target_core_alua.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999
  1. /*******************************************************************************
  2. * Filename: target_core_alua.c
  3. *
  4. * This file contains SPC-3 compliant asymmetric logical unit assigntment (ALUA)
  5. *
  6. * Copyright (c) 2009-2010 Rising Tide Systems
  7. * Copyright (c) 2009-2010 Linux-iSCSI.org
  8. *
  9. * Nicholas A. Bellinger <nab@kernel.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  24. *
  25. ******************************************************************************/
  26. #include <linux/version.h>
  27. #include <linux/slab.h>
  28. #include <linux/spinlock.h>
  29. #include <linux/configfs.h>
  30. #include <scsi/scsi.h>
  31. #include <scsi/scsi_cmnd.h>
  32. #include <target/target_core_base.h>
  33. #include <target/target_core_device.h>
  34. #include <target/target_core_transport.h>
  35. #include <target/target_core_fabric_ops.h>
  36. #include <target/target_core_configfs.h>
  37. #include "target_core_alua.h"
  38. #include "target_core_hba.h"
  39. #include "target_core_ua.h"
  40. static int core_alua_check_transition(int state, int *primary);
  41. static int core_alua_set_tg_pt_secondary_state(
  42. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  43. struct se_port *port, int explict, int offline);
  44. static u16 alua_lu_gps_counter;
  45. static u32 alua_lu_gps_count;
  46. static DEFINE_SPINLOCK(lu_gps_lock);
  47. static LIST_HEAD(lu_gps_list);
  48. struct t10_alua_lu_gp *default_lu_gp;
  49. /*
  50. * REPORT_TARGET_PORT_GROUPS
  51. *
  52. * See spc4r17 section 6.27
  53. */
  54. int core_emulate_report_target_port_groups(struct se_cmd *cmd)
  55. {
  56. struct se_subsystem_dev *su_dev = cmd->se_lun->lun_se_dev->se_sub_dev;
  57. struct se_port *port;
  58. struct t10_alua_tg_pt_gp *tg_pt_gp;
  59. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  60. unsigned char *buf = (unsigned char *)cmd->t_task->t_task_buf;
  61. u32 rd_len = 0, off = 4; /* Skip over RESERVED area to first
  62. Target port group descriptor */
  63. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  64. list_for_each_entry(tg_pt_gp, &su_dev->t10_alua.tg_pt_gps_list,
  65. tg_pt_gp_list) {
  66. /*
  67. * PREF: Preferred target port bit, determine if this
  68. * bit should be set for port group.
  69. */
  70. if (tg_pt_gp->tg_pt_gp_pref)
  71. buf[off] = 0x80;
  72. /*
  73. * Set the ASYMMETRIC ACCESS State
  74. */
  75. buf[off++] |= (atomic_read(
  76. &tg_pt_gp->tg_pt_gp_alua_access_state) & 0xff);
  77. /*
  78. * Set supported ASYMMETRIC ACCESS State bits
  79. */
  80. buf[off] = 0x80; /* T_SUP */
  81. buf[off] |= 0x40; /* O_SUP */
  82. buf[off] |= 0x8; /* U_SUP */
  83. buf[off] |= 0x4; /* S_SUP */
  84. buf[off] |= 0x2; /* AN_SUP */
  85. buf[off++] |= 0x1; /* AO_SUP */
  86. /*
  87. * TARGET PORT GROUP
  88. */
  89. buf[off++] = ((tg_pt_gp->tg_pt_gp_id >> 8) & 0xff);
  90. buf[off++] = (tg_pt_gp->tg_pt_gp_id & 0xff);
  91. off++; /* Skip over Reserved */
  92. /*
  93. * STATUS CODE
  94. */
  95. buf[off++] = (tg_pt_gp->tg_pt_gp_alua_access_status & 0xff);
  96. /*
  97. * Vendor Specific field
  98. */
  99. buf[off++] = 0x00;
  100. /*
  101. * TARGET PORT COUNT
  102. */
  103. buf[off++] = (tg_pt_gp->tg_pt_gp_members & 0xff);
  104. rd_len += 8;
  105. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  106. list_for_each_entry(tg_pt_gp_mem, &tg_pt_gp->tg_pt_gp_mem_list,
  107. tg_pt_gp_mem_list) {
  108. port = tg_pt_gp_mem->tg_pt;
  109. /*
  110. * Start Target Port descriptor format
  111. *
  112. * See spc4r17 section 6.2.7 Table 247
  113. */
  114. off += 2; /* Skip over Obsolete */
  115. /*
  116. * Set RELATIVE TARGET PORT IDENTIFIER
  117. */
  118. buf[off++] = ((port->sep_rtpi >> 8) & 0xff);
  119. buf[off++] = (port->sep_rtpi & 0xff);
  120. rd_len += 4;
  121. }
  122. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  123. }
  124. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  125. /*
  126. * Set the RETURN DATA LENGTH set in the header of the DataIN Payload
  127. */
  128. buf[0] = ((rd_len >> 24) & 0xff);
  129. buf[1] = ((rd_len >> 16) & 0xff);
  130. buf[2] = ((rd_len >> 8) & 0xff);
  131. buf[3] = (rd_len & 0xff);
  132. return 0;
  133. }
  134. /*
  135. * SET_TARGET_PORT_GROUPS for explict ALUA operation.
  136. *
  137. * See spc4r17 section 6.35
  138. */
  139. int core_emulate_set_target_port_groups(struct se_cmd *cmd)
  140. {
  141. struct se_device *dev = cmd->se_lun->lun_se_dev;
  142. struct se_subsystem_dev *su_dev = dev->se_sub_dev;
  143. struct se_port *port, *l_port = cmd->se_lun->lun_sep;
  144. struct se_node_acl *nacl = cmd->se_sess->se_node_acl;
  145. struct t10_alua_tg_pt_gp *tg_pt_gp = NULL, *l_tg_pt_gp;
  146. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem, *l_tg_pt_gp_mem;
  147. unsigned char *buf = (unsigned char *)cmd->t_task->t_task_buf;
  148. unsigned char *ptr = &buf[4]; /* Skip over RESERVED area in header */
  149. u32 len = 4; /* Skip over RESERVED area in header */
  150. int alua_access_state, primary = 0, rc;
  151. u16 tg_pt_id, rtpi;
  152. if (!(l_port))
  153. return PYX_TRANSPORT_LU_COMM_FAILURE;
  154. /*
  155. * Determine if explict ALUA via SET_TARGET_PORT_GROUPS is allowed
  156. * for the local tg_pt_gp.
  157. */
  158. l_tg_pt_gp_mem = l_port->sep_alua_tg_pt_gp_mem;
  159. if (!(l_tg_pt_gp_mem)) {
  160. printk(KERN_ERR "Unable to access l_port->sep_alua_tg_pt_gp_mem\n");
  161. return PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
  162. }
  163. spin_lock(&l_tg_pt_gp_mem->tg_pt_gp_mem_lock);
  164. l_tg_pt_gp = l_tg_pt_gp_mem->tg_pt_gp;
  165. if (!(l_tg_pt_gp)) {
  166. spin_unlock(&l_tg_pt_gp_mem->tg_pt_gp_mem_lock);
  167. printk(KERN_ERR "Unable to access *l_tg_pt_gp_mem->tg_pt_gp\n");
  168. return PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
  169. }
  170. rc = (l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICT_ALUA);
  171. spin_unlock(&l_tg_pt_gp_mem->tg_pt_gp_mem_lock);
  172. if (!(rc)) {
  173. printk(KERN_INFO "Unable to process SET_TARGET_PORT_GROUPS"
  174. " while TPGS_EXPLICT_ALUA is disabled\n");
  175. return PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
  176. }
  177. while (len < cmd->data_length) {
  178. alua_access_state = (ptr[0] & 0x0f);
  179. /*
  180. * Check the received ALUA access state, and determine if
  181. * the state is a primary or secondary target port asymmetric
  182. * access state.
  183. */
  184. rc = core_alua_check_transition(alua_access_state, &primary);
  185. if (rc != 0) {
  186. /*
  187. * If the SET TARGET PORT GROUPS attempts to establish
  188. * an invalid combination of target port asymmetric
  189. * access states or attempts to establish an
  190. * unsupported target port asymmetric access state,
  191. * then the command shall be terminated with CHECK
  192. * CONDITION status, with the sense key set to ILLEGAL
  193. * REQUEST, and the additional sense code set to INVALID
  194. * FIELD IN PARAMETER LIST.
  195. */
  196. return PYX_TRANSPORT_INVALID_PARAMETER_LIST;
  197. }
  198. rc = -1;
  199. /*
  200. * If the ASYMMETRIC ACCESS STATE field (see table 267)
  201. * specifies a primary target port asymmetric access state,
  202. * then the TARGET PORT GROUP OR TARGET PORT field specifies
  203. * a primary target port group for which the primary target
  204. * port asymmetric access state shall be changed. If the
  205. * ASYMMETRIC ACCESS STATE field specifies a secondary target
  206. * port asymmetric access state, then the TARGET PORT GROUP OR
  207. * TARGET PORT field specifies the relative target port
  208. * identifier (see 3.1.120) of the target port for which the
  209. * secondary target port asymmetric access state shall be
  210. * changed.
  211. */
  212. if (primary) {
  213. tg_pt_id = ((ptr[2] << 8) & 0xff);
  214. tg_pt_id |= (ptr[3] & 0xff);
  215. /*
  216. * Locate the matching target port group ID from
  217. * the global tg_pt_gp list
  218. */
  219. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  220. list_for_each_entry(tg_pt_gp,
  221. &su_dev->t10_alua.tg_pt_gps_list,
  222. tg_pt_gp_list) {
  223. if (!(tg_pt_gp->tg_pt_gp_valid_id))
  224. continue;
  225. if (tg_pt_id != tg_pt_gp->tg_pt_gp_id)
  226. continue;
  227. atomic_inc(&tg_pt_gp->tg_pt_gp_ref_cnt);
  228. smp_mb__after_atomic_inc();
  229. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  230. rc = core_alua_do_port_transition(tg_pt_gp,
  231. dev, l_port, nacl,
  232. alua_access_state, 1);
  233. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  234. atomic_dec(&tg_pt_gp->tg_pt_gp_ref_cnt);
  235. smp_mb__after_atomic_dec();
  236. break;
  237. }
  238. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  239. /*
  240. * If not matching target port group ID can be located
  241. * throw an exception with ASCQ: INVALID_PARAMETER_LIST
  242. */
  243. if (rc != 0)
  244. return PYX_TRANSPORT_INVALID_PARAMETER_LIST;
  245. } else {
  246. /*
  247. * Extact the RELATIVE TARGET PORT IDENTIFIER to identify
  248. * the Target Port in question for the the incoming
  249. * SET_TARGET_PORT_GROUPS op.
  250. */
  251. rtpi = ((ptr[2] << 8) & 0xff);
  252. rtpi |= (ptr[3] & 0xff);
  253. /*
  254. * Locate the matching relative target port identifer
  255. * for the struct se_device storage object.
  256. */
  257. spin_lock(&dev->se_port_lock);
  258. list_for_each_entry(port, &dev->dev_sep_list,
  259. sep_list) {
  260. if (port->sep_rtpi != rtpi)
  261. continue;
  262. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  263. spin_unlock(&dev->se_port_lock);
  264. rc = core_alua_set_tg_pt_secondary_state(
  265. tg_pt_gp_mem, port, 1, 1);
  266. spin_lock(&dev->se_port_lock);
  267. break;
  268. }
  269. spin_unlock(&dev->se_port_lock);
  270. /*
  271. * If not matching relative target port identifier can
  272. * be located, throw an exception with ASCQ:
  273. * INVALID_PARAMETER_LIST
  274. */
  275. if (rc != 0)
  276. return PYX_TRANSPORT_INVALID_PARAMETER_LIST;
  277. }
  278. ptr += 4;
  279. len += 4;
  280. }
  281. return 0;
  282. }
  283. static inline int core_alua_state_nonoptimized(
  284. struct se_cmd *cmd,
  285. unsigned char *cdb,
  286. int nonop_delay_msecs,
  287. u8 *alua_ascq)
  288. {
  289. /*
  290. * Set SCF_ALUA_NON_OPTIMIZED here, this value will be checked
  291. * later to determine if processing of this cmd needs to be
  292. * temporarily delayed for the Active/NonOptimized primary access state.
  293. */
  294. cmd->se_cmd_flags |= SCF_ALUA_NON_OPTIMIZED;
  295. cmd->alua_nonop_delay = nonop_delay_msecs;
  296. return 0;
  297. }
  298. static inline int core_alua_state_standby(
  299. struct se_cmd *cmd,
  300. unsigned char *cdb,
  301. u8 *alua_ascq)
  302. {
  303. /*
  304. * Allowed CDBs for ALUA_ACCESS_STATE_STANDBY as defined by
  305. * spc4r17 section 5.9.2.4.4
  306. */
  307. switch (cdb[0]) {
  308. case INQUIRY:
  309. case LOG_SELECT:
  310. case LOG_SENSE:
  311. case MODE_SELECT:
  312. case MODE_SENSE:
  313. case REPORT_LUNS:
  314. case RECEIVE_DIAGNOSTIC:
  315. case SEND_DIAGNOSTIC:
  316. case MAINTENANCE_IN:
  317. switch (cdb[1]) {
  318. case MI_REPORT_TARGET_PGS:
  319. return 0;
  320. default:
  321. *alua_ascq = ASCQ_04H_ALUA_TG_PT_STANDBY;
  322. return 1;
  323. }
  324. case MAINTENANCE_OUT:
  325. switch (cdb[1]) {
  326. case MO_SET_TARGET_PGS:
  327. return 0;
  328. default:
  329. *alua_ascq = ASCQ_04H_ALUA_TG_PT_STANDBY;
  330. return 1;
  331. }
  332. case REQUEST_SENSE:
  333. case PERSISTENT_RESERVE_IN:
  334. case PERSISTENT_RESERVE_OUT:
  335. case READ_BUFFER:
  336. case WRITE_BUFFER:
  337. return 0;
  338. default:
  339. *alua_ascq = ASCQ_04H_ALUA_TG_PT_STANDBY;
  340. return 1;
  341. }
  342. return 0;
  343. }
  344. static inline int core_alua_state_unavailable(
  345. struct se_cmd *cmd,
  346. unsigned char *cdb,
  347. u8 *alua_ascq)
  348. {
  349. /*
  350. * Allowed CDBs for ALUA_ACCESS_STATE_UNAVAILABLE as defined by
  351. * spc4r17 section 5.9.2.4.5
  352. */
  353. switch (cdb[0]) {
  354. case INQUIRY:
  355. case REPORT_LUNS:
  356. case MAINTENANCE_IN:
  357. switch (cdb[1]) {
  358. case MI_REPORT_TARGET_PGS:
  359. return 0;
  360. default:
  361. *alua_ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE;
  362. return 1;
  363. }
  364. case MAINTENANCE_OUT:
  365. switch (cdb[1]) {
  366. case MO_SET_TARGET_PGS:
  367. return 0;
  368. default:
  369. *alua_ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE;
  370. return 1;
  371. }
  372. case REQUEST_SENSE:
  373. case READ_BUFFER:
  374. case WRITE_BUFFER:
  375. return 0;
  376. default:
  377. *alua_ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE;
  378. return 1;
  379. }
  380. return 0;
  381. }
  382. static inline int core_alua_state_transition(
  383. struct se_cmd *cmd,
  384. unsigned char *cdb,
  385. u8 *alua_ascq)
  386. {
  387. /*
  388. * Allowed CDBs for ALUA_ACCESS_STATE_TRANSITIO as defined by
  389. * spc4r17 section 5.9.2.5
  390. */
  391. switch (cdb[0]) {
  392. case INQUIRY:
  393. case REPORT_LUNS:
  394. case MAINTENANCE_IN:
  395. switch (cdb[1]) {
  396. case MI_REPORT_TARGET_PGS:
  397. return 0;
  398. default:
  399. *alua_ascq = ASCQ_04H_ALUA_STATE_TRANSITION;
  400. return 1;
  401. }
  402. case REQUEST_SENSE:
  403. case READ_BUFFER:
  404. case WRITE_BUFFER:
  405. return 0;
  406. default:
  407. *alua_ascq = ASCQ_04H_ALUA_STATE_TRANSITION;
  408. return 1;
  409. }
  410. return 0;
  411. }
  412. /*
  413. * Used for alua_type SPC_ALUA_PASSTHROUGH and SPC2_ALUA_DISABLED
  414. * in transport_cmd_sequencer(). This function is assigned to
  415. * struct t10_alua *->state_check() in core_setup_alua()
  416. */
  417. static int core_alua_state_check_nop(
  418. struct se_cmd *cmd,
  419. unsigned char *cdb,
  420. u8 *alua_ascq)
  421. {
  422. return 0;
  423. }
  424. /*
  425. * Used for alua_type SPC3_ALUA_EMULATED in transport_cmd_sequencer().
  426. * This function is assigned to struct t10_alua *->state_check() in
  427. * core_setup_alua()
  428. *
  429. * Also, this function can return three different return codes to
  430. * signal transport_generic_cmd_sequencer()
  431. *
  432. * return 1: Is used to signal LUN not accecsable, and check condition/not ready
  433. * return 0: Used to signal success
  434. * reutrn -1: Used to signal failure, and invalid cdb field
  435. */
  436. static int core_alua_state_check(
  437. struct se_cmd *cmd,
  438. unsigned char *cdb,
  439. u8 *alua_ascq)
  440. {
  441. struct se_lun *lun = cmd->se_lun;
  442. struct se_port *port = lun->lun_sep;
  443. struct t10_alua_tg_pt_gp *tg_pt_gp;
  444. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  445. int out_alua_state, nonop_delay_msecs;
  446. if (!(port))
  447. return 0;
  448. /*
  449. * First, check for a struct se_port specific secondary ALUA target port
  450. * access state: OFFLINE
  451. */
  452. if (atomic_read(&port->sep_tg_pt_secondary_offline)) {
  453. *alua_ascq = ASCQ_04H_ALUA_OFFLINE;
  454. printk(KERN_INFO "ALUA: Got secondary offline status for local"
  455. " target port\n");
  456. *alua_ascq = ASCQ_04H_ALUA_OFFLINE;
  457. return 1;
  458. }
  459. /*
  460. * Second, obtain the struct t10_alua_tg_pt_gp_member pointer to the
  461. * ALUA target port group, to obtain current ALUA access state.
  462. * Otherwise look for the underlying struct se_device association with
  463. * a ALUA logical unit group.
  464. */
  465. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  466. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  467. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  468. out_alua_state = atomic_read(&tg_pt_gp->tg_pt_gp_alua_access_state);
  469. nonop_delay_msecs = tg_pt_gp->tg_pt_gp_nonop_delay_msecs;
  470. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  471. /*
  472. * Process ALUA_ACCESS_STATE_ACTIVE_OPTMIZED in a separate conditional
  473. * statement so the compiler knows explicitly to check this case first.
  474. * For the Optimized ALUA access state case, we want to process the
  475. * incoming fabric cmd ASAP..
  476. */
  477. if (out_alua_state == ALUA_ACCESS_STATE_ACTIVE_OPTMIZED)
  478. return 0;
  479. switch (out_alua_state) {
  480. case ALUA_ACCESS_STATE_ACTIVE_NON_OPTIMIZED:
  481. return core_alua_state_nonoptimized(cmd, cdb,
  482. nonop_delay_msecs, alua_ascq);
  483. case ALUA_ACCESS_STATE_STANDBY:
  484. return core_alua_state_standby(cmd, cdb, alua_ascq);
  485. case ALUA_ACCESS_STATE_UNAVAILABLE:
  486. return core_alua_state_unavailable(cmd, cdb, alua_ascq);
  487. case ALUA_ACCESS_STATE_TRANSITION:
  488. return core_alua_state_transition(cmd, cdb, alua_ascq);
  489. /*
  490. * OFFLINE is a secondary ALUA target port group access state, that is
  491. * handled above with struct se_port->sep_tg_pt_secondary_offline=1
  492. */
  493. case ALUA_ACCESS_STATE_OFFLINE:
  494. default:
  495. printk(KERN_ERR "Unknown ALUA access state: 0x%02x\n",
  496. out_alua_state);
  497. return -EINVAL;
  498. }
  499. return 0;
  500. }
  501. /*
  502. * Check implict and explict ALUA state change request.
  503. */
  504. static int core_alua_check_transition(int state, int *primary)
  505. {
  506. switch (state) {
  507. case ALUA_ACCESS_STATE_ACTIVE_OPTMIZED:
  508. case ALUA_ACCESS_STATE_ACTIVE_NON_OPTIMIZED:
  509. case ALUA_ACCESS_STATE_STANDBY:
  510. case ALUA_ACCESS_STATE_UNAVAILABLE:
  511. /*
  512. * OPTIMIZED, NON-OPTIMIZED, STANDBY and UNAVAILABLE are
  513. * defined as primary target port asymmetric access states.
  514. */
  515. *primary = 1;
  516. break;
  517. case ALUA_ACCESS_STATE_OFFLINE:
  518. /*
  519. * OFFLINE state is defined as a secondary target port
  520. * asymmetric access state.
  521. */
  522. *primary = 0;
  523. break;
  524. default:
  525. printk(KERN_ERR "Unknown ALUA access state: 0x%02x\n", state);
  526. return -EINVAL;
  527. }
  528. return 0;
  529. }
  530. static char *core_alua_dump_state(int state)
  531. {
  532. switch (state) {
  533. case ALUA_ACCESS_STATE_ACTIVE_OPTMIZED:
  534. return "Active/Optimized";
  535. case ALUA_ACCESS_STATE_ACTIVE_NON_OPTIMIZED:
  536. return "Active/NonOptimized";
  537. case ALUA_ACCESS_STATE_STANDBY:
  538. return "Standby";
  539. case ALUA_ACCESS_STATE_UNAVAILABLE:
  540. return "Unavailable";
  541. case ALUA_ACCESS_STATE_OFFLINE:
  542. return "Offline";
  543. default:
  544. return "Unknown";
  545. }
  546. return NULL;
  547. }
  548. char *core_alua_dump_status(int status)
  549. {
  550. switch (status) {
  551. case ALUA_STATUS_NONE:
  552. return "None";
  553. case ALUA_STATUS_ALTERED_BY_EXPLICT_STPG:
  554. return "Altered by Explict STPG";
  555. case ALUA_STATUS_ALTERED_BY_IMPLICT_ALUA:
  556. return "Altered by Implict ALUA";
  557. default:
  558. return "Unknown";
  559. }
  560. return NULL;
  561. }
  562. /*
  563. * Used by fabric modules to determine when we need to delay processing
  564. * for the Active/NonOptimized paths..
  565. */
  566. int core_alua_check_nonop_delay(
  567. struct se_cmd *cmd)
  568. {
  569. if (!(cmd->se_cmd_flags & SCF_ALUA_NON_OPTIMIZED))
  570. return 0;
  571. if (in_interrupt())
  572. return 0;
  573. /*
  574. * The ALUA Active/NonOptimized access state delay can be disabled
  575. * in via configfs with a value of zero
  576. */
  577. if (!(cmd->alua_nonop_delay))
  578. return 0;
  579. /*
  580. * struct se_cmd->alua_nonop_delay gets set by a target port group
  581. * defined interval in core_alua_state_nonoptimized()
  582. */
  583. msleep_interruptible(cmd->alua_nonop_delay);
  584. return 0;
  585. }
  586. EXPORT_SYMBOL(core_alua_check_nonop_delay);
  587. /*
  588. * Called with tg_pt_gp->tg_pt_gp_md_mutex or tg_pt_gp_mem->sep_tg_pt_md_mutex
  589. *
  590. */
  591. static int core_alua_write_tpg_metadata(
  592. const char *path,
  593. unsigned char *md_buf,
  594. u32 md_buf_len)
  595. {
  596. mm_segment_t old_fs;
  597. struct file *file;
  598. struct iovec iov[1];
  599. int flags = O_RDWR | O_CREAT | O_TRUNC, ret;
  600. memset(iov, 0, sizeof(struct iovec));
  601. file = filp_open(path, flags, 0600);
  602. if (IS_ERR(file) || !file || !file->f_dentry) {
  603. printk(KERN_ERR "filp_open(%s) for ALUA metadata failed\n",
  604. path);
  605. return -ENODEV;
  606. }
  607. iov[0].iov_base = &md_buf[0];
  608. iov[0].iov_len = md_buf_len;
  609. old_fs = get_fs();
  610. set_fs(get_ds());
  611. ret = vfs_writev(file, &iov[0], 1, &file->f_pos);
  612. set_fs(old_fs);
  613. if (ret < 0) {
  614. printk(KERN_ERR "Error writing ALUA metadata file: %s\n", path);
  615. filp_close(file, NULL);
  616. return -EIO;
  617. }
  618. filp_close(file, NULL);
  619. return 0;
  620. }
  621. /*
  622. * Called with tg_pt_gp->tg_pt_gp_md_mutex held
  623. */
  624. static int core_alua_update_tpg_primary_metadata(
  625. struct t10_alua_tg_pt_gp *tg_pt_gp,
  626. int primary_state,
  627. unsigned char *md_buf)
  628. {
  629. struct se_subsystem_dev *su_dev = tg_pt_gp->tg_pt_gp_su_dev;
  630. struct t10_wwn *wwn = &su_dev->t10_wwn;
  631. char path[ALUA_METADATA_PATH_LEN];
  632. int len;
  633. memset(path, 0, ALUA_METADATA_PATH_LEN);
  634. len = snprintf(md_buf, tg_pt_gp->tg_pt_gp_md_buf_len,
  635. "tg_pt_gp_id=%hu\n"
  636. "alua_access_state=0x%02x\n"
  637. "alua_access_status=0x%02x\n",
  638. tg_pt_gp->tg_pt_gp_id, primary_state,
  639. tg_pt_gp->tg_pt_gp_alua_access_status);
  640. snprintf(path, ALUA_METADATA_PATH_LEN,
  641. "/var/target/alua/tpgs_%s/%s", &wwn->unit_serial[0],
  642. config_item_name(&tg_pt_gp->tg_pt_gp_group.cg_item));
  643. return core_alua_write_tpg_metadata(path, md_buf, len);
  644. }
  645. static int core_alua_do_transition_tg_pt(
  646. struct t10_alua_tg_pt_gp *tg_pt_gp,
  647. struct se_port *l_port,
  648. struct se_node_acl *nacl,
  649. unsigned char *md_buf,
  650. int new_state,
  651. int explict)
  652. {
  653. struct se_dev_entry *se_deve;
  654. struct se_lun_acl *lacl;
  655. struct se_port *port;
  656. struct t10_alua_tg_pt_gp_member *mem;
  657. int old_state = 0;
  658. /*
  659. * Save the old primary ALUA access state, and set the current state
  660. * to ALUA_ACCESS_STATE_TRANSITION.
  661. */
  662. old_state = atomic_read(&tg_pt_gp->tg_pt_gp_alua_access_state);
  663. atomic_set(&tg_pt_gp->tg_pt_gp_alua_access_state,
  664. ALUA_ACCESS_STATE_TRANSITION);
  665. tg_pt_gp->tg_pt_gp_alua_access_status = (explict) ?
  666. ALUA_STATUS_ALTERED_BY_EXPLICT_STPG :
  667. ALUA_STATUS_ALTERED_BY_IMPLICT_ALUA;
  668. /*
  669. * Check for the optional ALUA primary state transition delay
  670. */
  671. if (tg_pt_gp->tg_pt_gp_trans_delay_msecs != 0)
  672. msleep_interruptible(tg_pt_gp->tg_pt_gp_trans_delay_msecs);
  673. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  674. list_for_each_entry(mem, &tg_pt_gp->tg_pt_gp_mem_list,
  675. tg_pt_gp_mem_list) {
  676. port = mem->tg_pt;
  677. /*
  678. * After an implicit target port asymmetric access state
  679. * change, a device server shall establish a unit attention
  680. * condition for the initiator port associated with every I_T
  681. * nexus with the additional sense code set to ASYMMETRIC
  682. * ACCESS STATE CHAGED.
  683. *
  684. * After an explicit target port asymmetric access state
  685. * change, a device server shall establish a unit attention
  686. * condition with the additional sense code set to ASYMMETRIC
  687. * ACCESS STATE CHANGED for the initiator port associated with
  688. * every I_T nexus other than the I_T nexus on which the SET
  689. * TARGET PORT GROUPS command
  690. */
  691. atomic_inc(&mem->tg_pt_gp_mem_ref_cnt);
  692. smp_mb__after_atomic_inc();
  693. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  694. spin_lock_bh(&port->sep_alua_lock);
  695. list_for_each_entry(se_deve, &port->sep_alua_list,
  696. alua_port_list) {
  697. lacl = se_deve->se_lun_acl;
  698. /*
  699. * se_deve->se_lun_acl pointer may be NULL for a
  700. * entry created without explict Node+MappedLUN ACLs
  701. */
  702. if (!(lacl))
  703. continue;
  704. if (explict &&
  705. (nacl != NULL) && (nacl == lacl->se_lun_nacl) &&
  706. (l_port != NULL) && (l_port == port))
  707. continue;
  708. core_scsi3_ua_allocate(lacl->se_lun_nacl,
  709. se_deve->mapped_lun, 0x2A,
  710. ASCQ_2AH_ASYMMETRIC_ACCESS_STATE_CHANGED);
  711. }
  712. spin_unlock_bh(&port->sep_alua_lock);
  713. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  714. atomic_dec(&mem->tg_pt_gp_mem_ref_cnt);
  715. smp_mb__after_atomic_dec();
  716. }
  717. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  718. /*
  719. * Update the ALUA metadata buf that has been allocated in
  720. * core_alua_do_port_transition(), this metadata will be written
  721. * to struct file.
  722. *
  723. * Note that there is the case where we do not want to update the
  724. * metadata when the saved metadata is being parsed in userspace
  725. * when setting the existing port access state and access status.
  726. *
  727. * Also note that the failure to write out the ALUA metadata to
  728. * struct file does NOT affect the actual ALUA transition.
  729. */
  730. if (tg_pt_gp->tg_pt_gp_write_metadata) {
  731. mutex_lock(&tg_pt_gp->tg_pt_gp_md_mutex);
  732. core_alua_update_tpg_primary_metadata(tg_pt_gp,
  733. new_state, md_buf);
  734. mutex_unlock(&tg_pt_gp->tg_pt_gp_md_mutex);
  735. }
  736. /*
  737. * Set the current primary ALUA access state to the requested new state
  738. */
  739. atomic_set(&tg_pt_gp->tg_pt_gp_alua_access_state, new_state);
  740. printk(KERN_INFO "Successful %s ALUA transition TG PT Group: %s ID: %hu"
  741. " from primary access state %s to %s\n", (explict) ? "explict" :
  742. "implict", config_item_name(&tg_pt_gp->tg_pt_gp_group.cg_item),
  743. tg_pt_gp->tg_pt_gp_id, core_alua_dump_state(old_state),
  744. core_alua_dump_state(new_state));
  745. return 0;
  746. }
  747. int core_alua_do_port_transition(
  748. struct t10_alua_tg_pt_gp *l_tg_pt_gp,
  749. struct se_device *l_dev,
  750. struct se_port *l_port,
  751. struct se_node_acl *l_nacl,
  752. int new_state,
  753. int explict)
  754. {
  755. struct se_device *dev;
  756. struct se_port *port;
  757. struct se_subsystem_dev *su_dev;
  758. struct se_node_acl *nacl;
  759. struct t10_alua_lu_gp *lu_gp;
  760. struct t10_alua_lu_gp_member *lu_gp_mem, *local_lu_gp_mem;
  761. struct t10_alua_tg_pt_gp *tg_pt_gp;
  762. unsigned char *md_buf;
  763. int primary;
  764. if (core_alua_check_transition(new_state, &primary) != 0)
  765. return -EINVAL;
  766. md_buf = kzalloc(l_tg_pt_gp->tg_pt_gp_md_buf_len, GFP_KERNEL);
  767. if (!(md_buf)) {
  768. printk("Unable to allocate buf for ALUA metadata\n");
  769. return -ENOMEM;
  770. }
  771. local_lu_gp_mem = l_dev->dev_alua_lu_gp_mem;
  772. spin_lock(&local_lu_gp_mem->lu_gp_mem_lock);
  773. lu_gp = local_lu_gp_mem->lu_gp;
  774. atomic_inc(&lu_gp->lu_gp_ref_cnt);
  775. smp_mb__after_atomic_inc();
  776. spin_unlock(&local_lu_gp_mem->lu_gp_mem_lock);
  777. /*
  778. * For storage objects that are members of the 'default_lu_gp',
  779. * we only do transition on the passed *l_tp_pt_gp, and not
  780. * on all of the matching target port groups IDs in default_lu_gp.
  781. */
  782. if (!(lu_gp->lu_gp_id)) {
  783. /*
  784. * core_alua_do_transition_tg_pt() will always return
  785. * success.
  786. */
  787. core_alua_do_transition_tg_pt(l_tg_pt_gp, l_port, l_nacl,
  788. md_buf, new_state, explict);
  789. atomic_dec(&lu_gp->lu_gp_ref_cnt);
  790. smp_mb__after_atomic_dec();
  791. kfree(md_buf);
  792. return 0;
  793. }
  794. /*
  795. * For all other LU groups aside from 'default_lu_gp', walk all of
  796. * the associated storage objects looking for a matching target port
  797. * group ID from the local target port group.
  798. */
  799. spin_lock(&lu_gp->lu_gp_lock);
  800. list_for_each_entry(lu_gp_mem, &lu_gp->lu_gp_mem_list,
  801. lu_gp_mem_list) {
  802. dev = lu_gp_mem->lu_gp_mem_dev;
  803. su_dev = dev->se_sub_dev;
  804. atomic_inc(&lu_gp_mem->lu_gp_mem_ref_cnt);
  805. smp_mb__after_atomic_inc();
  806. spin_unlock(&lu_gp->lu_gp_lock);
  807. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  808. list_for_each_entry(tg_pt_gp,
  809. &su_dev->t10_alua.tg_pt_gps_list,
  810. tg_pt_gp_list) {
  811. if (!(tg_pt_gp->tg_pt_gp_valid_id))
  812. continue;
  813. /*
  814. * If the target behavior port asymmetric access state
  815. * is changed for any target port group accessiable via
  816. * a logical unit within a LU group, the target port
  817. * behavior group asymmetric access states for the same
  818. * target port group accessible via other logical units
  819. * in that LU group will also change.
  820. */
  821. if (l_tg_pt_gp->tg_pt_gp_id != tg_pt_gp->tg_pt_gp_id)
  822. continue;
  823. if (l_tg_pt_gp == tg_pt_gp) {
  824. port = l_port;
  825. nacl = l_nacl;
  826. } else {
  827. port = NULL;
  828. nacl = NULL;
  829. }
  830. atomic_inc(&tg_pt_gp->tg_pt_gp_ref_cnt);
  831. smp_mb__after_atomic_inc();
  832. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  833. /*
  834. * core_alua_do_transition_tg_pt() will always return
  835. * success.
  836. */
  837. core_alua_do_transition_tg_pt(tg_pt_gp, port,
  838. nacl, md_buf, new_state, explict);
  839. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  840. atomic_dec(&tg_pt_gp->tg_pt_gp_ref_cnt);
  841. smp_mb__after_atomic_dec();
  842. }
  843. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  844. spin_lock(&lu_gp->lu_gp_lock);
  845. atomic_dec(&lu_gp_mem->lu_gp_mem_ref_cnt);
  846. smp_mb__after_atomic_dec();
  847. }
  848. spin_unlock(&lu_gp->lu_gp_lock);
  849. printk(KERN_INFO "Successfully processed LU Group: %s all ALUA TG PT"
  850. " Group IDs: %hu %s transition to primary state: %s\n",
  851. config_item_name(&lu_gp->lu_gp_group.cg_item),
  852. l_tg_pt_gp->tg_pt_gp_id, (explict) ? "explict" : "implict",
  853. core_alua_dump_state(new_state));
  854. atomic_dec(&lu_gp->lu_gp_ref_cnt);
  855. smp_mb__after_atomic_dec();
  856. kfree(md_buf);
  857. return 0;
  858. }
  859. /*
  860. * Called with tg_pt_gp_mem->sep_tg_pt_md_mutex held
  861. */
  862. static int core_alua_update_tpg_secondary_metadata(
  863. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  864. struct se_port *port,
  865. unsigned char *md_buf,
  866. u32 md_buf_len)
  867. {
  868. struct se_portal_group *se_tpg = port->sep_tpg;
  869. char path[ALUA_METADATA_PATH_LEN], wwn[ALUA_SECONDARY_METADATA_WWN_LEN];
  870. int len;
  871. memset(path, 0, ALUA_METADATA_PATH_LEN);
  872. memset(wwn, 0, ALUA_SECONDARY_METADATA_WWN_LEN);
  873. len = snprintf(wwn, ALUA_SECONDARY_METADATA_WWN_LEN, "%s",
  874. se_tpg->se_tpg_tfo->tpg_get_wwn(se_tpg));
  875. if (se_tpg->se_tpg_tfo->tpg_get_tag != NULL)
  876. snprintf(wwn+len, ALUA_SECONDARY_METADATA_WWN_LEN-len, "+%hu",
  877. se_tpg->se_tpg_tfo->tpg_get_tag(se_tpg));
  878. len = snprintf(md_buf, md_buf_len, "alua_tg_pt_offline=%d\n"
  879. "alua_tg_pt_status=0x%02x\n",
  880. atomic_read(&port->sep_tg_pt_secondary_offline),
  881. port->sep_tg_pt_secondary_stat);
  882. snprintf(path, ALUA_METADATA_PATH_LEN, "/var/target/alua/%s/%s/lun_%u",
  883. se_tpg->se_tpg_tfo->get_fabric_name(), wwn,
  884. port->sep_lun->unpacked_lun);
  885. return core_alua_write_tpg_metadata(path, md_buf, len);
  886. }
  887. static int core_alua_set_tg_pt_secondary_state(
  888. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  889. struct se_port *port,
  890. int explict,
  891. int offline)
  892. {
  893. struct t10_alua_tg_pt_gp *tg_pt_gp;
  894. unsigned char *md_buf;
  895. u32 md_buf_len;
  896. int trans_delay_msecs;
  897. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  898. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  899. if (!(tg_pt_gp)) {
  900. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  901. printk(KERN_ERR "Unable to complete secondary state"
  902. " transition\n");
  903. return -EINVAL;
  904. }
  905. trans_delay_msecs = tg_pt_gp->tg_pt_gp_trans_delay_msecs;
  906. /*
  907. * Set the secondary ALUA target port access state to OFFLINE
  908. * or release the previously secondary state for struct se_port
  909. */
  910. if (offline)
  911. atomic_set(&port->sep_tg_pt_secondary_offline, 1);
  912. else
  913. atomic_set(&port->sep_tg_pt_secondary_offline, 0);
  914. md_buf_len = tg_pt_gp->tg_pt_gp_md_buf_len;
  915. port->sep_tg_pt_secondary_stat = (explict) ?
  916. ALUA_STATUS_ALTERED_BY_EXPLICT_STPG :
  917. ALUA_STATUS_ALTERED_BY_IMPLICT_ALUA;
  918. printk(KERN_INFO "Successful %s ALUA transition TG PT Group: %s ID: %hu"
  919. " to secondary access state: %s\n", (explict) ? "explict" :
  920. "implict", config_item_name(&tg_pt_gp->tg_pt_gp_group.cg_item),
  921. tg_pt_gp->tg_pt_gp_id, (offline) ? "OFFLINE" : "ONLINE");
  922. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  923. /*
  924. * Do the optional transition delay after we set the secondary
  925. * ALUA access state.
  926. */
  927. if (trans_delay_msecs != 0)
  928. msleep_interruptible(trans_delay_msecs);
  929. /*
  930. * See if we need to update the ALUA fabric port metadata for
  931. * secondary state and status
  932. */
  933. if (port->sep_tg_pt_secondary_write_md) {
  934. md_buf = kzalloc(md_buf_len, GFP_KERNEL);
  935. if (!(md_buf)) {
  936. printk(KERN_ERR "Unable to allocate md_buf for"
  937. " secondary ALUA access metadata\n");
  938. return -ENOMEM;
  939. }
  940. mutex_lock(&port->sep_tg_pt_md_mutex);
  941. core_alua_update_tpg_secondary_metadata(tg_pt_gp_mem, port,
  942. md_buf, md_buf_len);
  943. mutex_unlock(&port->sep_tg_pt_md_mutex);
  944. kfree(md_buf);
  945. }
  946. return 0;
  947. }
  948. struct t10_alua_lu_gp *
  949. core_alua_allocate_lu_gp(const char *name, int def_group)
  950. {
  951. struct t10_alua_lu_gp *lu_gp;
  952. lu_gp = kmem_cache_zalloc(t10_alua_lu_gp_cache, GFP_KERNEL);
  953. if (!(lu_gp)) {
  954. printk(KERN_ERR "Unable to allocate struct t10_alua_lu_gp\n");
  955. return ERR_PTR(-ENOMEM);
  956. }
  957. INIT_LIST_HEAD(&lu_gp->lu_gp_node);
  958. INIT_LIST_HEAD(&lu_gp->lu_gp_mem_list);
  959. spin_lock_init(&lu_gp->lu_gp_lock);
  960. atomic_set(&lu_gp->lu_gp_ref_cnt, 0);
  961. if (def_group) {
  962. lu_gp->lu_gp_id = alua_lu_gps_counter++;
  963. lu_gp->lu_gp_valid_id = 1;
  964. alua_lu_gps_count++;
  965. }
  966. return lu_gp;
  967. }
  968. int core_alua_set_lu_gp_id(struct t10_alua_lu_gp *lu_gp, u16 lu_gp_id)
  969. {
  970. struct t10_alua_lu_gp *lu_gp_tmp;
  971. u16 lu_gp_id_tmp;
  972. /*
  973. * The lu_gp->lu_gp_id may only be set once..
  974. */
  975. if (lu_gp->lu_gp_valid_id) {
  976. printk(KERN_WARNING "ALUA LU Group already has a valid ID,"
  977. " ignoring request\n");
  978. return -EINVAL;
  979. }
  980. spin_lock(&lu_gps_lock);
  981. if (alua_lu_gps_count == 0x0000ffff) {
  982. printk(KERN_ERR "Maximum ALUA alua_lu_gps_count:"
  983. " 0x0000ffff reached\n");
  984. spin_unlock(&lu_gps_lock);
  985. kmem_cache_free(t10_alua_lu_gp_cache, lu_gp);
  986. return -ENOSPC;
  987. }
  988. again:
  989. lu_gp_id_tmp = (lu_gp_id != 0) ? lu_gp_id :
  990. alua_lu_gps_counter++;
  991. list_for_each_entry(lu_gp_tmp, &lu_gps_list, lu_gp_node) {
  992. if (lu_gp_tmp->lu_gp_id == lu_gp_id_tmp) {
  993. if (!(lu_gp_id))
  994. goto again;
  995. printk(KERN_WARNING "ALUA Logical Unit Group ID: %hu"
  996. " already exists, ignoring request\n",
  997. lu_gp_id);
  998. spin_unlock(&lu_gps_lock);
  999. return -EINVAL;
  1000. }
  1001. }
  1002. lu_gp->lu_gp_id = lu_gp_id_tmp;
  1003. lu_gp->lu_gp_valid_id = 1;
  1004. list_add_tail(&lu_gp->lu_gp_node, &lu_gps_list);
  1005. alua_lu_gps_count++;
  1006. spin_unlock(&lu_gps_lock);
  1007. return 0;
  1008. }
  1009. static struct t10_alua_lu_gp_member *
  1010. core_alua_allocate_lu_gp_mem(struct se_device *dev)
  1011. {
  1012. struct t10_alua_lu_gp_member *lu_gp_mem;
  1013. lu_gp_mem = kmem_cache_zalloc(t10_alua_lu_gp_mem_cache, GFP_KERNEL);
  1014. if (!(lu_gp_mem)) {
  1015. printk(KERN_ERR "Unable to allocate struct t10_alua_lu_gp_member\n");
  1016. return ERR_PTR(-ENOMEM);
  1017. }
  1018. INIT_LIST_HEAD(&lu_gp_mem->lu_gp_mem_list);
  1019. spin_lock_init(&lu_gp_mem->lu_gp_mem_lock);
  1020. atomic_set(&lu_gp_mem->lu_gp_mem_ref_cnt, 0);
  1021. lu_gp_mem->lu_gp_mem_dev = dev;
  1022. dev->dev_alua_lu_gp_mem = lu_gp_mem;
  1023. return lu_gp_mem;
  1024. }
  1025. void core_alua_free_lu_gp(struct t10_alua_lu_gp *lu_gp)
  1026. {
  1027. struct t10_alua_lu_gp_member *lu_gp_mem, *lu_gp_mem_tmp;
  1028. /*
  1029. * Once we have reached this point, config_item_put() has
  1030. * already been called from target_core_alua_drop_lu_gp().
  1031. *
  1032. * Here, we remove the *lu_gp from the global list so that
  1033. * no associations can be made while we are releasing
  1034. * struct t10_alua_lu_gp.
  1035. */
  1036. spin_lock(&lu_gps_lock);
  1037. atomic_set(&lu_gp->lu_gp_shutdown, 1);
  1038. list_del(&lu_gp->lu_gp_node);
  1039. alua_lu_gps_count--;
  1040. spin_unlock(&lu_gps_lock);
  1041. /*
  1042. * Allow struct t10_alua_lu_gp * referenced by core_alua_get_lu_gp_by_name()
  1043. * in target_core_configfs.c:target_core_store_alua_lu_gp() to be
  1044. * released with core_alua_put_lu_gp_from_name()
  1045. */
  1046. while (atomic_read(&lu_gp->lu_gp_ref_cnt))
  1047. cpu_relax();
  1048. /*
  1049. * Release reference to struct t10_alua_lu_gp * from all associated
  1050. * struct se_device.
  1051. */
  1052. spin_lock(&lu_gp->lu_gp_lock);
  1053. list_for_each_entry_safe(lu_gp_mem, lu_gp_mem_tmp,
  1054. &lu_gp->lu_gp_mem_list, lu_gp_mem_list) {
  1055. if (lu_gp_mem->lu_gp_assoc) {
  1056. list_del(&lu_gp_mem->lu_gp_mem_list);
  1057. lu_gp->lu_gp_members--;
  1058. lu_gp_mem->lu_gp_assoc = 0;
  1059. }
  1060. spin_unlock(&lu_gp->lu_gp_lock);
  1061. /*
  1062. *
  1063. * lu_gp_mem is associated with a single
  1064. * struct se_device->dev_alua_lu_gp_mem, and is released when
  1065. * struct se_device is released via core_alua_free_lu_gp_mem().
  1066. *
  1067. * If the passed lu_gp does NOT match the default_lu_gp, assume
  1068. * we want to re-assocate a given lu_gp_mem with default_lu_gp.
  1069. */
  1070. spin_lock(&lu_gp_mem->lu_gp_mem_lock);
  1071. if (lu_gp != default_lu_gp)
  1072. __core_alua_attach_lu_gp_mem(lu_gp_mem,
  1073. default_lu_gp);
  1074. else
  1075. lu_gp_mem->lu_gp = NULL;
  1076. spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
  1077. spin_lock(&lu_gp->lu_gp_lock);
  1078. }
  1079. spin_unlock(&lu_gp->lu_gp_lock);
  1080. kmem_cache_free(t10_alua_lu_gp_cache, lu_gp);
  1081. }
  1082. void core_alua_free_lu_gp_mem(struct se_device *dev)
  1083. {
  1084. struct se_subsystem_dev *su_dev = dev->se_sub_dev;
  1085. struct t10_alua *alua = &su_dev->t10_alua;
  1086. struct t10_alua_lu_gp *lu_gp;
  1087. struct t10_alua_lu_gp_member *lu_gp_mem;
  1088. if (alua->alua_type != SPC3_ALUA_EMULATED)
  1089. return;
  1090. lu_gp_mem = dev->dev_alua_lu_gp_mem;
  1091. if (!(lu_gp_mem))
  1092. return;
  1093. while (atomic_read(&lu_gp_mem->lu_gp_mem_ref_cnt))
  1094. cpu_relax();
  1095. spin_lock(&lu_gp_mem->lu_gp_mem_lock);
  1096. lu_gp = lu_gp_mem->lu_gp;
  1097. if ((lu_gp)) {
  1098. spin_lock(&lu_gp->lu_gp_lock);
  1099. if (lu_gp_mem->lu_gp_assoc) {
  1100. list_del(&lu_gp_mem->lu_gp_mem_list);
  1101. lu_gp->lu_gp_members--;
  1102. lu_gp_mem->lu_gp_assoc = 0;
  1103. }
  1104. spin_unlock(&lu_gp->lu_gp_lock);
  1105. lu_gp_mem->lu_gp = NULL;
  1106. }
  1107. spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
  1108. kmem_cache_free(t10_alua_lu_gp_mem_cache, lu_gp_mem);
  1109. }
  1110. struct t10_alua_lu_gp *core_alua_get_lu_gp_by_name(const char *name)
  1111. {
  1112. struct t10_alua_lu_gp *lu_gp;
  1113. struct config_item *ci;
  1114. spin_lock(&lu_gps_lock);
  1115. list_for_each_entry(lu_gp, &lu_gps_list, lu_gp_node) {
  1116. if (!(lu_gp->lu_gp_valid_id))
  1117. continue;
  1118. ci = &lu_gp->lu_gp_group.cg_item;
  1119. if (!(strcmp(config_item_name(ci), name))) {
  1120. atomic_inc(&lu_gp->lu_gp_ref_cnt);
  1121. spin_unlock(&lu_gps_lock);
  1122. return lu_gp;
  1123. }
  1124. }
  1125. spin_unlock(&lu_gps_lock);
  1126. return NULL;
  1127. }
  1128. void core_alua_put_lu_gp_from_name(struct t10_alua_lu_gp *lu_gp)
  1129. {
  1130. spin_lock(&lu_gps_lock);
  1131. atomic_dec(&lu_gp->lu_gp_ref_cnt);
  1132. spin_unlock(&lu_gps_lock);
  1133. }
  1134. /*
  1135. * Called with struct t10_alua_lu_gp_member->lu_gp_mem_lock
  1136. */
  1137. void __core_alua_attach_lu_gp_mem(
  1138. struct t10_alua_lu_gp_member *lu_gp_mem,
  1139. struct t10_alua_lu_gp *lu_gp)
  1140. {
  1141. spin_lock(&lu_gp->lu_gp_lock);
  1142. lu_gp_mem->lu_gp = lu_gp;
  1143. lu_gp_mem->lu_gp_assoc = 1;
  1144. list_add_tail(&lu_gp_mem->lu_gp_mem_list, &lu_gp->lu_gp_mem_list);
  1145. lu_gp->lu_gp_members++;
  1146. spin_unlock(&lu_gp->lu_gp_lock);
  1147. }
  1148. /*
  1149. * Called with struct t10_alua_lu_gp_member->lu_gp_mem_lock
  1150. */
  1151. void __core_alua_drop_lu_gp_mem(
  1152. struct t10_alua_lu_gp_member *lu_gp_mem,
  1153. struct t10_alua_lu_gp *lu_gp)
  1154. {
  1155. spin_lock(&lu_gp->lu_gp_lock);
  1156. list_del(&lu_gp_mem->lu_gp_mem_list);
  1157. lu_gp_mem->lu_gp = NULL;
  1158. lu_gp_mem->lu_gp_assoc = 0;
  1159. lu_gp->lu_gp_members--;
  1160. spin_unlock(&lu_gp->lu_gp_lock);
  1161. }
  1162. struct t10_alua_tg_pt_gp *core_alua_allocate_tg_pt_gp(
  1163. struct se_subsystem_dev *su_dev,
  1164. const char *name,
  1165. int def_group)
  1166. {
  1167. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1168. tg_pt_gp = kmem_cache_zalloc(t10_alua_tg_pt_gp_cache, GFP_KERNEL);
  1169. if (!(tg_pt_gp)) {
  1170. printk(KERN_ERR "Unable to allocate struct t10_alua_tg_pt_gp\n");
  1171. return NULL;
  1172. }
  1173. INIT_LIST_HEAD(&tg_pt_gp->tg_pt_gp_list);
  1174. INIT_LIST_HEAD(&tg_pt_gp->tg_pt_gp_mem_list);
  1175. mutex_init(&tg_pt_gp->tg_pt_gp_md_mutex);
  1176. spin_lock_init(&tg_pt_gp->tg_pt_gp_lock);
  1177. atomic_set(&tg_pt_gp->tg_pt_gp_ref_cnt, 0);
  1178. tg_pt_gp->tg_pt_gp_su_dev = su_dev;
  1179. tg_pt_gp->tg_pt_gp_md_buf_len = ALUA_MD_BUF_LEN;
  1180. atomic_set(&tg_pt_gp->tg_pt_gp_alua_access_state,
  1181. ALUA_ACCESS_STATE_ACTIVE_OPTMIZED);
  1182. /*
  1183. * Enable both explict and implict ALUA support by default
  1184. */
  1185. tg_pt_gp->tg_pt_gp_alua_access_type =
  1186. TPGS_EXPLICT_ALUA | TPGS_IMPLICT_ALUA;
  1187. /*
  1188. * Set the default Active/NonOptimized Delay in milliseconds
  1189. */
  1190. tg_pt_gp->tg_pt_gp_nonop_delay_msecs = ALUA_DEFAULT_NONOP_DELAY_MSECS;
  1191. tg_pt_gp->tg_pt_gp_trans_delay_msecs = ALUA_DEFAULT_TRANS_DELAY_MSECS;
  1192. if (def_group) {
  1193. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  1194. tg_pt_gp->tg_pt_gp_id =
  1195. su_dev->t10_alua.alua_tg_pt_gps_counter++;
  1196. tg_pt_gp->tg_pt_gp_valid_id = 1;
  1197. su_dev->t10_alua.alua_tg_pt_gps_count++;
  1198. list_add_tail(&tg_pt_gp->tg_pt_gp_list,
  1199. &su_dev->t10_alua.tg_pt_gps_list);
  1200. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  1201. }
  1202. return tg_pt_gp;
  1203. }
  1204. int core_alua_set_tg_pt_gp_id(
  1205. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1206. u16 tg_pt_gp_id)
  1207. {
  1208. struct se_subsystem_dev *su_dev = tg_pt_gp->tg_pt_gp_su_dev;
  1209. struct t10_alua_tg_pt_gp *tg_pt_gp_tmp;
  1210. u16 tg_pt_gp_id_tmp;
  1211. /*
  1212. * The tg_pt_gp->tg_pt_gp_id may only be set once..
  1213. */
  1214. if (tg_pt_gp->tg_pt_gp_valid_id) {
  1215. printk(KERN_WARNING "ALUA TG PT Group already has a valid ID,"
  1216. " ignoring request\n");
  1217. return -EINVAL;
  1218. }
  1219. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  1220. if (su_dev->t10_alua.alua_tg_pt_gps_count == 0x0000ffff) {
  1221. printk(KERN_ERR "Maximum ALUA alua_tg_pt_gps_count:"
  1222. " 0x0000ffff reached\n");
  1223. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  1224. kmem_cache_free(t10_alua_tg_pt_gp_cache, tg_pt_gp);
  1225. return -ENOSPC;
  1226. }
  1227. again:
  1228. tg_pt_gp_id_tmp = (tg_pt_gp_id != 0) ? tg_pt_gp_id :
  1229. su_dev->t10_alua.alua_tg_pt_gps_counter++;
  1230. list_for_each_entry(tg_pt_gp_tmp, &su_dev->t10_alua.tg_pt_gps_list,
  1231. tg_pt_gp_list) {
  1232. if (tg_pt_gp_tmp->tg_pt_gp_id == tg_pt_gp_id_tmp) {
  1233. if (!(tg_pt_gp_id))
  1234. goto again;
  1235. printk(KERN_ERR "ALUA Target Port Group ID: %hu already"
  1236. " exists, ignoring request\n", tg_pt_gp_id);
  1237. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  1238. return -EINVAL;
  1239. }
  1240. }
  1241. tg_pt_gp->tg_pt_gp_id = tg_pt_gp_id_tmp;
  1242. tg_pt_gp->tg_pt_gp_valid_id = 1;
  1243. list_add_tail(&tg_pt_gp->tg_pt_gp_list,
  1244. &su_dev->t10_alua.tg_pt_gps_list);
  1245. su_dev->t10_alua.alua_tg_pt_gps_count++;
  1246. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  1247. return 0;
  1248. }
  1249. struct t10_alua_tg_pt_gp_member *core_alua_allocate_tg_pt_gp_mem(
  1250. struct se_port *port)
  1251. {
  1252. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1253. tg_pt_gp_mem = kmem_cache_zalloc(t10_alua_tg_pt_gp_mem_cache,
  1254. GFP_KERNEL);
  1255. if (!(tg_pt_gp_mem)) {
  1256. printk(KERN_ERR "Unable to allocate struct t10_alua_tg_pt_gp_member\n");
  1257. return ERR_PTR(-ENOMEM);
  1258. }
  1259. INIT_LIST_HEAD(&tg_pt_gp_mem->tg_pt_gp_mem_list);
  1260. spin_lock_init(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1261. atomic_set(&tg_pt_gp_mem->tg_pt_gp_mem_ref_cnt, 0);
  1262. tg_pt_gp_mem->tg_pt = port;
  1263. port->sep_alua_tg_pt_gp_mem = tg_pt_gp_mem;
  1264. atomic_set(&port->sep_tg_pt_gp_active, 1);
  1265. return tg_pt_gp_mem;
  1266. }
  1267. void core_alua_free_tg_pt_gp(
  1268. struct t10_alua_tg_pt_gp *tg_pt_gp)
  1269. {
  1270. struct se_subsystem_dev *su_dev = tg_pt_gp->tg_pt_gp_su_dev;
  1271. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem, *tg_pt_gp_mem_tmp;
  1272. /*
  1273. * Once we have reached this point, config_item_put() has already
  1274. * been called from target_core_alua_drop_tg_pt_gp().
  1275. *
  1276. * Here we remove *tg_pt_gp from the global list so that
  1277. * no assications *OR* explict ALUA via SET_TARGET_PORT_GROUPS
  1278. * can be made while we are releasing struct t10_alua_tg_pt_gp.
  1279. */
  1280. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  1281. list_del(&tg_pt_gp->tg_pt_gp_list);
  1282. su_dev->t10_alua.alua_tg_pt_gps_counter--;
  1283. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  1284. /*
  1285. * Allow a struct t10_alua_tg_pt_gp_member * referenced by
  1286. * core_alua_get_tg_pt_gp_by_name() in
  1287. * target_core_configfs.c:target_core_store_alua_tg_pt_gp()
  1288. * to be released with core_alua_put_tg_pt_gp_from_name().
  1289. */
  1290. while (atomic_read(&tg_pt_gp->tg_pt_gp_ref_cnt))
  1291. cpu_relax();
  1292. /*
  1293. * Release reference to struct t10_alua_tg_pt_gp from all associated
  1294. * struct se_port.
  1295. */
  1296. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1297. list_for_each_entry_safe(tg_pt_gp_mem, tg_pt_gp_mem_tmp,
  1298. &tg_pt_gp->tg_pt_gp_mem_list, tg_pt_gp_mem_list) {
  1299. if (tg_pt_gp_mem->tg_pt_gp_assoc) {
  1300. list_del(&tg_pt_gp_mem->tg_pt_gp_mem_list);
  1301. tg_pt_gp->tg_pt_gp_members--;
  1302. tg_pt_gp_mem->tg_pt_gp_assoc = 0;
  1303. }
  1304. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1305. /*
  1306. * tg_pt_gp_mem is associated with a single
  1307. * se_port->sep_alua_tg_pt_gp_mem, and is released via
  1308. * core_alua_free_tg_pt_gp_mem().
  1309. *
  1310. * If the passed tg_pt_gp does NOT match the default_tg_pt_gp,
  1311. * assume we want to re-assocate a given tg_pt_gp_mem with
  1312. * default_tg_pt_gp.
  1313. */
  1314. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1315. if (tg_pt_gp != su_dev->t10_alua.default_tg_pt_gp) {
  1316. __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem,
  1317. su_dev->t10_alua.default_tg_pt_gp);
  1318. } else
  1319. tg_pt_gp_mem->tg_pt_gp = NULL;
  1320. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1321. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1322. }
  1323. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1324. kmem_cache_free(t10_alua_tg_pt_gp_cache, tg_pt_gp);
  1325. }
  1326. void core_alua_free_tg_pt_gp_mem(struct se_port *port)
  1327. {
  1328. struct se_subsystem_dev *su_dev = port->sep_lun->lun_se_dev->se_sub_dev;
  1329. struct t10_alua *alua = &su_dev->t10_alua;
  1330. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1331. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1332. if (alua->alua_type != SPC3_ALUA_EMULATED)
  1333. return;
  1334. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  1335. if (!(tg_pt_gp_mem))
  1336. return;
  1337. while (atomic_read(&tg_pt_gp_mem->tg_pt_gp_mem_ref_cnt))
  1338. cpu_relax();
  1339. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1340. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  1341. if ((tg_pt_gp)) {
  1342. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1343. if (tg_pt_gp_mem->tg_pt_gp_assoc) {
  1344. list_del(&tg_pt_gp_mem->tg_pt_gp_mem_list);
  1345. tg_pt_gp->tg_pt_gp_members--;
  1346. tg_pt_gp_mem->tg_pt_gp_assoc = 0;
  1347. }
  1348. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1349. tg_pt_gp_mem->tg_pt_gp = NULL;
  1350. }
  1351. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1352. kmem_cache_free(t10_alua_tg_pt_gp_mem_cache, tg_pt_gp_mem);
  1353. }
  1354. static struct t10_alua_tg_pt_gp *core_alua_get_tg_pt_gp_by_name(
  1355. struct se_subsystem_dev *su_dev,
  1356. const char *name)
  1357. {
  1358. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1359. struct config_item *ci;
  1360. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  1361. list_for_each_entry(tg_pt_gp, &su_dev->t10_alua.tg_pt_gps_list,
  1362. tg_pt_gp_list) {
  1363. if (!(tg_pt_gp->tg_pt_gp_valid_id))
  1364. continue;
  1365. ci = &tg_pt_gp->tg_pt_gp_group.cg_item;
  1366. if (!(strcmp(config_item_name(ci), name))) {
  1367. atomic_inc(&tg_pt_gp->tg_pt_gp_ref_cnt);
  1368. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  1369. return tg_pt_gp;
  1370. }
  1371. }
  1372. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  1373. return NULL;
  1374. }
  1375. static void core_alua_put_tg_pt_gp_from_name(
  1376. struct t10_alua_tg_pt_gp *tg_pt_gp)
  1377. {
  1378. struct se_subsystem_dev *su_dev = tg_pt_gp->tg_pt_gp_su_dev;
  1379. spin_lock(&su_dev->t10_alua.tg_pt_gps_lock);
  1380. atomic_dec(&tg_pt_gp->tg_pt_gp_ref_cnt);
  1381. spin_unlock(&su_dev->t10_alua.tg_pt_gps_lock);
  1382. }
  1383. /*
  1384. * Called with struct t10_alua_tg_pt_gp_member->tg_pt_gp_mem_lock held
  1385. */
  1386. void __core_alua_attach_tg_pt_gp_mem(
  1387. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  1388. struct t10_alua_tg_pt_gp *tg_pt_gp)
  1389. {
  1390. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1391. tg_pt_gp_mem->tg_pt_gp = tg_pt_gp;
  1392. tg_pt_gp_mem->tg_pt_gp_assoc = 1;
  1393. list_add_tail(&tg_pt_gp_mem->tg_pt_gp_mem_list,
  1394. &tg_pt_gp->tg_pt_gp_mem_list);
  1395. tg_pt_gp->tg_pt_gp_members++;
  1396. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1397. }
  1398. /*
  1399. * Called with struct t10_alua_tg_pt_gp_member->tg_pt_gp_mem_lock held
  1400. */
  1401. static void __core_alua_drop_tg_pt_gp_mem(
  1402. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  1403. struct t10_alua_tg_pt_gp *tg_pt_gp)
  1404. {
  1405. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1406. list_del(&tg_pt_gp_mem->tg_pt_gp_mem_list);
  1407. tg_pt_gp_mem->tg_pt_gp = NULL;
  1408. tg_pt_gp_mem->tg_pt_gp_assoc = 0;
  1409. tg_pt_gp->tg_pt_gp_members--;
  1410. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1411. }
  1412. ssize_t core_alua_show_tg_pt_gp_info(struct se_port *port, char *page)
  1413. {
  1414. struct se_subsystem_dev *su_dev = port->sep_lun->lun_se_dev->se_sub_dev;
  1415. struct config_item *tg_pt_ci;
  1416. struct t10_alua *alua = &su_dev->t10_alua;
  1417. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1418. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1419. ssize_t len = 0;
  1420. if (alua->alua_type != SPC3_ALUA_EMULATED)
  1421. return len;
  1422. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  1423. if (!(tg_pt_gp_mem))
  1424. return len;
  1425. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1426. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  1427. if ((tg_pt_gp)) {
  1428. tg_pt_ci = &tg_pt_gp->tg_pt_gp_group.cg_item;
  1429. len += sprintf(page, "TG Port Alias: %s\nTG Port Group ID:"
  1430. " %hu\nTG Port Primary Access State: %s\nTG Port "
  1431. "Primary Access Status: %s\nTG Port Secondary Access"
  1432. " State: %s\nTG Port Secondary Access Status: %s\n",
  1433. config_item_name(tg_pt_ci), tg_pt_gp->tg_pt_gp_id,
  1434. core_alua_dump_state(atomic_read(
  1435. &tg_pt_gp->tg_pt_gp_alua_access_state)),
  1436. core_alua_dump_status(
  1437. tg_pt_gp->tg_pt_gp_alua_access_status),
  1438. (atomic_read(&port->sep_tg_pt_secondary_offline)) ?
  1439. "Offline" : "None",
  1440. core_alua_dump_status(port->sep_tg_pt_secondary_stat));
  1441. }
  1442. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1443. return len;
  1444. }
  1445. ssize_t core_alua_store_tg_pt_gp_info(
  1446. struct se_port *port,
  1447. const char *page,
  1448. size_t count)
  1449. {
  1450. struct se_portal_group *tpg;
  1451. struct se_lun *lun;
  1452. struct se_subsystem_dev *su_dev = port->sep_lun->lun_se_dev->se_sub_dev;
  1453. struct t10_alua_tg_pt_gp *tg_pt_gp = NULL, *tg_pt_gp_new = NULL;
  1454. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1455. unsigned char buf[TG_PT_GROUP_NAME_BUF];
  1456. int move = 0;
  1457. tpg = port->sep_tpg;
  1458. lun = port->sep_lun;
  1459. if (su_dev->t10_alua.alua_type != SPC3_ALUA_EMULATED) {
  1460. printk(KERN_WARNING "SPC3_ALUA_EMULATED not enabled for"
  1461. " %s/tpgt_%hu/%s\n", tpg->se_tpg_tfo->tpg_get_wwn(tpg),
  1462. tpg->se_tpg_tfo->tpg_get_tag(tpg),
  1463. config_item_name(&lun->lun_group.cg_item));
  1464. return -EINVAL;
  1465. }
  1466. if (count > TG_PT_GROUP_NAME_BUF) {
  1467. printk(KERN_ERR "ALUA Target Port Group alias too large!\n");
  1468. return -EINVAL;
  1469. }
  1470. memset(buf, 0, TG_PT_GROUP_NAME_BUF);
  1471. memcpy(buf, page, count);
  1472. /*
  1473. * Any ALUA target port group alias besides "NULL" means we will be
  1474. * making a new group association.
  1475. */
  1476. if (strcmp(strstrip(buf), "NULL")) {
  1477. /*
  1478. * core_alua_get_tg_pt_gp_by_name() will increment reference to
  1479. * struct t10_alua_tg_pt_gp. This reference is released with
  1480. * core_alua_put_tg_pt_gp_from_name() below.
  1481. */
  1482. tg_pt_gp_new = core_alua_get_tg_pt_gp_by_name(su_dev,
  1483. strstrip(buf));
  1484. if (!(tg_pt_gp_new))
  1485. return -ENODEV;
  1486. }
  1487. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  1488. if (!(tg_pt_gp_mem)) {
  1489. if (tg_pt_gp_new)
  1490. core_alua_put_tg_pt_gp_from_name(tg_pt_gp_new);
  1491. printk(KERN_ERR "NULL struct se_port->sep_alua_tg_pt_gp_mem pointer\n");
  1492. return -EINVAL;
  1493. }
  1494. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1495. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  1496. if ((tg_pt_gp)) {
  1497. /*
  1498. * Clearing an existing tg_pt_gp association, and replacing
  1499. * with the default_tg_pt_gp.
  1500. */
  1501. if (!(tg_pt_gp_new)) {
  1502. printk(KERN_INFO "Target_Core_ConfigFS: Moving"
  1503. " %s/tpgt_%hu/%s from ALUA Target Port Group:"
  1504. " alua/%s, ID: %hu back to"
  1505. " default_tg_pt_gp\n",
  1506. tpg->se_tpg_tfo->tpg_get_wwn(tpg),
  1507. tpg->se_tpg_tfo->tpg_get_tag(tpg),
  1508. config_item_name(&lun->lun_group.cg_item),
  1509. config_item_name(
  1510. &tg_pt_gp->tg_pt_gp_group.cg_item),
  1511. tg_pt_gp->tg_pt_gp_id);
  1512. __core_alua_drop_tg_pt_gp_mem(tg_pt_gp_mem, tg_pt_gp);
  1513. __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem,
  1514. su_dev->t10_alua.default_tg_pt_gp);
  1515. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1516. return count;
  1517. }
  1518. /*
  1519. * Removing existing association of tg_pt_gp_mem with tg_pt_gp
  1520. */
  1521. __core_alua_drop_tg_pt_gp_mem(tg_pt_gp_mem, tg_pt_gp);
  1522. move = 1;
  1523. }
  1524. /*
  1525. * Associate tg_pt_gp_mem with tg_pt_gp_new.
  1526. */
  1527. __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem, tg_pt_gp_new);
  1528. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1529. printk(KERN_INFO "Target_Core_ConfigFS: %s %s/tpgt_%hu/%s to ALUA"
  1530. " Target Port Group: alua/%s, ID: %hu\n", (move) ?
  1531. "Moving" : "Adding", tpg->se_tpg_tfo->tpg_get_wwn(tpg),
  1532. tpg->se_tpg_tfo->tpg_get_tag(tpg),
  1533. config_item_name(&lun->lun_group.cg_item),
  1534. config_item_name(&tg_pt_gp_new->tg_pt_gp_group.cg_item),
  1535. tg_pt_gp_new->tg_pt_gp_id);
  1536. core_alua_put_tg_pt_gp_from_name(tg_pt_gp_new);
  1537. return count;
  1538. }
  1539. ssize_t core_alua_show_access_type(
  1540. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1541. char *page)
  1542. {
  1543. if ((tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICT_ALUA) &&
  1544. (tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_IMPLICT_ALUA))
  1545. return sprintf(page, "Implict and Explict\n");
  1546. else if (tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_IMPLICT_ALUA)
  1547. return sprintf(page, "Implict\n");
  1548. else if (tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICT_ALUA)
  1549. return sprintf(page, "Explict\n");
  1550. else
  1551. return sprintf(page, "None\n");
  1552. }
  1553. ssize_t core_alua_store_access_type(
  1554. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1555. const char *page,
  1556. size_t count)
  1557. {
  1558. unsigned long tmp;
  1559. int ret;
  1560. ret = strict_strtoul(page, 0, &tmp);
  1561. if (ret < 0) {
  1562. printk(KERN_ERR "Unable to extract alua_access_type\n");
  1563. return -EINVAL;
  1564. }
  1565. if ((tmp != 0) && (tmp != 1) && (tmp != 2) && (tmp != 3)) {
  1566. printk(KERN_ERR "Illegal value for alua_access_type:"
  1567. " %lu\n", tmp);
  1568. return -EINVAL;
  1569. }
  1570. if (tmp == 3)
  1571. tg_pt_gp->tg_pt_gp_alua_access_type =
  1572. TPGS_IMPLICT_ALUA | TPGS_EXPLICT_ALUA;
  1573. else if (tmp == 2)
  1574. tg_pt_gp->tg_pt_gp_alua_access_type = TPGS_EXPLICT_ALUA;
  1575. else if (tmp == 1)
  1576. tg_pt_gp->tg_pt_gp_alua_access_type = TPGS_IMPLICT_ALUA;
  1577. else
  1578. tg_pt_gp->tg_pt_gp_alua_access_type = 0;
  1579. return count;
  1580. }
  1581. ssize_t core_alua_show_nonop_delay_msecs(
  1582. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1583. char *page)
  1584. {
  1585. return sprintf(page, "%d\n", tg_pt_gp->tg_pt_gp_nonop_delay_msecs);
  1586. }
  1587. ssize_t core_alua_store_nonop_delay_msecs(
  1588. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1589. const char *page,
  1590. size_t count)
  1591. {
  1592. unsigned long tmp;
  1593. int ret;
  1594. ret = strict_strtoul(page, 0, &tmp);
  1595. if (ret < 0) {
  1596. printk(KERN_ERR "Unable to extract nonop_delay_msecs\n");
  1597. return -EINVAL;
  1598. }
  1599. if (tmp > ALUA_MAX_NONOP_DELAY_MSECS) {
  1600. printk(KERN_ERR "Passed nonop_delay_msecs: %lu, exceeds"
  1601. " ALUA_MAX_NONOP_DELAY_MSECS: %d\n", tmp,
  1602. ALUA_MAX_NONOP_DELAY_MSECS);
  1603. return -EINVAL;
  1604. }
  1605. tg_pt_gp->tg_pt_gp_nonop_delay_msecs = (int)tmp;
  1606. return count;
  1607. }
  1608. ssize_t core_alua_show_trans_delay_msecs(
  1609. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1610. char *page)
  1611. {
  1612. return sprintf(page, "%d\n", tg_pt_gp->tg_pt_gp_trans_delay_msecs);
  1613. }
  1614. ssize_t core_alua_store_trans_delay_msecs(
  1615. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1616. const char *page,
  1617. size_t count)
  1618. {
  1619. unsigned long tmp;
  1620. int ret;
  1621. ret = strict_strtoul(page, 0, &tmp);
  1622. if (ret < 0) {
  1623. printk(KERN_ERR "Unable to extract trans_delay_msecs\n");
  1624. return -EINVAL;
  1625. }
  1626. if (tmp > ALUA_MAX_TRANS_DELAY_MSECS) {
  1627. printk(KERN_ERR "Passed trans_delay_msecs: %lu, exceeds"
  1628. " ALUA_MAX_TRANS_DELAY_MSECS: %d\n", tmp,
  1629. ALUA_MAX_TRANS_DELAY_MSECS);
  1630. return -EINVAL;
  1631. }
  1632. tg_pt_gp->tg_pt_gp_trans_delay_msecs = (int)tmp;
  1633. return count;
  1634. }
  1635. ssize_t core_alua_show_preferred_bit(
  1636. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1637. char *page)
  1638. {
  1639. return sprintf(page, "%d\n", tg_pt_gp->tg_pt_gp_pref);
  1640. }
  1641. ssize_t core_alua_store_preferred_bit(
  1642. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1643. const char *page,
  1644. size_t count)
  1645. {
  1646. unsigned long tmp;
  1647. int ret;
  1648. ret = strict_strtoul(page, 0, &tmp);
  1649. if (ret < 0) {
  1650. printk(KERN_ERR "Unable to extract preferred ALUA value\n");
  1651. return -EINVAL;
  1652. }
  1653. if ((tmp != 0) && (tmp != 1)) {
  1654. printk(KERN_ERR "Illegal value for preferred ALUA: %lu\n", tmp);
  1655. return -EINVAL;
  1656. }
  1657. tg_pt_gp->tg_pt_gp_pref = (int)tmp;
  1658. return count;
  1659. }
  1660. ssize_t core_alua_show_offline_bit(struct se_lun *lun, char *page)
  1661. {
  1662. if (!(lun->lun_sep))
  1663. return -ENODEV;
  1664. return sprintf(page, "%d\n",
  1665. atomic_read(&lun->lun_sep->sep_tg_pt_secondary_offline));
  1666. }
  1667. ssize_t core_alua_store_offline_bit(
  1668. struct se_lun *lun,
  1669. const char *page,
  1670. size_t count)
  1671. {
  1672. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1673. unsigned long tmp;
  1674. int ret;
  1675. if (!(lun->lun_sep))
  1676. return -ENODEV;
  1677. ret = strict_strtoul(page, 0, &tmp);
  1678. if (ret < 0) {
  1679. printk(KERN_ERR "Unable to extract alua_tg_pt_offline value\n");
  1680. return -EINVAL;
  1681. }
  1682. if ((tmp != 0) && (tmp != 1)) {
  1683. printk(KERN_ERR "Illegal value for alua_tg_pt_offline: %lu\n",
  1684. tmp);
  1685. return -EINVAL;
  1686. }
  1687. tg_pt_gp_mem = lun->lun_sep->sep_alua_tg_pt_gp_mem;
  1688. if (!(tg_pt_gp_mem)) {
  1689. printk(KERN_ERR "Unable to locate *tg_pt_gp_mem\n");
  1690. return -EINVAL;
  1691. }
  1692. ret = core_alua_set_tg_pt_secondary_state(tg_pt_gp_mem,
  1693. lun->lun_sep, 0, (int)tmp);
  1694. if (ret < 0)
  1695. return -EINVAL;
  1696. return count;
  1697. }
  1698. ssize_t core_alua_show_secondary_status(
  1699. struct se_lun *lun,
  1700. char *page)
  1701. {
  1702. return sprintf(page, "%d\n", lun->lun_sep->sep_tg_pt_secondary_stat);
  1703. }
  1704. ssize_t core_alua_store_secondary_status(
  1705. struct se_lun *lun,
  1706. const char *page,
  1707. size_t count)
  1708. {
  1709. unsigned long tmp;
  1710. int ret;
  1711. ret = strict_strtoul(page, 0, &tmp);
  1712. if (ret < 0) {
  1713. printk(KERN_ERR "Unable to extract alua_tg_pt_status\n");
  1714. return -EINVAL;
  1715. }
  1716. if ((tmp != ALUA_STATUS_NONE) &&
  1717. (tmp != ALUA_STATUS_ALTERED_BY_EXPLICT_STPG) &&
  1718. (tmp != ALUA_STATUS_ALTERED_BY_IMPLICT_ALUA)) {
  1719. printk(KERN_ERR "Illegal value for alua_tg_pt_status: %lu\n",
  1720. tmp);
  1721. return -EINVAL;
  1722. }
  1723. lun->lun_sep->sep_tg_pt_secondary_stat = (int)tmp;
  1724. return count;
  1725. }
  1726. ssize_t core_alua_show_secondary_write_metadata(
  1727. struct se_lun *lun,
  1728. char *page)
  1729. {
  1730. return sprintf(page, "%d\n",
  1731. lun->lun_sep->sep_tg_pt_secondary_write_md);
  1732. }
  1733. ssize_t core_alua_store_secondary_write_metadata(
  1734. struct se_lun *lun,
  1735. const char *page,
  1736. size_t count)
  1737. {
  1738. unsigned long tmp;
  1739. int ret;
  1740. ret = strict_strtoul(page, 0, &tmp);
  1741. if (ret < 0) {
  1742. printk(KERN_ERR "Unable to extract alua_tg_pt_write_md\n");
  1743. return -EINVAL;
  1744. }
  1745. if ((tmp != 0) && (tmp != 1)) {
  1746. printk(KERN_ERR "Illegal value for alua_tg_pt_write_md:"
  1747. " %lu\n", tmp);
  1748. return -EINVAL;
  1749. }
  1750. lun->lun_sep->sep_tg_pt_secondary_write_md = (int)tmp;
  1751. return count;
  1752. }
  1753. int core_setup_alua(struct se_device *dev, int force_pt)
  1754. {
  1755. struct se_subsystem_dev *su_dev = dev->se_sub_dev;
  1756. struct t10_alua *alua = &su_dev->t10_alua;
  1757. struct t10_alua_lu_gp_member *lu_gp_mem;
  1758. /*
  1759. * If this device is from Target_Core_Mod/pSCSI, use the ALUA logic
  1760. * of the Underlying SCSI hardware. In Linux/SCSI terms, this can
  1761. * cause a problem because libata and some SATA RAID HBAs appear
  1762. * under Linux/SCSI, but emulate SCSI logic themselves.
  1763. */
  1764. if (((dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) &&
  1765. !(dev->se_sub_dev->se_dev_attrib.emulate_alua)) || force_pt) {
  1766. alua->alua_type = SPC_ALUA_PASSTHROUGH;
  1767. alua->alua_state_check = &core_alua_state_check_nop;
  1768. printk(KERN_INFO "%s: Using SPC_ALUA_PASSTHROUGH, no ALUA"
  1769. " emulation\n", dev->transport->name);
  1770. return 0;
  1771. }
  1772. /*
  1773. * If SPC-3 or above is reported by real or emulated struct se_device,
  1774. * use emulated ALUA.
  1775. */
  1776. if (dev->transport->get_device_rev(dev) >= SCSI_3) {
  1777. printk(KERN_INFO "%s: Enabling ALUA Emulation for SPC-3"
  1778. " device\n", dev->transport->name);
  1779. /*
  1780. * Associate this struct se_device with the default ALUA
  1781. * LUN Group.
  1782. */
  1783. lu_gp_mem = core_alua_allocate_lu_gp_mem(dev);
  1784. if (IS_ERR(lu_gp_mem))
  1785. return PTR_ERR(lu_gp_mem);
  1786. alua->alua_type = SPC3_ALUA_EMULATED;
  1787. alua->alua_state_check = &core_alua_state_check;
  1788. spin_lock(&lu_gp_mem->lu_gp_mem_lock);
  1789. __core_alua_attach_lu_gp_mem(lu_gp_mem,
  1790. default_lu_gp);
  1791. spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
  1792. printk(KERN_INFO "%s: Adding to default ALUA LU Group:"
  1793. " core/alua/lu_gps/default_lu_gp\n",
  1794. dev->transport->name);
  1795. } else {
  1796. alua->alua_type = SPC2_ALUA_DISABLED;
  1797. alua->alua_state_check = &core_alua_state_check_nop;
  1798. printk(KERN_INFO "%s: Disabling ALUA Emulation for SPC-2"
  1799. " device\n", dev->transport->name);
  1800. }
  1801. return 0;
  1802. }