page_alloc.c 127 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. long nr_swap_pages;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. void *pc = page_get_page_cgroup(page);
  203. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  204. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. if (pc) {
  209. printk(KERN_EMERG "cgroup:%p\n", pc);
  210. page_reset_bad_cgroup(page);
  211. }
  212. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  213. KERN_EMERG "Backtrace:\n");
  214. dump_stack();
  215. page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
  216. set_page_count(page, 0);
  217. reset_page_mapcount(page);
  218. page->mapping = NULL;
  219. add_taint(TAINT_BAD_PAGE);
  220. }
  221. /*
  222. * Higher-order pages are called "compound pages". They are structured thusly:
  223. *
  224. * The first PAGE_SIZE page is called the "head page".
  225. *
  226. * The remaining PAGE_SIZE pages are called "tail pages".
  227. *
  228. * All pages have PG_compound set. All pages have their ->private pointing at
  229. * the head page (even the head page has this).
  230. *
  231. * The first tail page's ->lru.next holds the address of the compound page's
  232. * put_page() function. Its ->lru.prev holds the order of allocation.
  233. * This usage means that zero-order pages may not be compound.
  234. */
  235. static void free_compound_page(struct page *page)
  236. {
  237. __free_pages_ok(page, compound_order(page));
  238. }
  239. static void prep_compound_page(struct page *page, unsigned long order)
  240. {
  241. int i;
  242. int nr_pages = 1 << order;
  243. set_compound_page_dtor(page, free_compound_page);
  244. set_compound_order(page, order);
  245. __SetPageHead(page);
  246. for (i = 1; i < nr_pages; i++) {
  247. struct page *p = page + i;
  248. __SetPageTail(p);
  249. p->first_page = page;
  250. }
  251. }
  252. static void destroy_compound_page(struct page *page, unsigned long order)
  253. {
  254. int i;
  255. int nr_pages = 1 << order;
  256. if (unlikely(compound_order(page) != order))
  257. bad_page(page);
  258. if (unlikely(!PageHead(page)))
  259. bad_page(page);
  260. __ClearPageHead(page);
  261. for (i = 1; i < nr_pages; i++) {
  262. struct page *p = page + i;
  263. if (unlikely(!PageTail(p) |
  264. (p->first_page != page)))
  265. bad_page(page);
  266. __ClearPageTail(p);
  267. }
  268. }
  269. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  270. {
  271. int i;
  272. /*
  273. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  274. * and __GFP_HIGHMEM from hard or soft interrupt context.
  275. */
  276. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  277. for (i = 0; i < (1 << order); i++)
  278. clear_highpage(page + i);
  279. }
  280. static inline void set_page_order(struct page *page, int order)
  281. {
  282. set_page_private(page, order);
  283. __SetPageBuddy(page);
  284. }
  285. static inline void rmv_page_order(struct page *page)
  286. {
  287. __ClearPageBuddy(page);
  288. set_page_private(page, 0);
  289. }
  290. /*
  291. * Locate the struct page for both the matching buddy in our
  292. * pair (buddy1) and the combined O(n+1) page they form (page).
  293. *
  294. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  295. * the following equation:
  296. * B2 = B1 ^ (1 << O)
  297. * For example, if the starting buddy (buddy2) is #8 its order
  298. * 1 buddy is #10:
  299. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  300. *
  301. * 2) Any buddy B will have an order O+1 parent P which
  302. * satisfies the following equation:
  303. * P = B & ~(1 << O)
  304. *
  305. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  306. */
  307. static inline struct page *
  308. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  309. {
  310. unsigned long buddy_idx = page_idx ^ (1 << order);
  311. return page + (buddy_idx - page_idx);
  312. }
  313. static inline unsigned long
  314. __find_combined_index(unsigned long page_idx, unsigned int order)
  315. {
  316. return (page_idx & ~(1 << order));
  317. }
  318. /*
  319. * This function checks whether a page is free && is the buddy
  320. * we can do coalesce a page and its buddy if
  321. * (a) the buddy is not in a hole &&
  322. * (b) the buddy is in the buddy system &&
  323. * (c) a page and its buddy have the same order &&
  324. * (d) a page and its buddy are in the same zone.
  325. *
  326. * For recording whether a page is in the buddy system, we use PG_buddy.
  327. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  328. *
  329. * For recording page's order, we use page_private(page).
  330. */
  331. static inline int page_is_buddy(struct page *page, struct page *buddy,
  332. int order)
  333. {
  334. if (!pfn_valid_within(page_to_pfn(buddy)))
  335. return 0;
  336. if (page_zone_id(page) != page_zone_id(buddy))
  337. return 0;
  338. if (PageBuddy(buddy) && page_order(buddy) == order) {
  339. BUG_ON(page_count(buddy) != 0);
  340. return 1;
  341. }
  342. return 0;
  343. }
  344. /*
  345. * Freeing function for a buddy system allocator.
  346. *
  347. * The concept of a buddy system is to maintain direct-mapped table
  348. * (containing bit values) for memory blocks of various "orders".
  349. * The bottom level table contains the map for the smallest allocatable
  350. * units of memory (here, pages), and each level above it describes
  351. * pairs of units from the levels below, hence, "buddies".
  352. * At a high level, all that happens here is marking the table entry
  353. * at the bottom level available, and propagating the changes upward
  354. * as necessary, plus some accounting needed to play nicely with other
  355. * parts of the VM system.
  356. * At each level, we keep a list of pages, which are heads of continuous
  357. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  358. * order is recorded in page_private(page) field.
  359. * So when we are allocating or freeing one, we can derive the state of the
  360. * other. That is, if we allocate a small block, and both were
  361. * free, the remainder of the region must be split into blocks.
  362. * If a block is freed, and its buddy is also free, then this
  363. * triggers coalescing into a block of larger size.
  364. *
  365. * -- wli
  366. */
  367. static inline void __free_one_page(struct page *page,
  368. struct zone *zone, unsigned int order)
  369. {
  370. unsigned long page_idx;
  371. int order_size = 1 << order;
  372. int migratetype = get_pageblock_migratetype(page);
  373. if (unlikely(PageCompound(page)))
  374. destroy_compound_page(page, order);
  375. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  376. VM_BUG_ON(page_idx & (order_size - 1));
  377. VM_BUG_ON(bad_range(zone, page));
  378. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  379. while (order < MAX_ORDER-1) {
  380. unsigned long combined_idx;
  381. struct page *buddy;
  382. buddy = __page_find_buddy(page, page_idx, order);
  383. if (!page_is_buddy(page, buddy, order))
  384. break; /* Move the buddy up one level. */
  385. list_del(&buddy->lru);
  386. zone->free_area[order].nr_free--;
  387. rmv_page_order(buddy);
  388. combined_idx = __find_combined_index(page_idx, order);
  389. page = page + (combined_idx - page_idx);
  390. page_idx = combined_idx;
  391. order++;
  392. }
  393. set_page_order(page, order);
  394. list_add(&page->lru,
  395. &zone->free_area[order].free_list[migratetype]);
  396. zone->free_area[order].nr_free++;
  397. }
  398. static inline int free_pages_check(struct page *page)
  399. {
  400. if (unlikely(page_mapcount(page) |
  401. (page->mapping != NULL) |
  402. (page_get_page_cgroup(page) != NULL) |
  403. (page_count(page) != 0) |
  404. (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
  405. bad_page(page);
  406. if (PageDirty(page))
  407. __ClearPageDirty(page);
  408. /*
  409. * For now, we report if PG_reserved was found set, but do not
  410. * clear it, and do not free the page. But we shall soon need
  411. * to do more, for when the ZERO_PAGE count wraps negative.
  412. */
  413. return PageReserved(page);
  414. }
  415. /*
  416. * Frees a list of pages.
  417. * Assumes all pages on list are in same zone, and of same order.
  418. * count is the number of pages to free.
  419. *
  420. * If the zone was previously in an "all pages pinned" state then look to
  421. * see if this freeing clears that state.
  422. *
  423. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  424. * pinned" detection logic.
  425. */
  426. static void free_pages_bulk(struct zone *zone, int count,
  427. struct list_head *list, int order)
  428. {
  429. spin_lock(&zone->lock);
  430. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  431. zone->pages_scanned = 0;
  432. while (count--) {
  433. struct page *page;
  434. VM_BUG_ON(list_empty(list));
  435. page = list_entry(list->prev, struct page, lru);
  436. /* have to delete it as __free_one_page list manipulates */
  437. list_del(&page->lru);
  438. __free_one_page(page, zone, order);
  439. }
  440. spin_unlock(&zone->lock);
  441. }
  442. static void free_one_page(struct zone *zone, struct page *page, int order)
  443. {
  444. spin_lock(&zone->lock);
  445. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  446. zone->pages_scanned = 0;
  447. __free_one_page(page, zone, order);
  448. spin_unlock(&zone->lock);
  449. }
  450. static void __free_pages_ok(struct page *page, unsigned int order)
  451. {
  452. unsigned long flags;
  453. int i;
  454. int reserved = 0;
  455. for (i = 0 ; i < (1 << order) ; ++i)
  456. reserved += free_pages_check(page + i);
  457. if (reserved)
  458. return;
  459. if (!PageHighMem(page)) {
  460. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  461. debug_check_no_obj_freed(page_address(page),
  462. PAGE_SIZE << order);
  463. }
  464. arch_free_page(page, order);
  465. kernel_map_pages(page, 1 << order, 0);
  466. local_irq_save(flags);
  467. __count_vm_events(PGFREE, 1 << order);
  468. free_one_page(page_zone(page), page, order);
  469. local_irq_restore(flags);
  470. }
  471. /*
  472. * permit the bootmem allocator to evade page validation on high-order frees
  473. */
  474. void __free_pages_bootmem(struct page *page, unsigned int order)
  475. {
  476. if (order == 0) {
  477. __ClearPageReserved(page);
  478. set_page_count(page, 0);
  479. set_page_refcounted(page);
  480. __free_page(page);
  481. } else {
  482. int loop;
  483. prefetchw(page);
  484. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  485. struct page *p = &page[loop];
  486. if (loop + 1 < BITS_PER_LONG)
  487. prefetchw(p + 1);
  488. __ClearPageReserved(p);
  489. set_page_count(p, 0);
  490. }
  491. set_page_refcounted(page);
  492. __free_pages(page, order);
  493. }
  494. }
  495. /*
  496. * The order of subdivision here is critical for the IO subsystem.
  497. * Please do not alter this order without good reasons and regression
  498. * testing. Specifically, as large blocks of memory are subdivided,
  499. * the order in which smaller blocks are delivered depends on the order
  500. * they're subdivided in this function. This is the primary factor
  501. * influencing the order in which pages are delivered to the IO
  502. * subsystem according to empirical testing, and this is also justified
  503. * by considering the behavior of a buddy system containing a single
  504. * large block of memory acted on by a series of small allocations.
  505. * This behavior is a critical factor in sglist merging's success.
  506. *
  507. * -- wli
  508. */
  509. static inline void expand(struct zone *zone, struct page *page,
  510. int low, int high, struct free_area *area,
  511. int migratetype)
  512. {
  513. unsigned long size = 1 << high;
  514. while (high > low) {
  515. area--;
  516. high--;
  517. size >>= 1;
  518. VM_BUG_ON(bad_range(zone, &page[size]));
  519. list_add(&page[size].lru, &area->free_list[migratetype]);
  520. area->nr_free++;
  521. set_page_order(&page[size], high);
  522. }
  523. }
  524. /*
  525. * This page is about to be returned from the page allocator
  526. */
  527. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  528. {
  529. if (unlikely(page_mapcount(page) |
  530. (page->mapping != NULL) |
  531. (page_get_page_cgroup(page) != NULL) |
  532. (page_count(page) != 0) |
  533. (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
  534. bad_page(page);
  535. /*
  536. * For now, we report if PG_reserved was found set, but do not
  537. * clear it, and do not allocate the page: as a safety net.
  538. */
  539. if (PageReserved(page))
  540. return 1;
  541. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  542. 1 << PG_referenced | 1 << PG_arch_1 |
  543. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  544. set_page_private(page, 0);
  545. set_page_refcounted(page);
  546. arch_alloc_page(page, order);
  547. kernel_map_pages(page, 1 << order, 1);
  548. if (gfp_flags & __GFP_ZERO)
  549. prep_zero_page(page, order, gfp_flags);
  550. if (order && (gfp_flags & __GFP_COMP))
  551. prep_compound_page(page, order);
  552. return 0;
  553. }
  554. /*
  555. * Go through the free lists for the given migratetype and remove
  556. * the smallest available page from the freelists
  557. */
  558. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  559. int migratetype)
  560. {
  561. unsigned int current_order;
  562. struct free_area * area;
  563. struct page *page;
  564. /* Find a page of the appropriate size in the preferred list */
  565. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  566. area = &(zone->free_area[current_order]);
  567. if (list_empty(&area->free_list[migratetype]))
  568. continue;
  569. page = list_entry(area->free_list[migratetype].next,
  570. struct page, lru);
  571. list_del(&page->lru);
  572. rmv_page_order(page);
  573. area->nr_free--;
  574. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  575. expand(zone, page, order, current_order, area, migratetype);
  576. return page;
  577. }
  578. return NULL;
  579. }
  580. /*
  581. * This array describes the order lists are fallen back to when
  582. * the free lists for the desirable migrate type are depleted
  583. */
  584. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  585. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  586. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  587. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  588. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  589. };
  590. /*
  591. * Move the free pages in a range to the free lists of the requested type.
  592. * Note that start_page and end_pages are not aligned on a pageblock
  593. * boundary. If alignment is required, use move_freepages_block()
  594. */
  595. int move_freepages(struct zone *zone,
  596. struct page *start_page, struct page *end_page,
  597. int migratetype)
  598. {
  599. struct page *page;
  600. unsigned long order;
  601. int pages_moved = 0;
  602. #ifndef CONFIG_HOLES_IN_ZONE
  603. /*
  604. * page_zone is not safe to call in this context when
  605. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  606. * anyway as we check zone boundaries in move_freepages_block().
  607. * Remove at a later date when no bug reports exist related to
  608. * grouping pages by mobility
  609. */
  610. BUG_ON(page_zone(start_page) != page_zone(end_page));
  611. #endif
  612. for (page = start_page; page <= end_page;) {
  613. if (!pfn_valid_within(page_to_pfn(page))) {
  614. page++;
  615. continue;
  616. }
  617. if (!PageBuddy(page)) {
  618. page++;
  619. continue;
  620. }
  621. order = page_order(page);
  622. list_del(&page->lru);
  623. list_add(&page->lru,
  624. &zone->free_area[order].free_list[migratetype]);
  625. page += 1 << order;
  626. pages_moved += 1 << order;
  627. }
  628. return pages_moved;
  629. }
  630. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  631. {
  632. unsigned long start_pfn, end_pfn;
  633. struct page *start_page, *end_page;
  634. start_pfn = page_to_pfn(page);
  635. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  636. start_page = pfn_to_page(start_pfn);
  637. end_page = start_page + pageblock_nr_pages - 1;
  638. end_pfn = start_pfn + pageblock_nr_pages - 1;
  639. /* Do not cross zone boundaries */
  640. if (start_pfn < zone->zone_start_pfn)
  641. start_page = page;
  642. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  643. return 0;
  644. return move_freepages(zone, start_page, end_page, migratetype);
  645. }
  646. /* Remove an element from the buddy allocator from the fallback list */
  647. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  648. int start_migratetype)
  649. {
  650. struct free_area * area;
  651. int current_order;
  652. struct page *page;
  653. int migratetype, i;
  654. /* Find the largest possible block of pages in the other list */
  655. for (current_order = MAX_ORDER-1; current_order >= order;
  656. --current_order) {
  657. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  658. migratetype = fallbacks[start_migratetype][i];
  659. /* MIGRATE_RESERVE handled later if necessary */
  660. if (migratetype == MIGRATE_RESERVE)
  661. continue;
  662. area = &(zone->free_area[current_order]);
  663. if (list_empty(&area->free_list[migratetype]))
  664. continue;
  665. page = list_entry(area->free_list[migratetype].next,
  666. struct page, lru);
  667. area->nr_free--;
  668. /*
  669. * If breaking a large block of pages, move all free
  670. * pages to the preferred allocation list. If falling
  671. * back for a reclaimable kernel allocation, be more
  672. * agressive about taking ownership of free pages
  673. */
  674. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  675. start_migratetype == MIGRATE_RECLAIMABLE) {
  676. unsigned long pages;
  677. pages = move_freepages_block(zone, page,
  678. start_migratetype);
  679. /* Claim the whole block if over half of it is free */
  680. if (pages >= (1 << (pageblock_order-1)))
  681. set_pageblock_migratetype(page,
  682. start_migratetype);
  683. migratetype = start_migratetype;
  684. }
  685. /* Remove the page from the freelists */
  686. list_del(&page->lru);
  687. rmv_page_order(page);
  688. __mod_zone_page_state(zone, NR_FREE_PAGES,
  689. -(1UL << order));
  690. if (current_order == pageblock_order)
  691. set_pageblock_migratetype(page,
  692. start_migratetype);
  693. expand(zone, page, order, current_order, area, migratetype);
  694. return page;
  695. }
  696. }
  697. /* Use MIGRATE_RESERVE rather than fail an allocation */
  698. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  699. }
  700. /*
  701. * Do the hard work of removing an element from the buddy allocator.
  702. * Call me with the zone->lock already held.
  703. */
  704. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  705. int migratetype)
  706. {
  707. struct page *page;
  708. page = __rmqueue_smallest(zone, order, migratetype);
  709. if (unlikely(!page))
  710. page = __rmqueue_fallback(zone, order, migratetype);
  711. return page;
  712. }
  713. /*
  714. * Obtain a specified number of elements from the buddy allocator, all under
  715. * a single hold of the lock, for efficiency. Add them to the supplied list.
  716. * Returns the number of new pages which were placed at *list.
  717. */
  718. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  719. unsigned long count, struct list_head *list,
  720. int migratetype)
  721. {
  722. int i;
  723. spin_lock(&zone->lock);
  724. for (i = 0; i < count; ++i) {
  725. struct page *page = __rmqueue(zone, order, migratetype);
  726. if (unlikely(page == NULL))
  727. break;
  728. /*
  729. * Split buddy pages returned by expand() are received here
  730. * in physical page order. The page is added to the callers and
  731. * list and the list head then moves forward. From the callers
  732. * perspective, the linked list is ordered by page number in
  733. * some conditions. This is useful for IO devices that can
  734. * merge IO requests if the physical pages are ordered
  735. * properly.
  736. */
  737. list_add(&page->lru, list);
  738. set_page_private(page, migratetype);
  739. list = &page->lru;
  740. }
  741. spin_unlock(&zone->lock);
  742. return i;
  743. }
  744. #ifdef CONFIG_NUMA
  745. /*
  746. * Called from the vmstat counter updater to drain pagesets of this
  747. * currently executing processor on remote nodes after they have
  748. * expired.
  749. *
  750. * Note that this function must be called with the thread pinned to
  751. * a single processor.
  752. */
  753. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  754. {
  755. unsigned long flags;
  756. int to_drain;
  757. local_irq_save(flags);
  758. if (pcp->count >= pcp->batch)
  759. to_drain = pcp->batch;
  760. else
  761. to_drain = pcp->count;
  762. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  763. pcp->count -= to_drain;
  764. local_irq_restore(flags);
  765. }
  766. #endif
  767. /*
  768. * Drain pages of the indicated processor.
  769. *
  770. * The processor must either be the current processor and the
  771. * thread pinned to the current processor or a processor that
  772. * is not online.
  773. */
  774. static void drain_pages(unsigned int cpu)
  775. {
  776. unsigned long flags;
  777. struct zone *zone;
  778. for_each_zone(zone) {
  779. struct per_cpu_pageset *pset;
  780. struct per_cpu_pages *pcp;
  781. if (!populated_zone(zone))
  782. continue;
  783. pset = zone_pcp(zone, cpu);
  784. pcp = &pset->pcp;
  785. local_irq_save(flags);
  786. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  787. pcp->count = 0;
  788. local_irq_restore(flags);
  789. }
  790. }
  791. /*
  792. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  793. */
  794. void drain_local_pages(void *arg)
  795. {
  796. drain_pages(smp_processor_id());
  797. }
  798. /*
  799. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  800. */
  801. void drain_all_pages(void)
  802. {
  803. on_each_cpu(drain_local_pages, NULL, 1);
  804. }
  805. #ifdef CONFIG_HIBERNATION
  806. void mark_free_pages(struct zone *zone)
  807. {
  808. unsigned long pfn, max_zone_pfn;
  809. unsigned long flags;
  810. int order, t;
  811. struct list_head *curr;
  812. if (!zone->spanned_pages)
  813. return;
  814. spin_lock_irqsave(&zone->lock, flags);
  815. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  816. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  817. if (pfn_valid(pfn)) {
  818. struct page *page = pfn_to_page(pfn);
  819. if (!swsusp_page_is_forbidden(page))
  820. swsusp_unset_page_free(page);
  821. }
  822. for_each_migratetype_order(order, t) {
  823. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  824. unsigned long i;
  825. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  826. for (i = 0; i < (1UL << order); i++)
  827. swsusp_set_page_free(pfn_to_page(pfn + i));
  828. }
  829. }
  830. spin_unlock_irqrestore(&zone->lock, flags);
  831. }
  832. #endif /* CONFIG_PM */
  833. /*
  834. * Free a 0-order page
  835. */
  836. static void free_hot_cold_page(struct page *page, int cold)
  837. {
  838. struct zone *zone = page_zone(page);
  839. struct per_cpu_pages *pcp;
  840. unsigned long flags;
  841. if (PageAnon(page))
  842. page->mapping = NULL;
  843. if (free_pages_check(page))
  844. return;
  845. if (!PageHighMem(page)) {
  846. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  847. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  848. }
  849. arch_free_page(page, 0);
  850. kernel_map_pages(page, 1, 0);
  851. pcp = &zone_pcp(zone, get_cpu())->pcp;
  852. local_irq_save(flags);
  853. __count_vm_event(PGFREE);
  854. if (cold)
  855. list_add_tail(&page->lru, &pcp->list);
  856. else
  857. list_add(&page->lru, &pcp->list);
  858. set_page_private(page, get_pageblock_migratetype(page));
  859. pcp->count++;
  860. if (pcp->count >= pcp->high) {
  861. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  862. pcp->count -= pcp->batch;
  863. }
  864. local_irq_restore(flags);
  865. put_cpu();
  866. }
  867. void free_hot_page(struct page *page)
  868. {
  869. free_hot_cold_page(page, 0);
  870. }
  871. void free_cold_page(struct page *page)
  872. {
  873. free_hot_cold_page(page, 1);
  874. }
  875. /*
  876. * split_page takes a non-compound higher-order page, and splits it into
  877. * n (1<<order) sub-pages: page[0..n]
  878. * Each sub-page must be freed individually.
  879. *
  880. * Note: this is probably too low level an operation for use in drivers.
  881. * Please consult with lkml before using this in your driver.
  882. */
  883. void split_page(struct page *page, unsigned int order)
  884. {
  885. int i;
  886. VM_BUG_ON(PageCompound(page));
  887. VM_BUG_ON(!page_count(page));
  888. for (i = 1; i < (1 << order); i++)
  889. set_page_refcounted(page + i);
  890. }
  891. /*
  892. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  893. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  894. * or two.
  895. */
  896. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  897. struct zone *zone, int order, gfp_t gfp_flags)
  898. {
  899. unsigned long flags;
  900. struct page *page;
  901. int cold = !!(gfp_flags & __GFP_COLD);
  902. int cpu;
  903. int migratetype = allocflags_to_migratetype(gfp_flags);
  904. again:
  905. cpu = get_cpu();
  906. if (likely(order == 0)) {
  907. struct per_cpu_pages *pcp;
  908. pcp = &zone_pcp(zone, cpu)->pcp;
  909. local_irq_save(flags);
  910. if (!pcp->count) {
  911. pcp->count = rmqueue_bulk(zone, 0,
  912. pcp->batch, &pcp->list, migratetype);
  913. if (unlikely(!pcp->count))
  914. goto failed;
  915. }
  916. /* Find a page of the appropriate migrate type */
  917. if (cold) {
  918. list_for_each_entry_reverse(page, &pcp->list, lru)
  919. if (page_private(page) == migratetype)
  920. break;
  921. } else {
  922. list_for_each_entry(page, &pcp->list, lru)
  923. if (page_private(page) == migratetype)
  924. break;
  925. }
  926. /* Allocate more to the pcp list if necessary */
  927. if (unlikely(&page->lru == &pcp->list)) {
  928. pcp->count += rmqueue_bulk(zone, 0,
  929. pcp->batch, &pcp->list, migratetype);
  930. page = list_entry(pcp->list.next, struct page, lru);
  931. }
  932. list_del(&page->lru);
  933. pcp->count--;
  934. } else {
  935. spin_lock_irqsave(&zone->lock, flags);
  936. page = __rmqueue(zone, order, migratetype);
  937. spin_unlock(&zone->lock);
  938. if (!page)
  939. goto failed;
  940. }
  941. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  942. zone_statistics(preferred_zone, zone);
  943. local_irq_restore(flags);
  944. put_cpu();
  945. VM_BUG_ON(bad_range(zone, page));
  946. if (prep_new_page(page, order, gfp_flags))
  947. goto again;
  948. return page;
  949. failed:
  950. local_irq_restore(flags);
  951. put_cpu();
  952. return NULL;
  953. }
  954. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  955. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  956. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  957. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  958. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  959. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  960. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  961. #ifdef CONFIG_FAIL_PAGE_ALLOC
  962. static struct fail_page_alloc_attr {
  963. struct fault_attr attr;
  964. u32 ignore_gfp_highmem;
  965. u32 ignore_gfp_wait;
  966. u32 min_order;
  967. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  968. struct dentry *ignore_gfp_highmem_file;
  969. struct dentry *ignore_gfp_wait_file;
  970. struct dentry *min_order_file;
  971. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  972. } fail_page_alloc = {
  973. .attr = FAULT_ATTR_INITIALIZER,
  974. .ignore_gfp_wait = 1,
  975. .ignore_gfp_highmem = 1,
  976. .min_order = 1,
  977. };
  978. static int __init setup_fail_page_alloc(char *str)
  979. {
  980. return setup_fault_attr(&fail_page_alloc.attr, str);
  981. }
  982. __setup("fail_page_alloc=", setup_fail_page_alloc);
  983. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  984. {
  985. if (order < fail_page_alloc.min_order)
  986. return 0;
  987. if (gfp_mask & __GFP_NOFAIL)
  988. return 0;
  989. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  990. return 0;
  991. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  992. return 0;
  993. return should_fail(&fail_page_alloc.attr, 1 << order);
  994. }
  995. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  996. static int __init fail_page_alloc_debugfs(void)
  997. {
  998. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  999. struct dentry *dir;
  1000. int err;
  1001. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1002. "fail_page_alloc");
  1003. if (err)
  1004. return err;
  1005. dir = fail_page_alloc.attr.dentries.dir;
  1006. fail_page_alloc.ignore_gfp_wait_file =
  1007. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1008. &fail_page_alloc.ignore_gfp_wait);
  1009. fail_page_alloc.ignore_gfp_highmem_file =
  1010. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1011. &fail_page_alloc.ignore_gfp_highmem);
  1012. fail_page_alloc.min_order_file =
  1013. debugfs_create_u32("min-order", mode, dir,
  1014. &fail_page_alloc.min_order);
  1015. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1016. !fail_page_alloc.ignore_gfp_highmem_file ||
  1017. !fail_page_alloc.min_order_file) {
  1018. err = -ENOMEM;
  1019. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1020. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1021. debugfs_remove(fail_page_alloc.min_order_file);
  1022. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1023. }
  1024. return err;
  1025. }
  1026. late_initcall(fail_page_alloc_debugfs);
  1027. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1028. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1029. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1030. {
  1031. return 0;
  1032. }
  1033. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1034. /*
  1035. * Return 1 if free pages are above 'mark'. This takes into account the order
  1036. * of the allocation.
  1037. */
  1038. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1039. int classzone_idx, int alloc_flags)
  1040. {
  1041. /* free_pages my go negative - that's OK */
  1042. long min = mark;
  1043. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1044. int o;
  1045. if (alloc_flags & ALLOC_HIGH)
  1046. min -= min / 2;
  1047. if (alloc_flags & ALLOC_HARDER)
  1048. min -= min / 4;
  1049. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1050. return 0;
  1051. for (o = 0; o < order; o++) {
  1052. /* At the next order, this order's pages become unavailable */
  1053. free_pages -= z->free_area[o].nr_free << o;
  1054. /* Require fewer higher order pages to be free */
  1055. min >>= 1;
  1056. if (free_pages <= min)
  1057. return 0;
  1058. }
  1059. return 1;
  1060. }
  1061. #ifdef CONFIG_NUMA
  1062. /*
  1063. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1064. * skip over zones that are not allowed by the cpuset, or that have
  1065. * been recently (in last second) found to be nearly full. See further
  1066. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1067. * that have to skip over a lot of full or unallowed zones.
  1068. *
  1069. * If the zonelist cache is present in the passed in zonelist, then
  1070. * returns a pointer to the allowed node mask (either the current
  1071. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1072. *
  1073. * If the zonelist cache is not available for this zonelist, does
  1074. * nothing and returns NULL.
  1075. *
  1076. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1077. * a second since last zap'd) then we zap it out (clear its bits.)
  1078. *
  1079. * We hold off even calling zlc_setup, until after we've checked the
  1080. * first zone in the zonelist, on the theory that most allocations will
  1081. * be satisfied from that first zone, so best to examine that zone as
  1082. * quickly as we can.
  1083. */
  1084. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1085. {
  1086. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1087. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1088. zlc = zonelist->zlcache_ptr;
  1089. if (!zlc)
  1090. return NULL;
  1091. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1092. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1093. zlc->last_full_zap = jiffies;
  1094. }
  1095. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1096. &cpuset_current_mems_allowed :
  1097. &node_states[N_HIGH_MEMORY];
  1098. return allowednodes;
  1099. }
  1100. /*
  1101. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1102. * if it is worth looking at further for free memory:
  1103. * 1) Check that the zone isn't thought to be full (doesn't have its
  1104. * bit set in the zonelist_cache fullzones BITMAP).
  1105. * 2) Check that the zones node (obtained from the zonelist_cache
  1106. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1107. * Return true (non-zero) if zone is worth looking at further, or
  1108. * else return false (zero) if it is not.
  1109. *
  1110. * This check -ignores- the distinction between various watermarks,
  1111. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1112. * found to be full for any variation of these watermarks, it will
  1113. * be considered full for up to one second by all requests, unless
  1114. * we are so low on memory on all allowed nodes that we are forced
  1115. * into the second scan of the zonelist.
  1116. *
  1117. * In the second scan we ignore this zonelist cache and exactly
  1118. * apply the watermarks to all zones, even it is slower to do so.
  1119. * We are low on memory in the second scan, and should leave no stone
  1120. * unturned looking for a free page.
  1121. */
  1122. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1123. nodemask_t *allowednodes)
  1124. {
  1125. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1126. int i; /* index of *z in zonelist zones */
  1127. int n; /* node that zone *z is on */
  1128. zlc = zonelist->zlcache_ptr;
  1129. if (!zlc)
  1130. return 1;
  1131. i = z - zonelist->_zonerefs;
  1132. n = zlc->z_to_n[i];
  1133. /* This zone is worth trying if it is allowed but not full */
  1134. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1135. }
  1136. /*
  1137. * Given 'z' scanning a zonelist, set the corresponding bit in
  1138. * zlc->fullzones, so that subsequent attempts to allocate a page
  1139. * from that zone don't waste time re-examining it.
  1140. */
  1141. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1142. {
  1143. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1144. int i; /* index of *z in zonelist zones */
  1145. zlc = zonelist->zlcache_ptr;
  1146. if (!zlc)
  1147. return;
  1148. i = z - zonelist->_zonerefs;
  1149. set_bit(i, zlc->fullzones);
  1150. }
  1151. #else /* CONFIG_NUMA */
  1152. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1153. {
  1154. return NULL;
  1155. }
  1156. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1157. nodemask_t *allowednodes)
  1158. {
  1159. return 1;
  1160. }
  1161. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1162. {
  1163. }
  1164. #endif /* CONFIG_NUMA */
  1165. /*
  1166. * get_page_from_freelist goes through the zonelist trying to allocate
  1167. * a page.
  1168. */
  1169. static struct page *
  1170. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1171. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1172. {
  1173. struct zoneref *z;
  1174. struct page *page = NULL;
  1175. int classzone_idx;
  1176. struct zone *zone, *preferred_zone;
  1177. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1178. int zlc_active = 0; /* set if using zonelist_cache */
  1179. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1180. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1181. &preferred_zone);
  1182. if (!preferred_zone)
  1183. return NULL;
  1184. classzone_idx = zone_idx(preferred_zone);
  1185. zonelist_scan:
  1186. /*
  1187. * Scan zonelist, looking for a zone with enough free.
  1188. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1189. */
  1190. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1191. high_zoneidx, nodemask) {
  1192. if (NUMA_BUILD && zlc_active &&
  1193. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1194. continue;
  1195. if ((alloc_flags & ALLOC_CPUSET) &&
  1196. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1197. goto try_next_zone;
  1198. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1199. unsigned long mark;
  1200. if (alloc_flags & ALLOC_WMARK_MIN)
  1201. mark = zone->pages_min;
  1202. else if (alloc_flags & ALLOC_WMARK_LOW)
  1203. mark = zone->pages_low;
  1204. else
  1205. mark = zone->pages_high;
  1206. if (!zone_watermark_ok(zone, order, mark,
  1207. classzone_idx, alloc_flags)) {
  1208. if (!zone_reclaim_mode ||
  1209. !zone_reclaim(zone, gfp_mask, order))
  1210. goto this_zone_full;
  1211. }
  1212. }
  1213. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1214. if (page)
  1215. break;
  1216. this_zone_full:
  1217. if (NUMA_BUILD)
  1218. zlc_mark_zone_full(zonelist, z);
  1219. try_next_zone:
  1220. if (NUMA_BUILD && !did_zlc_setup) {
  1221. /* we do zlc_setup after the first zone is tried */
  1222. allowednodes = zlc_setup(zonelist, alloc_flags);
  1223. zlc_active = 1;
  1224. did_zlc_setup = 1;
  1225. }
  1226. }
  1227. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1228. /* Disable zlc cache for second zonelist scan */
  1229. zlc_active = 0;
  1230. goto zonelist_scan;
  1231. }
  1232. return page;
  1233. }
  1234. /*
  1235. * This is the 'heart' of the zoned buddy allocator.
  1236. */
  1237. struct page *
  1238. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1239. struct zonelist *zonelist, nodemask_t *nodemask)
  1240. {
  1241. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1242. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1243. struct zoneref *z;
  1244. struct zone *zone;
  1245. struct page *page;
  1246. struct reclaim_state reclaim_state;
  1247. struct task_struct *p = current;
  1248. int do_retry;
  1249. int alloc_flags;
  1250. unsigned long did_some_progress;
  1251. unsigned long pages_reclaimed = 0;
  1252. might_sleep_if(wait);
  1253. if (should_fail_alloc_page(gfp_mask, order))
  1254. return NULL;
  1255. restart:
  1256. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1257. if (unlikely(!z->zone)) {
  1258. /*
  1259. * Happens if we have an empty zonelist as a result of
  1260. * GFP_THISNODE being used on a memoryless node
  1261. */
  1262. return NULL;
  1263. }
  1264. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1265. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1266. if (page)
  1267. goto got_pg;
  1268. /*
  1269. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1270. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1271. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1272. * using a larger set of nodes after it has established that the
  1273. * allowed per node queues are empty and that nodes are
  1274. * over allocated.
  1275. */
  1276. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1277. goto nopage;
  1278. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1279. wakeup_kswapd(zone, order);
  1280. /*
  1281. * OK, we're below the kswapd watermark and have kicked background
  1282. * reclaim. Now things get more complex, so set up alloc_flags according
  1283. * to how we want to proceed.
  1284. *
  1285. * The caller may dip into page reserves a bit more if the caller
  1286. * cannot run direct reclaim, or if the caller has realtime scheduling
  1287. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1288. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1289. */
  1290. alloc_flags = ALLOC_WMARK_MIN;
  1291. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1292. alloc_flags |= ALLOC_HARDER;
  1293. if (gfp_mask & __GFP_HIGH)
  1294. alloc_flags |= ALLOC_HIGH;
  1295. if (wait)
  1296. alloc_flags |= ALLOC_CPUSET;
  1297. /*
  1298. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1299. * coming from realtime tasks go deeper into reserves.
  1300. *
  1301. * This is the last chance, in general, before the goto nopage.
  1302. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1303. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1304. */
  1305. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1306. high_zoneidx, alloc_flags);
  1307. if (page)
  1308. goto got_pg;
  1309. /* This allocation should allow future memory freeing. */
  1310. rebalance:
  1311. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1312. && !in_interrupt()) {
  1313. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1314. nofail_alloc:
  1315. /* go through the zonelist yet again, ignoring mins */
  1316. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1317. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1318. if (page)
  1319. goto got_pg;
  1320. if (gfp_mask & __GFP_NOFAIL) {
  1321. congestion_wait(WRITE, HZ/50);
  1322. goto nofail_alloc;
  1323. }
  1324. }
  1325. goto nopage;
  1326. }
  1327. /* Atomic allocations - we can't balance anything */
  1328. if (!wait)
  1329. goto nopage;
  1330. cond_resched();
  1331. /* We now go into synchronous reclaim */
  1332. cpuset_memory_pressure_bump();
  1333. p->flags |= PF_MEMALLOC;
  1334. reclaim_state.reclaimed_slab = 0;
  1335. p->reclaim_state = &reclaim_state;
  1336. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1337. p->reclaim_state = NULL;
  1338. p->flags &= ~PF_MEMALLOC;
  1339. cond_resched();
  1340. if (order != 0)
  1341. drain_all_pages();
  1342. if (likely(did_some_progress)) {
  1343. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1344. zonelist, high_zoneidx, alloc_flags);
  1345. if (page)
  1346. goto got_pg;
  1347. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1348. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1349. schedule_timeout_uninterruptible(1);
  1350. goto restart;
  1351. }
  1352. /*
  1353. * Go through the zonelist yet one more time, keep
  1354. * very high watermark here, this is only to catch
  1355. * a parallel oom killing, we must fail if we're still
  1356. * under heavy pressure.
  1357. */
  1358. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1359. order, zonelist, high_zoneidx,
  1360. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1361. if (page) {
  1362. clear_zonelist_oom(zonelist, gfp_mask);
  1363. goto got_pg;
  1364. }
  1365. /* The OOM killer will not help higher order allocs so fail */
  1366. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1367. clear_zonelist_oom(zonelist, gfp_mask);
  1368. goto nopage;
  1369. }
  1370. out_of_memory(zonelist, gfp_mask, order);
  1371. clear_zonelist_oom(zonelist, gfp_mask);
  1372. goto restart;
  1373. }
  1374. /*
  1375. * Don't let big-order allocations loop unless the caller explicitly
  1376. * requests that. Wait for some write requests to complete then retry.
  1377. *
  1378. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1379. * means __GFP_NOFAIL, but that may not be true in other
  1380. * implementations.
  1381. *
  1382. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1383. * specified, then we retry until we no longer reclaim any pages
  1384. * (above), or we've reclaimed an order of pages at least as
  1385. * large as the allocation's order. In both cases, if the
  1386. * allocation still fails, we stop retrying.
  1387. */
  1388. pages_reclaimed += did_some_progress;
  1389. do_retry = 0;
  1390. if (!(gfp_mask & __GFP_NORETRY)) {
  1391. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1392. do_retry = 1;
  1393. } else {
  1394. if (gfp_mask & __GFP_REPEAT &&
  1395. pages_reclaimed < (1 << order))
  1396. do_retry = 1;
  1397. }
  1398. if (gfp_mask & __GFP_NOFAIL)
  1399. do_retry = 1;
  1400. }
  1401. if (do_retry) {
  1402. congestion_wait(WRITE, HZ/50);
  1403. goto rebalance;
  1404. }
  1405. nopage:
  1406. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1407. printk(KERN_WARNING "%s: page allocation failure."
  1408. " order:%d, mode:0x%x\n",
  1409. p->comm, order, gfp_mask);
  1410. dump_stack();
  1411. show_mem();
  1412. }
  1413. got_pg:
  1414. return page;
  1415. }
  1416. EXPORT_SYMBOL(__alloc_pages_internal);
  1417. /*
  1418. * Common helper functions.
  1419. */
  1420. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1421. {
  1422. struct page * page;
  1423. page = alloc_pages(gfp_mask, order);
  1424. if (!page)
  1425. return 0;
  1426. return (unsigned long) page_address(page);
  1427. }
  1428. EXPORT_SYMBOL(__get_free_pages);
  1429. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1430. {
  1431. struct page * page;
  1432. /*
  1433. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1434. * a highmem page
  1435. */
  1436. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1437. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1438. if (page)
  1439. return (unsigned long) page_address(page);
  1440. return 0;
  1441. }
  1442. EXPORT_SYMBOL(get_zeroed_page);
  1443. void __pagevec_free(struct pagevec *pvec)
  1444. {
  1445. int i = pagevec_count(pvec);
  1446. while (--i >= 0)
  1447. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1448. }
  1449. void __free_pages(struct page *page, unsigned int order)
  1450. {
  1451. if (put_page_testzero(page)) {
  1452. if (order == 0)
  1453. free_hot_page(page);
  1454. else
  1455. __free_pages_ok(page, order);
  1456. }
  1457. }
  1458. EXPORT_SYMBOL(__free_pages);
  1459. void free_pages(unsigned long addr, unsigned int order)
  1460. {
  1461. if (addr != 0) {
  1462. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1463. __free_pages(virt_to_page((void *)addr), order);
  1464. }
  1465. }
  1466. EXPORT_SYMBOL(free_pages);
  1467. static unsigned int nr_free_zone_pages(int offset)
  1468. {
  1469. struct zoneref *z;
  1470. struct zone *zone;
  1471. /* Just pick one node, since fallback list is circular */
  1472. unsigned int sum = 0;
  1473. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1474. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1475. unsigned long size = zone->present_pages;
  1476. unsigned long high = zone->pages_high;
  1477. if (size > high)
  1478. sum += size - high;
  1479. }
  1480. return sum;
  1481. }
  1482. /*
  1483. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1484. */
  1485. unsigned int nr_free_buffer_pages(void)
  1486. {
  1487. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1488. }
  1489. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1490. /*
  1491. * Amount of free RAM allocatable within all zones
  1492. */
  1493. unsigned int nr_free_pagecache_pages(void)
  1494. {
  1495. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1496. }
  1497. static inline void show_node(struct zone *zone)
  1498. {
  1499. if (NUMA_BUILD)
  1500. printk("Node %d ", zone_to_nid(zone));
  1501. }
  1502. void si_meminfo(struct sysinfo *val)
  1503. {
  1504. val->totalram = totalram_pages;
  1505. val->sharedram = 0;
  1506. val->freeram = global_page_state(NR_FREE_PAGES);
  1507. val->bufferram = nr_blockdev_pages();
  1508. val->totalhigh = totalhigh_pages;
  1509. val->freehigh = nr_free_highpages();
  1510. val->mem_unit = PAGE_SIZE;
  1511. }
  1512. EXPORT_SYMBOL(si_meminfo);
  1513. #ifdef CONFIG_NUMA
  1514. void si_meminfo_node(struct sysinfo *val, int nid)
  1515. {
  1516. pg_data_t *pgdat = NODE_DATA(nid);
  1517. val->totalram = pgdat->node_present_pages;
  1518. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1519. #ifdef CONFIG_HIGHMEM
  1520. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1521. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1522. NR_FREE_PAGES);
  1523. #else
  1524. val->totalhigh = 0;
  1525. val->freehigh = 0;
  1526. #endif
  1527. val->mem_unit = PAGE_SIZE;
  1528. }
  1529. #endif
  1530. #define K(x) ((x) << (PAGE_SHIFT-10))
  1531. /*
  1532. * Show free area list (used inside shift_scroll-lock stuff)
  1533. * We also calculate the percentage fragmentation. We do this by counting the
  1534. * memory on each free list with the exception of the first item on the list.
  1535. */
  1536. void show_free_areas(void)
  1537. {
  1538. int cpu;
  1539. struct zone *zone;
  1540. for_each_zone(zone) {
  1541. if (!populated_zone(zone))
  1542. continue;
  1543. show_node(zone);
  1544. printk("%s per-cpu:\n", zone->name);
  1545. for_each_online_cpu(cpu) {
  1546. struct per_cpu_pageset *pageset;
  1547. pageset = zone_pcp(zone, cpu);
  1548. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1549. cpu, pageset->pcp.high,
  1550. pageset->pcp.batch, pageset->pcp.count);
  1551. }
  1552. }
  1553. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1554. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1555. global_page_state(NR_ACTIVE),
  1556. global_page_state(NR_INACTIVE),
  1557. global_page_state(NR_FILE_DIRTY),
  1558. global_page_state(NR_WRITEBACK),
  1559. global_page_state(NR_UNSTABLE_NFS),
  1560. global_page_state(NR_FREE_PAGES),
  1561. global_page_state(NR_SLAB_RECLAIMABLE) +
  1562. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1563. global_page_state(NR_FILE_MAPPED),
  1564. global_page_state(NR_PAGETABLE),
  1565. global_page_state(NR_BOUNCE));
  1566. for_each_zone(zone) {
  1567. int i;
  1568. if (!populated_zone(zone))
  1569. continue;
  1570. show_node(zone);
  1571. printk("%s"
  1572. " free:%lukB"
  1573. " min:%lukB"
  1574. " low:%lukB"
  1575. " high:%lukB"
  1576. " active:%lukB"
  1577. " inactive:%lukB"
  1578. " present:%lukB"
  1579. " pages_scanned:%lu"
  1580. " all_unreclaimable? %s"
  1581. "\n",
  1582. zone->name,
  1583. K(zone_page_state(zone, NR_FREE_PAGES)),
  1584. K(zone->pages_min),
  1585. K(zone->pages_low),
  1586. K(zone->pages_high),
  1587. K(zone_page_state(zone, NR_ACTIVE)),
  1588. K(zone_page_state(zone, NR_INACTIVE)),
  1589. K(zone->present_pages),
  1590. zone->pages_scanned,
  1591. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1592. );
  1593. printk("lowmem_reserve[]:");
  1594. for (i = 0; i < MAX_NR_ZONES; i++)
  1595. printk(" %lu", zone->lowmem_reserve[i]);
  1596. printk("\n");
  1597. }
  1598. for_each_zone(zone) {
  1599. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1600. if (!populated_zone(zone))
  1601. continue;
  1602. show_node(zone);
  1603. printk("%s: ", zone->name);
  1604. spin_lock_irqsave(&zone->lock, flags);
  1605. for (order = 0; order < MAX_ORDER; order++) {
  1606. nr[order] = zone->free_area[order].nr_free;
  1607. total += nr[order] << order;
  1608. }
  1609. spin_unlock_irqrestore(&zone->lock, flags);
  1610. for (order = 0; order < MAX_ORDER; order++)
  1611. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1612. printk("= %lukB\n", K(total));
  1613. }
  1614. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1615. show_swap_cache_info();
  1616. }
  1617. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1618. {
  1619. zoneref->zone = zone;
  1620. zoneref->zone_idx = zone_idx(zone);
  1621. }
  1622. /*
  1623. * Builds allocation fallback zone lists.
  1624. *
  1625. * Add all populated zones of a node to the zonelist.
  1626. */
  1627. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1628. int nr_zones, enum zone_type zone_type)
  1629. {
  1630. struct zone *zone;
  1631. BUG_ON(zone_type >= MAX_NR_ZONES);
  1632. zone_type++;
  1633. do {
  1634. zone_type--;
  1635. zone = pgdat->node_zones + zone_type;
  1636. if (populated_zone(zone)) {
  1637. zoneref_set_zone(zone,
  1638. &zonelist->_zonerefs[nr_zones++]);
  1639. check_highest_zone(zone_type);
  1640. }
  1641. } while (zone_type);
  1642. return nr_zones;
  1643. }
  1644. /*
  1645. * zonelist_order:
  1646. * 0 = automatic detection of better ordering.
  1647. * 1 = order by ([node] distance, -zonetype)
  1648. * 2 = order by (-zonetype, [node] distance)
  1649. *
  1650. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1651. * the same zonelist. So only NUMA can configure this param.
  1652. */
  1653. #define ZONELIST_ORDER_DEFAULT 0
  1654. #define ZONELIST_ORDER_NODE 1
  1655. #define ZONELIST_ORDER_ZONE 2
  1656. /* zonelist order in the kernel.
  1657. * set_zonelist_order() will set this to NODE or ZONE.
  1658. */
  1659. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1660. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1661. #ifdef CONFIG_NUMA
  1662. /* The value user specified ....changed by config */
  1663. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1664. /* string for sysctl */
  1665. #define NUMA_ZONELIST_ORDER_LEN 16
  1666. char numa_zonelist_order[16] = "default";
  1667. /*
  1668. * interface for configure zonelist ordering.
  1669. * command line option "numa_zonelist_order"
  1670. * = "[dD]efault - default, automatic configuration.
  1671. * = "[nN]ode - order by node locality, then by zone within node
  1672. * = "[zZ]one - order by zone, then by locality within zone
  1673. */
  1674. static int __parse_numa_zonelist_order(char *s)
  1675. {
  1676. if (*s == 'd' || *s == 'D') {
  1677. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1678. } else if (*s == 'n' || *s == 'N') {
  1679. user_zonelist_order = ZONELIST_ORDER_NODE;
  1680. } else if (*s == 'z' || *s == 'Z') {
  1681. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1682. } else {
  1683. printk(KERN_WARNING
  1684. "Ignoring invalid numa_zonelist_order value: "
  1685. "%s\n", s);
  1686. return -EINVAL;
  1687. }
  1688. return 0;
  1689. }
  1690. static __init int setup_numa_zonelist_order(char *s)
  1691. {
  1692. if (s)
  1693. return __parse_numa_zonelist_order(s);
  1694. return 0;
  1695. }
  1696. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1697. /*
  1698. * sysctl handler for numa_zonelist_order
  1699. */
  1700. int numa_zonelist_order_handler(ctl_table *table, int write,
  1701. struct file *file, void __user *buffer, size_t *length,
  1702. loff_t *ppos)
  1703. {
  1704. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1705. int ret;
  1706. if (write)
  1707. strncpy(saved_string, (char*)table->data,
  1708. NUMA_ZONELIST_ORDER_LEN);
  1709. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1710. if (ret)
  1711. return ret;
  1712. if (write) {
  1713. int oldval = user_zonelist_order;
  1714. if (__parse_numa_zonelist_order((char*)table->data)) {
  1715. /*
  1716. * bogus value. restore saved string
  1717. */
  1718. strncpy((char*)table->data, saved_string,
  1719. NUMA_ZONELIST_ORDER_LEN);
  1720. user_zonelist_order = oldval;
  1721. } else if (oldval != user_zonelist_order)
  1722. build_all_zonelists();
  1723. }
  1724. return 0;
  1725. }
  1726. #define MAX_NODE_LOAD (num_online_nodes())
  1727. static int node_load[MAX_NUMNODES];
  1728. /**
  1729. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1730. * @node: node whose fallback list we're appending
  1731. * @used_node_mask: nodemask_t of already used nodes
  1732. *
  1733. * We use a number of factors to determine which is the next node that should
  1734. * appear on a given node's fallback list. The node should not have appeared
  1735. * already in @node's fallback list, and it should be the next closest node
  1736. * according to the distance array (which contains arbitrary distance values
  1737. * from each node to each node in the system), and should also prefer nodes
  1738. * with no CPUs, since presumably they'll have very little allocation pressure
  1739. * on them otherwise.
  1740. * It returns -1 if no node is found.
  1741. */
  1742. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1743. {
  1744. int n, val;
  1745. int min_val = INT_MAX;
  1746. int best_node = -1;
  1747. node_to_cpumask_ptr(tmp, 0);
  1748. /* Use the local node if we haven't already */
  1749. if (!node_isset(node, *used_node_mask)) {
  1750. node_set(node, *used_node_mask);
  1751. return node;
  1752. }
  1753. for_each_node_state(n, N_HIGH_MEMORY) {
  1754. /* Don't want a node to appear more than once */
  1755. if (node_isset(n, *used_node_mask))
  1756. continue;
  1757. /* Use the distance array to find the distance */
  1758. val = node_distance(node, n);
  1759. /* Penalize nodes under us ("prefer the next node") */
  1760. val += (n < node);
  1761. /* Give preference to headless and unused nodes */
  1762. node_to_cpumask_ptr_next(tmp, n);
  1763. if (!cpus_empty(*tmp))
  1764. val += PENALTY_FOR_NODE_WITH_CPUS;
  1765. /* Slight preference for less loaded node */
  1766. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1767. val += node_load[n];
  1768. if (val < min_val) {
  1769. min_val = val;
  1770. best_node = n;
  1771. }
  1772. }
  1773. if (best_node >= 0)
  1774. node_set(best_node, *used_node_mask);
  1775. return best_node;
  1776. }
  1777. /*
  1778. * Build zonelists ordered by node and zones within node.
  1779. * This results in maximum locality--normal zone overflows into local
  1780. * DMA zone, if any--but risks exhausting DMA zone.
  1781. */
  1782. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1783. {
  1784. int j;
  1785. struct zonelist *zonelist;
  1786. zonelist = &pgdat->node_zonelists[0];
  1787. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1788. ;
  1789. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1790. MAX_NR_ZONES - 1);
  1791. zonelist->_zonerefs[j].zone = NULL;
  1792. zonelist->_zonerefs[j].zone_idx = 0;
  1793. }
  1794. /*
  1795. * Build gfp_thisnode zonelists
  1796. */
  1797. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1798. {
  1799. int j;
  1800. struct zonelist *zonelist;
  1801. zonelist = &pgdat->node_zonelists[1];
  1802. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1803. zonelist->_zonerefs[j].zone = NULL;
  1804. zonelist->_zonerefs[j].zone_idx = 0;
  1805. }
  1806. /*
  1807. * Build zonelists ordered by zone and nodes within zones.
  1808. * This results in conserving DMA zone[s] until all Normal memory is
  1809. * exhausted, but results in overflowing to remote node while memory
  1810. * may still exist in local DMA zone.
  1811. */
  1812. static int node_order[MAX_NUMNODES];
  1813. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1814. {
  1815. int pos, j, node;
  1816. int zone_type; /* needs to be signed */
  1817. struct zone *z;
  1818. struct zonelist *zonelist;
  1819. zonelist = &pgdat->node_zonelists[0];
  1820. pos = 0;
  1821. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1822. for (j = 0; j < nr_nodes; j++) {
  1823. node = node_order[j];
  1824. z = &NODE_DATA(node)->node_zones[zone_type];
  1825. if (populated_zone(z)) {
  1826. zoneref_set_zone(z,
  1827. &zonelist->_zonerefs[pos++]);
  1828. check_highest_zone(zone_type);
  1829. }
  1830. }
  1831. }
  1832. zonelist->_zonerefs[pos].zone = NULL;
  1833. zonelist->_zonerefs[pos].zone_idx = 0;
  1834. }
  1835. static int default_zonelist_order(void)
  1836. {
  1837. int nid, zone_type;
  1838. unsigned long low_kmem_size,total_size;
  1839. struct zone *z;
  1840. int average_size;
  1841. /*
  1842. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1843. * If they are really small and used heavily, the system can fall
  1844. * into OOM very easily.
  1845. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1846. */
  1847. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1848. low_kmem_size = 0;
  1849. total_size = 0;
  1850. for_each_online_node(nid) {
  1851. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1852. z = &NODE_DATA(nid)->node_zones[zone_type];
  1853. if (populated_zone(z)) {
  1854. if (zone_type < ZONE_NORMAL)
  1855. low_kmem_size += z->present_pages;
  1856. total_size += z->present_pages;
  1857. }
  1858. }
  1859. }
  1860. if (!low_kmem_size || /* there are no DMA area. */
  1861. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1862. return ZONELIST_ORDER_NODE;
  1863. /*
  1864. * look into each node's config.
  1865. * If there is a node whose DMA/DMA32 memory is very big area on
  1866. * local memory, NODE_ORDER may be suitable.
  1867. */
  1868. average_size = total_size /
  1869. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1870. for_each_online_node(nid) {
  1871. low_kmem_size = 0;
  1872. total_size = 0;
  1873. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1874. z = &NODE_DATA(nid)->node_zones[zone_type];
  1875. if (populated_zone(z)) {
  1876. if (zone_type < ZONE_NORMAL)
  1877. low_kmem_size += z->present_pages;
  1878. total_size += z->present_pages;
  1879. }
  1880. }
  1881. if (low_kmem_size &&
  1882. total_size > average_size && /* ignore small node */
  1883. low_kmem_size > total_size * 70/100)
  1884. return ZONELIST_ORDER_NODE;
  1885. }
  1886. return ZONELIST_ORDER_ZONE;
  1887. }
  1888. static void set_zonelist_order(void)
  1889. {
  1890. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1891. current_zonelist_order = default_zonelist_order();
  1892. else
  1893. current_zonelist_order = user_zonelist_order;
  1894. }
  1895. static void build_zonelists(pg_data_t *pgdat)
  1896. {
  1897. int j, node, load;
  1898. enum zone_type i;
  1899. nodemask_t used_mask;
  1900. int local_node, prev_node;
  1901. struct zonelist *zonelist;
  1902. int order = current_zonelist_order;
  1903. /* initialize zonelists */
  1904. for (i = 0; i < MAX_ZONELISTS; i++) {
  1905. zonelist = pgdat->node_zonelists + i;
  1906. zonelist->_zonerefs[0].zone = NULL;
  1907. zonelist->_zonerefs[0].zone_idx = 0;
  1908. }
  1909. /* NUMA-aware ordering of nodes */
  1910. local_node = pgdat->node_id;
  1911. load = num_online_nodes();
  1912. prev_node = local_node;
  1913. nodes_clear(used_mask);
  1914. memset(node_load, 0, sizeof(node_load));
  1915. memset(node_order, 0, sizeof(node_order));
  1916. j = 0;
  1917. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1918. int distance = node_distance(local_node, node);
  1919. /*
  1920. * If another node is sufficiently far away then it is better
  1921. * to reclaim pages in a zone before going off node.
  1922. */
  1923. if (distance > RECLAIM_DISTANCE)
  1924. zone_reclaim_mode = 1;
  1925. /*
  1926. * We don't want to pressure a particular node.
  1927. * So adding penalty to the first node in same
  1928. * distance group to make it round-robin.
  1929. */
  1930. if (distance != node_distance(local_node, prev_node))
  1931. node_load[node] = load;
  1932. prev_node = node;
  1933. load--;
  1934. if (order == ZONELIST_ORDER_NODE)
  1935. build_zonelists_in_node_order(pgdat, node);
  1936. else
  1937. node_order[j++] = node; /* remember order */
  1938. }
  1939. if (order == ZONELIST_ORDER_ZONE) {
  1940. /* calculate node order -- i.e., DMA last! */
  1941. build_zonelists_in_zone_order(pgdat, j);
  1942. }
  1943. build_thisnode_zonelists(pgdat);
  1944. }
  1945. /* Construct the zonelist performance cache - see further mmzone.h */
  1946. static void build_zonelist_cache(pg_data_t *pgdat)
  1947. {
  1948. struct zonelist *zonelist;
  1949. struct zonelist_cache *zlc;
  1950. struct zoneref *z;
  1951. zonelist = &pgdat->node_zonelists[0];
  1952. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1953. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1954. for (z = zonelist->_zonerefs; z->zone; z++)
  1955. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  1956. }
  1957. #else /* CONFIG_NUMA */
  1958. static void set_zonelist_order(void)
  1959. {
  1960. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1961. }
  1962. static void build_zonelists(pg_data_t *pgdat)
  1963. {
  1964. int node, local_node;
  1965. enum zone_type j;
  1966. struct zonelist *zonelist;
  1967. local_node = pgdat->node_id;
  1968. zonelist = &pgdat->node_zonelists[0];
  1969. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1970. /*
  1971. * Now we build the zonelist so that it contains the zones
  1972. * of all the other nodes.
  1973. * We don't want to pressure a particular node, so when
  1974. * building the zones for node N, we make sure that the
  1975. * zones coming right after the local ones are those from
  1976. * node N+1 (modulo N)
  1977. */
  1978. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1979. if (!node_online(node))
  1980. continue;
  1981. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1982. MAX_NR_ZONES - 1);
  1983. }
  1984. for (node = 0; node < local_node; node++) {
  1985. if (!node_online(node))
  1986. continue;
  1987. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1988. MAX_NR_ZONES - 1);
  1989. }
  1990. zonelist->_zonerefs[j].zone = NULL;
  1991. zonelist->_zonerefs[j].zone_idx = 0;
  1992. }
  1993. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1994. static void build_zonelist_cache(pg_data_t *pgdat)
  1995. {
  1996. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  1997. }
  1998. #endif /* CONFIG_NUMA */
  1999. /* return values int ....just for stop_machine_run() */
  2000. static int __build_all_zonelists(void *dummy)
  2001. {
  2002. int nid;
  2003. for_each_online_node(nid) {
  2004. pg_data_t *pgdat = NODE_DATA(nid);
  2005. build_zonelists(pgdat);
  2006. build_zonelist_cache(pgdat);
  2007. }
  2008. return 0;
  2009. }
  2010. void build_all_zonelists(void)
  2011. {
  2012. set_zonelist_order();
  2013. if (system_state == SYSTEM_BOOTING) {
  2014. __build_all_zonelists(NULL);
  2015. mminit_verify_zonelist();
  2016. cpuset_init_current_mems_allowed();
  2017. } else {
  2018. /* we have to stop all cpus to guarantee there is no user
  2019. of zonelist */
  2020. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2021. /* cpuset refresh routine should be here */
  2022. }
  2023. vm_total_pages = nr_free_pagecache_pages();
  2024. /*
  2025. * Disable grouping by mobility if the number of pages in the
  2026. * system is too low to allow the mechanism to work. It would be
  2027. * more accurate, but expensive to check per-zone. This check is
  2028. * made on memory-hotadd so a system can start with mobility
  2029. * disabled and enable it later
  2030. */
  2031. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2032. page_group_by_mobility_disabled = 1;
  2033. else
  2034. page_group_by_mobility_disabled = 0;
  2035. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2036. "Total pages: %ld\n",
  2037. num_online_nodes(),
  2038. zonelist_order_name[current_zonelist_order],
  2039. page_group_by_mobility_disabled ? "off" : "on",
  2040. vm_total_pages);
  2041. #ifdef CONFIG_NUMA
  2042. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2043. #endif
  2044. }
  2045. /*
  2046. * Helper functions to size the waitqueue hash table.
  2047. * Essentially these want to choose hash table sizes sufficiently
  2048. * large so that collisions trying to wait on pages are rare.
  2049. * But in fact, the number of active page waitqueues on typical
  2050. * systems is ridiculously low, less than 200. So this is even
  2051. * conservative, even though it seems large.
  2052. *
  2053. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2054. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2055. */
  2056. #define PAGES_PER_WAITQUEUE 256
  2057. #ifndef CONFIG_MEMORY_HOTPLUG
  2058. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2059. {
  2060. unsigned long size = 1;
  2061. pages /= PAGES_PER_WAITQUEUE;
  2062. while (size < pages)
  2063. size <<= 1;
  2064. /*
  2065. * Once we have dozens or even hundreds of threads sleeping
  2066. * on IO we've got bigger problems than wait queue collision.
  2067. * Limit the size of the wait table to a reasonable size.
  2068. */
  2069. size = min(size, 4096UL);
  2070. return max(size, 4UL);
  2071. }
  2072. #else
  2073. /*
  2074. * A zone's size might be changed by hot-add, so it is not possible to determine
  2075. * a suitable size for its wait_table. So we use the maximum size now.
  2076. *
  2077. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2078. *
  2079. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2080. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2081. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2082. *
  2083. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2084. * or more by the traditional way. (See above). It equals:
  2085. *
  2086. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2087. * ia64(16K page size) : = ( 8G + 4M)byte.
  2088. * powerpc (64K page size) : = (32G +16M)byte.
  2089. */
  2090. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2091. {
  2092. return 4096UL;
  2093. }
  2094. #endif
  2095. /*
  2096. * This is an integer logarithm so that shifts can be used later
  2097. * to extract the more random high bits from the multiplicative
  2098. * hash function before the remainder is taken.
  2099. */
  2100. static inline unsigned long wait_table_bits(unsigned long size)
  2101. {
  2102. return ffz(~size);
  2103. }
  2104. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2105. /*
  2106. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2107. * of blocks reserved is based on zone->pages_min. The memory within the
  2108. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2109. * higher will lead to a bigger reserve which will get freed as contiguous
  2110. * blocks as reclaim kicks in
  2111. */
  2112. static void setup_zone_migrate_reserve(struct zone *zone)
  2113. {
  2114. unsigned long start_pfn, pfn, end_pfn;
  2115. struct page *page;
  2116. unsigned long reserve, block_migratetype;
  2117. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2118. start_pfn = zone->zone_start_pfn;
  2119. end_pfn = start_pfn + zone->spanned_pages;
  2120. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2121. pageblock_order;
  2122. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2123. if (!pfn_valid(pfn))
  2124. continue;
  2125. page = pfn_to_page(pfn);
  2126. /* Blocks with reserved pages will never free, skip them. */
  2127. if (PageReserved(page))
  2128. continue;
  2129. block_migratetype = get_pageblock_migratetype(page);
  2130. /* If this block is reserved, account for it */
  2131. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2132. reserve--;
  2133. continue;
  2134. }
  2135. /* Suitable for reserving if this block is movable */
  2136. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2137. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2138. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2139. reserve--;
  2140. continue;
  2141. }
  2142. /*
  2143. * If the reserve is met and this is a previous reserved block,
  2144. * take it back
  2145. */
  2146. if (block_migratetype == MIGRATE_RESERVE) {
  2147. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2148. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2149. }
  2150. }
  2151. }
  2152. /*
  2153. * Initially all pages are reserved - free ones are freed
  2154. * up by free_all_bootmem() once the early boot process is
  2155. * done. Non-atomic initialization, single-pass.
  2156. */
  2157. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2158. unsigned long start_pfn, enum memmap_context context)
  2159. {
  2160. struct page *page;
  2161. unsigned long end_pfn = start_pfn + size;
  2162. unsigned long pfn;
  2163. struct zone *z;
  2164. z = &NODE_DATA(nid)->node_zones[zone];
  2165. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2166. /*
  2167. * There can be holes in boot-time mem_map[]s
  2168. * handed to this function. They do not
  2169. * exist on hotplugged memory.
  2170. */
  2171. if (context == MEMMAP_EARLY) {
  2172. if (!early_pfn_valid(pfn))
  2173. continue;
  2174. if (!early_pfn_in_nid(pfn, nid))
  2175. continue;
  2176. }
  2177. page = pfn_to_page(pfn);
  2178. set_page_links(page, zone, nid, pfn);
  2179. mminit_verify_page_links(page, zone, nid, pfn);
  2180. init_page_count(page);
  2181. reset_page_mapcount(page);
  2182. SetPageReserved(page);
  2183. /*
  2184. * Mark the block movable so that blocks are reserved for
  2185. * movable at startup. This will force kernel allocations
  2186. * to reserve their blocks rather than leaking throughout
  2187. * the address space during boot when many long-lived
  2188. * kernel allocations are made. Later some blocks near
  2189. * the start are marked MIGRATE_RESERVE by
  2190. * setup_zone_migrate_reserve()
  2191. *
  2192. * bitmap is created for zone's valid pfn range. but memmap
  2193. * can be created for invalid pages (for alignment)
  2194. * check here not to call set_pageblock_migratetype() against
  2195. * pfn out of zone.
  2196. */
  2197. if ((z->zone_start_pfn <= pfn)
  2198. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2199. && !(pfn & (pageblock_nr_pages - 1)))
  2200. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2201. INIT_LIST_HEAD(&page->lru);
  2202. #ifdef WANT_PAGE_VIRTUAL
  2203. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2204. if (!is_highmem_idx(zone))
  2205. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2206. #endif
  2207. }
  2208. }
  2209. static void __meminit zone_init_free_lists(struct zone *zone)
  2210. {
  2211. int order, t;
  2212. for_each_migratetype_order(order, t) {
  2213. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2214. zone->free_area[order].nr_free = 0;
  2215. }
  2216. }
  2217. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2218. #define memmap_init(size, nid, zone, start_pfn) \
  2219. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2220. #endif
  2221. static int zone_batchsize(struct zone *zone)
  2222. {
  2223. int batch;
  2224. /*
  2225. * The per-cpu-pages pools are set to around 1000th of the
  2226. * size of the zone. But no more than 1/2 of a meg.
  2227. *
  2228. * OK, so we don't know how big the cache is. So guess.
  2229. */
  2230. batch = zone->present_pages / 1024;
  2231. if (batch * PAGE_SIZE > 512 * 1024)
  2232. batch = (512 * 1024) / PAGE_SIZE;
  2233. batch /= 4; /* We effectively *= 4 below */
  2234. if (batch < 1)
  2235. batch = 1;
  2236. /*
  2237. * Clamp the batch to a 2^n - 1 value. Having a power
  2238. * of 2 value was found to be more likely to have
  2239. * suboptimal cache aliasing properties in some cases.
  2240. *
  2241. * For example if 2 tasks are alternately allocating
  2242. * batches of pages, one task can end up with a lot
  2243. * of pages of one half of the possible page colors
  2244. * and the other with pages of the other colors.
  2245. */
  2246. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2247. return batch;
  2248. }
  2249. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2250. {
  2251. struct per_cpu_pages *pcp;
  2252. memset(p, 0, sizeof(*p));
  2253. pcp = &p->pcp;
  2254. pcp->count = 0;
  2255. pcp->high = 6 * batch;
  2256. pcp->batch = max(1UL, 1 * batch);
  2257. INIT_LIST_HEAD(&pcp->list);
  2258. }
  2259. /*
  2260. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2261. * to the value high for the pageset p.
  2262. */
  2263. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2264. unsigned long high)
  2265. {
  2266. struct per_cpu_pages *pcp;
  2267. pcp = &p->pcp;
  2268. pcp->high = high;
  2269. pcp->batch = max(1UL, high/4);
  2270. if ((high/4) > (PAGE_SHIFT * 8))
  2271. pcp->batch = PAGE_SHIFT * 8;
  2272. }
  2273. #ifdef CONFIG_NUMA
  2274. /*
  2275. * Boot pageset table. One per cpu which is going to be used for all
  2276. * zones and all nodes. The parameters will be set in such a way
  2277. * that an item put on a list will immediately be handed over to
  2278. * the buddy list. This is safe since pageset manipulation is done
  2279. * with interrupts disabled.
  2280. *
  2281. * Some NUMA counter updates may also be caught by the boot pagesets.
  2282. *
  2283. * The boot_pagesets must be kept even after bootup is complete for
  2284. * unused processors and/or zones. They do play a role for bootstrapping
  2285. * hotplugged processors.
  2286. *
  2287. * zoneinfo_show() and maybe other functions do
  2288. * not check if the processor is online before following the pageset pointer.
  2289. * Other parts of the kernel may not check if the zone is available.
  2290. */
  2291. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2292. /*
  2293. * Dynamically allocate memory for the
  2294. * per cpu pageset array in struct zone.
  2295. */
  2296. static int __cpuinit process_zones(int cpu)
  2297. {
  2298. struct zone *zone, *dzone;
  2299. int node = cpu_to_node(cpu);
  2300. node_set_state(node, N_CPU); /* this node has a cpu */
  2301. for_each_zone(zone) {
  2302. if (!populated_zone(zone))
  2303. continue;
  2304. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2305. GFP_KERNEL, node);
  2306. if (!zone_pcp(zone, cpu))
  2307. goto bad;
  2308. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2309. if (percpu_pagelist_fraction)
  2310. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2311. (zone->present_pages / percpu_pagelist_fraction));
  2312. }
  2313. return 0;
  2314. bad:
  2315. for_each_zone(dzone) {
  2316. if (!populated_zone(dzone))
  2317. continue;
  2318. if (dzone == zone)
  2319. break;
  2320. kfree(zone_pcp(dzone, cpu));
  2321. zone_pcp(dzone, cpu) = NULL;
  2322. }
  2323. return -ENOMEM;
  2324. }
  2325. static inline void free_zone_pagesets(int cpu)
  2326. {
  2327. struct zone *zone;
  2328. for_each_zone(zone) {
  2329. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2330. /* Free per_cpu_pageset if it is slab allocated */
  2331. if (pset != &boot_pageset[cpu])
  2332. kfree(pset);
  2333. zone_pcp(zone, cpu) = NULL;
  2334. }
  2335. }
  2336. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2337. unsigned long action,
  2338. void *hcpu)
  2339. {
  2340. int cpu = (long)hcpu;
  2341. int ret = NOTIFY_OK;
  2342. switch (action) {
  2343. case CPU_UP_PREPARE:
  2344. case CPU_UP_PREPARE_FROZEN:
  2345. if (process_zones(cpu))
  2346. ret = NOTIFY_BAD;
  2347. break;
  2348. case CPU_UP_CANCELED:
  2349. case CPU_UP_CANCELED_FROZEN:
  2350. case CPU_DEAD:
  2351. case CPU_DEAD_FROZEN:
  2352. free_zone_pagesets(cpu);
  2353. break;
  2354. default:
  2355. break;
  2356. }
  2357. return ret;
  2358. }
  2359. static struct notifier_block __cpuinitdata pageset_notifier =
  2360. { &pageset_cpuup_callback, NULL, 0 };
  2361. void __init setup_per_cpu_pageset(void)
  2362. {
  2363. int err;
  2364. /* Initialize per_cpu_pageset for cpu 0.
  2365. * A cpuup callback will do this for every cpu
  2366. * as it comes online
  2367. */
  2368. err = process_zones(smp_processor_id());
  2369. BUG_ON(err);
  2370. register_cpu_notifier(&pageset_notifier);
  2371. }
  2372. #endif
  2373. static noinline __init_refok
  2374. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2375. {
  2376. int i;
  2377. struct pglist_data *pgdat = zone->zone_pgdat;
  2378. size_t alloc_size;
  2379. /*
  2380. * The per-page waitqueue mechanism uses hashed waitqueues
  2381. * per zone.
  2382. */
  2383. zone->wait_table_hash_nr_entries =
  2384. wait_table_hash_nr_entries(zone_size_pages);
  2385. zone->wait_table_bits =
  2386. wait_table_bits(zone->wait_table_hash_nr_entries);
  2387. alloc_size = zone->wait_table_hash_nr_entries
  2388. * sizeof(wait_queue_head_t);
  2389. if (!slab_is_available()) {
  2390. zone->wait_table = (wait_queue_head_t *)
  2391. alloc_bootmem_node(pgdat, alloc_size);
  2392. } else {
  2393. /*
  2394. * This case means that a zone whose size was 0 gets new memory
  2395. * via memory hot-add.
  2396. * But it may be the case that a new node was hot-added. In
  2397. * this case vmalloc() will not be able to use this new node's
  2398. * memory - this wait_table must be initialized to use this new
  2399. * node itself as well.
  2400. * To use this new node's memory, further consideration will be
  2401. * necessary.
  2402. */
  2403. zone->wait_table = vmalloc(alloc_size);
  2404. }
  2405. if (!zone->wait_table)
  2406. return -ENOMEM;
  2407. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2408. init_waitqueue_head(zone->wait_table + i);
  2409. return 0;
  2410. }
  2411. static __meminit void zone_pcp_init(struct zone *zone)
  2412. {
  2413. int cpu;
  2414. unsigned long batch = zone_batchsize(zone);
  2415. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2416. #ifdef CONFIG_NUMA
  2417. /* Early boot. Slab allocator not functional yet */
  2418. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2419. setup_pageset(&boot_pageset[cpu],0);
  2420. #else
  2421. setup_pageset(zone_pcp(zone,cpu), batch);
  2422. #endif
  2423. }
  2424. if (zone->present_pages)
  2425. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2426. zone->name, zone->present_pages, batch);
  2427. }
  2428. __meminit int init_currently_empty_zone(struct zone *zone,
  2429. unsigned long zone_start_pfn,
  2430. unsigned long size,
  2431. enum memmap_context context)
  2432. {
  2433. struct pglist_data *pgdat = zone->zone_pgdat;
  2434. int ret;
  2435. ret = zone_wait_table_init(zone, size);
  2436. if (ret)
  2437. return ret;
  2438. pgdat->nr_zones = zone_idx(zone) + 1;
  2439. zone->zone_start_pfn = zone_start_pfn;
  2440. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2441. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2442. pgdat->node_id,
  2443. (unsigned long)zone_idx(zone),
  2444. zone_start_pfn, (zone_start_pfn + size));
  2445. zone_init_free_lists(zone);
  2446. return 0;
  2447. }
  2448. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2449. /*
  2450. * Basic iterator support. Return the first range of PFNs for a node
  2451. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2452. */
  2453. static int __meminit first_active_region_index_in_nid(int nid)
  2454. {
  2455. int i;
  2456. for (i = 0; i < nr_nodemap_entries; i++)
  2457. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2458. return i;
  2459. return -1;
  2460. }
  2461. /*
  2462. * Basic iterator support. Return the next active range of PFNs for a node
  2463. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2464. */
  2465. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2466. {
  2467. for (index = index + 1; index < nr_nodemap_entries; index++)
  2468. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2469. return index;
  2470. return -1;
  2471. }
  2472. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2473. /*
  2474. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2475. * Architectures may implement their own version but if add_active_range()
  2476. * was used and there are no special requirements, this is a convenient
  2477. * alternative
  2478. */
  2479. int __meminit early_pfn_to_nid(unsigned long pfn)
  2480. {
  2481. int i;
  2482. for (i = 0; i < nr_nodemap_entries; i++) {
  2483. unsigned long start_pfn = early_node_map[i].start_pfn;
  2484. unsigned long end_pfn = early_node_map[i].end_pfn;
  2485. if (start_pfn <= pfn && pfn < end_pfn)
  2486. return early_node_map[i].nid;
  2487. }
  2488. return 0;
  2489. }
  2490. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2491. /* Basic iterator support to walk early_node_map[] */
  2492. #define for_each_active_range_index_in_nid(i, nid) \
  2493. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2494. i = next_active_region_index_in_nid(i, nid))
  2495. /**
  2496. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2497. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2498. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2499. *
  2500. * If an architecture guarantees that all ranges registered with
  2501. * add_active_ranges() contain no holes and may be freed, this
  2502. * this function may be used instead of calling free_bootmem() manually.
  2503. */
  2504. void __init free_bootmem_with_active_regions(int nid,
  2505. unsigned long max_low_pfn)
  2506. {
  2507. int i;
  2508. for_each_active_range_index_in_nid(i, nid) {
  2509. unsigned long size_pages = 0;
  2510. unsigned long end_pfn = early_node_map[i].end_pfn;
  2511. if (early_node_map[i].start_pfn >= max_low_pfn)
  2512. continue;
  2513. if (end_pfn > max_low_pfn)
  2514. end_pfn = max_low_pfn;
  2515. size_pages = end_pfn - early_node_map[i].start_pfn;
  2516. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2517. PFN_PHYS(early_node_map[i].start_pfn),
  2518. size_pages << PAGE_SHIFT);
  2519. }
  2520. }
  2521. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2522. {
  2523. int i;
  2524. int ret;
  2525. for_each_active_range_index_in_nid(i, nid) {
  2526. ret = work_fn(early_node_map[i].start_pfn,
  2527. early_node_map[i].end_pfn, data);
  2528. if (ret)
  2529. break;
  2530. }
  2531. }
  2532. /**
  2533. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2534. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2535. *
  2536. * If an architecture guarantees that all ranges registered with
  2537. * add_active_ranges() contain no holes and may be freed, this
  2538. * function may be used instead of calling memory_present() manually.
  2539. */
  2540. void __init sparse_memory_present_with_active_regions(int nid)
  2541. {
  2542. int i;
  2543. for_each_active_range_index_in_nid(i, nid)
  2544. memory_present(early_node_map[i].nid,
  2545. early_node_map[i].start_pfn,
  2546. early_node_map[i].end_pfn);
  2547. }
  2548. /**
  2549. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2550. * @nid: The nid of the node to push the boundary for
  2551. * @start_pfn: The start pfn of the node
  2552. * @end_pfn: The end pfn of the node
  2553. *
  2554. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2555. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2556. * be hotplugged even though no physical memory exists. This function allows
  2557. * an arch to push out the node boundaries so mem_map is allocated that can
  2558. * be used later.
  2559. */
  2560. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2561. void __init push_node_boundaries(unsigned int nid,
  2562. unsigned long start_pfn, unsigned long end_pfn)
  2563. {
  2564. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2565. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2566. nid, start_pfn, end_pfn);
  2567. /* Initialise the boundary for this node if necessary */
  2568. if (node_boundary_end_pfn[nid] == 0)
  2569. node_boundary_start_pfn[nid] = -1UL;
  2570. /* Update the boundaries */
  2571. if (node_boundary_start_pfn[nid] > start_pfn)
  2572. node_boundary_start_pfn[nid] = start_pfn;
  2573. if (node_boundary_end_pfn[nid] < end_pfn)
  2574. node_boundary_end_pfn[nid] = end_pfn;
  2575. }
  2576. /* If necessary, push the node boundary out for reserve hotadd */
  2577. static void __meminit account_node_boundary(unsigned int nid,
  2578. unsigned long *start_pfn, unsigned long *end_pfn)
  2579. {
  2580. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2581. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2582. nid, *start_pfn, *end_pfn);
  2583. /* Return if boundary information has not been provided */
  2584. if (node_boundary_end_pfn[nid] == 0)
  2585. return;
  2586. /* Check the boundaries and update if necessary */
  2587. if (node_boundary_start_pfn[nid] < *start_pfn)
  2588. *start_pfn = node_boundary_start_pfn[nid];
  2589. if (node_boundary_end_pfn[nid] > *end_pfn)
  2590. *end_pfn = node_boundary_end_pfn[nid];
  2591. }
  2592. #else
  2593. void __init push_node_boundaries(unsigned int nid,
  2594. unsigned long start_pfn, unsigned long end_pfn) {}
  2595. static void __meminit account_node_boundary(unsigned int nid,
  2596. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2597. #endif
  2598. /**
  2599. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2600. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2601. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2602. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2603. *
  2604. * It returns the start and end page frame of a node based on information
  2605. * provided by an arch calling add_active_range(). If called for a node
  2606. * with no available memory, a warning is printed and the start and end
  2607. * PFNs will be 0.
  2608. */
  2609. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2610. unsigned long *start_pfn, unsigned long *end_pfn)
  2611. {
  2612. int i;
  2613. *start_pfn = -1UL;
  2614. *end_pfn = 0;
  2615. for_each_active_range_index_in_nid(i, nid) {
  2616. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2617. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2618. }
  2619. if (*start_pfn == -1UL)
  2620. *start_pfn = 0;
  2621. /* Push the node boundaries out if requested */
  2622. account_node_boundary(nid, start_pfn, end_pfn);
  2623. }
  2624. /*
  2625. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2626. * assumption is made that zones within a node are ordered in monotonic
  2627. * increasing memory addresses so that the "highest" populated zone is used
  2628. */
  2629. void __init find_usable_zone_for_movable(void)
  2630. {
  2631. int zone_index;
  2632. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2633. if (zone_index == ZONE_MOVABLE)
  2634. continue;
  2635. if (arch_zone_highest_possible_pfn[zone_index] >
  2636. arch_zone_lowest_possible_pfn[zone_index])
  2637. break;
  2638. }
  2639. VM_BUG_ON(zone_index == -1);
  2640. movable_zone = zone_index;
  2641. }
  2642. /*
  2643. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2644. * because it is sized independant of architecture. Unlike the other zones,
  2645. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2646. * in each node depending on the size of each node and how evenly kernelcore
  2647. * is distributed. This helper function adjusts the zone ranges
  2648. * provided by the architecture for a given node by using the end of the
  2649. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2650. * zones within a node are in order of monotonic increases memory addresses
  2651. */
  2652. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2653. unsigned long zone_type,
  2654. unsigned long node_start_pfn,
  2655. unsigned long node_end_pfn,
  2656. unsigned long *zone_start_pfn,
  2657. unsigned long *zone_end_pfn)
  2658. {
  2659. /* Only adjust if ZONE_MOVABLE is on this node */
  2660. if (zone_movable_pfn[nid]) {
  2661. /* Size ZONE_MOVABLE */
  2662. if (zone_type == ZONE_MOVABLE) {
  2663. *zone_start_pfn = zone_movable_pfn[nid];
  2664. *zone_end_pfn = min(node_end_pfn,
  2665. arch_zone_highest_possible_pfn[movable_zone]);
  2666. /* Adjust for ZONE_MOVABLE starting within this range */
  2667. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2668. *zone_end_pfn > zone_movable_pfn[nid]) {
  2669. *zone_end_pfn = zone_movable_pfn[nid];
  2670. /* Check if this whole range is within ZONE_MOVABLE */
  2671. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2672. *zone_start_pfn = *zone_end_pfn;
  2673. }
  2674. }
  2675. /*
  2676. * Return the number of pages a zone spans in a node, including holes
  2677. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2678. */
  2679. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2680. unsigned long zone_type,
  2681. unsigned long *ignored)
  2682. {
  2683. unsigned long node_start_pfn, node_end_pfn;
  2684. unsigned long zone_start_pfn, zone_end_pfn;
  2685. /* Get the start and end of the node and zone */
  2686. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2687. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2688. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2689. adjust_zone_range_for_zone_movable(nid, zone_type,
  2690. node_start_pfn, node_end_pfn,
  2691. &zone_start_pfn, &zone_end_pfn);
  2692. /* Check that this node has pages within the zone's required range */
  2693. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2694. return 0;
  2695. /* Move the zone boundaries inside the node if necessary */
  2696. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2697. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2698. /* Return the spanned pages */
  2699. return zone_end_pfn - zone_start_pfn;
  2700. }
  2701. /*
  2702. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2703. * then all holes in the requested range will be accounted for.
  2704. */
  2705. unsigned long __meminit __absent_pages_in_range(int nid,
  2706. unsigned long range_start_pfn,
  2707. unsigned long range_end_pfn)
  2708. {
  2709. int i = 0;
  2710. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2711. unsigned long start_pfn;
  2712. /* Find the end_pfn of the first active range of pfns in the node */
  2713. i = first_active_region_index_in_nid(nid);
  2714. if (i == -1)
  2715. return 0;
  2716. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2717. /* Account for ranges before physical memory on this node */
  2718. if (early_node_map[i].start_pfn > range_start_pfn)
  2719. hole_pages = prev_end_pfn - range_start_pfn;
  2720. /* Find all holes for the zone within the node */
  2721. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2722. /* No need to continue if prev_end_pfn is outside the zone */
  2723. if (prev_end_pfn >= range_end_pfn)
  2724. break;
  2725. /* Make sure the end of the zone is not within the hole */
  2726. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2727. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2728. /* Update the hole size cound and move on */
  2729. if (start_pfn > range_start_pfn) {
  2730. BUG_ON(prev_end_pfn > start_pfn);
  2731. hole_pages += start_pfn - prev_end_pfn;
  2732. }
  2733. prev_end_pfn = early_node_map[i].end_pfn;
  2734. }
  2735. /* Account for ranges past physical memory on this node */
  2736. if (range_end_pfn > prev_end_pfn)
  2737. hole_pages += range_end_pfn -
  2738. max(range_start_pfn, prev_end_pfn);
  2739. return hole_pages;
  2740. }
  2741. /**
  2742. * absent_pages_in_range - Return number of page frames in holes within a range
  2743. * @start_pfn: The start PFN to start searching for holes
  2744. * @end_pfn: The end PFN to stop searching for holes
  2745. *
  2746. * It returns the number of pages frames in memory holes within a range.
  2747. */
  2748. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2749. unsigned long end_pfn)
  2750. {
  2751. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2752. }
  2753. /* Return the number of page frames in holes in a zone on a node */
  2754. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2755. unsigned long zone_type,
  2756. unsigned long *ignored)
  2757. {
  2758. unsigned long node_start_pfn, node_end_pfn;
  2759. unsigned long zone_start_pfn, zone_end_pfn;
  2760. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2761. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2762. node_start_pfn);
  2763. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2764. node_end_pfn);
  2765. adjust_zone_range_for_zone_movable(nid, zone_type,
  2766. node_start_pfn, node_end_pfn,
  2767. &zone_start_pfn, &zone_end_pfn);
  2768. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2769. }
  2770. #else
  2771. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2772. unsigned long zone_type,
  2773. unsigned long *zones_size)
  2774. {
  2775. return zones_size[zone_type];
  2776. }
  2777. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2778. unsigned long zone_type,
  2779. unsigned long *zholes_size)
  2780. {
  2781. if (!zholes_size)
  2782. return 0;
  2783. return zholes_size[zone_type];
  2784. }
  2785. #endif
  2786. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2787. unsigned long *zones_size, unsigned long *zholes_size)
  2788. {
  2789. unsigned long realtotalpages, totalpages = 0;
  2790. enum zone_type i;
  2791. for (i = 0; i < MAX_NR_ZONES; i++)
  2792. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2793. zones_size);
  2794. pgdat->node_spanned_pages = totalpages;
  2795. realtotalpages = totalpages;
  2796. for (i = 0; i < MAX_NR_ZONES; i++)
  2797. realtotalpages -=
  2798. zone_absent_pages_in_node(pgdat->node_id, i,
  2799. zholes_size);
  2800. pgdat->node_present_pages = realtotalpages;
  2801. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2802. realtotalpages);
  2803. }
  2804. #ifndef CONFIG_SPARSEMEM
  2805. /*
  2806. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2807. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2808. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2809. * round what is now in bits to nearest long in bits, then return it in
  2810. * bytes.
  2811. */
  2812. static unsigned long __init usemap_size(unsigned long zonesize)
  2813. {
  2814. unsigned long usemapsize;
  2815. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2816. usemapsize = usemapsize >> pageblock_order;
  2817. usemapsize *= NR_PAGEBLOCK_BITS;
  2818. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2819. return usemapsize / 8;
  2820. }
  2821. static void __init setup_usemap(struct pglist_data *pgdat,
  2822. struct zone *zone, unsigned long zonesize)
  2823. {
  2824. unsigned long usemapsize = usemap_size(zonesize);
  2825. zone->pageblock_flags = NULL;
  2826. if (usemapsize) {
  2827. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2828. memset(zone->pageblock_flags, 0, usemapsize);
  2829. }
  2830. }
  2831. #else
  2832. static void inline setup_usemap(struct pglist_data *pgdat,
  2833. struct zone *zone, unsigned long zonesize) {}
  2834. #endif /* CONFIG_SPARSEMEM */
  2835. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2836. /* Return a sensible default order for the pageblock size. */
  2837. static inline int pageblock_default_order(void)
  2838. {
  2839. if (HPAGE_SHIFT > PAGE_SHIFT)
  2840. return HUGETLB_PAGE_ORDER;
  2841. return MAX_ORDER-1;
  2842. }
  2843. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2844. static inline void __init set_pageblock_order(unsigned int order)
  2845. {
  2846. /* Check that pageblock_nr_pages has not already been setup */
  2847. if (pageblock_order)
  2848. return;
  2849. /*
  2850. * Assume the largest contiguous order of interest is a huge page.
  2851. * This value may be variable depending on boot parameters on IA64
  2852. */
  2853. pageblock_order = order;
  2854. }
  2855. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2856. /*
  2857. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2858. * and pageblock_default_order() are unused as pageblock_order is set
  2859. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2860. * pageblock_order based on the kernel config
  2861. */
  2862. static inline int pageblock_default_order(unsigned int order)
  2863. {
  2864. return MAX_ORDER-1;
  2865. }
  2866. #define set_pageblock_order(x) do {} while (0)
  2867. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2868. /*
  2869. * Set up the zone data structures:
  2870. * - mark all pages reserved
  2871. * - mark all memory queues empty
  2872. * - clear the memory bitmaps
  2873. */
  2874. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2875. unsigned long *zones_size, unsigned long *zholes_size)
  2876. {
  2877. enum zone_type j;
  2878. int nid = pgdat->node_id;
  2879. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2880. int ret;
  2881. pgdat_resize_init(pgdat);
  2882. pgdat->nr_zones = 0;
  2883. init_waitqueue_head(&pgdat->kswapd_wait);
  2884. pgdat->kswapd_max_order = 0;
  2885. for (j = 0; j < MAX_NR_ZONES; j++) {
  2886. struct zone *zone = pgdat->node_zones + j;
  2887. unsigned long size, realsize, memmap_pages;
  2888. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2889. realsize = size - zone_absent_pages_in_node(nid, j,
  2890. zholes_size);
  2891. /*
  2892. * Adjust realsize so that it accounts for how much memory
  2893. * is used by this zone for memmap. This affects the watermark
  2894. * and per-cpu initialisations
  2895. */
  2896. memmap_pages =
  2897. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2898. if (realsize >= memmap_pages) {
  2899. realsize -= memmap_pages;
  2900. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2901. "%s zone: %lu pages used for memmap\n",
  2902. zone_names[j], memmap_pages);
  2903. } else
  2904. printk(KERN_WARNING
  2905. " %s zone: %lu pages exceeds realsize %lu\n",
  2906. zone_names[j], memmap_pages, realsize);
  2907. /* Account for reserved pages */
  2908. if (j == 0 && realsize > dma_reserve) {
  2909. realsize -= dma_reserve;
  2910. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2911. "%s zone: %lu pages reserved\n",
  2912. zone_names[0], dma_reserve);
  2913. }
  2914. if (!is_highmem_idx(j))
  2915. nr_kernel_pages += realsize;
  2916. nr_all_pages += realsize;
  2917. zone->spanned_pages = size;
  2918. zone->present_pages = realsize;
  2919. #ifdef CONFIG_NUMA
  2920. zone->node = nid;
  2921. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2922. / 100;
  2923. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2924. #endif
  2925. zone->name = zone_names[j];
  2926. spin_lock_init(&zone->lock);
  2927. spin_lock_init(&zone->lru_lock);
  2928. zone_seqlock_init(zone);
  2929. zone->zone_pgdat = pgdat;
  2930. zone->prev_priority = DEF_PRIORITY;
  2931. zone_pcp_init(zone);
  2932. INIT_LIST_HEAD(&zone->active_list);
  2933. INIT_LIST_HEAD(&zone->inactive_list);
  2934. zone->nr_scan_active = 0;
  2935. zone->nr_scan_inactive = 0;
  2936. zap_zone_vm_stats(zone);
  2937. zone->flags = 0;
  2938. if (!size)
  2939. continue;
  2940. set_pageblock_order(pageblock_default_order());
  2941. setup_usemap(pgdat, zone, size);
  2942. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2943. size, MEMMAP_EARLY);
  2944. BUG_ON(ret);
  2945. memmap_init(size, nid, j, zone_start_pfn);
  2946. zone_start_pfn += size;
  2947. }
  2948. }
  2949. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2950. {
  2951. /* Skip empty nodes */
  2952. if (!pgdat->node_spanned_pages)
  2953. return;
  2954. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2955. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2956. if (!pgdat->node_mem_map) {
  2957. unsigned long size, start, end;
  2958. struct page *map;
  2959. /*
  2960. * The zone's endpoints aren't required to be MAX_ORDER
  2961. * aligned but the node_mem_map endpoints must be in order
  2962. * for the buddy allocator to function correctly.
  2963. */
  2964. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2965. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2966. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2967. size = (end - start) * sizeof(struct page);
  2968. map = alloc_remap(pgdat->node_id, size);
  2969. if (!map)
  2970. map = alloc_bootmem_node(pgdat, size);
  2971. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2972. }
  2973. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2974. /*
  2975. * With no DISCONTIG, the global mem_map is just set as node 0's
  2976. */
  2977. if (pgdat == NODE_DATA(0)) {
  2978. mem_map = NODE_DATA(0)->node_mem_map;
  2979. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2980. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2981. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  2982. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2983. }
  2984. #endif
  2985. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2986. }
  2987. void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
  2988. unsigned long *zones_size, unsigned long node_start_pfn,
  2989. unsigned long *zholes_size)
  2990. {
  2991. pgdat->node_id = nid;
  2992. pgdat->node_start_pfn = node_start_pfn;
  2993. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2994. alloc_node_mem_map(pgdat);
  2995. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2996. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  2997. nid, (unsigned long)pgdat,
  2998. (unsigned long)pgdat->node_mem_map);
  2999. #endif
  3000. free_area_init_core(pgdat, zones_size, zholes_size);
  3001. }
  3002. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3003. #if MAX_NUMNODES > 1
  3004. /*
  3005. * Figure out the number of possible node ids.
  3006. */
  3007. static void __init setup_nr_node_ids(void)
  3008. {
  3009. unsigned int node;
  3010. unsigned int highest = 0;
  3011. for_each_node_mask(node, node_possible_map)
  3012. highest = node;
  3013. nr_node_ids = highest + 1;
  3014. }
  3015. #else
  3016. static inline void setup_nr_node_ids(void)
  3017. {
  3018. }
  3019. #endif
  3020. /**
  3021. * add_active_range - Register a range of PFNs backed by physical memory
  3022. * @nid: The node ID the range resides on
  3023. * @start_pfn: The start PFN of the available physical memory
  3024. * @end_pfn: The end PFN of the available physical memory
  3025. *
  3026. * These ranges are stored in an early_node_map[] and later used by
  3027. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3028. * range spans a memory hole, it is up to the architecture to ensure
  3029. * the memory is not freed by the bootmem allocator. If possible
  3030. * the range being registered will be merged with existing ranges.
  3031. */
  3032. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3033. unsigned long end_pfn)
  3034. {
  3035. int i;
  3036. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3037. "Entering add_active_range(%d, %#lx, %#lx) "
  3038. "%d entries of %d used\n",
  3039. nid, start_pfn, end_pfn,
  3040. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3041. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3042. /* Merge with existing active regions if possible */
  3043. for (i = 0; i < nr_nodemap_entries; i++) {
  3044. if (early_node_map[i].nid != nid)
  3045. continue;
  3046. /* Skip if an existing region covers this new one */
  3047. if (start_pfn >= early_node_map[i].start_pfn &&
  3048. end_pfn <= early_node_map[i].end_pfn)
  3049. return;
  3050. /* Merge forward if suitable */
  3051. if (start_pfn <= early_node_map[i].end_pfn &&
  3052. end_pfn > early_node_map[i].end_pfn) {
  3053. early_node_map[i].end_pfn = end_pfn;
  3054. return;
  3055. }
  3056. /* Merge backward if suitable */
  3057. if (start_pfn < early_node_map[i].end_pfn &&
  3058. end_pfn >= early_node_map[i].start_pfn) {
  3059. early_node_map[i].start_pfn = start_pfn;
  3060. return;
  3061. }
  3062. }
  3063. /* Check that early_node_map is large enough */
  3064. if (i >= MAX_ACTIVE_REGIONS) {
  3065. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3066. MAX_ACTIVE_REGIONS);
  3067. return;
  3068. }
  3069. early_node_map[i].nid = nid;
  3070. early_node_map[i].start_pfn = start_pfn;
  3071. early_node_map[i].end_pfn = end_pfn;
  3072. nr_nodemap_entries = i + 1;
  3073. }
  3074. /**
  3075. * remove_active_range - Shrink an existing registered range of PFNs
  3076. * @nid: The node id the range is on that should be shrunk
  3077. * @start_pfn: The new PFN of the range
  3078. * @end_pfn: The new PFN of the range
  3079. *
  3080. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3081. * The map is kept near the end physical page range that has already been
  3082. * registered. This function allows an arch to shrink an existing registered
  3083. * range.
  3084. */
  3085. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3086. unsigned long end_pfn)
  3087. {
  3088. int i, j;
  3089. int removed = 0;
  3090. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3091. nid, start_pfn, end_pfn);
  3092. /* Find the old active region end and shrink */
  3093. for_each_active_range_index_in_nid(i, nid) {
  3094. if (early_node_map[i].start_pfn >= start_pfn &&
  3095. early_node_map[i].end_pfn <= end_pfn) {
  3096. /* clear it */
  3097. early_node_map[i].start_pfn = 0;
  3098. early_node_map[i].end_pfn = 0;
  3099. removed = 1;
  3100. continue;
  3101. }
  3102. if (early_node_map[i].start_pfn < start_pfn &&
  3103. early_node_map[i].end_pfn > start_pfn) {
  3104. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3105. early_node_map[i].end_pfn = start_pfn;
  3106. if (temp_end_pfn > end_pfn)
  3107. add_active_range(nid, end_pfn, temp_end_pfn);
  3108. continue;
  3109. }
  3110. if (early_node_map[i].start_pfn >= start_pfn &&
  3111. early_node_map[i].end_pfn > end_pfn &&
  3112. early_node_map[i].start_pfn < end_pfn) {
  3113. early_node_map[i].start_pfn = end_pfn;
  3114. continue;
  3115. }
  3116. }
  3117. if (!removed)
  3118. return;
  3119. /* remove the blank ones */
  3120. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3121. if (early_node_map[i].nid != nid)
  3122. continue;
  3123. if (early_node_map[i].end_pfn)
  3124. continue;
  3125. /* we found it, get rid of it */
  3126. for (j = i; j < nr_nodemap_entries - 1; j++)
  3127. memcpy(&early_node_map[j], &early_node_map[j+1],
  3128. sizeof(early_node_map[j]));
  3129. j = nr_nodemap_entries - 1;
  3130. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3131. nr_nodemap_entries--;
  3132. }
  3133. }
  3134. /**
  3135. * remove_all_active_ranges - Remove all currently registered regions
  3136. *
  3137. * During discovery, it may be found that a table like SRAT is invalid
  3138. * and an alternative discovery method must be used. This function removes
  3139. * all currently registered regions.
  3140. */
  3141. void __init remove_all_active_ranges(void)
  3142. {
  3143. memset(early_node_map, 0, sizeof(early_node_map));
  3144. nr_nodemap_entries = 0;
  3145. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3146. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3147. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3148. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3149. }
  3150. /* Compare two active node_active_regions */
  3151. static int __init cmp_node_active_region(const void *a, const void *b)
  3152. {
  3153. struct node_active_region *arange = (struct node_active_region *)a;
  3154. struct node_active_region *brange = (struct node_active_region *)b;
  3155. /* Done this way to avoid overflows */
  3156. if (arange->start_pfn > brange->start_pfn)
  3157. return 1;
  3158. if (arange->start_pfn < brange->start_pfn)
  3159. return -1;
  3160. return 0;
  3161. }
  3162. /* sort the node_map by start_pfn */
  3163. static void __init sort_node_map(void)
  3164. {
  3165. sort(early_node_map, (size_t)nr_nodemap_entries,
  3166. sizeof(struct node_active_region),
  3167. cmp_node_active_region, NULL);
  3168. }
  3169. /* Find the lowest pfn for a node */
  3170. unsigned long __init find_min_pfn_for_node(int nid)
  3171. {
  3172. int i;
  3173. unsigned long min_pfn = ULONG_MAX;
  3174. /* Assuming a sorted map, the first range found has the starting pfn */
  3175. for_each_active_range_index_in_nid(i, nid)
  3176. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3177. if (min_pfn == ULONG_MAX) {
  3178. printk(KERN_WARNING
  3179. "Could not find start_pfn for node %d\n", nid);
  3180. return 0;
  3181. }
  3182. return min_pfn;
  3183. }
  3184. /**
  3185. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3186. *
  3187. * It returns the minimum PFN based on information provided via
  3188. * add_active_range().
  3189. */
  3190. unsigned long __init find_min_pfn_with_active_regions(void)
  3191. {
  3192. return find_min_pfn_for_node(MAX_NUMNODES);
  3193. }
  3194. /**
  3195. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3196. *
  3197. * It returns the maximum PFN based on information provided via
  3198. * add_active_range().
  3199. */
  3200. unsigned long __init find_max_pfn_with_active_regions(void)
  3201. {
  3202. int i;
  3203. unsigned long max_pfn = 0;
  3204. for (i = 0; i < nr_nodemap_entries; i++)
  3205. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3206. return max_pfn;
  3207. }
  3208. /*
  3209. * early_calculate_totalpages()
  3210. * Sum pages in active regions for movable zone.
  3211. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3212. */
  3213. static unsigned long __init early_calculate_totalpages(void)
  3214. {
  3215. int i;
  3216. unsigned long totalpages = 0;
  3217. for (i = 0; i < nr_nodemap_entries; i++) {
  3218. unsigned long pages = early_node_map[i].end_pfn -
  3219. early_node_map[i].start_pfn;
  3220. totalpages += pages;
  3221. if (pages)
  3222. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3223. }
  3224. return totalpages;
  3225. }
  3226. /*
  3227. * Find the PFN the Movable zone begins in each node. Kernel memory
  3228. * is spread evenly between nodes as long as the nodes have enough
  3229. * memory. When they don't, some nodes will have more kernelcore than
  3230. * others
  3231. */
  3232. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3233. {
  3234. int i, nid;
  3235. unsigned long usable_startpfn;
  3236. unsigned long kernelcore_node, kernelcore_remaining;
  3237. unsigned long totalpages = early_calculate_totalpages();
  3238. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3239. /*
  3240. * If movablecore was specified, calculate what size of
  3241. * kernelcore that corresponds so that memory usable for
  3242. * any allocation type is evenly spread. If both kernelcore
  3243. * and movablecore are specified, then the value of kernelcore
  3244. * will be used for required_kernelcore if it's greater than
  3245. * what movablecore would have allowed.
  3246. */
  3247. if (required_movablecore) {
  3248. unsigned long corepages;
  3249. /*
  3250. * Round-up so that ZONE_MOVABLE is at least as large as what
  3251. * was requested by the user
  3252. */
  3253. required_movablecore =
  3254. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3255. corepages = totalpages - required_movablecore;
  3256. required_kernelcore = max(required_kernelcore, corepages);
  3257. }
  3258. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3259. if (!required_kernelcore)
  3260. return;
  3261. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3262. find_usable_zone_for_movable();
  3263. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3264. restart:
  3265. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3266. kernelcore_node = required_kernelcore / usable_nodes;
  3267. for_each_node_state(nid, N_HIGH_MEMORY) {
  3268. /*
  3269. * Recalculate kernelcore_node if the division per node
  3270. * now exceeds what is necessary to satisfy the requested
  3271. * amount of memory for the kernel
  3272. */
  3273. if (required_kernelcore < kernelcore_node)
  3274. kernelcore_node = required_kernelcore / usable_nodes;
  3275. /*
  3276. * As the map is walked, we track how much memory is usable
  3277. * by the kernel using kernelcore_remaining. When it is
  3278. * 0, the rest of the node is usable by ZONE_MOVABLE
  3279. */
  3280. kernelcore_remaining = kernelcore_node;
  3281. /* Go through each range of PFNs within this node */
  3282. for_each_active_range_index_in_nid(i, nid) {
  3283. unsigned long start_pfn, end_pfn;
  3284. unsigned long size_pages;
  3285. start_pfn = max(early_node_map[i].start_pfn,
  3286. zone_movable_pfn[nid]);
  3287. end_pfn = early_node_map[i].end_pfn;
  3288. if (start_pfn >= end_pfn)
  3289. continue;
  3290. /* Account for what is only usable for kernelcore */
  3291. if (start_pfn < usable_startpfn) {
  3292. unsigned long kernel_pages;
  3293. kernel_pages = min(end_pfn, usable_startpfn)
  3294. - start_pfn;
  3295. kernelcore_remaining -= min(kernel_pages,
  3296. kernelcore_remaining);
  3297. required_kernelcore -= min(kernel_pages,
  3298. required_kernelcore);
  3299. /* Continue if range is now fully accounted */
  3300. if (end_pfn <= usable_startpfn) {
  3301. /*
  3302. * Push zone_movable_pfn to the end so
  3303. * that if we have to rebalance
  3304. * kernelcore across nodes, we will
  3305. * not double account here
  3306. */
  3307. zone_movable_pfn[nid] = end_pfn;
  3308. continue;
  3309. }
  3310. start_pfn = usable_startpfn;
  3311. }
  3312. /*
  3313. * The usable PFN range for ZONE_MOVABLE is from
  3314. * start_pfn->end_pfn. Calculate size_pages as the
  3315. * number of pages used as kernelcore
  3316. */
  3317. size_pages = end_pfn - start_pfn;
  3318. if (size_pages > kernelcore_remaining)
  3319. size_pages = kernelcore_remaining;
  3320. zone_movable_pfn[nid] = start_pfn + size_pages;
  3321. /*
  3322. * Some kernelcore has been met, update counts and
  3323. * break if the kernelcore for this node has been
  3324. * satisified
  3325. */
  3326. required_kernelcore -= min(required_kernelcore,
  3327. size_pages);
  3328. kernelcore_remaining -= size_pages;
  3329. if (!kernelcore_remaining)
  3330. break;
  3331. }
  3332. }
  3333. /*
  3334. * If there is still required_kernelcore, we do another pass with one
  3335. * less node in the count. This will push zone_movable_pfn[nid] further
  3336. * along on the nodes that still have memory until kernelcore is
  3337. * satisified
  3338. */
  3339. usable_nodes--;
  3340. if (usable_nodes && required_kernelcore > usable_nodes)
  3341. goto restart;
  3342. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3343. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3344. zone_movable_pfn[nid] =
  3345. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3346. }
  3347. /* Any regular memory on that node ? */
  3348. static void check_for_regular_memory(pg_data_t *pgdat)
  3349. {
  3350. #ifdef CONFIG_HIGHMEM
  3351. enum zone_type zone_type;
  3352. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3353. struct zone *zone = &pgdat->node_zones[zone_type];
  3354. if (zone->present_pages)
  3355. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3356. }
  3357. #endif
  3358. }
  3359. /**
  3360. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3361. * @max_zone_pfn: an array of max PFNs for each zone
  3362. *
  3363. * This will call free_area_init_node() for each active node in the system.
  3364. * Using the page ranges provided by add_active_range(), the size of each
  3365. * zone in each node and their holes is calculated. If the maximum PFN
  3366. * between two adjacent zones match, it is assumed that the zone is empty.
  3367. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3368. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3369. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3370. * at arch_max_dma_pfn.
  3371. */
  3372. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3373. {
  3374. unsigned long nid;
  3375. enum zone_type i;
  3376. /* Sort early_node_map as initialisation assumes it is sorted */
  3377. sort_node_map();
  3378. /* Record where the zone boundaries are */
  3379. memset(arch_zone_lowest_possible_pfn, 0,
  3380. sizeof(arch_zone_lowest_possible_pfn));
  3381. memset(arch_zone_highest_possible_pfn, 0,
  3382. sizeof(arch_zone_highest_possible_pfn));
  3383. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3384. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3385. for (i = 1; i < MAX_NR_ZONES; i++) {
  3386. if (i == ZONE_MOVABLE)
  3387. continue;
  3388. arch_zone_lowest_possible_pfn[i] =
  3389. arch_zone_highest_possible_pfn[i-1];
  3390. arch_zone_highest_possible_pfn[i] =
  3391. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3392. }
  3393. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3394. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3395. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3396. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3397. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3398. /* Print out the zone ranges */
  3399. printk("Zone PFN ranges:\n");
  3400. for (i = 0; i < MAX_NR_ZONES; i++) {
  3401. if (i == ZONE_MOVABLE)
  3402. continue;
  3403. printk(" %-8s %0#10lx -> %0#10lx\n",
  3404. zone_names[i],
  3405. arch_zone_lowest_possible_pfn[i],
  3406. arch_zone_highest_possible_pfn[i]);
  3407. }
  3408. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3409. printk("Movable zone start PFN for each node\n");
  3410. for (i = 0; i < MAX_NUMNODES; i++) {
  3411. if (zone_movable_pfn[i])
  3412. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3413. }
  3414. /* Print out the early_node_map[] */
  3415. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3416. for (i = 0; i < nr_nodemap_entries; i++)
  3417. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3418. early_node_map[i].start_pfn,
  3419. early_node_map[i].end_pfn);
  3420. /* Initialise every node */
  3421. mminit_verify_pageflags_layout();
  3422. setup_nr_node_ids();
  3423. for_each_online_node(nid) {
  3424. pg_data_t *pgdat = NODE_DATA(nid);
  3425. free_area_init_node(nid, pgdat, NULL,
  3426. find_min_pfn_for_node(nid), NULL);
  3427. /* Any memory on that node */
  3428. if (pgdat->node_present_pages)
  3429. node_set_state(nid, N_HIGH_MEMORY);
  3430. check_for_regular_memory(pgdat);
  3431. }
  3432. }
  3433. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3434. {
  3435. unsigned long long coremem;
  3436. if (!p)
  3437. return -EINVAL;
  3438. coremem = memparse(p, &p);
  3439. *core = coremem >> PAGE_SHIFT;
  3440. /* Paranoid check that UL is enough for the coremem value */
  3441. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3442. return 0;
  3443. }
  3444. /*
  3445. * kernelcore=size sets the amount of memory for use for allocations that
  3446. * cannot be reclaimed or migrated.
  3447. */
  3448. static int __init cmdline_parse_kernelcore(char *p)
  3449. {
  3450. return cmdline_parse_core(p, &required_kernelcore);
  3451. }
  3452. /*
  3453. * movablecore=size sets the amount of memory for use for allocations that
  3454. * can be reclaimed or migrated.
  3455. */
  3456. static int __init cmdline_parse_movablecore(char *p)
  3457. {
  3458. return cmdline_parse_core(p, &required_movablecore);
  3459. }
  3460. early_param("kernelcore", cmdline_parse_kernelcore);
  3461. early_param("movablecore", cmdline_parse_movablecore);
  3462. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3463. /**
  3464. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3465. * @new_dma_reserve: The number of pages to mark reserved
  3466. *
  3467. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3468. * In the DMA zone, a significant percentage may be consumed by kernel image
  3469. * and other unfreeable allocations which can skew the watermarks badly. This
  3470. * function may optionally be used to account for unfreeable pages in the
  3471. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3472. * smaller per-cpu batchsize.
  3473. */
  3474. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3475. {
  3476. dma_reserve = new_dma_reserve;
  3477. }
  3478. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3479. struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
  3480. EXPORT_SYMBOL(contig_page_data);
  3481. #endif
  3482. void __init free_area_init(unsigned long *zones_size)
  3483. {
  3484. free_area_init_node(0, NODE_DATA(0), zones_size,
  3485. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3486. }
  3487. static int page_alloc_cpu_notify(struct notifier_block *self,
  3488. unsigned long action, void *hcpu)
  3489. {
  3490. int cpu = (unsigned long)hcpu;
  3491. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3492. drain_pages(cpu);
  3493. /*
  3494. * Spill the event counters of the dead processor
  3495. * into the current processors event counters.
  3496. * This artificially elevates the count of the current
  3497. * processor.
  3498. */
  3499. vm_events_fold_cpu(cpu);
  3500. /*
  3501. * Zero the differential counters of the dead processor
  3502. * so that the vm statistics are consistent.
  3503. *
  3504. * This is only okay since the processor is dead and cannot
  3505. * race with what we are doing.
  3506. */
  3507. refresh_cpu_vm_stats(cpu);
  3508. }
  3509. return NOTIFY_OK;
  3510. }
  3511. void __init page_alloc_init(void)
  3512. {
  3513. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3514. }
  3515. /*
  3516. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3517. * or min_free_kbytes changes.
  3518. */
  3519. static void calculate_totalreserve_pages(void)
  3520. {
  3521. struct pglist_data *pgdat;
  3522. unsigned long reserve_pages = 0;
  3523. enum zone_type i, j;
  3524. for_each_online_pgdat(pgdat) {
  3525. for (i = 0; i < MAX_NR_ZONES; i++) {
  3526. struct zone *zone = pgdat->node_zones + i;
  3527. unsigned long max = 0;
  3528. /* Find valid and maximum lowmem_reserve in the zone */
  3529. for (j = i; j < MAX_NR_ZONES; j++) {
  3530. if (zone->lowmem_reserve[j] > max)
  3531. max = zone->lowmem_reserve[j];
  3532. }
  3533. /* we treat pages_high as reserved pages. */
  3534. max += zone->pages_high;
  3535. if (max > zone->present_pages)
  3536. max = zone->present_pages;
  3537. reserve_pages += max;
  3538. }
  3539. }
  3540. totalreserve_pages = reserve_pages;
  3541. }
  3542. /*
  3543. * setup_per_zone_lowmem_reserve - called whenever
  3544. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3545. * has a correct pages reserved value, so an adequate number of
  3546. * pages are left in the zone after a successful __alloc_pages().
  3547. */
  3548. static void setup_per_zone_lowmem_reserve(void)
  3549. {
  3550. struct pglist_data *pgdat;
  3551. enum zone_type j, idx;
  3552. for_each_online_pgdat(pgdat) {
  3553. for (j = 0; j < MAX_NR_ZONES; j++) {
  3554. struct zone *zone = pgdat->node_zones + j;
  3555. unsigned long present_pages = zone->present_pages;
  3556. zone->lowmem_reserve[j] = 0;
  3557. idx = j;
  3558. while (idx) {
  3559. struct zone *lower_zone;
  3560. idx--;
  3561. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3562. sysctl_lowmem_reserve_ratio[idx] = 1;
  3563. lower_zone = pgdat->node_zones + idx;
  3564. lower_zone->lowmem_reserve[j] = present_pages /
  3565. sysctl_lowmem_reserve_ratio[idx];
  3566. present_pages += lower_zone->present_pages;
  3567. }
  3568. }
  3569. }
  3570. /* update totalreserve_pages */
  3571. calculate_totalreserve_pages();
  3572. }
  3573. /**
  3574. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3575. *
  3576. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3577. * with respect to min_free_kbytes.
  3578. */
  3579. void setup_per_zone_pages_min(void)
  3580. {
  3581. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3582. unsigned long lowmem_pages = 0;
  3583. struct zone *zone;
  3584. unsigned long flags;
  3585. /* Calculate total number of !ZONE_HIGHMEM pages */
  3586. for_each_zone(zone) {
  3587. if (!is_highmem(zone))
  3588. lowmem_pages += zone->present_pages;
  3589. }
  3590. for_each_zone(zone) {
  3591. u64 tmp;
  3592. spin_lock_irqsave(&zone->lru_lock, flags);
  3593. tmp = (u64)pages_min * zone->present_pages;
  3594. do_div(tmp, lowmem_pages);
  3595. if (is_highmem(zone)) {
  3596. /*
  3597. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3598. * need highmem pages, so cap pages_min to a small
  3599. * value here.
  3600. *
  3601. * The (pages_high-pages_low) and (pages_low-pages_min)
  3602. * deltas controls asynch page reclaim, and so should
  3603. * not be capped for highmem.
  3604. */
  3605. int min_pages;
  3606. min_pages = zone->present_pages / 1024;
  3607. if (min_pages < SWAP_CLUSTER_MAX)
  3608. min_pages = SWAP_CLUSTER_MAX;
  3609. if (min_pages > 128)
  3610. min_pages = 128;
  3611. zone->pages_min = min_pages;
  3612. } else {
  3613. /*
  3614. * If it's a lowmem zone, reserve a number of pages
  3615. * proportionate to the zone's size.
  3616. */
  3617. zone->pages_min = tmp;
  3618. }
  3619. zone->pages_low = zone->pages_min + (tmp >> 2);
  3620. zone->pages_high = zone->pages_min + (tmp >> 1);
  3621. setup_zone_migrate_reserve(zone);
  3622. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3623. }
  3624. /* update totalreserve_pages */
  3625. calculate_totalreserve_pages();
  3626. }
  3627. /*
  3628. * Initialise min_free_kbytes.
  3629. *
  3630. * For small machines we want it small (128k min). For large machines
  3631. * we want it large (64MB max). But it is not linear, because network
  3632. * bandwidth does not increase linearly with machine size. We use
  3633. *
  3634. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3635. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3636. *
  3637. * which yields
  3638. *
  3639. * 16MB: 512k
  3640. * 32MB: 724k
  3641. * 64MB: 1024k
  3642. * 128MB: 1448k
  3643. * 256MB: 2048k
  3644. * 512MB: 2896k
  3645. * 1024MB: 4096k
  3646. * 2048MB: 5792k
  3647. * 4096MB: 8192k
  3648. * 8192MB: 11584k
  3649. * 16384MB: 16384k
  3650. */
  3651. static int __init init_per_zone_pages_min(void)
  3652. {
  3653. unsigned long lowmem_kbytes;
  3654. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3655. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3656. if (min_free_kbytes < 128)
  3657. min_free_kbytes = 128;
  3658. if (min_free_kbytes > 65536)
  3659. min_free_kbytes = 65536;
  3660. setup_per_zone_pages_min();
  3661. setup_per_zone_lowmem_reserve();
  3662. return 0;
  3663. }
  3664. module_init(init_per_zone_pages_min)
  3665. /*
  3666. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3667. * that we can call two helper functions whenever min_free_kbytes
  3668. * changes.
  3669. */
  3670. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3671. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3672. {
  3673. proc_dointvec(table, write, file, buffer, length, ppos);
  3674. if (write)
  3675. setup_per_zone_pages_min();
  3676. return 0;
  3677. }
  3678. #ifdef CONFIG_NUMA
  3679. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3680. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3681. {
  3682. struct zone *zone;
  3683. int rc;
  3684. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3685. if (rc)
  3686. return rc;
  3687. for_each_zone(zone)
  3688. zone->min_unmapped_pages = (zone->present_pages *
  3689. sysctl_min_unmapped_ratio) / 100;
  3690. return 0;
  3691. }
  3692. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3693. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3694. {
  3695. struct zone *zone;
  3696. int rc;
  3697. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3698. if (rc)
  3699. return rc;
  3700. for_each_zone(zone)
  3701. zone->min_slab_pages = (zone->present_pages *
  3702. sysctl_min_slab_ratio) / 100;
  3703. return 0;
  3704. }
  3705. #endif
  3706. /*
  3707. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3708. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3709. * whenever sysctl_lowmem_reserve_ratio changes.
  3710. *
  3711. * The reserve ratio obviously has absolutely no relation with the
  3712. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3713. * if in function of the boot time zone sizes.
  3714. */
  3715. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3716. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3717. {
  3718. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3719. setup_per_zone_lowmem_reserve();
  3720. return 0;
  3721. }
  3722. /*
  3723. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3724. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3725. * can have before it gets flushed back to buddy allocator.
  3726. */
  3727. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3728. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3729. {
  3730. struct zone *zone;
  3731. unsigned int cpu;
  3732. int ret;
  3733. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3734. if (!write || (ret == -EINVAL))
  3735. return ret;
  3736. for_each_zone(zone) {
  3737. for_each_online_cpu(cpu) {
  3738. unsigned long high;
  3739. high = zone->present_pages / percpu_pagelist_fraction;
  3740. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3741. }
  3742. }
  3743. return 0;
  3744. }
  3745. int hashdist = HASHDIST_DEFAULT;
  3746. #ifdef CONFIG_NUMA
  3747. static int __init set_hashdist(char *str)
  3748. {
  3749. if (!str)
  3750. return 0;
  3751. hashdist = simple_strtoul(str, &str, 0);
  3752. return 1;
  3753. }
  3754. __setup("hashdist=", set_hashdist);
  3755. #endif
  3756. /*
  3757. * allocate a large system hash table from bootmem
  3758. * - it is assumed that the hash table must contain an exact power-of-2
  3759. * quantity of entries
  3760. * - limit is the number of hash buckets, not the total allocation size
  3761. */
  3762. void *__init alloc_large_system_hash(const char *tablename,
  3763. unsigned long bucketsize,
  3764. unsigned long numentries,
  3765. int scale,
  3766. int flags,
  3767. unsigned int *_hash_shift,
  3768. unsigned int *_hash_mask,
  3769. unsigned long limit)
  3770. {
  3771. unsigned long long max = limit;
  3772. unsigned long log2qty, size;
  3773. void *table = NULL;
  3774. /* allow the kernel cmdline to have a say */
  3775. if (!numentries) {
  3776. /* round applicable memory size up to nearest megabyte */
  3777. numentries = nr_kernel_pages;
  3778. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3779. numentries >>= 20 - PAGE_SHIFT;
  3780. numentries <<= 20 - PAGE_SHIFT;
  3781. /* limit to 1 bucket per 2^scale bytes of low memory */
  3782. if (scale > PAGE_SHIFT)
  3783. numentries >>= (scale - PAGE_SHIFT);
  3784. else
  3785. numentries <<= (PAGE_SHIFT - scale);
  3786. /* Make sure we've got at least a 0-order allocation.. */
  3787. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3788. numentries = PAGE_SIZE / bucketsize;
  3789. }
  3790. numentries = roundup_pow_of_two(numentries);
  3791. /* limit allocation size to 1/16 total memory by default */
  3792. if (max == 0) {
  3793. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3794. do_div(max, bucketsize);
  3795. }
  3796. if (numentries > max)
  3797. numentries = max;
  3798. log2qty = ilog2(numentries);
  3799. do {
  3800. size = bucketsize << log2qty;
  3801. if (flags & HASH_EARLY)
  3802. table = alloc_bootmem(size);
  3803. else if (hashdist)
  3804. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3805. else {
  3806. unsigned long order = get_order(size);
  3807. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3808. /*
  3809. * If bucketsize is not a power-of-two, we may free
  3810. * some pages at the end of hash table.
  3811. */
  3812. if (table) {
  3813. unsigned long alloc_end = (unsigned long)table +
  3814. (PAGE_SIZE << order);
  3815. unsigned long used = (unsigned long)table +
  3816. PAGE_ALIGN(size);
  3817. split_page(virt_to_page(table), order);
  3818. while (used < alloc_end) {
  3819. free_page(used);
  3820. used += PAGE_SIZE;
  3821. }
  3822. }
  3823. }
  3824. } while (!table && size > PAGE_SIZE && --log2qty);
  3825. if (!table)
  3826. panic("Failed to allocate %s hash table\n", tablename);
  3827. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3828. tablename,
  3829. (1U << log2qty),
  3830. ilog2(size) - PAGE_SHIFT,
  3831. size);
  3832. if (_hash_shift)
  3833. *_hash_shift = log2qty;
  3834. if (_hash_mask)
  3835. *_hash_mask = (1 << log2qty) - 1;
  3836. return table;
  3837. }
  3838. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3839. struct page *pfn_to_page(unsigned long pfn)
  3840. {
  3841. return __pfn_to_page(pfn);
  3842. }
  3843. unsigned long page_to_pfn(struct page *page)
  3844. {
  3845. return __page_to_pfn(page);
  3846. }
  3847. EXPORT_SYMBOL(pfn_to_page);
  3848. EXPORT_SYMBOL(page_to_pfn);
  3849. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3850. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3851. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3852. unsigned long pfn)
  3853. {
  3854. #ifdef CONFIG_SPARSEMEM
  3855. return __pfn_to_section(pfn)->pageblock_flags;
  3856. #else
  3857. return zone->pageblock_flags;
  3858. #endif /* CONFIG_SPARSEMEM */
  3859. }
  3860. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3861. {
  3862. #ifdef CONFIG_SPARSEMEM
  3863. pfn &= (PAGES_PER_SECTION-1);
  3864. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3865. #else
  3866. pfn = pfn - zone->zone_start_pfn;
  3867. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3868. #endif /* CONFIG_SPARSEMEM */
  3869. }
  3870. /**
  3871. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3872. * @page: The page within the block of interest
  3873. * @start_bitidx: The first bit of interest to retrieve
  3874. * @end_bitidx: The last bit of interest
  3875. * returns pageblock_bits flags
  3876. */
  3877. unsigned long get_pageblock_flags_group(struct page *page,
  3878. int start_bitidx, int end_bitidx)
  3879. {
  3880. struct zone *zone;
  3881. unsigned long *bitmap;
  3882. unsigned long pfn, bitidx;
  3883. unsigned long flags = 0;
  3884. unsigned long value = 1;
  3885. zone = page_zone(page);
  3886. pfn = page_to_pfn(page);
  3887. bitmap = get_pageblock_bitmap(zone, pfn);
  3888. bitidx = pfn_to_bitidx(zone, pfn);
  3889. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3890. if (test_bit(bitidx + start_bitidx, bitmap))
  3891. flags |= value;
  3892. return flags;
  3893. }
  3894. /**
  3895. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3896. * @page: The page within the block of interest
  3897. * @start_bitidx: The first bit of interest
  3898. * @end_bitidx: The last bit of interest
  3899. * @flags: The flags to set
  3900. */
  3901. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3902. int start_bitidx, int end_bitidx)
  3903. {
  3904. struct zone *zone;
  3905. unsigned long *bitmap;
  3906. unsigned long pfn, bitidx;
  3907. unsigned long value = 1;
  3908. zone = page_zone(page);
  3909. pfn = page_to_pfn(page);
  3910. bitmap = get_pageblock_bitmap(zone, pfn);
  3911. bitidx = pfn_to_bitidx(zone, pfn);
  3912. VM_BUG_ON(pfn < zone->zone_start_pfn);
  3913. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  3914. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3915. if (flags & value)
  3916. __set_bit(bitidx + start_bitidx, bitmap);
  3917. else
  3918. __clear_bit(bitidx + start_bitidx, bitmap);
  3919. }
  3920. /*
  3921. * This is designed as sub function...plz see page_isolation.c also.
  3922. * set/clear page block's type to be ISOLATE.
  3923. * page allocater never alloc memory from ISOLATE block.
  3924. */
  3925. int set_migratetype_isolate(struct page *page)
  3926. {
  3927. struct zone *zone;
  3928. unsigned long flags;
  3929. int ret = -EBUSY;
  3930. zone = page_zone(page);
  3931. spin_lock_irqsave(&zone->lock, flags);
  3932. /*
  3933. * In future, more migrate types will be able to be isolation target.
  3934. */
  3935. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3936. goto out;
  3937. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3938. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3939. ret = 0;
  3940. out:
  3941. spin_unlock_irqrestore(&zone->lock, flags);
  3942. if (!ret)
  3943. drain_all_pages();
  3944. return ret;
  3945. }
  3946. void unset_migratetype_isolate(struct page *page)
  3947. {
  3948. struct zone *zone;
  3949. unsigned long flags;
  3950. zone = page_zone(page);
  3951. spin_lock_irqsave(&zone->lock, flags);
  3952. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3953. goto out;
  3954. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3955. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3956. out:
  3957. spin_unlock_irqrestore(&zone->lock, flags);
  3958. }
  3959. #ifdef CONFIG_MEMORY_HOTREMOVE
  3960. /*
  3961. * All pages in the range must be isolated before calling this.
  3962. */
  3963. void
  3964. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3965. {
  3966. struct page *page;
  3967. struct zone *zone;
  3968. int order, i;
  3969. unsigned long pfn;
  3970. unsigned long flags;
  3971. /* find the first valid pfn */
  3972. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3973. if (pfn_valid(pfn))
  3974. break;
  3975. if (pfn == end_pfn)
  3976. return;
  3977. zone = page_zone(pfn_to_page(pfn));
  3978. spin_lock_irqsave(&zone->lock, flags);
  3979. pfn = start_pfn;
  3980. while (pfn < end_pfn) {
  3981. if (!pfn_valid(pfn)) {
  3982. pfn++;
  3983. continue;
  3984. }
  3985. page = pfn_to_page(pfn);
  3986. BUG_ON(page_count(page));
  3987. BUG_ON(!PageBuddy(page));
  3988. order = page_order(page);
  3989. #ifdef CONFIG_DEBUG_VM
  3990. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3991. pfn, 1 << order, end_pfn);
  3992. #endif
  3993. list_del(&page->lru);
  3994. rmv_page_order(page);
  3995. zone->free_area[order].nr_free--;
  3996. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3997. - (1UL << order));
  3998. for (i = 0; i < (1 << order); i++)
  3999. SetPageReserved((page+i));
  4000. pfn += (1 << order);
  4001. }
  4002. spin_unlock_irqrestore(&zone->lock, flags);
  4003. }
  4004. #endif