util.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. /*
  2. * Wireless utility functions
  3. *
  4. * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
  5. */
  6. #include <linux/bitops.h>
  7. #include <linux/etherdevice.h>
  8. #include <net/cfg80211.h>
  9. #include <net/ip.h>
  10. #include "core.h"
  11. struct ieee80211_rate *
  12. ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  13. u32 basic_rates, int bitrate)
  14. {
  15. struct ieee80211_rate *result = &sband->bitrates[0];
  16. int i;
  17. for (i = 0; i < sband->n_bitrates; i++) {
  18. if (!(basic_rates & BIT(i)))
  19. continue;
  20. if (sband->bitrates[i].bitrate > bitrate)
  21. continue;
  22. result = &sband->bitrates[i];
  23. }
  24. return result;
  25. }
  26. EXPORT_SYMBOL(ieee80211_get_response_rate);
  27. int ieee80211_channel_to_frequency(int chan)
  28. {
  29. if (chan < 14)
  30. return 2407 + chan * 5;
  31. if (chan == 14)
  32. return 2484;
  33. /* FIXME: 802.11j 17.3.8.3.2 */
  34. return (chan + 1000) * 5;
  35. }
  36. EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  37. int ieee80211_frequency_to_channel(int freq)
  38. {
  39. if (freq == 2484)
  40. return 14;
  41. if (freq < 2484)
  42. return (freq - 2407) / 5;
  43. /* FIXME: 802.11j 17.3.8.3.2 */
  44. return freq/5 - 1000;
  45. }
  46. EXPORT_SYMBOL(ieee80211_frequency_to_channel);
  47. struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
  48. int freq)
  49. {
  50. enum ieee80211_band band;
  51. struct ieee80211_supported_band *sband;
  52. int i;
  53. for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
  54. sband = wiphy->bands[band];
  55. if (!sband)
  56. continue;
  57. for (i = 0; i < sband->n_channels; i++) {
  58. if (sband->channels[i].center_freq == freq)
  59. return &sband->channels[i];
  60. }
  61. }
  62. return NULL;
  63. }
  64. EXPORT_SYMBOL(__ieee80211_get_channel);
  65. static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
  66. enum ieee80211_band band)
  67. {
  68. int i, want;
  69. switch (band) {
  70. case IEEE80211_BAND_5GHZ:
  71. want = 3;
  72. for (i = 0; i < sband->n_bitrates; i++) {
  73. if (sband->bitrates[i].bitrate == 60 ||
  74. sband->bitrates[i].bitrate == 120 ||
  75. sband->bitrates[i].bitrate == 240) {
  76. sband->bitrates[i].flags |=
  77. IEEE80211_RATE_MANDATORY_A;
  78. want--;
  79. }
  80. }
  81. WARN_ON(want);
  82. break;
  83. case IEEE80211_BAND_2GHZ:
  84. want = 7;
  85. for (i = 0; i < sband->n_bitrates; i++) {
  86. if (sband->bitrates[i].bitrate == 10) {
  87. sband->bitrates[i].flags |=
  88. IEEE80211_RATE_MANDATORY_B |
  89. IEEE80211_RATE_MANDATORY_G;
  90. want--;
  91. }
  92. if (sband->bitrates[i].bitrate == 20 ||
  93. sband->bitrates[i].bitrate == 55 ||
  94. sband->bitrates[i].bitrate == 110 ||
  95. sband->bitrates[i].bitrate == 60 ||
  96. sband->bitrates[i].bitrate == 120 ||
  97. sband->bitrates[i].bitrate == 240) {
  98. sband->bitrates[i].flags |=
  99. IEEE80211_RATE_MANDATORY_G;
  100. want--;
  101. }
  102. if (sband->bitrates[i].bitrate != 10 &&
  103. sband->bitrates[i].bitrate != 20 &&
  104. sband->bitrates[i].bitrate != 55 &&
  105. sband->bitrates[i].bitrate != 110)
  106. sband->bitrates[i].flags |=
  107. IEEE80211_RATE_ERP_G;
  108. }
  109. WARN_ON(want != 0 && want != 3 && want != 6);
  110. break;
  111. case IEEE80211_NUM_BANDS:
  112. WARN_ON(1);
  113. break;
  114. }
  115. }
  116. void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
  117. {
  118. enum ieee80211_band band;
  119. for (band = 0; band < IEEE80211_NUM_BANDS; band++)
  120. if (wiphy->bands[band])
  121. set_mandatory_flags_band(wiphy->bands[band], band);
  122. }
  123. int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
  124. struct key_params *params, int key_idx,
  125. const u8 *mac_addr)
  126. {
  127. int i;
  128. if (key_idx > 5)
  129. return -EINVAL;
  130. /*
  131. * Disallow pairwise keys with non-zero index unless it's WEP
  132. * (because current deployments use pairwise WEP keys with
  133. * non-zero indizes but 802.11i clearly specifies to use zero)
  134. */
  135. if (mac_addr && key_idx &&
  136. params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
  137. params->cipher != WLAN_CIPHER_SUITE_WEP104)
  138. return -EINVAL;
  139. switch (params->cipher) {
  140. case WLAN_CIPHER_SUITE_WEP40:
  141. if (params->key_len != WLAN_KEY_LEN_WEP40)
  142. return -EINVAL;
  143. break;
  144. case WLAN_CIPHER_SUITE_TKIP:
  145. if (params->key_len != WLAN_KEY_LEN_TKIP)
  146. return -EINVAL;
  147. break;
  148. case WLAN_CIPHER_SUITE_CCMP:
  149. if (params->key_len != WLAN_KEY_LEN_CCMP)
  150. return -EINVAL;
  151. break;
  152. case WLAN_CIPHER_SUITE_WEP104:
  153. if (params->key_len != WLAN_KEY_LEN_WEP104)
  154. return -EINVAL;
  155. break;
  156. case WLAN_CIPHER_SUITE_AES_CMAC:
  157. if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
  158. return -EINVAL;
  159. break;
  160. default:
  161. return -EINVAL;
  162. }
  163. if (params->seq) {
  164. switch (params->cipher) {
  165. case WLAN_CIPHER_SUITE_WEP40:
  166. case WLAN_CIPHER_SUITE_WEP104:
  167. /* These ciphers do not use key sequence */
  168. return -EINVAL;
  169. case WLAN_CIPHER_SUITE_TKIP:
  170. case WLAN_CIPHER_SUITE_CCMP:
  171. case WLAN_CIPHER_SUITE_AES_CMAC:
  172. if (params->seq_len != 6)
  173. return -EINVAL;
  174. break;
  175. }
  176. }
  177. for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
  178. if (params->cipher == rdev->wiphy.cipher_suites[i])
  179. break;
  180. if (i == rdev->wiphy.n_cipher_suites)
  181. return -EINVAL;
  182. return 0;
  183. }
  184. /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
  185. /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
  186. const unsigned char rfc1042_header[] __aligned(2) =
  187. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
  188. EXPORT_SYMBOL(rfc1042_header);
  189. /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
  190. const unsigned char bridge_tunnel_header[] __aligned(2) =
  191. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
  192. EXPORT_SYMBOL(bridge_tunnel_header);
  193. unsigned int ieee80211_hdrlen(__le16 fc)
  194. {
  195. unsigned int hdrlen = 24;
  196. if (ieee80211_is_data(fc)) {
  197. if (ieee80211_has_a4(fc))
  198. hdrlen = 30;
  199. if (ieee80211_is_data_qos(fc)) {
  200. hdrlen += IEEE80211_QOS_CTL_LEN;
  201. if (ieee80211_has_order(fc))
  202. hdrlen += IEEE80211_HT_CTL_LEN;
  203. }
  204. goto out;
  205. }
  206. if (ieee80211_is_ctl(fc)) {
  207. /*
  208. * ACK and CTS are 10 bytes, all others 16. To see how
  209. * to get this condition consider
  210. * subtype mask: 0b0000000011110000 (0x00F0)
  211. * ACK subtype: 0b0000000011010000 (0x00D0)
  212. * CTS subtype: 0b0000000011000000 (0x00C0)
  213. * bits that matter: ^^^ (0x00E0)
  214. * value of those: 0b0000000011000000 (0x00C0)
  215. */
  216. if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
  217. hdrlen = 10;
  218. else
  219. hdrlen = 16;
  220. }
  221. out:
  222. return hdrlen;
  223. }
  224. EXPORT_SYMBOL(ieee80211_hdrlen);
  225. unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
  226. {
  227. const struct ieee80211_hdr *hdr =
  228. (const struct ieee80211_hdr *)skb->data;
  229. unsigned int hdrlen;
  230. if (unlikely(skb->len < 10))
  231. return 0;
  232. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  233. if (unlikely(hdrlen > skb->len))
  234. return 0;
  235. return hdrlen;
  236. }
  237. EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
  238. static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
  239. {
  240. int ae = meshhdr->flags & MESH_FLAGS_AE;
  241. /* 7.1.3.5a.2 */
  242. switch (ae) {
  243. case 0:
  244. return 6;
  245. case MESH_FLAGS_AE_A4:
  246. return 12;
  247. case MESH_FLAGS_AE_A5_A6:
  248. return 18;
  249. case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
  250. return 24;
  251. default:
  252. return 6;
  253. }
  254. }
  255. int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
  256. enum nl80211_iftype iftype)
  257. {
  258. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  259. u16 hdrlen, ethertype;
  260. u8 *payload;
  261. u8 dst[ETH_ALEN];
  262. u8 src[ETH_ALEN] __aligned(2);
  263. if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
  264. return -1;
  265. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  266. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  267. * header
  268. * IEEE 802.11 address fields:
  269. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  270. * 0 0 DA SA BSSID n/a
  271. * 0 1 DA BSSID SA n/a
  272. * 1 0 BSSID SA DA n/a
  273. * 1 1 RA TA DA SA
  274. */
  275. memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
  276. memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
  277. switch (hdr->frame_control &
  278. cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  279. case cpu_to_le16(IEEE80211_FCTL_TODS):
  280. if (unlikely(iftype != NL80211_IFTYPE_AP &&
  281. iftype != NL80211_IFTYPE_AP_VLAN))
  282. return -1;
  283. break;
  284. case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  285. if (unlikely(iftype != NL80211_IFTYPE_WDS &&
  286. iftype != NL80211_IFTYPE_MESH_POINT &&
  287. iftype != NL80211_IFTYPE_AP_VLAN &&
  288. iftype != NL80211_IFTYPE_STATION))
  289. return -1;
  290. if (iftype == NL80211_IFTYPE_MESH_POINT) {
  291. struct ieee80211s_hdr *meshdr =
  292. (struct ieee80211s_hdr *) (skb->data + hdrlen);
  293. /* make sure meshdr->flags is on the linear part */
  294. if (!pskb_may_pull(skb, hdrlen + 1))
  295. return -1;
  296. if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
  297. skb_copy_bits(skb, hdrlen +
  298. offsetof(struct ieee80211s_hdr, eaddr1),
  299. dst, ETH_ALEN);
  300. skb_copy_bits(skb, hdrlen +
  301. offsetof(struct ieee80211s_hdr, eaddr2),
  302. src, ETH_ALEN);
  303. }
  304. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  305. }
  306. break;
  307. case cpu_to_le16(IEEE80211_FCTL_FROMDS):
  308. if ((iftype != NL80211_IFTYPE_STATION &&
  309. iftype != NL80211_IFTYPE_MESH_POINT) ||
  310. (is_multicast_ether_addr(dst) &&
  311. !compare_ether_addr(src, addr)))
  312. return -1;
  313. if (iftype == NL80211_IFTYPE_MESH_POINT) {
  314. struct ieee80211s_hdr *meshdr =
  315. (struct ieee80211s_hdr *) (skb->data + hdrlen);
  316. /* make sure meshdr->flags is on the linear part */
  317. if (!pskb_may_pull(skb, hdrlen + 1))
  318. return -1;
  319. if (meshdr->flags & MESH_FLAGS_AE_A4)
  320. skb_copy_bits(skb, hdrlen +
  321. offsetof(struct ieee80211s_hdr, eaddr1),
  322. src, ETH_ALEN);
  323. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  324. }
  325. break;
  326. case cpu_to_le16(0):
  327. if (iftype != NL80211_IFTYPE_ADHOC)
  328. return -1;
  329. break;
  330. }
  331. if (!pskb_may_pull(skb, hdrlen + 8))
  332. return -1;
  333. payload = skb->data + hdrlen;
  334. ethertype = (payload[6] << 8) | payload[7];
  335. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  336. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  337. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  338. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  339. * replace EtherType */
  340. skb_pull(skb, hdrlen + 6);
  341. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  342. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  343. } else {
  344. struct ethhdr *ehdr;
  345. __be16 len;
  346. skb_pull(skb, hdrlen);
  347. len = htons(skb->len);
  348. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  349. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  350. memcpy(ehdr->h_source, src, ETH_ALEN);
  351. ehdr->h_proto = len;
  352. }
  353. return 0;
  354. }
  355. EXPORT_SYMBOL(ieee80211_data_to_8023);
  356. int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
  357. enum nl80211_iftype iftype, u8 *bssid, bool qos)
  358. {
  359. struct ieee80211_hdr hdr;
  360. u16 hdrlen, ethertype;
  361. __le16 fc;
  362. const u8 *encaps_data;
  363. int encaps_len, skip_header_bytes;
  364. int nh_pos, h_pos;
  365. int head_need;
  366. if (unlikely(skb->len < ETH_HLEN))
  367. return -EINVAL;
  368. nh_pos = skb_network_header(skb) - skb->data;
  369. h_pos = skb_transport_header(skb) - skb->data;
  370. /* convert Ethernet header to proper 802.11 header (based on
  371. * operation mode) */
  372. ethertype = (skb->data[12] << 8) | skb->data[13];
  373. fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
  374. switch (iftype) {
  375. case NL80211_IFTYPE_AP:
  376. case NL80211_IFTYPE_AP_VLAN:
  377. fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
  378. /* DA BSSID SA */
  379. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  380. memcpy(hdr.addr2, addr, ETH_ALEN);
  381. memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
  382. hdrlen = 24;
  383. break;
  384. case NL80211_IFTYPE_STATION:
  385. fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
  386. /* BSSID SA DA */
  387. memcpy(hdr.addr1, bssid, ETH_ALEN);
  388. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  389. memcpy(hdr.addr3, skb->data, ETH_ALEN);
  390. hdrlen = 24;
  391. break;
  392. case NL80211_IFTYPE_ADHOC:
  393. /* DA SA BSSID */
  394. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  395. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  396. memcpy(hdr.addr3, bssid, ETH_ALEN);
  397. hdrlen = 24;
  398. break;
  399. default:
  400. return -EOPNOTSUPP;
  401. }
  402. if (qos) {
  403. fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
  404. hdrlen += 2;
  405. }
  406. hdr.frame_control = fc;
  407. hdr.duration_id = 0;
  408. hdr.seq_ctrl = 0;
  409. skip_header_bytes = ETH_HLEN;
  410. if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
  411. encaps_data = bridge_tunnel_header;
  412. encaps_len = sizeof(bridge_tunnel_header);
  413. skip_header_bytes -= 2;
  414. } else if (ethertype > 0x600) {
  415. encaps_data = rfc1042_header;
  416. encaps_len = sizeof(rfc1042_header);
  417. skip_header_bytes -= 2;
  418. } else {
  419. encaps_data = NULL;
  420. encaps_len = 0;
  421. }
  422. skb_pull(skb, skip_header_bytes);
  423. nh_pos -= skip_header_bytes;
  424. h_pos -= skip_header_bytes;
  425. head_need = hdrlen + encaps_len - skb_headroom(skb);
  426. if (head_need > 0 || skb_cloned(skb)) {
  427. head_need = max(head_need, 0);
  428. if (head_need)
  429. skb_orphan(skb);
  430. if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
  431. printk(KERN_ERR "failed to reallocate Tx buffer\n");
  432. return -ENOMEM;
  433. }
  434. skb->truesize += head_need;
  435. }
  436. if (encaps_data) {
  437. memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
  438. nh_pos += encaps_len;
  439. h_pos += encaps_len;
  440. }
  441. memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
  442. nh_pos += hdrlen;
  443. h_pos += hdrlen;
  444. /* Update skb pointers to various headers since this modified frame
  445. * is going to go through Linux networking code that may potentially
  446. * need things like pointer to IP header. */
  447. skb_set_mac_header(skb, 0);
  448. skb_set_network_header(skb, nh_pos);
  449. skb_set_transport_header(skb, h_pos);
  450. return 0;
  451. }
  452. EXPORT_SYMBOL(ieee80211_data_from_8023);
  453. void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
  454. const u8 *addr, enum nl80211_iftype iftype,
  455. const unsigned int extra_headroom)
  456. {
  457. struct sk_buff *frame = NULL;
  458. u16 ethertype;
  459. u8 *payload;
  460. const struct ethhdr *eth;
  461. int remaining, err;
  462. u8 dst[ETH_ALEN], src[ETH_ALEN];
  463. err = ieee80211_data_to_8023(skb, addr, iftype);
  464. if (err)
  465. goto out;
  466. /* skip the wrapping header */
  467. eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
  468. if (!eth)
  469. goto out;
  470. while (skb != frame) {
  471. u8 padding;
  472. __be16 len = eth->h_proto;
  473. unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
  474. remaining = skb->len;
  475. memcpy(dst, eth->h_dest, ETH_ALEN);
  476. memcpy(src, eth->h_source, ETH_ALEN);
  477. padding = (4 - subframe_len) & 0x3;
  478. /* the last MSDU has no padding */
  479. if (subframe_len > remaining)
  480. goto purge;
  481. skb_pull(skb, sizeof(struct ethhdr));
  482. /* reuse skb for the last subframe */
  483. if (remaining <= subframe_len + padding)
  484. frame = skb;
  485. else {
  486. unsigned int hlen = ALIGN(extra_headroom, 4);
  487. /*
  488. * Allocate and reserve two bytes more for payload
  489. * alignment since sizeof(struct ethhdr) is 14.
  490. */
  491. frame = dev_alloc_skb(hlen + subframe_len + 2);
  492. if (!frame)
  493. goto purge;
  494. skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
  495. memcpy(skb_put(frame, ntohs(len)), skb->data,
  496. ntohs(len));
  497. eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
  498. padding);
  499. if (!eth) {
  500. dev_kfree_skb(frame);
  501. goto purge;
  502. }
  503. }
  504. skb_reset_network_header(frame);
  505. frame->dev = skb->dev;
  506. frame->priority = skb->priority;
  507. payload = frame->data;
  508. ethertype = (payload[6] << 8) | payload[7];
  509. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  510. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  511. compare_ether_addr(payload,
  512. bridge_tunnel_header) == 0)) {
  513. /* remove RFC1042 or Bridge-Tunnel
  514. * encapsulation and replace EtherType */
  515. skb_pull(frame, 6);
  516. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  517. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  518. } else {
  519. memcpy(skb_push(frame, sizeof(__be16)), &len,
  520. sizeof(__be16));
  521. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  522. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  523. }
  524. __skb_queue_tail(list, frame);
  525. }
  526. return;
  527. purge:
  528. __skb_queue_purge(list);
  529. out:
  530. dev_kfree_skb(skb);
  531. }
  532. EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
  533. /* Given a data frame determine the 802.1p/1d tag to use. */
  534. unsigned int cfg80211_classify8021d(struct sk_buff *skb)
  535. {
  536. unsigned int dscp;
  537. /* skb->priority values from 256->263 are magic values to
  538. * directly indicate a specific 802.1d priority. This is used
  539. * to allow 802.1d priority to be passed directly in from VLAN
  540. * tags, etc.
  541. */
  542. if (skb->priority >= 256 && skb->priority <= 263)
  543. return skb->priority - 256;
  544. switch (skb->protocol) {
  545. case htons(ETH_P_IP):
  546. dscp = ip_hdr(skb)->tos & 0xfc;
  547. break;
  548. default:
  549. return 0;
  550. }
  551. return dscp >> 5;
  552. }
  553. EXPORT_SYMBOL(cfg80211_classify8021d);
  554. const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
  555. {
  556. u8 *end, *pos;
  557. pos = bss->information_elements;
  558. if (pos == NULL)
  559. return NULL;
  560. end = pos + bss->len_information_elements;
  561. while (pos + 1 < end) {
  562. if (pos + 2 + pos[1] > end)
  563. break;
  564. if (pos[0] == ie)
  565. return pos;
  566. pos += 2 + pos[1];
  567. }
  568. return NULL;
  569. }
  570. EXPORT_SYMBOL(ieee80211_bss_get_ie);
  571. void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
  572. {
  573. struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
  574. struct net_device *dev = wdev->netdev;
  575. int i;
  576. if (!wdev->connect_keys)
  577. return;
  578. for (i = 0; i < 6; i++) {
  579. if (!wdev->connect_keys->params[i].cipher)
  580. continue;
  581. if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL,
  582. &wdev->connect_keys->params[i])) {
  583. printk(KERN_ERR "%s: failed to set key %d\n",
  584. dev->name, i);
  585. continue;
  586. }
  587. if (wdev->connect_keys->def == i)
  588. if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) {
  589. printk(KERN_ERR "%s: failed to set defkey %d\n",
  590. dev->name, i);
  591. continue;
  592. }
  593. if (wdev->connect_keys->defmgmt == i)
  594. if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
  595. printk(KERN_ERR "%s: failed to set mgtdef %d\n",
  596. dev->name, i);
  597. }
  598. kfree(wdev->connect_keys);
  599. wdev->connect_keys = NULL;
  600. }
  601. static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
  602. {
  603. struct cfg80211_event *ev;
  604. unsigned long flags;
  605. const u8 *bssid = NULL;
  606. spin_lock_irqsave(&wdev->event_lock, flags);
  607. while (!list_empty(&wdev->event_list)) {
  608. ev = list_first_entry(&wdev->event_list,
  609. struct cfg80211_event, list);
  610. list_del(&ev->list);
  611. spin_unlock_irqrestore(&wdev->event_lock, flags);
  612. wdev_lock(wdev);
  613. switch (ev->type) {
  614. case EVENT_CONNECT_RESULT:
  615. if (!is_zero_ether_addr(ev->cr.bssid))
  616. bssid = ev->cr.bssid;
  617. __cfg80211_connect_result(
  618. wdev->netdev, bssid,
  619. ev->cr.req_ie, ev->cr.req_ie_len,
  620. ev->cr.resp_ie, ev->cr.resp_ie_len,
  621. ev->cr.status,
  622. ev->cr.status == WLAN_STATUS_SUCCESS,
  623. NULL);
  624. break;
  625. case EVENT_ROAMED:
  626. __cfg80211_roamed(wdev, ev->rm.bssid,
  627. ev->rm.req_ie, ev->rm.req_ie_len,
  628. ev->rm.resp_ie, ev->rm.resp_ie_len);
  629. break;
  630. case EVENT_DISCONNECTED:
  631. __cfg80211_disconnected(wdev->netdev,
  632. ev->dc.ie, ev->dc.ie_len,
  633. ev->dc.reason, true);
  634. break;
  635. case EVENT_IBSS_JOINED:
  636. __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
  637. break;
  638. }
  639. wdev_unlock(wdev);
  640. kfree(ev);
  641. spin_lock_irqsave(&wdev->event_lock, flags);
  642. }
  643. spin_unlock_irqrestore(&wdev->event_lock, flags);
  644. }
  645. void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
  646. {
  647. struct wireless_dev *wdev;
  648. ASSERT_RTNL();
  649. ASSERT_RDEV_LOCK(rdev);
  650. mutex_lock(&rdev->devlist_mtx);
  651. list_for_each_entry(wdev, &rdev->netdev_list, list)
  652. cfg80211_process_wdev_events(wdev);
  653. mutex_unlock(&rdev->devlist_mtx);
  654. }
  655. int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
  656. struct net_device *dev, enum nl80211_iftype ntype,
  657. u32 *flags, struct vif_params *params)
  658. {
  659. int err;
  660. enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
  661. ASSERT_RDEV_LOCK(rdev);
  662. /* don't support changing VLANs, you just re-create them */
  663. if (otype == NL80211_IFTYPE_AP_VLAN)
  664. return -EOPNOTSUPP;
  665. if (!rdev->ops->change_virtual_intf ||
  666. !(rdev->wiphy.interface_modes & (1 << ntype)))
  667. return -EOPNOTSUPP;
  668. /* if it's part of a bridge, reject changing type to station/ibss */
  669. if (dev->br_port && (ntype == NL80211_IFTYPE_ADHOC ||
  670. ntype == NL80211_IFTYPE_STATION))
  671. return -EBUSY;
  672. if (ntype != otype) {
  673. dev->ieee80211_ptr->use_4addr = false;
  674. switch (otype) {
  675. case NL80211_IFTYPE_ADHOC:
  676. cfg80211_leave_ibss(rdev, dev, false);
  677. break;
  678. case NL80211_IFTYPE_STATION:
  679. cfg80211_disconnect(rdev, dev,
  680. WLAN_REASON_DEAUTH_LEAVING, true);
  681. break;
  682. case NL80211_IFTYPE_MESH_POINT:
  683. /* mesh should be handled? */
  684. break;
  685. default:
  686. break;
  687. }
  688. cfg80211_process_rdev_events(rdev);
  689. }
  690. err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
  691. ntype, flags, params);
  692. WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
  693. if (!err && params && params->use_4addr != -1)
  694. dev->ieee80211_ptr->use_4addr = params->use_4addr;
  695. if (!err) {
  696. dev->priv_flags &= ~IFF_DONT_BRIDGE;
  697. switch (ntype) {
  698. case NL80211_IFTYPE_STATION:
  699. if (dev->ieee80211_ptr->use_4addr)
  700. break;
  701. /* fall through */
  702. case NL80211_IFTYPE_ADHOC:
  703. dev->priv_flags |= IFF_DONT_BRIDGE;
  704. break;
  705. case NL80211_IFTYPE_AP:
  706. case NL80211_IFTYPE_AP_VLAN:
  707. case NL80211_IFTYPE_WDS:
  708. case NL80211_IFTYPE_MESH_POINT:
  709. /* bridging OK */
  710. break;
  711. case NL80211_IFTYPE_MONITOR:
  712. /* monitor can't bridge anyway */
  713. break;
  714. case NL80211_IFTYPE_UNSPECIFIED:
  715. case __NL80211_IFTYPE_AFTER_LAST:
  716. /* not happening */
  717. break;
  718. }
  719. }
  720. return err;
  721. }
  722. u16 cfg80211_calculate_bitrate(struct rate_info *rate)
  723. {
  724. int modulation, streams, bitrate;
  725. if (!(rate->flags & RATE_INFO_FLAGS_MCS))
  726. return rate->legacy;
  727. /* the formula below does only work for MCS values smaller than 32 */
  728. if (rate->mcs >= 32)
  729. return 0;
  730. modulation = rate->mcs & 7;
  731. streams = (rate->mcs >> 3) + 1;
  732. bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
  733. 13500000 : 6500000;
  734. if (modulation < 4)
  735. bitrate *= (modulation + 1);
  736. else if (modulation == 4)
  737. bitrate *= (modulation + 2);
  738. else
  739. bitrate *= (modulation + 3);
  740. bitrate *= streams;
  741. if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
  742. bitrate = (bitrate / 9) * 10;
  743. /* do NOT round down here */
  744. return (bitrate + 50000) / 100000;
  745. }