level = RADEON_DPM_FORCED_LEVEL_AUTO;
  1486. return 0;
  1487. }
  1488. void kv_dpm_post_set_power_state(struct radeon_device *rdev)
  1489. {
  1490. struct kv_power_info *pi = kv_get_pi(rdev);
  1491. struct radeon_ps *new_ps = &pi->requested_rps;
  1492. kv_update_current_ps(rdev, new_ps);
  1493. }
  1494. void kv_dpm_setup_asic(struct radeon_device *rdev)
  1495. {
  1496. sumo_take_smu_control(rdev, true);
  1497. kv_init_powergate_state(rdev);
  1498. kv_init_sclk_t(rdev);
  1499. }
  1500. void kv_dpm_reset_asic(struct radeon_device *rdev)
  1501. {
  1502. kv_force_lowest_valid(rdev);
  1503. kv_init_graphics_levels(rdev);
  1504. kv_program_bootup_state(rdev);
  1505. kv_upload_dpm_settings(rdev);
  1506. kv_force_lowest_valid(rdev);
  1507. kv_unforce_levels(rdev);
  1508. }
  1509. //XXX use sumo_dpm_display_configuration_changed
  1510. static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
  1511. struct radeon_clock_and_voltage_limits *table)
  1512. {
  1513. struct kv_power_info *pi = kv_get_pi(rdev);
  1514. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1515. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1516. table->sclk =
  1517. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1518. table->vddc =
  1519. kv_convert_2bit_index_to_voltage(rdev,
  1520. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1521. }
  1522. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1523. }
  1524. static void kv_patch_voltage_values(struct radeon_device *rdev)
  1525. {
  1526. int i;
  1527. struct radeon_uvd_clock_voltage_dependency_table *table =
  1528. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1529. if (table->count) {
  1530. for (i = 0; i < table->count; i++)
  1531. table->entries[i].v =
  1532. kv_convert_8bit_index_to_voltage(rdev,
  1533. table->entries[i].v);
  1534. }
  1535. }
  1536. static void kv_construct_boot_state(struct radeon_device *rdev)
  1537. {
  1538. struct kv_power_info *pi = kv_get_pi(rdev);
  1539. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1540. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1541. pi->boot_pl.ds_divider_index = 0;
  1542. pi->boot_pl.ss_divider_index = 0;
  1543. pi->boot_pl.allow_gnb_slow = 1;
  1544. pi->boot_pl.force_nbp_state = 0;
  1545. pi->boot_pl.display_wm = 0;
  1546. pi->boot_pl.vce_wm = 0;
  1547. }
  1548. static int kv_force_dpm_highest(struct radeon_device *rdev)
  1549. {
  1550. int ret;
  1551. u32 enable_mask, i;
  1552. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1553. if (ret)
  1554. return ret;
  1555. for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i >= 0; i--) {
  1556. if (enable_mask & (1 << i))
  1557. break;
  1558. }
  1559. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1560. }
  1561. static int kv_force_dpm_lowest(struct radeon_device *rdev)
  1562. {
  1563. int ret;
  1564. u32 enable_mask, i;
  1565. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1566. if (ret)
  1567. return ret;
  1568. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1569. if (enable_mask & (1 << i))
  1570. break;
  1571. }
  1572. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1573. }
  1574. static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
  1575. u32 sclk, u32 min_sclk_in_sr)
  1576. {
  1577. struct kv_power_info *pi = kv_get_pi(rdev);
  1578. u32 i;
  1579. u32 temp;
  1580. u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
  1581. min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
  1582. if (sclk < min)
  1583. return 0;
  1584. if (!pi->caps_sclk_ds)
  1585. return 0;
  1586. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i <= 0; i--) {
  1587. temp = sclk / sumo_get_sleep_divider_from_id(i);
  1588. if ((temp >= min) || (i == 0))
  1589. break;
  1590. }
  1591. return (u8)i;
  1592. }
  1593. static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
  1594. {
  1595. struct kv_power_info *pi = kv_get_pi(rdev);
  1596. struct radeon_clock_voltage_dependency_table *table =
  1597. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1598. int i;
  1599. if (table && table->count) {
  1600. for (i = table->count - 1; i >= 0; i--) {
  1601. if (pi->high_voltage_t &&
  1602. (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
  1603. pi->high_voltage_t)) {
  1604. *limit = i;
  1605. return 0;
  1606. }
  1607. }
  1608. } else {
  1609. struct sumo_sclk_voltage_mapping_table *table =
  1610. &pi->sys_info.sclk_voltage_mapping_table;
  1611. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1612. if (pi->high_voltage_t &&
  1613. (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
  1614. pi->high_voltage_t)) {
  1615. *limit = i;
  1616. return 0;
  1617. }
  1618. }
  1619. }
  1620. *limit = 0;
  1621. return 0;
  1622. }
  1623. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  1624. struct radeon_ps *new_rps,
  1625. struct radeon_ps *old_rps)
  1626. {
  1627. struct kv_ps *ps = kv_get_ps(new_rps);
  1628. struct kv_power_info *pi = kv_get_pi(rdev);
  1629. u32 min_sclk = 10000; /* ??? */
  1630. u32 sclk, mclk = 0;
  1631. int i, limit;
  1632. bool force_high;
  1633. struct radeon_clock_voltage_dependency_table *table =
  1634. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1635. u32 stable_p_state_sclk = 0;
  1636. struct radeon_clock_and_voltage_limits *max_limits =
  1637. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1638. mclk = max_limits->mclk;
  1639. sclk = min_sclk;
  1640. if (pi->caps_stable_p_state) {
  1641. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1642. for (i = table->count - 1; i >= 0; i++) {
  1643. if (stable_p_state_sclk >= table->entries[i].clk) {
  1644. stable_p_state_sclk = table->entries[i].clk;
  1645. break;
  1646. }
  1647. }
  1648. if (i > 0)
  1649. stable_p_state_sclk = table->entries[0].clk;
  1650. sclk = stable_p_state_sclk;
  1651. }
  1652. ps->need_dfs_bypass = true;
  1653. for (i = 0; i < ps->num_levels; i++) {
  1654. if (ps->levels[i].sclk < sclk)
  1655. ps->levels[i].sclk = sclk;
  1656. }
  1657. if (table && table->count) {
  1658. for (i = 0; i < ps->num_levels; i++) {
  1659. if (pi->high_voltage_t &&
  1660. (pi->high_voltage_t <
  1661. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1662. kv_get_high_voltage_limit(rdev, &limit);
  1663. ps->levels[i].sclk = table->entries[limit].clk;
  1664. }
  1665. }
  1666. } else {
  1667. struct sumo_sclk_voltage_mapping_table *table =
  1668. &pi->sys_info.sclk_voltage_mapping_table;
  1669. for (i = 0; i < ps->num_levels; i++) {
  1670. if (pi->high_voltage_t &&
  1671. (pi->high_voltage_t <
  1672. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1673. kv_get_high_voltage_limit(rdev, &limit);
  1674. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1675. }
  1676. }
  1677. }
  1678. if (pi->caps_stable_p_state) {
  1679. for (i = 0; i < ps->num_levels; i++) {
  1680. ps->levels[i].sclk = stable_p_state_sclk;
  1681. }
  1682. }
  1683. pi->video_start = new_rps->dclk || new_rps->vclk;
  1684. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1685. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1686. pi->battery_state = true;
  1687. else
  1688. pi->battery_state = false;
  1689. if (rdev->family == CHIP_KABINI) {
  1690. ps->dpm0_pg_nb_ps_lo = 0x1;
  1691. ps->dpm0_pg_nb_ps_hi = 0x0;
  1692. ps->dpmx_nb_ps_lo = 0x1;
  1693. ps->dpmx_nb_ps_hi = 0x0;
  1694. } else {
  1695. ps->dpm0_pg_nb_ps_lo = 0x1;
  1696. ps->dpm0_pg_nb_ps_hi = 0x0;
  1697. ps->dpmx_nb_ps_lo = 0x2;
  1698. ps->dpmx_nb_ps_hi = 0x1;
  1699. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  1700. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1701. pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
  1702. pi->disable_nb_ps3_in_battery;
  1703. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1704. ps->dpm0_pg_nb_ps_hi = 0x2;
  1705. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1706. ps->dpmx_nb_ps_hi = 0x2;
  1707. }
  1708. }
  1709. }
  1710. static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
  1711. u32 index, bool enable)
  1712. {
  1713. struct kv_power_info *pi = kv_get_pi(rdev);
  1714. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1715. }
  1716. static int kv_calculate_ds_divider(struct radeon_device *rdev)
  1717. {
  1718. struct kv_power_info *pi = kv_get_pi(rdev);
  1719. u32 sclk_in_sr = 10000; /* ??? */
  1720. u32 i;
  1721. if (pi->lowest_valid > pi->highest_valid)
  1722. return -EINVAL;
  1723. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1724. pi->graphics_level[i].DeepSleepDivId =
  1725. kv_get_sleep_divider_id_from_clock(rdev,
  1726. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  1727. sclk_in_sr);
  1728. }
  1729. return 0;
  1730. }
  1731. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
  1732. {
  1733. struct kv_power_info *pi = kv_get_pi(rdev);
  1734. u32 i;
  1735. bool force_high;
  1736. struct radeon_clock_and_voltage_limits *max_limits =
  1737. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1738. u32 mclk = max_limits->mclk;
  1739. if (pi->lowest_valid > pi->highest_valid)
  1740. return -EINVAL;
  1741. if (rdev->family == CHIP_KABINI) {
  1742. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1743. pi->graphics_level[i].GnbSlow = 1;
  1744. pi->graphics_level[i].ForceNbPs1 = 0;
  1745. pi->graphics_level[i].UpH = 0;
  1746. }
  1747. if (!pi->sys_info.nb_dpm_enable)
  1748. return 0;
  1749. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1750. (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  1751. if (force_high) {
  1752. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1753. pi->graphics_level[i].GnbSlow = 0;
  1754. } else {
  1755. if (pi->battery_state)
  1756. pi->graphics_level[0].ForceNbPs1 = 1;
  1757. pi->graphics_level[1].GnbSlow = 0;
  1758. pi->graphics_level[2].GnbSlow = 0;
  1759. pi->graphics_level[3].GnbSlow = 0;
  1760. pi->graphics_level[4].GnbSlow = 0;
  1761. }
  1762. } else {
  1763. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1764. pi->graphics_level[i].GnbSlow = 1;
  1765. pi->graphics_level[i].ForceNbPs1 = 0;
  1766. pi->graphics_level[i].UpH = 0;
  1767. }
  1768. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  1769. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  1770. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  1771. if (pi->lowest_valid != pi->highest_valid)
  1772. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  1773. }
  1774. }
  1775. return 0;
  1776. }
  1777. static int kv_calculate_dpm_settings(struct radeon_device *rdev)
  1778. {
  1779. struct kv_power_info *pi = kv_get_pi(rdev);
  1780. u32 i;
  1781. if (pi->lowest_valid > pi->highest_valid)
  1782. return -EINVAL;
  1783. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1784. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  1785. return 0;
  1786. }
  1787. static void kv_init_graphics_levels(struct radeon_device *rdev)
  1788. {
  1789. struct kv_power_info *pi = kv_get_pi(rdev);
  1790. u32 i;
  1791. struct radeon_clock_voltage_dependency_table *table =
  1792. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1793. if (table && table->count) {
  1794. u32 vid_2bit;
  1795. pi->graphics_dpm_level_count = 0;
  1796. for (i = 0; i < table->count; i++) {
  1797. if (pi->high_voltage_t &&
  1798. (pi->high_voltage_t <
  1799. kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
  1800. break;
  1801. kv_set_divider_value(rdev, i, table->entries[i].clk);
  1802. vid_2bit = sumo_convert_vid7_to_vid2(rdev,
  1803. &pi->sys_info.vid_mapping_table,
  1804. table->entries[i].v);
  1805. kv_set_vid(rdev, i, vid_2bit);
  1806. kv_set_at(rdev, i, pi->at[i]);
  1807. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1808. pi->graphics_dpm_level_count++;
  1809. }
  1810. } else {
  1811. struct sumo_sclk_voltage_mapping_table *table =
  1812. &pi->sys_info.sclk_voltage_mapping_table;
  1813. pi->graphics_dpm_level_count = 0;
  1814. for (i = 0; i < table->num_max_dpm_entries; i++) {
  1815. if (pi->high_voltage_t &&
  1816. pi->high_voltage_t <
  1817. kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
  1818. break;
  1819. kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
  1820. kv_set_vid(rdev, i, table->entries[i].vid_2bit);
  1821. kv_set_at(rdev, i, pi->at[i]);
  1822. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1823. pi->graphics_dpm_level_count++;
  1824. }
  1825. }
  1826. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  1827. kv_dpm_power_level_enable(rdev, i, false);
  1828. }
  1829. static void kv_enable_new_levels(struct radeon_device *rdev)
  1830. {
  1831. struct kv_power_info *pi = kv_get_pi(rdev);
  1832. u32 i;
  1833. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1834. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  1835. kv_dpm_power_level_enable(rdev, i, true);
  1836. }
  1837. }
  1838. static int kv_set_enabled_levels(struct radeon_device *rdev)
  1839. {
  1840. struct kv_power_info *pi = kv_get_pi(rdev);
  1841. u32 i, new_mask = 0;
  1842. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1843. new_mask |= (1 << i);
  1844. return kv_send_msg_to_smc_with_parameter(rdev,
  1845. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  1846. new_mask);
  1847. }
  1848. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  1849. struct radeon_ps *new_rps)
  1850. {
  1851. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1852. struct kv_power_info *pi = kv_get_pi(rdev);
  1853. u32 nbdpmconfig1;
  1854. if (rdev->family == CHIP_KABINI)
  1855. return;
  1856. if (pi->sys_info.nb_dpm_enable) {
  1857. nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
  1858. nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
  1859. DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
  1860. nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
  1861. Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
  1862. DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
  1863. DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
  1864. WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
  1865. }
  1866. }
  1867. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  1868. int min_temp, int max_temp)
  1869. {
  1870. int low_temp = 0 * 1000;
  1871. int high_temp = 255 * 1000;
  1872. u32 tmp;
  1873. if (low_temp < min_temp)
  1874. low_temp = min_temp;
  1875. if (high_temp > max_temp)
  1876. high_temp = max_temp;
  1877. if (high_temp < low_temp) {
  1878. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  1879. return -EINVAL;
  1880. }
  1881. tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
  1882. tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
  1883. tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
  1884. DIG_THERM_INTL(49 + (low_temp / 1000)));
  1885. WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);
  1886. rdev->pm.dpm.thermal.min_temp = low_temp;
  1887. rdev->pm.dpm.thermal.max_temp = high_temp;
  1888. return 0;
  1889. }
  1890. union igp_info {
  1891. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  1892. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  1893. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  1894. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  1895. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  1896. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  1897. };
  1898. static int kv_parse_sys_info_table(struct radeon_device *rdev)
  1899. {
  1900. struct kv_power_info *pi = kv_get_pi(rdev);
  1901. struct radeon_mode_info *mode_info = &rdev->mode_info;
  1902. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  1903. union igp_info *igp_info;
  1904. u8 frev, crev;
  1905. u16 data_offset;
  1906. int i;
  1907. if (atom_parse_data_header(mode_info->atom_context, index, NULL,
  1908. &frev, &crev, &data_offset)) {
  1909. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  1910. data_offset);
  1911. if (crev != 8) {
  1912. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  1913. return -EINVAL;
  1914. }
  1915. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  1916. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  1917. pi->sys_info.bootup_nb_voltage_index =
  1918. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  1919. if (igp_info->info_8.ucHtcTmpLmt == 0)
  1920. pi->sys_info.htc_tmp_lmt = 203;
  1921. else
  1922. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  1923. if (igp_info->info_8.ucHtcHystLmt == 0)
  1924. pi->sys_info.htc_hyst_lmt = 5;
  1925. else
  1926. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  1927. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  1928. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  1929. }
  1930. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  1931. pi->sys_info.nb_dpm_enable = true;
  1932. else
  1933. pi->sys_info.nb_dpm_enable = false;
  1934. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  1935. pi->sys_info.nbp_memory_clock[i] =
  1936. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  1937. pi->sys_info.nbp_n_clock[i] =
  1938. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  1939. }
  1940. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  1941. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  1942. pi->caps_enable_dfs_bypass = true;
  1943. sumo_construct_sclk_voltage_mapping_table(rdev,
  1944. &pi->sys_info.sclk_voltage_mapping_table,
  1945. igp_info->info_8.sAvail_SCLK);
  1946. sumo_construct_vid_mapping_table(rdev,
  1947. &pi->sys_info.vid_mapping_table,
  1948. igp_info->info_8.sAvail_SCLK);
  1949. kv_construct_max_power_limits_table(rdev,
  1950. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  1951. }
  1952. return 0;
  1953. }
  1954. union power_info {
  1955. struct _ATOM_POWERPLAY_INFO info;
  1956. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  1957. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  1958. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  1959. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  1960. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  1961. };
  1962. union pplib_clock_info {
  1963. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  1964. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  1965. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  1966. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  1967. };
  1968. union pplib_power_state {
  1969. struct _ATOM_PPLIB_STATE v1;
  1970. struct _ATOM_PPLIB_STATE_V2 v2;
  1971. };
  1972. static void kv_patch_boot_state(struct radeon_device *rdev,
  1973. struct kv_ps *ps)
  1974. {
  1975. struct kv_power_info *pi = kv_get_pi(rdev);
  1976. ps->num_levels = 1;
  1977. ps->levels[0] = pi->boot_pl;
  1978. }
  1979. static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
  1980. struct radeon_ps *rps,
  1981. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  1982. u8 table_rev)
  1983. {
  1984. struct kv_ps *ps = kv_get_ps(rps);
  1985. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  1986. rps->class = le16_to_cpu(non_clock_info->usClassification);
  1987. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  1988. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  1989. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  1990. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  1991. } else {
  1992. rps->vclk = 0;
  1993. rps->dclk = 0;
  1994. }
  1995. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  1996. rdev->pm.dpm.boot_ps = rps;
  1997. kv_patch_boot_state(rdev, ps);
  1998. }
  1999. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  2000. rdev->pm.dpm.uvd_ps = rps;
  2001. }
  2002. static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
  2003. struct radeon_ps *rps, int index,
  2004. union pplib_clock_info *clock_info)
  2005. {
  2006. struct kv_power_info *pi = kv_get_pi(rdev);
  2007. struct kv_ps *ps = kv_get_ps(rps);
  2008. struct kv_pl *pl = &ps->levels[index];
  2009. u32 sclk;
  2010. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2011. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2012. pl->sclk = sclk;
  2013. pl->vddc_index = clock_info->sumo.vddcIndex;
  2014. ps->num_levels = index + 1;
  2015. if (pi->caps_sclk_ds) {
  2016. pl->ds_divider_index = 5;
  2017. pl->ss_divider_index = 5;
  2018. }
  2019. }
  2020. static int kv_parse_power_table(struct radeon_device *rdev)
  2021. {
  2022. struct radeon_mode_info *mode_info = &rdev->mode_info;
  2023. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  2024. union pplib_power_state *power_state;
  2025. int i, j, k, non_clock_array_index, clock_array_index;
  2026. union pplib_clock_info *clock_info;
  2027. struct _StateArray *state_array;
  2028. struct _ClockInfoArray *clock_info_array;
  2029. struct _NonClockInfoArray *non_clock_info_array;
  2030. union power_info *power_info;
  2031. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  2032. u16 data_offset;
  2033. u8 frev, crev;
  2034. u8 *power_state_offset;
  2035. struct kv_ps *ps;
  2036. if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
  2037. &frev, &crev, &data_offset))
  2038. return -EINVAL;
  2039. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2040. state_array = (struct _StateArray *)
  2041. (mode_info->atom_context->bios + data_offset +
  2042. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2043. clock_info_array = (struct _ClockInfoArray *)
  2044. (mode_info->atom_context->bios + data_offset +
  2045. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2046. non_clock_info_array = (struct _NonClockInfoArray *)
  2047. (mode_info->atom_context->bios + data_offset +
  2048. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2049. rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
  2050. state_array->ucNumEntries, GFP_KERNEL);
  2051. if (!rdev->pm.dpm.ps)
  2052. return -ENOMEM;
  2053. power_state_offset = (u8 *)state_array->states;
  2054. rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
  2055. rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
  2056. rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
  2057. for (i = 0; i < state_array->ucNumEntries; i++) {
  2058. power_state = (union pplib_power_state *)power_state_offset;
  2059. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2060. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2061. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2062. if (!rdev->pm.power_state[i].clock_info)
  2063. return -EINVAL;
  2064. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2065. if (ps == NULL) {
  2066. kfree(rdev->pm.dpm.ps);
  2067. return -ENOMEM;
  2068. }
  2069. rdev->pm.dpm.ps[i].ps_priv = ps;
  2070. k = 0;
  2071. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2072. clock_array_index = power_state->v2.clockInfoIndex[j];
  2073. if (clock_array_index >= clock_info_array->ucNumEntries)
  2074. continue;
  2075. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2076. break;
  2077. clock_info = (union pplib_clock_info *)
  2078. &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
  2079. kv_parse_pplib_clock_info(rdev,
  2080. &rdev->pm.dpm.ps[i], k,
  2081. clock_info);
  2082. k++;
  2083. }
  2084. kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
  2085. non_clock_info,
  2086. non_clock_info_array->ucEntrySize);
  2087. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2088. }
  2089. rdev->pm.dpm.num_ps = state_array->ucNumEntries;
  2090. return 0;
  2091. }
  2092. int kv_dpm_init(struct radeon_device *rdev)
  2093. {
  2094. struct kv_power_info *pi;
  2095. int ret, i;
  2096. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2097. if (pi == NULL)
  2098. return -ENOMEM;
  2099. rdev->pm.dpm.priv = pi;
  2100. ret = r600_parse_extended_power_table(rdev);
  2101. if (ret)
  2102. return ret;
  2103. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2104. pi->at[i] = TRINITY_AT_DFLT;
  2105. pi->sram_end = SMC_RAM_END;
  2106. if (rdev->family == CHIP_KABINI)
  2107. pi->high_voltage_t = 4001;
  2108. pi->enable_nb_dpm = true;
  2109. pi->caps_power_containment = true;
  2110. pi->caps_cac = true;
  2111. pi->enable_didt = false;
  2112. if (pi->enable_didt) {
  2113. pi->caps_sq_ramping = true;
  2114. pi->caps_db_ramping = true;
  2115. pi->caps_td_ramping = true;
  2116. pi->caps_tcp_ramping = true;
  2117. }
  2118. pi->caps_sclk_ds = true;
  2119. pi->enable_auto_thermal_throttling = true;
  2120. pi->disable_nb_ps3_in_battery = false;
  2121. pi->bapm_enable = true;
  2122. pi->voltage_drop_t = 0;
  2123. pi->caps_sclk_throttle_low_notification = false;
  2124. pi->caps_fps = false; /* true? */
  2125. pi->caps_uvd_pg = true;
  2126. pi->caps_uvd_dpm = true;
  2127. pi->caps_vce_pg = false;
  2128. pi->caps_samu_pg = false;
  2129. pi->caps_acp_pg = false;
  2130. pi->caps_stable_p_state = false;
  2131. ret = kv_parse_sys_info_table(rdev);
  2132. if (ret)
  2133. return ret;
  2134. kv_patch_voltage_values(rdev);
  2135. kv_construct_boot_state(rdev);
  2136. ret = kv_parse_power_table(rdev);
  2137. if (ret)
  2138. return ret;
  2139. pi->enable_dpm = true;
  2140. return 0;
  2141. }
  2142. void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
  2143. struct seq_file *m)
  2144. {
  2145. struct kv_power_info *pi = kv_get_pi(rdev);
  2146. u32 current_index =
  2147. (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
  2148. CURR_SCLK_INDEX_SHIFT;
  2149. u32 sclk, tmp;
  2150. u16 vddc;
  2151. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2152. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2153. } else {
  2154. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2155. tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2156. SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
  2157. vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
  2158. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2159. current_index, sclk, vddc);
  2160. }
  2161. }
  2162. void kv_dpm_print_power_state(struct radeon_device *rdev,
  2163. struct radeon_ps *rps)
  2164. {
  2165. int i;
  2166. struct kv_ps *ps = kv_get_ps(rps);
  2167. r600_dpm_print_class_info(rps->class, rps->class2);
  2168. r600_dpm_print_cap_info(rps->caps);
  2169. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2170. for (i = 0; i < ps->num_levels; i++) {
  2171. struct kv_pl *pl = &ps->levels[i];
  2172. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2173. i, pl->sclk,
  2174. kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
  2175. }
  2176. r600_dpm_print_ps_status(rdev, rps);
  2177. }
  2178. void kv_dpm_fini(struct radeon_device *rdev)
  2179. {
  2180. int i;
  2181. for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
  2182. kfree(rdev->pm.dpm.ps[i].ps_priv);
  2183. }
  2184. kfree(rdev->pm.dpm.ps);
  2185. kfree(rdev->pm.dpm.priv);
  2186. r600_free_extended_power_table(rdev);
  2187. }
  2188. void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
  2189. {
  2190. }
  2191. u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
  2192. {
  2193. struct kv_power_info *pi = kv_get_pi(rdev);
  2194. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2195. if (low)
  2196. return requested_state->levels[0].sclk;
  2197. else
  2198. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2199. }
  2200. u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
  2201. {
  2202. struct kv_power_info *pi = kv_get_pi(rdev);
  2203. return pi->sys_info.bootup_uma_clk;
  2204. }