target_core_rd.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087
  1. /*******************************************************************************
  2. * Filename: target_core_rd.c
  3. *
  4. * This file contains the Storage Engine <-> Ramdisk transport
  5. * specific functions.
  6. *
  7. * Copyright (c) 2003, 2004, 2005 PyX Technologies, Inc.
  8. * Copyright (c) 2005, 2006, 2007 SBE, Inc.
  9. * Copyright (c) 2007-2010 Rising Tide Systems
  10. * Copyright (c) 2008-2010 Linux-iSCSI.org
  11. *
  12. * Nicholas A. Bellinger <nab@kernel.org>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  27. *
  28. ******************************************************************************/
  29. #include <linux/version.h>
  30. #include <linux/string.h>
  31. #include <linux/parser.h>
  32. #include <linux/timer.h>
  33. #include <linux/blkdev.h>
  34. #include <linux/slab.h>
  35. #include <linux/spinlock.h>
  36. #include <scsi/scsi.h>
  37. #include <scsi/scsi_host.h>
  38. #include <target/target_core_base.h>
  39. #include <target/target_core_device.h>
  40. #include <target/target_core_transport.h>
  41. #include <target/target_core_fabric_ops.h>
  42. #include "target_core_rd.h"
  43. static struct se_subsystem_api rd_dr_template;
  44. static struct se_subsystem_api rd_mcp_template;
  45. /* #define DEBUG_RAMDISK_MCP */
  46. /* #define DEBUG_RAMDISK_DR */
  47. /* rd_attach_hba(): (Part of se_subsystem_api_t template)
  48. *
  49. *
  50. */
  51. static int rd_attach_hba(struct se_hba *hba, u32 host_id)
  52. {
  53. struct rd_host *rd_host;
  54. rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL);
  55. if (!(rd_host)) {
  56. printk(KERN_ERR "Unable to allocate memory for struct rd_host\n");
  57. return -ENOMEM;
  58. }
  59. rd_host->rd_host_id = host_id;
  60. hba->hba_ptr = (void *) rd_host;
  61. printk(KERN_INFO "CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on"
  62. " Generic Target Core Stack %s\n", hba->hba_id,
  63. RD_HBA_VERSION, TARGET_CORE_MOD_VERSION);
  64. printk(KERN_INFO "CORE_HBA[%d] - Attached Ramdisk HBA: %u to Generic"
  65. " MaxSectors: %u\n", hba->hba_id,
  66. rd_host->rd_host_id, RD_MAX_SECTORS);
  67. return 0;
  68. }
  69. static void rd_detach_hba(struct se_hba *hba)
  70. {
  71. struct rd_host *rd_host = hba->hba_ptr;
  72. printk(KERN_INFO "CORE_HBA[%d] - Detached Ramdisk HBA: %u from"
  73. " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id);
  74. kfree(rd_host);
  75. hba->hba_ptr = NULL;
  76. }
  77. /* rd_release_device_space():
  78. *
  79. *
  80. */
  81. static void rd_release_device_space(struct rd_dev *rd_dev)
  82. {
  83. u32 i, j, page_count = 0, sg_per_table;
  84. struct rd_dev_sg_table *sg_table;
  85. struct page *pg;
  86. struct scatterlist *sg;
  87. if (!rd_dev->sg_table_array || !rd_dev->sg_table_count)
  88. return;
  89. sg_table = rd_dev->sg_table_array;
  90. for (i = 0; i < rd_dev->sg_table_count; i++) {
  91. sg = sg_table[i].sg_table;
  92. sg_per_table = sg_table[i].rd_sg_count;
  93. for (j = 0; j < sg_per_table; j++) {
  94. pg = sg_page(&sg[j]);
  95. if ((pg)) {
  96. __free_page(pg);
  97. page_count++;
  98. }
  99. }
  100. kfree(sg);
  101. }
  102. printk(KERN_INFO "CORE_RD[%u] - Released device space for Ramdisk"
  103. " Device ID: %u, pages %u in %u tables total bytes %lu\n",
  104. rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
  105. rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
  106. kfree(sg_table);
  107. rd_dev->sg_table_array = NULL;
  108. rd_dev->sg_table_count = 0;
  109. }
  110. /* rd_build_device_space():
  111. *
  112. *
  113. */
  114. static int rd_build_device_space(struct rd_dev *rd_dev)
  115. {
  116. u32 i = 0, j, page_offset = 0, sg_per_table, sg_tables, total_sg_needed;
  117. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  118. sizeof(struct scatterlist));
  119. struct rd_dev_sg_table *sg_table;
  120. struct page *pg;
  121. struct scatterlist *sg;
  122. if (rd_dev->rd_page_count <= 0) {
  123. printk(KERN_ERR "Illegal page count: %u for Ramdisk device\n",
  124. rd_dev->rd_page_count);
  125. return -EINVAL;
  126. }
  127. total_sg_needed = rd_dev->rd_page_count;
  128. sg_tables = (total_sg_needed / max_sg_per_table) + 1;
  129. sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
  130. if (!(sg_table)) {
  131. printk(KERN_ERR "Unable to allocate memory for Ramdisk"
  132. " scatterlist tables\n");
  133. return -ENOMEM;
  134. }
  135. rd_dev->sg_table_array = sg_table;
  136. rd_dev->sg_table_count = sg_tables;
  137. while (total_sg_needed) {
  138. sg_per_table = (total_sg_needed > max_sg_per_table) ?
  139. max_sg_per_table : total_sg_needed;
  140. sg = kzalloc(sg_per_table * sizeof(struct scatterlist),
  141. GFP_KERNEL);
  142. if (!(sg)) {
  143. printk(KERN_ERR "Unable to allocate scatterlist array"
  144. " for struct rd_dev\n");
  145. return -ENOMEM;
  146. }
  147. sg_init_table((struct scatterlist *)&sg[0], sg_per_table);
  148. sg_table[i].sg_table = sg;
  149. sg_table[i].rd_sg_count = sg_per_table;
  150. sg_table[i].page_start_offset = page_offset;
  151. sg_table[i++].page_end_offset = (page_offset + sg_per_table)
  152. - 1;
  153. for (j = 0; j < sg_per_table; j++) {
  154. pg = alloc_pages(GFP_KERNEL, 0);
  155. if (!(pg)) {
  156. printk(KERN_ERR "Unable to allocate scatterlist"
  157. " pages for struct rd_dev_sg_table\n");
  158. return -ENOMEM;
  159. }
  160. sg_assign_page(&sg[j], pg);
  161. sg[j].length = PAGE_SIZE;
  162. }
  163. page_offset += sg_per_table;
  164. total_sg_needed -= sg_per_table;
  165. }
  166. printk(KERN_INFO "CORE_RD[%u] - Built Ramdisk Device ID: %u space of"
  167. " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
  168. rd_dev->rd_dev_id, rd_dev->rd_page_count,
  169. rd_dev->sg_table_count);
  170. return 0;
  171. }
  172. static void *rd_allocate_virtdevice(
  173. struct se_hba *hba,
  174. const char *name,
  175. int rd_direct)
  176. {
  177. struct rd_dev *rd_dev;
  178. struct rd_host *rd_host = hba->hba_ptr;
  179. rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL);
  180. if (!(rd_dev)) {
  181. printk(KERN_ERR "Unable to allocate memory for struct rd_dev\n");
  182. return NULL;
  183. }
  184. rd_dev->rd_host = rd_host;
  185. rd_dev->rd_direct = rd_direct;
  186. return rd_dev;
  187. }
  188. static void *rd_DIRECT_allocate_virtdevice(struct se_hba *hba, const char *name)
  189. {
  190. return rd_allocate_virtdevice(hba, name, 1);
  191. }
  192. static void *rd_MEMCPY_allocate_virtdevice(struct se_hba *hba, const char *name)
  193. {
  194. return rd_allocate_virtdevice(hba, name, 0);
  195. }
  196. /* rd_create_virtdevice():
  197. *
  198. *
  199. */
  200. static struct se_device *rd_create_virtdevice(
  201. struct se_hba *hba,
  202. struct se_subsystem_dev *se_dev,
  203. void *p,
  204. int rd_direct)
  205. {
  206. struct se_device *dev;
  207. struct se_dev_limits dev_limits;
  208. struct rd_dev *rd_dev = p;
  209. struct rd_host *rd_host = hba->hba_ptr;
  210. int dev_flags = 0, ret;
  211. char prod[16], rev[4];
  212. memset(&dev_limits, 0, sizeof(struct se_dev_limits));
  213. ret = rd_build_device_space(rd_dev);
  214. if (ret < 0)
  215. goto fail;
  216. snprintf(prod, 16, "RAMDISK-%s", (rd_dev->rd_direct) ? "DR" : "MCP");
  217. snprintf(rev, 4, "%s", (rd_dev->rd_direct) ? RD_DR_VERSION :
  218. RD_MCP_VERSION);
  219. dev_limits.limits.logical_block_size = RD_BLOCKSIZE;
  220. dev_limits.limits.max_hw_sectors = RD_MAX_SECTORS;
  221. dev_limits.limits.max_sectors = RD_MAX_SECTORS;
  222. dev_limits.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH;
  223. dev_limits.queue_depth = RD_DEVICE_QUEUE_DEPTH;
  224. dev = transport_add_device_to_core_hba(hba,
  225. (rd_dev->rd_direct) ? &rd_dr_template :
  226. &rd_mcp_template, se_dev, dev_flags, (void *)rd_dev,
  227. &dev_limits, prod, rev);
  228. if (!(dev))
  229. goto fail;
  230. rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++;
  231. rd_dev->rd_queue_depth = dev->queue_depth;
  232. printk(KERN_INFO "CORE_RD[%u] - Added TCM %s Ramdisk Device ID: %u of"
  233. " %u pages in %u tables, %lu total bytes\n",
  234. rd_host->rd_host_id, (!rd_dev->rd_direct) ? "MEMCPY" :
  235. "DIRECT", rd_dev->rd_dev_id, rd_dev->rd_page_count,
  236. rd_dev->sg_table_count,
  237. (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE));
  238. return dev;
  239. fail:
  240. rd_release_device_space(rd_dev);
  241. return ERR_PTR(ret);
  242. }
  243. static struct se_device *rd_DIRECT_create_virtdevice(
  244. struct se_hba *hba,
  245. struct se_subsystem_dev *se_dev,
  246. void *p)
  247. {
  248. return rd_create_virtdevice(hba, se_dev, p, 1);
  249. }
  250. static struct se_device *rd_MEMCPY_create_virtdevice(
  251. struct se_hba *hba,
  252. struct se_subsystem_dev *se_dev,
  253. void *p)
  254. {
  255. return rd_create_virtdevice(hba, se_dev, p, 0);
  256. }
  257. /* rd_free_device(): (Part of se_subsystem_api_t template)
  258. *
  259. *
  260. */
  261. static void rd_free_device(void *p)
  262. {
  263. struct rd_dev *rd_dev = p;
  264. rd_release_device_space(rd_dev);
  265. kfree(rd_dev);
  266. }
  267. static inline struct rd_request *RD_REQ(struct se_task *task)
  268. {
  269. return container_of(task, struct rd_request, rd_task);
  270. }
  271. static struct se_task *
  272. rd_alloc_task(struct se_cmd *cmd)
  273. {
  274. struct rd_request *rd_req;
  275. rd_req = kzalloc(sizeof(struct rd_request), GFP_KERNEL);
  276. if (!rd_req) {
  277. printk(KERN_ERR "Unable to allocate struct rd_request\n");
  278. return NULL;
  279. }
  280. rd_req->rd_dev = cmd->se_lun->lun_se_dev->dev_ptr;
  281. return &rd_req->rd_task;
  282. }
  283. /* rd_get_sg_table():
  284. *
  285. *
  286. */
  287. static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page)
  288. {
  289. u32 i;
  290. struct rd_dev_sg_table *sg_table;
  291. for (i = 0; i < rd_dev->sg_table_count; i++) {
  292. sg_table = &rd_dev->sg_table_array[i];
  293. if ((sg_table->page_start_offset <= page) &&
  294. (sg_table->page_end_offset >= page))
  295. return sg_table;
  296. }
  297. printk(KERN_ERR "Unable to locate struct rd_dev_sg_table for page: %u\n",
  298. page);
  299. return NULL;
  300. }
  301. /* rd_MEMCPY_read():
  302. *
  303. *
  304. */
  305. static int rd_MEMCPY_read(struct rd_request *req)
  306. {
  307. struct se_task *task = &req->rd_task;
  308. struct rd_dev *dev = req->rd_dev;
  309. struct rd_dev_sg_table *table;
  310. struct scatterlist *sg_d, *sg_s;
  311. void *dst, *src;
  312. u32 i = 0, j = 0, dst_offset = 0, src_offset = 0;
  313. u32 length, page_end = 0, table_sg_end;
  314. u32 rd_offset = req->rd_offset;
  315. table = rd_get_sg_table(dev, req->rd_page);
  316. if (!(table))
  317. return -EINVAL;
  318. table_sg_end = (table->page_end_offset - req->rd_page);
  319. sg_d = task->task_sg;
  320. sg_s = &table->sg_table[req->rd_page - table->page_start_offset];
  321. #ifdef DEBUG_RAMDISK_MCP
  322. printk(KERN_INFO "RD[%u]: Read LBA: %llu, Size: %u Page: %u, Offset:"
  323. " %u\n", dev->rd_dev_id, task->task_lba, req->rd_size,
  324. req->rd_page, req->rd_offset);
  325. #endif
  326. src_offset = rd_offset;
  327. while (req->rd_size) {
  328. if ((sg_d[i].length - dst_offset) <
  329. (sg_s[j].length - src_offset)) {
  330. length = (sg_d[i].length - dst_offset);
  331. #ifdef DEBUG_RAMDISK_MCP
  332. printk(KERN_INFO "Step 1 - sg_d[%d]: %p length: %d"
  333. " offset: %u sg_s[%d].length: %u\n", i,
  334. &sg_d[i], sg_d[i].length, sg_d[i].offset, j,
  335. sg_s[j].length);
  336. printk(KERN_INFO "Step 1 - length: %u dst_offset: %u"
  337. " src_offset: %u\n", length, dst_offset,
  338. src_offset);
  339. #endif
  340. if (length > req->rd_size)
  341. length = req->rd_size;
  342. dst = sg_virt(&sg_d[i++]) + dst_offset;
  343. if (!dst)
  344. BUG();
  345. src = sg_virt(&sg_s[j]) + src_offset;
  346. if (!src)
  347. BUG();
  348. dst_offset = 0;
  349. src_offset = length;
  350. page_end = 0;
  351. } else {
  352. length = (sg_s[j].length - src_offset);
  353. #ifdef DEBUG_RAMDISK_MCP
  354. printk(KERN_INFO "Step 2 - sg_d[%d]: %p length: %d"
  355. " offset: %u sg_s[%d].length: %u\n", i,
  356. &sg_d[i], sg_d[i].length, sg_d[i].offset,
  357. j, sg_s[j].length);
  358. printk(KERN_INFO "Step 2 - length: %u dst_offset: %u"
  359. " src_offset: %u\n", length, dst_offset,
  360. src_offset);
  361. #endif
  362. if (length > req->rd_size)
  363. length = req->rd_size;
  364. dst = sg_virt(&sg_d[i]) + dst_offset;
  365. if (!dst)
  366. BUG();
  367. if (sg_d[i].length == length) {
  368. i++;
  369. dst_offset = 0;
  370. } else
  371. dst_offset = length;
  372. src = sg_virt(&sg_s[j++]) + src_offset;
  373. if (!src)
  374. BUG();
  375. src_offset = 0;
  376. page_end = 1;
  377. }
  378. memcpy(dst, src, length);
  379. #ifdef DEBUG_RAMDISK_MCP
  380. printk(KERN_INFO "page: %u, remaining size: %u, length: %u,"
  381. " i: %u, j: %u\n", req->rd_page,
  382. (req->rd_size - length), length, i, j);
  383. #endif
  384. req->rd_size -= length;
  385. if (!(req->rd_size))
  386. return 0;
  387. if (!page_end)
  388. continue;
  389. if (++req->rd_page <= table->page_end_offset) {
  390. #ifdef DEBUG_RAMDISK_MCP
  391. printk(KERN_INFO "page: %u in same page table\n",
  392. req->rd_page);
  393. #endif
  394. continue;
  395. }
  396. #ifdef DEBUG_RAMDISK_MCP
  397. printk(KERN_INFO "getting new page table for page: %u\n",
  398. req->rd_page);
  399. #endif
  400. table = rd_get_sg_table(dev, req->rd_page);
  401. if (!(table))
  402. return -EINVAL;
  403. sg_s = &table->sg_table[j = 0];
  404. }
  405. return 0;
  406. }
  407. /* rd_MEMCPY_write():
  408. *
  409. *
  410. */
  411. static int rd_MEMCPY_write(struct rd_request *req)
  412. {
  413. struct se_task *task = &req->rd_task;
  414. struct rd_dev *dev = req->rd_dev;
  415. struct rd_dev_sg_table *table;
  416. struct scatterlist *sg_d, *sg_s;
  417. void *dst, *src;
  418. u32 i = 0, j = 0, dst_offset = 0, src_offset = 0;
  419. u32 length, page_end = 0, table_sg_end;
  420. u32 rd_offset = req->rd_offset;
  421. table = rd_get_sg_table(dev, req->rd_page);
  422. if (!(table))
  423. return -EINVAL;
  424. table_sg_end = (table->page_end_offset - req->rd_page);
  425. sg_d = &table->sg_table[req->rd_page - table->page_start_offset];
  426. sg_s = task->task_sg;
  427. #ifdef DEBUG_RAMDISK_MCP
  428. printk(KERN_INFO "RD[%d] Write LBA: %llu, Size: %u, Page: %u,"
  429. " Offset: %u\n", dev->rd_dev_id, task->task_lba, req->rd_size,
  430. req->rd_page, req->rd_offset);
  431. #endif
  432. dst_offset = rd_offset;
  433. while (req->rd_size) {
  434. if ((sg_s[i].length - src_offset) <
  435. (sg_d[j].length - dst_offset)) {
  436. length = (sg_s[i].length - src_offset);
  437. #ifdef DEBUG_RAMDISK_MCP
  438. printk(KERN_INFO "Step 1 - sg_s[%d]: %p length: %d"
  439. " offset: %d sg_d[%d].length: %u\n", i,
  440. &sg_s[i], sg_s[i].length, sg_s[i].offset,
  441. j, sg_d[j].length);
  442. printk(KERN_INFO "Step 1 - length: %u src_offset: %u"
  443. " dst_offset: %u\n", length, src_offset,
  444. dst_offset);
  445. #endif
  446. if (length > req->rd_size)
  447. length = req->rd_size;
  448. src = sg_virt(&sg_s[i++]) + src_offset;
  449. if (!src)
  450. BUG();
  451. dst = sg_virt(&sg_d[j]) + dst_offset;
  452. if (!dst)
  453. BUG();
  454. src_offset = 0;
  455. dst_offset = length;
  456. page_end = 0;
  457. } else {
  458. length = (sg_d[j].length - dst_offset);
  459. #ifdef DEBUG_RAMDISK_MCP
  460. printk(KERN_INFO "Step 2 - sg_s[%d]: %p length: %d"
  461. " offset: %d sg_d[%d].length: %u\n", i,
  462. &sg_s[i], sg_s[i].length, sg_s[i].offset,
  463. j, sg_d[j].length);
  464. printk(KERN_INFO "Step 2 - length: %u src_offset: %u"
  465. " dst_offset: %u\n", length, src_offset,
  466. dst_offset);
  467. #endif
  468. if (length > req->rd_size)
  469. length = req->rd_size;
  470. src = sg_virt(&sg_s[i]) + src_offset;
  471. if (!src)
  472. BUG();
  473. if (sg_s[i].length == length) {
  474. i++;
  475. src_offset = 0;
  476. } else
  477. src_offset = length;
  478. dst = sg_virt(&sg_d[j++]) + dst_offset;
  479. if (!dst)
  480. BUG();
  481. dst_offset = 0;
  482. page_end = 1;
  483. }
  484. memcpy(dst, src, length);
  485. #ifdef DEBUG_RAMDISK_MCP
  486. printk(KERN_INFO "page: %u, remaining size: %u, length: %u,"
  487. " i: %u, j: %u\n", req->rd_page,
  488. (req->rd_size - length), length, i, j);
  489. #endif
  490. req->rd_size -= length;
  491. if (!(req->rd_size))
  492. return 0;
  493. if (!page_end)
  494. continue;
  495. if (++req->rd_page <= table->page_end_offset) {
  496. #ifdef DEBUG_RAMDISK_MCP
  497. printk(KERN_INFO "page: %u in same page table\n",
  498. req->rd_page);
  499. #endif
  500. continue;
  501. }
  502. #ifdef DEBUG_RAMDISK_MCP
  503. printk(KERN_INFO "getting new page table for page: %u\n",
  504. req->rd_page);
  505. #endif
  506. table = rd_get_sg_table(dev, req->rd_page);
  507. if (!(table))
  508. return -EINVAL;
  509. sg_d = &table->sg_table[j = 0];
  510. }
  511. return 0;
  512. }
  513. /* rd_MEMCPY_do_task(): (Part of se_subsystem_api_t template)
  514. *
  515. *
  516. */
  517. static int rd_MEMCPY_do_task(struct se_task *task)
  518. {
  519. struct se_device *dev = task->se_dev;
  520. struct rd_request *req = RD_REQ(task);
  521. unsigned long long lba;
  522. int ret;
  523. req->rd_page = (task->task_lba * dev->se_sub_dev->se_dev_attrib.block_size) / PAGE_SIZE;
  524. lba = task->task_lba;
  525. req->rd_offset = (do_div(lba,
  526. (PAGE_SIZE / dev->se_sub_dev->se_dev_attrib.block_size))) *
  527. dev->se_sub_dev->se_dev_attrib.block_size;
  528. req->rd_size = task->task_size;
  529. if (task->task_data_direction == DMA_FROM_DEVICE)
  530. ret = rd_MEMCPY_read(req);
  531. else
  532. ret = rd_MEMCPY_write(req);
  533. if (ret != 0)
  534. return ret;
  535. task->task_scsi_status = GOOD;
  536. transport_complete_task(task, 1);
  537. return PYX_TRANSPORT_SENT_TO_TRANSPORT;
  538. }
  539. /* rd_DIRECT_with_offset():
  540. *
  541. *
  542. */
  543. static int rd_DIRECT_with_offset(
  544. struct se_task *task,
  545. struct list_head *se_mem_list,
  546. u32 *se_mem_cnt,
  547. u32 *task_offset)
  548. {
  549. struct rd_request *req = RD_REQ(task);
  550. struct rd_dev *dev = req->rd_dev;
  551. struct rd_dev_sg_table *table;
  552. struct se_mem *se_mem;
  553. struct scatterlist *sg_s;
  554. u32 j = 0, set_offset = 1;
  555. u32 get_next_table = 0, offset_length, table_sg_end;
  556. table = rd_get_sg_table(dev, req->rd_page);
  557. if (!(table))
  558. return -EINVAL;
  559. table_sg_end = (table->page_end_offset - req->rd_page);
  560. sg_s = &table->sg_table[req->rd_page - table->page_start_offset];
  561. #ifdef DEBUG_RAMDISK_DR
  562. printk(KERN_INFO "%s DIRECT LBA: %llu, Size: %u Page: %u, Offset: %u\n",
  563. (task->task_data_direction == DMA_TO_DEVICE) ?
  564. "Write" : "Read",
  565. task->task_lba, req->rd_size, req->rd_page, req->rd_offset);
  566. #endif
  567. while (req->rd_size) {
  568. se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
  569. if (!(se_mem)) {
  570. printk(KERN_ERR "Unable to allocate struct se_mem\n");
  571. return -ENOMEM;
  572. }
  573. INIT_LIST_HEAD(&se_mem->se_list);
  574. if (set_offset) {
  575. offset_length = sg_s[j].length - req->rd_offset;
  576. if (offset_length > req->rd_size)
  577. offset_length = req->rd_size;
  578. se_mem->se_page = sg_page(&sg_s[j++]);
  579. se_mem->se_off = req->rd_offset;
  580. se_mem->se_len = offset_length;
  581. set_offset = 0;
  582. get_next_table = (j > table_sg_end);
  583. goto check_eot;
  584. }
  585. offset_length = (req->rd_size < req->rd_offset) ?
  586. req->rd_size : req->rd_offset;
  587. se_mem->se_page = sg_page(&sg_s[j]);
  588. se_mem->se_len = offset_length;
  589. set_offset = 1;
  590. check_eot:
  591. #ifdef DEBUG_RAMDISK_DR
  592. printk(KERN_INFO "page: %u, size: %u, offset_length: %u, j: %u"
  593. " se_mem: %p, se_page: %p se_off: %u se_len: %u\n",
  594. req->rd_page, req->rd_size, offset_length, j, se_mem,
  595. se_mem->se_page, se_mem->se_off, se_mem->se_len);
  596. #endif
  597. list_add_tail(&se_mem->se_list, se_mem_list);
  598. (*se_mem_cnt)++;
  599. req->rd_size -= offset_length;
  600. if (!(req->rd_size))
  601. goto out;
  602. if (!set_offset && !get_next_table)
  603. continue;
  604. if (++req->rd_page <= table->page_end_offset) {
  605. #ifdef DEBUG_RAMDISK_DR
  606. printk(KERN_INFO "page: %u in same page table\n",
  607. req->rd_page);
  608. #endif
  609. continue;
  610. }
  611. #ifdef DEBUG_RAMDISK_DR
  612. printk(KERN_INFO "getting new page table for page: %u\n",
  613. req->rd_page);
  614. #endif
  615. table = rd_get_sg_table(dev, req->rd_page);
  616. if (!(table))
  617. return -EINVAL;
  618. sg_s = &table->sg_table[j = 0];
  619. }
  620. out:
  621. task->task_se_cmd->t_task->t_tasks_se_num += *se_mem_cnt;
  622. #ifdef DEBUG_RAMDISK_DR
  623. printk(KERN_INFO "RD_DR - Allocated %u struct se_mem segments for task\n",
  624. *se_mem_cnt);
  625. #endif
  626. return 0;
  627. }
  628. /* rd_DIRECT_without_offset():
  629. *
  630. *
  631. */
  632. static int rd_DIRECT_without_offset(
  633. struct se_task *task,
  634. struct list_head *se_mem_list,
  635. u32 *se_mem_cnt,
  636. u32 *task_offset)
  637. {
  638. struct rd_request *req = RD_REQ(task);
  639. struct rd_dev *dev = req->rd_dev;
  640. struct rd_dev_sg_table *table;
  641. struct se_mem *se_mem;
  642. struct scatterlist *sg_s;
  643. u32 length, j = 0;
  644. table = rd_get_sg_table(dev, req->rd_page);
  645. if (!(table))
  646. return -EINVAL;
  647. sg_s = &table->sg_table[req->rd_page - table->page_start_offset];
  648. #ifdef DEBUG_RAMDISK_DR
  649. printk(KERN_INFO "%s DIRECT LBA: %llu, Size: %u, Page: %u\n",
  650. (task->task_data_direction == DMA_TO_DEVICE) ?
  651. "Write" : "Read",
  652. task->task_lba, req->rd_size, req->rd_page);
  653. #endif
  654. while (req->rd_size) {
  655. se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
  656. if (!(se_mem)) {
  657. printk(KERN_ERR "Unable to allocate struct se_mem\n");
  658. return -ENOMEM;
  659. }
  660. INIT_LIST_HEAD(&se_mem->se_list);
  661. length = (req->rd_size < sg_s[j].length) ?
  662. req->rd_size : sg_s[j].length;
  663. se_mem->se_page = sg_page(&sg_s[j++]);
  664. se_mem->se_len = length;
  665. #ifdef DEBUG_RAMDISK_DR
  666. printk(KERN_INFO "page: %u, size: %u, j: %u se_mem: %p,"
  667. " se_page: %p se_off: %u se_len: %u\n", req->rd_page,
  668. req->rd_size, j, se_mem, se_mem->se_page,
  669. se_mem->se_off, se_mem->se_len);
  670. #endif
  671. list_add_tail(&se_mem->se_list, se_mem_list);
  672. (*se_mem_cnt)++;
  673. req->rd_size -= length;
  674. if (!(req->rd_size))
  675. goto out;
  676. if (++req->rd_page <= table->page_end_offset) {
  677. #ifdef DEBUG_RAMDISK_DR
  678. printk("page: %u in same page table\n",
  679. req->rd_page);
  680. #endif
  681. continue;
  682. }
  683. #ifdef DEBUG_RAMDISK_DR
  684. printk(KERN_INFO "getting new page table for page: %u\n",
  685. req->rd_page);
  686. #endif
  687. table = rd_get_sg_table(dev, req->rd_page);
  688. if (!(table))
  689. return -EINVAL;
  690. sg_s = &table->sg_table[j = 0];
  691. }
  692. out:
  693. task->task_se_cmd->t_task->t_tasks_se_num += *se_mem_cnt;
  694. #ifdef DEBUG_RAMDISK_DR
  695. printk(KERN_INFO "RD_DR - Allocated %u struct se_mem segments for task\n",
  696. *se_mem_cnt);
  697. #endif
  698. return 0;
  699. }
  700. /* rd_DIRECT_do_se_mem_map():
  701. *
  702. *
  703. */
  704. static int rd_DIRECT_do_se_mem_map(
  705. struct se_task *task,
  706. struct list_head *se_mem_list,
  707. void *in_mem,
  708. struct se_mem *in_se_mem,
  709. struct se_mem **out_se_mem,
  710. u32 *se_mem_cnt,
  711. u32 *task_offset_in)
  712. {
  713. struct se_cmd *cmd = task->task_se_cmd;
  714. struct rd_request *req = RD_REQ(task);
  715. u32 task_offset = *task_offset_in;
  716. unsigned long long lba;
  717. int ret;
  718. int block_size = task->se_dev->se_sub_dev->se_dev_attrib.block_size;
  719. lba = task->task_lba;
  720. req->rd_page = ((task->task_lba * block_size) / PAGE_SIZE);
  721. req->rd_offset = (do_div(lba, (PAGE_SIZE / block_size))) * block_size;
  722. req->rd_size = task->task_size;
  723. if (req->rd_offset)
  724. ret = rd_DIRECT_with_offset(task, se_mem_list, se_mem_cnt,
  725. task_offset_in);
  726. else
  727. ret = rd_DIRECT_without_offset(task, se_mem_list, se_mem_cnt,
  728. task_offset_in);
  729. if (ret < 0)
  730. return ret;
  731. if (cmd->se_tfo->task_sg_chaining == 0)
  732. return 0;
  733. /*
  734. * Currently prevent writers from multiple HW fabrics doing
  735. * pci_map_sg() to RD_DR's internal scatterlist memory.
  736. */
  737. if (cmd->data_direction == DMA_TO_DEVICE) {
  738. printk(KERN_ERR "DMA_TO_DEVICE not supported for"
  739. " RAMDISK_DR with task_sg_chaining=1\n");
  740. return -ENOSYS;
  741. }
  742. /*
  743. * Special case for if task_sg_chaining is enabled, then
  744. * we setup struct se_task->task_sg[], as it will be used by
  745. * transport_do_task_sg_chain() for creating chainged SGLs
  746. * across multiple struct se_task->task_sg[].
  747. */
  748. ret = transport_init_task_sg(task,
  749. list_entry(cmd->t_task->t_mem_list->next,
  750. struct se_mem, se_list),
  751. task_offset);
  752. if (ret <= 0)
  753. return ret;
  754. return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
  755. list_entry(cmd->t_task->t_mem_list->next,
  756. struct se_mem, se_list),
  757. out_se_mem, se_mem_cnt, task_offset_in);
  758. }
  759. /* rd_DIRECT_do_task(): (Part of se_subsystem_api_t template)
  760. *
  761. *
  762. */
  763. static int rd_DIRECT_do_task(struct se_task *task)
  764. {
  765. /*
  766. * At this point the locally allocated RD tables have been mapped
  767. * to struct se_mem elements in rd_DIRECT_do_se_mem_map().
  768. */
  769. task->task_scsi_status = GOOD;
  770. transport_complete_task(task, 1);
  771. return PYX_TRANSPORT_SENT_TO_TRANSPORT;
  772. }
  773. /* rd_free_task(): (Part of se_subsystem_api_t template)
  774. *
  775. *
  776. */
  777. static void rd_free_task(struct se_task *task)
  778. {
  779. kfree(RD_REQ(task));
  780. }
  781. enum {
  782. Opt_rd_pages, Opt_err
  783. };
  784. static match_table_t tokens = {
  785. {Opt_rd_pages, "rd_pages=%d"},
  786. {Opt_err, NULL}
  787. };
  788. static ssize_t rd_set_configfs_dev_params(
  789. struct se_hba *hba,
  790. struct se_subsystem_dev *se_dev,
  791. const char *page,
  792. ssize_t count)
  793. {
  794. struct rd_dev *rd_dev = se_dev->se_dev_su_ptr;
  795. char *orig, *ptr, *opts;
  796. substring_t args[MAX_OPT_ARGS];
  797. int ret = 0, arg, token;
  798. opts = kstrdup(page, GFP_KERNEL);
  799. if (!opts)
  800. return -ENOMEM;
  801. orig = opts;
  802. while ((ptr = strsep(&opts, ",")) != NULL) {
  803. if (!*ptr)
  804. continue;
  805. token = match_token(ptr, tokens, args);
  806. switch (token) {
  807. case Opt_rd_pages:
  808. match_int(args, &arg);
  809. rd_dev->rd_page_count = arg;
  810. printk(KERN_INFO "RAMDISK: Referencing Page"
  811. " Count: %u\n", rd_dev->rd_page_count);
  812. rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT;
  813. break;
  814. default:
  815. break;
  816. }
  817. }
  818. kfree(orig);
  819. return (!ret) ? count : ret;
  820. }
  821. static ssize_t rd_check_configfs_dev_params(struct se_hba *hba, struct se_subsystem_dev *se_dev)
  822. {
  823. struct rd_dev *rd_dev = se_dev->se_dev_su_ptr;
  824. if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) {
  825. printk(KERN_INFO "Missing rd_pages= parameter\n");
  826. return -EINVAL;
  827. }
  828. return 0;
  829. }
  830. static ssize_t rd_show_configfs_dev_params(
  831. struct se_hba *hba,
  832. struct se_subsystem_dev *se_dev,
  833. char *b)
  834. {
  835. struct rd_dev *rd_dev = se_dev->se_dev_su_ptr;
  836. ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: %s\n",
  837. rd_dev->rd_dev_id, (rd_dev->rd_direct) ?
  838. "rd_direct" : "rd_mcp");
  839. bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu"
  840. " SG_table_count: %u\n", rd_dev->rd_page_count,
  841. PAGE_SIZE, rd_dev->sg_table_count);
  842. return bl;
  843. }
  844. /* rd_get_cdb(): (Part of se_subsystem_api_t template)
  845. *
  846. *
  847. */
  848. static unsigned char *rd_get_cdb(struct se_task *task)
  849. {
  850. struct rd_request *req = RD_REQ(task);
  851. return req->rd_scsi_cdb;
  852. }
  853. static u32 rd_get_device_rev(struct se_device *dev)
  854. {
  855. return SCSI_SPC_2; /* Returns SPC-3 in Initiator Data */
  856. }
  857. static u32 rd_get_device_type(struct se_device *dev)
  858. {
  859. return TYPE_DISK;
  860. }
  861. static sector_t rd_get_blocks(struct se_device *dev)
  862. {
  863. struct rd_dev *rd_dev = dev->dev_ptr;
  864. unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) /
  865. dev->se_sub_dev->se_dev_attrib.block_size) - 1;
  866. return blocks_long;
  867. }
  868. static struct se_subsystem_api rd_dr_template = {
  869. .name = "rd_dr",
  870. .transport_type = TRANSPORT_PLUGIN_VHBA_VDEV,
  871. .attach_hba = rd_attach_hba,
  872. .detach_hba = rd_detach_hba,
  873. .allocate_virtdevice = rd_DIRECT_allocate_virtdevice,
  874. .create_virtdevice = rd_DIRECT_create_virtdevice,
  875. .free_device = rd_free_device,
  876. .alloc_task = rd_alloc_task,
  877. .do_task = rd_DIRECT_do_task,
  878. .free_task = rd_free_task,
  879. .check_configfs_dev_params = rd_check_configfs_dev_params,
  880. .set_configfs_dev_params = rd_set_configfs_dev_params,
  881. .show_configfs_dev_params = rd_show_configfs_dev_params,
  882. .get_cdb = rd_get_cdb,
  883. .get_device_rev = rd_get_device_rev,
  884. .get_device_type = rd_get_device_type,
  885. .get_blocks = rd_get_blocks,
  886. .do_se_mem_map = rd_DIRECT_do_se_mem_map,
  887. };
  888. static struct se_subsystem_api rd_mcp_template = {
  889. .name = "rd_mcp",
  890. .transport_type = TRANSPORT_PLUGIN_VHBA_VDEV,
  891. .attach_hba = rd_attach_hba,
  892. .detach_hba = rd_detach_hba,
  893. .allocate_virtdevice = rd_MEMCPY_allocate_virtdevice,
  894. .create_virtdevice = rd_MEMCPY_create_virtdevice,
  895. .free_device = rd_free_device,
  896. .alloc_task = rd_alloc_task,
  897. .do_task = rd_MEMCPY_do_task,
  898. .free_task = rd_free_task,
  899. .check_configfs_dev_params = rd_check_configfs_dev_params,
  900. .set_configfs_dev_params = rd_set_configfs_dev_params,
  901. .show_configfs_dev_params = rd_show_configfs_dev_params,
  902. .get_cdb = rd_get_cdb,
  903. .get_device_rev = rd_get_device_rev,
  904. .get_device_type = rd_get_device_type,
  905. .get_blocks = rd_get_blocks,
  906. };
  907. int __init rd_module_init(void)
  908. {
  909. int ret;
  910. ret = transport_subsystem_register(&rd_dr_template);
  911. if (ret < 0)
  912. return ret;
  913. ret = transport_subsystem_register(&rd_mcp_template);
  914. if (ret < 0) {
  915. transport_subsystem_release(&rd_dr_template);
  916. return ret;
  917. }
  918. return 0;
  919. }
  920. void rd_module_exit(void)
  921. {
  922. transport_subsystem_release(&rd_dr_template);
  923. transport_subsystem_release(&rd_mcp_template);
  924. }