workqueue.c 124 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There is one worker pool for each CPU and
  20. * one extra for works which are better served by workers which are
  21. * not bound to any specific CPU.
  22. *
  23. * Please read Documentation/workqueue.txt for details.
  24. */
  25. #include <linux/export.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched.h>
  28. #include <linux/init.h>
  29. #include <linux/signal.h>
  30. #include <linux/completion.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/slab.h>
  33. #include <linux/cpu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/hardirq.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/freezer.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include <linux/jhash.h>
  44. #include <linux/hashtable.h>
  45. #include <linux/rculist.h>
  46. #include <linux/nodemask.h>
  47. #include "workqueue_internal.h"
  48. enum {
  49. /*
  50. * worker_pool flags
  51. *
  52. * A bound pool is either associated or disassociated with its CPU.
  53. * While associated (!DISASSOCIATED), all workers are bound to the
  54. * CPU and none has %WORKER_UNBOUND set and concurrency management
  55. * is in effect.
  56. *
  57. * While DISASSOCIATED, the cpu may be offline and all workers have
  58. * %WORKER_UNBOUND set and concurrency management disabled, and may
  59. * be executing on any CPU. The pool behaves as an unbound one.
  60. *
  61. * Note that DISASSOCIATED should be flipped only while holding
  62. * manager_mutex to avoid changing binding state while
  63. * create_worker() is in progress.
  64. */
  65. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  66. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  67. POOL_FREEZING = 1 << 3, /* freeze in progress */
  68. /* worker flags */
  69. WORKER_STARTED = 1 << 0, /* started */
  70. WORKER_DIE = 1 << 1, /* die die die */
  71. WORKER_IDLE = 1 << 2, /* is idle */
  72. WORKER_PREP = 1 << 3, /* preparing to run works */
  73. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  74. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  75. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  76. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  77. WORKER_UNBOUND | WORKER_REBOUND,
  78. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  79. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  80. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  81. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  82. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  83. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  84. /* call for help after 10ms
  85. (min two ticks) */
  86. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  87. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  88. /*
  89. * Rescue workers are used only on emergencies and shared by
  90. * all cpus. Give -20.
  91. */
  92. RESCUER_NICE_LEVEL = -20,
  93. HIGHPRI_NICE_LEVEL = -20,
  94. };
  95. /*
  96. * Structure fields follow one of the following exclusion rules.
  97. *
  98. * I: Modifiable by initialization/destruction paths and read-only for
  99. * everyone else.
  100. *
  101. * P: Preemption protected. Disabling preemption is enough and should
  102. * only be modified and accessed from the local cpu.
  103. *
  104. * L: pool->lock protected. Access with pool->lock held.
  105. *
  106. * X: During normal operation, modification requires pool->lock and should
  107. * be done only from local cpu. Either disabling preemption on local
  108. * cpu or grabbing pool->lock is enough for read access. If
  109. * POOL_DISASSOCIATED is set, it's identical to L.
  110. *
  111. * MG: pool->manager_mutex and pool->lock protected. Writes require both
  112. * locks. Reads can happen under either lock.
  113. *
  114. * PL: wq_pool_mutex protected.
  115. *
  116. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  117. *
  118. * WQ: wq->mutex protected.
  119. *
  120. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  121. *
  122. * MD: wq_mayday_lock protected.
  123. */
  124. /* struct worker is defined in workqueue_internal.h */
  125. struct worker_pool {
  126. spinlock_t lock; /* the pool lock */
  127. int cpu; /* I: the associated cpu */
  128. int id; /* I: pool ID */
  129. unsigned int flags; /* X: flags */
  130. struct list_head worklist; /* L: list of pending works */
  131. int nr_workers; /* L: total number of workers */
  132. /* nr_idle includes the ones off idle_list for rebinding */
  133. int nr_idle; /* L: currently idle ones */
  134. struct list_head idle_list; /* X: list of idle workers */
  135. struct timer_list idle_timer; /* L: worker idle timeout */
  136. struct timer_list mayday_timer; /* L: SOS timer for workers */
  137. /* a workers is either on busy_hash or idle_list, or the manager */
  138. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  139. /* L: hash of busy workers */
  140. /* see manage_workers() for details on the two manager mutexes */
  141. struct mutex manager_arb; /* manager arbitration */
  142. struct mutex manager_mutex; /* manager exclusion */
  143. struct idr worker_idr; /* MG: worker IDs and iteration */
  144. struct workqueue_attrs *attrs; /* I: worker attributes */
  145. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  146. int refcnt; /* PL: refcnt for unbound pools */
  147. /*
  148. * The current concurrency level. As it's likely to be accessed
  149. * from other CPUs during try_to_wake_up(), put it in a separate
  150. * cacheline.
  151. */
  152. atomic_t nr_running ____cacheline_aligned_in_smp;
  153. /*
  154. * Destruction of pool is sched-RCU protected to allow dereferences
  155. * from get_work_pool().
  156. */
  157. struct rcu_head rcu;
  158. } ____cacheline_aligned_in_smp;
  159. /*
  160. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  161. * of work_struct->data are used for flags and the remaining high bits
  162. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  163. * number of flag bits.
  164. */
  165. struct pool_workqueue {
  166. struct worker_pool *pool; /* I: the associated pool */
  167. struct workqueue_struct *wq; /* I: the owning workqueue */
  168. int work_color; /* L: current color */
  169. int flush_color; /* L: flushing color */
  170. int refcnt; /* L: reference count */
  171. int nr_in_flight[WORK_NR_COLORS];
  172. /* L: nr of in_flight works */
  173. int nr_active; /* L: nr of active works */
  174. int max_active; /* L: max active works */
  175. struct list_head delayed_works; /* L: delayed works */
  176. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  177. struct list_head mayday_node; /* MD: node on wq->maydays */
  178. /*
  179. * Release of unbound pwq is punted to system_wq. See put_pwq()
  180. * and pwq_unbound_release_workfn() for details. pool_workqueue
  181. * itself is also sched-RCU protected so that the first pwq can be
  182. * determined without grabbing wq->mutex.
  183. */
  184. struct work_struct unbound_release_work;
  185. struct rcu_head rcu;
  186. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  187. /*
  188. * Structure used to wait for workqueue flush.
  189. */
  190. struct wq_flusher {
  191. struct list_head list; /* WQ: list of flushers */
  192. int flush_color; /* WQ: flush color waiting for */
  193. struct completion done; /* flush completion */
  194. };
  195. struct wq_device;
  196. /*
  197. * The externally visible workqueue. It relays the issued work items to
  198. * the appropriate worker_pool through its pool_workqueues.
  199. */
  200. struct workqueue_struct {
  201. unsigned int flags; /* WQ: WQ_* flags */
  202. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
  203. struct list_head pwqs; /* WR: all pwqs of this wq */
  204. struct list_head list; /* PL: list of all workqueues */
  205. struct mutex mutex; /* protects this wq */
  206. int work_color; /* WQ: current work color */
  207. int flush_color; /* WQ: current flush color */
  208. atomic_t nr_pwqs_to_flush; /* flush in progress */
  209. struct wq_flusher *first_flusher; /* WQ: first flusher */
  210. struct list_head flusher_queue; /* WQ: flush waiters */
  211. struct list_head flusher_overflow; /* WQ: flush overflow list */
  212. struct list_head maydays; /* MD: pwqs requesting rescue */
  213. struct worker *rescuer; /* I: rescue worker */
  214. int nr_drainers; /* WQ: drain in progress */
  215. int saved_max_active; /* WQ: saved pwq max_active */
  216. #ifdef CONFIG_SYSFS
  217. struct wq_device *wq_dev; /* I: for sysfs interface */
  218. #endif
  219. #ifdef CONFIG_LOCKDEP
  220. struct lockdep_map lockdep_map;
  221. #endif
  222. char name[]; /* I: workqueue name */
  223. };
  224. static struct kmem_cache *pwq_cache;
  225. static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
  226. static cpumask_var_t *wq_numa_possible_cpumask;
  227. /* possible CPUs of each node */
  228. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  229. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  230. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  231. static LIST_HEAD(workqueues); /* PL: list of all workqueues */
  232. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  233. /* the per-cpu worker pools */
  234. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  235. cpu_worker_pools);
  236. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  237. /* PL: hash of all unbound pools keyed by pool->attrs */
  238. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  239. /* I: attributes used when instantiating standard unbound pools on demand */
  240. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  241. struct workqueue_struct *system_wq __read_mostly;
  242. EXPORT_SYMBOL_GPL(system_wq);
  243. struct workqueue_struct *system_highpri_wq __read_mostly;
  244. EXPORT_SYMBOL_GPL(system_highpri_wq);
  245. struct workqueue_struct *system_long_wq __read_mostly;
  246. EXPORT_SYMBOL_GPL(system_long_wq);
  247. struct workqueue_struct *system_unbound_wq __read_mostly;
  248. EXPORT_SYMBOL_GPL(system_unbound_wq);
  249. struct workqueue_struct *system_freezable_wq __read_mostly;
  250. EXPORT_SYMBOL_GPL(system_freezable_wq);
  251. static int worker_thread(void *__worker);
  252. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  253. const struct workqueue_attrs *from);
  254. #define CREATE_TRACE_POINTS
  255. #include <trace/events/workqueue.h>
  256. #define assert_rcu_or_pool_mutex() \
  257. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  258. lockdep_is_held(&wq_pool_mutex), \
  259. "sched RCU or wq_pool_mutex should be held")
  260. #define assert_rcu_or_wq_mutex(wq) \
  261. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  262. lockdep_is_held(&wq->mutex), \
  263. "sched RCU or wq->mutex should be held")
  264. #ifdef CONFIG_LOCKDEP
  265. #define assert_manager_or_pool_lock(pool) \
  266. WARN_ONCE(debug_locks && \
  267. !lockdep_is_held(&(pool)->manager_mutex) && \
  268. !lockdep_is_held(&(pool)->lock), \
  269. "pool->manager_mutex or ->lock should be held")
  270. #else
  271. #define assert_manager_or_pool_lock(pool) do { } while (0)
  272. #endif
  273. #define for_each_cpu_worker_pool(pool, cpu) \
  274. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  275. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  276. (pool)++)
  277. /**
  278. * for_each_pool - iterate through all worker_pools in the system
  279. * @pool: iteration cursor
  280. * @pi: integer used for iteration
  281. *
  282. * This must be called either with wq_pool_mutex held or sched RCU read
  283. * locked. If the pool needs to be used beyond the locking in effect, the
  284. * caller is responsible for guaranteeing that the pool stays online.
  285. *
  286. * The if/else clause exists only for the lockdep assertion and can be
  287. * ignored.
  288. */
  289. #define for_each_pool(pool, pi) \
  290. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  291. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  292. else
  293. /**
  294. * for_each_pool_worker - iterate through all workers of a worker_pool
  295. * @worker: iteration cursor
  296. * @wi: integer used for iteration
  297. * @pool: worker_pool to iterate workers of
  298. *
  299. * This must be called with either @pool->manager_mutex or ->lock held.
  300. *
  301. * The if/else clause exists only for the lockdep assertion and can be
  302. * ignored.
  303. */
  304. #define for_each_pool_worker(worker, wi, pool) \
  305. idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
  306. if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
  307. else
  308. /**
  309. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  310. * @pwq: iteration cursor
  311. * @wq: the target workqueue
  312. *
  313. * This must be called either with wq->mutex held or sched RCU read locked.
  314. * If the pwq needs to be used beyond the locking in effect, the caller is
  315. * responsible for guaranteeing that the pwq stays online.
  316. *
  317. * The if/else clause exists only for the lockdep assertion and can be
  318. * ignored.
  319. */
  320. #define for_each_pwq(pwq, wq) \
  321. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  322. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  323. else
  324. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  325. static struct debug_obj_descr work_debug_descr;
  326. static void *work_debug_hint(void *addr)
  327. {
  328. return ((struct work_struct *) addr)->func;
  329. }
  330. /*
  331. * fixup_init is called when:
  332. * - an active object is initialized
  333. */
  334. static int work_fixup_init(void *addr, enum debug_obj_state state)
  335. {
  336. struct work_struct *work = addr;
  337. switch (state) {
  338. case ODEBUG_STATE_ACTIVE:
  339. cancel_work_sync(work);
  340. debug_object_init(work, &work_debug_descr);
  341. return 1;
  342. default:
  343. return 0;
  344. }
  345. }
  346. /*
  347. * fixup_activate is called when:
  348. * - an active object is activated
  349. * - an unknown object is activated (might be a statically initialized object)
  350. */
  351. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  352. {
  353. struct work_struct *work = addr;
  354. switch (state) {
  355. case ODEBUG_STATE_NOTAVAILABLE:
  356. /*
  357. * This is not really a fixup. The work struct was
  358. * statically initialized. We just make sure that it
  359. * is tracked in the object tracker.
  360. */
  361. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  362. debug_object_init(work, &work_debug_descr);
  363. debug_object_activate(work, &work_debug_descr);
  364. return 0;
  365. }
  366. WARN_ON_ONCE(1);
  367. return 0;
  368. case ODEBUG_STATE_ACTIVE:
  369. WARN_ON(1);
  370. default:
  371. return 0;
  372. }
  373. }
  374. /*
  375. * fixup_free is called when:
  376. * - an active object is freed
  377. */
  378. static int work_fixup_free(void *addr, enum debug_obj_state state)
  379. {
  380. struct work_struct *work = addr;
  381. switch (state) {
  382. case ODEBUG_STATE_ACTIVE:
  383. cancel_work_sync(work);
  384. debug_object_free(work, &work_debug_descr);
  385. return 1;
  386. default:
  387. return 0;
  388. }
  389. }
  390. static struct debug_obj_descr work_debug_descr = {
  391. .name = "work_struct",
  392. .debug_hint = work_debug_hint,
  393. .fixup_init = work_fixup_init,
  394. .fixup_activate = work_fixup_activate,
  395. .fixup_free = work_fixup_free,
  396. };
  397. static inline void debug_work_activate(struct work_struct *work)
  398. {
  399. debug_object_activate(work, &work_debug_descr);
  400. }
  401. static inline void debug_work_deactivate(struct work_struct *work)
  402. {
  403. debug_object_deactivate(work, &work_debug_descr);
  404. }
  405. void __init_work(struct work_struct *work, int onstack)
  406. {
  407. if (onstack)
  408. debug_object_init_on_stack(work, &work_debug_descr);
  409. else
  410. debug_object_init(work, &work_debug_descr);
  411. }
  412. EXPORT_SYMBOL_GPL(__init_work);
  413. void destroy_work_on_stack(struct work_struct *work)
  414. {
  415. debug_object_free(work, &work_debug_descr);
  416. }
  417. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  418. #else
  419. static inline void debug_work_activate(struct work_struct *work) { }
  420. static inline void debug_work_deactivate(struct work_struct *work) { }
  421. #endif
  422. /* allocate ID and assign it to @pool */
  423. static int worker_pool_assign_id(struct worker_pool *pool)
  424. {
  425. int ret;
  426. lockdep_assert_held(&wq_pool_mutex);
  427. do {
  428. if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
  429. return -ENOMEM;
  430. ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
  431. } while (ret == -EAGAIN);
  432. return ret;
  433. }
  434. /**
  435. * first_pwq - return the first pool_workqueue of the specified workqueue
  436. * @wq: the target workqueue
  437. *
  438. * This must be called either with wq->mutex held or sched RCU read locked.
  439. * If the pwq needs to be used beyond the locking in effect, the caller is
  440. * responsible for guaranteeing that the pwq stays online.
  441. */
  442. static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
  443. {
  444. assert_rcu_or_wq_mutex(wq);
  445. return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
  446. pwqs_node);
  447. }
  448. static unsigned int work_color_to_flags(int color)
  449. {
  450. return color << WORK_STRUCT_COLOR_SHIFT;
  451. }
  452. static int get_work_color(struct work_struct *work)
  453. {
  454. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  455. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  456. }
  457. static int work_next_color(int color)
  458. {
  459. return (color + 1) % WORK_NR_COLORS;
  460. }
  461. /*
  462. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  463. * contain the pointer to the queued pwq. Once execution starts, the flag
  464. * is cleared and the high bits contain OFFQ flags and pool ID.
  465. *
  466. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  467. * and clear_work_data() can be used to set the pwq, pool or clear
  468. * work->data. These functions should only be called while the work is
  469. * owned - ie. while the PENDING bit is set.
  470. *
  471. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  472. * corresponding to a work. Pool is available once the work has been
  473. * queued anywhere after initialization until it is sync canceled. pwq is
  474. * available only while the work item is queued.
  475. *
  476. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  477. * canceled. While being canceled, a work item may have its PENDING set
  478. * but stay off timer and worklist for arbitrarily long and nobody should
  479. * try to steal the PENDING bit.
  480. */
  481. static inline void set_work_data(struct work_struct *work, unsigned long data,
  482. unsigned long flags)
  483. {
  484. WARN_ON_ONCE(!work_pending(work));
  485. atomic_long_set(&work->data, data | flags | work_static(work));
  486. }
  487. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  488. unsigned long extra_flags)
  489. {
  490. set_work_data(work, (unsigned long)pwq,
  491. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  492. }
  493. static void set_work_pool_and_keep_pending(struct work_struct *work,
  494. int pool_id)
  495. {
  496. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  497. WORK_STRUCT_PENDING);
  498. }
  499. static void set_work_pool_and_clear_pending(struct work_struct *work,
  500. int pool_id)
  501. {
  502. /*
  503. * The following wmb is paired with the implied mb in
  504. * test_and_set_bit(PENDING) and ensures all updates to @work made
  505. * here are visible to and precede any updates by the next PENDING
  506. * owner.
  507. */
  508. smp_wmb();
  509. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  510. }
  511. static void clear_work_data(struct work_struct *work)
  512. {
  513. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  514. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  515. }
  516. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  517. {
  518. unsigned long data = atomic_long_read(&work->data);
  519. if (data & WORK_STRUCT_PWQ)
  520. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  521. else
  522. return NULL;
  523. }
  524. /**
  525. * get_work_pool - return the worker_pool a given work was associated with
  526. * @work: the work item of interest
  527. *
  528. * Return the worker_pool @work was last associated with. %NULL if none.
  529. *
  530. * Pools are created and destroyed under wq_pool_mutex, and allows read
  531. * access under sched-RCU read lock. As such, this function should be
  532. * called under wq_pool_mutex or with preemption disabled.
  533. *
  534. * All fields of the returned pool are accessible as long as the above
  535. * mentioned locking is in effect. If the returned pool needs to be used
  536. * beyond the critical section, the caller is responsible for ensuring the
  537. * returned pool is and stays online.
  538. */
  539. static struct worker_pool *get_work_pool(struct work_struct *work)
  540. {
  541. unsigned long data = atomic_long_read(&work->data);
  542. int pool_id;
  543. assert_rcu_or_pool_mutex();
  544. if (data & WORK_STRUCT_PWQ)
  545. return ((struct pool_workqueue *)
  546. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  547. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  548. if (pool_id == WORK_OFFQ_POOL_NONE)
  549. return NULL;
  550. return idr_find(&worker_pool_idr, pool_id);
  551. }
  552. /**
  553. * get_work_pool_id - return the worker pool ID a given work is associated with
  554. * @work: the work item of interest
  555. *
  556. * Return the worker_pool ID @work was last associated with.
  557. * %WORK_OFFQ_POOL_NONE if none.
  558. */
  559. static int get_work_pool_id(struct work_struct *work)
  560. {
  561. unsigned long data = atomic_long_read(&work->data);
  562. if (data & WORK_STRUCT_PWQ)
  563. return ((struct pool_workqueue *)
  564. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  565. return data >> WORK_OFFQ_POOL_SHIFT;
  566. }
  567. static void mark_work_canceling(struct work_struct *work)
  568. {
  569. unsigned long pool_id = get_work_pool_id(work);
  570. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  571. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  572. }
  573. static bool work_is_canceling(struct work_struct *work)
  574. {
  575. unsigned long data = atomic_long_read(&work->data);
  576. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  577. }
  578. /*
  579. * Policy functions. These define the policies on how the global worker
  580. * pools are managed. Unless noted otherwise, these functions assume that
  581. * they're being called with pool->lock held.
  582. */
  583. static bool __need_more_worker(struct worker_pool *pool)
  584. {
  585. return !atomic_read(&pool->nr_running);
  586. }
  587. /*
  588. * Need to wake up a worker? Called from anything but currently
  589. * running workers.
  590. *
  591. * Note that, because unbound workers never contribute to nr_running, this
  592. * function will always return %true for unbound pools as long as the
  593. * worklist isn't empty.
  594. */
  595. static bool need_more_worker(struct worker_pool *pool)
  596. {
  597. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  598. }
  599. /* Can I start working? Called from busy but !running workers. */
  600. static bool may_start_working(struct worker_pool *pool)
  601. {
  602. return pool->nr_idle;
  603. }
  604. /* Do I need to keep working? Called from currently running workers. */
  605. static bool keep_working(struct worker_pool *pool)
  606. {
  607. return !list_empty(&pool->worklist) &&
  608. atomic_read(&pool->nr_running) <= 1;
  609. }
  610. /* Do we need a new worker? Called from manager. */
  611. static bool need_to_create_worker(struct worker_pool *pool)
  612. {
  613. return need_more_worker(pool) && !may_start_working(pool);
  614. }
  615. /* Do I need to be the manager? */
  616. static bool need_to_manage_workers(struct worker_pool *pool)
  617. {
  618. return need_to_create_worker(pool) ||
  619. (pool->flags & POOL_MANAGE_WORKERS);
  620. }
  621. /* Do we have too many workers and should some go away? */
  622. static bool too_many_workers(struct worker_pool *pool)
  623. {
  624. bool managing = mutex_is_locked(&pool->manager_arb);
  625. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  626. int nr_busy = pool->nr_workers - nr_idle;
  627. /*
  628. * nr_idle and idle_list may disagree if idle rebinding is in
  629. * progress. Never return %true if idle_list is empty.
  630. */
  631. if (list_empty(&pool->idle_list))
  632. return false;
  633. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  634. }
  635. /*
  636. * Wake up functions.
  637. */
  638. /* Return the first worker. Safe with preemption disabled */
  639. static struct worker *first_worker(struct worker_pool *pool)
  640. {
  641. if (unlikely(list_empty(&pool->idle_list)))
  642. return NULL;
  643. return list_first_entry(&pool->idle_list, struct worker, entry);
  644. }
  645. /**
  646. * wake_up_worker - wake up an idle worker
  647. * @pool: worker pool to wake worker from
  648. *
  649. * Wake up the first idle worker of @pool.
  650. *
  651. * CONTEXT:
  652. * spin_lock_irq(pool->lock).
  653. */
  654. static void wake_up_worker(struct worker_pool *pool)
  655. {
  656. struct worker *worker = first_worker(pool);
  657. if (likely(worker))
  658. wake_up_process(worker->task);
  659. }
  660. /**
  661. * wq_worker_waking_up - a worker is waking up
  662. * @task: task waking up
  663. * @cpu: CPU @task is waking up to
  664. *
  665. * This function is called during try_to_wake_up() when a worker is
  666. * being awoken.
  667. *
  668. * CONTEXT:
  669. * spin_lock_irq(rq->lock)
  670. */
  671. void wq_worker_waking_up(struct task_struct *task, int cpu)
  672. {
  673. struct worker *worker = kthread_data(task);
  674. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  675. WARN_ON_ONCE(worker->pool->cpu != cpu);
  676. atomic_inc(&worker->pool->nr_running);
  677. }
  678. }
  679. /**
  680. * wq_worker_sleeping - a worker is going to sleep
  681. * @task: task going to sleep
  682. * @cpu: CPU in question, must be the current CPU number
  683. *
  684. * This function is called during schedule() when a busy worker is
  685. * going to sleep. Worker on the same cpu can be woken up by
  686. * returning pointer to its task.
  687. *
  688. * CONTEXT:
  689. * spin_lock_irq(rq->lock)
  690. *
  691. * RETURNS:
  692. * Worker task on @cpu to wake up, %NULL if none.
  693. */
  694. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  695. {
  696. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  697. struct worker_pool *pool;
  698. /*
  699. * Rescuers, which may not have all the fields set up like normal
  700. * workers, also reach here, let's not access anything before
  701. * checking NOT_RUNNING.
  702. */
  703. if (worker->flags & WORKER_NOT_RUNNING)
  704. return NULL;
  705. pool = worker->pool;
  706. /* this can only happen on the local cpu */
  707. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  708. return NULL;
  709. /*
  710. * The counterpart of the following dec_and_test, implied mb,
  711. * worklist not empty test sequence is in insert_work().
  712. * Please read comment there.
  713. *
  714. * NOT_RUNNING is clear. This means that we're bound to and
  715. * running on the local cpu w/ rq lock held and preemption
  716. * disabled, which in turn means that none else could be
  717. * manipulating idle_list, so dereferencing idle_list without pool
  718. * lock is safe.
  719. */
  720. if (atomic_dec_and_test(&pool->nr_running) &&
  721. !list_empty(&pool->worklist))
  722. to_wakeup = first_worker(pool);
  723. return to_wakeup ? to_wakeup->task : NULL;
  724. }
  725. /**
  726. * worker_set_flags - set worker flags and adjust nr_running accordingly
  727. * @worker: self
  728. * @flags: flags to set
  729. * @wakeup: wakeup an idle worker if necessary
  730. *
  731. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  732. * nr_running becomes zero and @wakeup is %true, an idle worker is
  733. * woken up.
  734. *
  735. * CONTEXT:
  736. * spin_lock_irq(pool->lock)
  737. */
  738. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  739. bool wakeup)
  740. {
  741. struct worker_pool *pool = worker->pool;
  742. WARN_ON_ONCE(worker->task != current);
  743. /*
  744. * If transitioning into NOT_RUNNING, adjust nr_running and
  745. * wake up an idle worker as necessary if requested by
  746. * @wakeup.
  747. */
  748. if ((flags & WORKER_NOT_RUNNING) &&
  749. !(worker->flags & WORKER_NOT_RUNNING)) {
  750. if (wakeup) {
  751. if (atomic_dec_and_test(&pool->nr_running) &&
  752. !list_empty(&pool->worklist))
  753. wake_up_worker(pool);
  754. } else
  755. atomic_dec(&pool->nr_running);
  756. }
  757. worker->flags |= flags;
  758. }
  759. /**
  760. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  761. * @worker: self
  762. * @flags: flags to clear
  763. *
  764. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  765. *
  766. * CONTEXT:
  767. * spin_lock_irq(pool->lock)
  768. */
  769. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  770. {
  771. struct worker_pool *pool = worker->pool;
  772. unsigned int oflags = worker->flags;
  773. WARN_ON_ONCE(worker->task != current);
  774. worker->flags &= ~flags;
  775. /*
  776. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  777. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  778. * of multiple flags, not a single flag.
  779. */
  780. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  781. if (!(worker->flags & WORKER_NOT_RUNNING))
  782. atomic_inc(&pool->nr_running);
  783. }
  784. /**
  785. * find_worker_executing_work - find worker which is executing a work
  786. * @pool: pool of interest
  787. * @work: work to find worker for
  788. *
  789. * Find a worker which is executing @work on @pool by searching
  790. * @pool->busy_hash which is keyed by the address of @work. For a worker
  791. * to match, its current execution should match the address of @work and
  792. * its work function. This is to avoid unwanted dependency between
  793. * unrelated work executions through a work item being recycled while still
  794. * being executed.
  795. *
  796. * This is a bit tricky. A work item may be freed once its execution
  797. * starts and nothing prevents the freed area from being recycled for
  798. * another work item. If the same work item address ends up being reused
  799. * before the original execution finishes, workqueue will identify the
  800. * recycled work item as currently executing and make it wait until the
  801. * current execution finishes, introducing an unwanted dependency.
  802. *
  803. * This function checks the work item address and work function to avoid
  804. * false positives. Note that this isn't complete as one may construct a
  805. * work function which can introduce dependency onto itself through a
  806. * recycled work item. Well, if somebody wants to shoot oneself in the
  807. * foot that badly, there's only so much we can do, and if such deadlock
  808. * actually occurs, it should be easy to locate the culprit work function.
  809. *
  810. * CONTEXT:
  811. * spin_lock_irq(pool->lock).
  812. *
  813. * RETURNS:
  814. * Pointer to worker which is executing @work if found, NULL
  815. * otherwise.
  816. */
  817. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  818. struct work_struct *work)
  819. {
  820. struct worker *worker;
  821. hash_for_each_possible(pool->busy_hash, worker, hentry,
  822. (unsigned long)work)
  823. if (worker->current_work == work &&
  824. worker->current_func == work->func)
  825. return worker;
  826. return NULL;
  827. }
  828. /**
  829. * move_linked_works - move linked works to a list
  830. * @work: start of series of works to be scheduled
  831. * @head: target list to append @work to
  832. * @nextp: out paramter for nested worklist walking
  833. *
  834. * Schedule linked works starting from @work to @head. Work series to
  835. * be scheduled starts at @work and includes any consecutive work with
  836. * WORK_STRUCT_LINKED set in its predecessor.
  837. *
  838. * If @nextp is not NULL, it's updated to point to the next work of
  839. * the last scheduled work. This allows move_linked_works() to be
  840. * nested inside outer list_for_each_entry_safe().
  841. *
  842. * CONTEXT:
  843. * spin_lock_irq(pool->lock).
  844. */
  845. static void move_linked_works(struct work_struct *work, struct list_head *head,
  846. struct work_struct **nextp)
  847. {
  848. struct work_struct *n;
  849. /*
  850. * Linked worklist will always end before the end of the list,
  851. * use NULL for list head.
  852. */
  853. list_for_each_entry_safe_from(work, n, NULL, entry) {
  854. list_move_tail(&work->entry, head);
  855. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  856. break;
  857. }
  858. /*
  859. * If we're already inside safe list traversal and have moved
  860. * multiple works to the scheduled queue, the next position
  861. * needs to be updated.
  862. */
  863. if (nextp)
  864. *nextp = n;
  865. }
  866. /**
  867. * get_pwq - get an extra reference on the specified pool_workqueue
  868. * @pwq: pool_workqueue to get
  869. *
  870. * Obtain an extra reference on @pwq. The caller should guarantee that
  871. * @pwq has positive refcnt and be holding the matching pool->lock.
  872. */
  873. static void get_pwq(struct pool_workqueue *pwq)
  874. {
  875. lockdep_assert_held(&pwq->pool->lock);
  876. WARN_ON_ONCE(pwq->refcnt <= 0);
  877. pwq->refcnt++;
  878. }
  879. /**
  880. * put_pwq - put a pool_workqueue reference
  881. * @pwq: pool_workqueue to put
  882. *
  883. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  884. * destruction. The caller should be holding the matching pool->lock.
  885. */
  886. static void put_pwq(struct pool_workqueue *pwq)
  887. {
  888. lockdep_assert_held(&pwq->pool->lock);
  889. if (likely(--pwq->refcnt))
  890. return;
  891. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  892. return;
  893. /*
  894. * @pwq can't be released under pool->lock, bounce to
  895. * pwq_unbound_release_workfn(). This never recurses on the same
  896. * pool->lock as this path is taken only for unbound workqueues and
  897. * the release work item is scheduled on a per-cpu workqueue. To
  898. * avoid lockdep warning, unbound pool->locks are given lockdep
  899. * subclass of 1 in get_unbound_pool().
  900. */
  901. schedule_work(&pwq->unbound_release_work);
  902. }
  903. static void pwq_activate_delayed_work(struct work_struct *work)
  904. {
  905. struct pool_workqueue *pwq = get_work_pwq(work);
  906. trace_workqueue_activate_work(work);
  907. move_linked_works(work, &pwq->pool->worklist, NULL);
  908. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  909. pwq->nr_active++;
  910. }
  911. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  912. {
  913. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  914. struct work_struct, entry);
  915. pwq_activate_delayed_work(work);
  916. }
  917. /**
  918. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  919. * @pwq: pwq of interest
  920. * @color: color of work which left the queue
  921. *
  922. * A work either has completed or is removed from pending queue,
  923. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  924. *
  925. * CONTEXT:
  926. * spin_lock_irq(pool->lock).
  927. */
  928. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  929. {
  930. /* uncolored work items don't participate in flushing or nr_active */
  931. if (color == WORK_NO_COLOR)
  932. goto out_put;
  933. pwq->nr_in_flight[color]--;
  934. pwq->nr_active--;
  935. if (!list_empty(&pwq->delayed_works)) {
  936. /* one down, submit a delayed one */
  937. if (pwq->nr_active < pwq->max_active)
  938. pwq_activate_first_delayed(pwq);
  939. }
  940. /* is flush in progress and are we at the flushing tip? */
  941. if (likely(pwq->flush_color != color))
  942. goto out_put;
  943. /* are there still in-flight works? */
  944. if (pwq->nr_in_flight[color])
  945. goto out_put;
  946. /* this pwq is done, clear flush_color */
  947. pwq->flush_color = -1;
  948. /*
  949. * If this was the last pwq, wake up the first flusher. It
  950. * will handle the rest.
  951. */
  952. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  953. complete(&pwq->wq->first_flusher->done);
  954. out_put:
  955. put_pwq(pwq);
  956. }
  957. /**
  958. * try_to_grab_pending - steal work item from worklist and disable irq
  959. * @work: work item to steal
  960. * @is_dwork: @work is a delayed_work
  961. * @flags: place to store irq state
  962. *
  963. * Try to grab PENDING bit of @work. This function can handle @work in any
  964. * stable state - idle, on timer or on worklist. Return values are
  965. *
  966. * 1 if @work was pending and we successfully stole PENDING
  967. * 0 if @work was idle and we claimed PENDING
  968. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  969. * -ENOENT if someone else is canceling @work, this state may persist
  970. * for arbitrarily long
  971. *
  972. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  973. * interrupted while holding PENDING and @work off queue, irq must be
  974. * disabled on entry. This, combined with delayed_work->timer being
  975. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  976. *
  977. * On successful return, >= 0, irq is disabled and the caller is
  978. * responsible for releasing it using local_irq_restore(*@flags).
  979. *
  980. * This function is safe to call from any context including IRQ handler.
  981. */
  982. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  983. unsigned long *flags)
  984. {
  985. struct worker_pool *pool;
  986. struct pool_workqueue *pwq;
  987. local_irq_save(*flags);
  988. /* try to steal the timer if it exists */
  989. if (is_dwork) {
  990. struct delayed_work *dwork = to_delayed_work(work);
  991. /*
  992. * dwork->timer is irqsafe. If del_timer() fails, it's
  993. * guaranteed that the timer is not queued anywhere and not
  994. * running on the local CPU.
  995. */
  996. if (likely(del_timer(&dwork->timer)))
  997. return 1;
  998. }
  999. /* try to claim PENDING the normal way */
  1000. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1001. return 0;
  1002. /*
  1003. * The queueing is in progress, or it is already queued. Try to
  1004. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1005. */
  1006. pool = get_work_pool(work);
  1007. if (!pool)
  1008. goto fail;
  1009. spin_lock(&pool->lock);
  1010. /*
  1011. * work->data is guaranteed to point to pwq only while the work
  1012. * item is queued on pwq->wq, and both updating work->data to point
  1013. * to pwq on queueing and to pool on dequeueing are done under
  1014. * pwq->pool->lock. This in turn guarantees that, if work->data
  1015. * points to pwq which is associated with a locked pool, the work
  1016. * item is currently queued on that pool.
  1017. */
  1018. pwq = get_work_pwq(work);
  1019. if (pwq && pwq->pool == pool) {
  1020. debug_work_deactivate(work);
  1021. /*
  1022. * A delayed work item cannot be grabbed directly because
  1023. * it might have linked NO_COLOR work items which, if left
  1024. * on the delayed_list, will confuse pwq->nr_active
  1025. * management later on and cause stall. Make sure the work
  1026. * item is activated before grabbing.
  1027. */
  1028. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1029. pwq_activate_delayed_work(work);
  1030. list_del_init(&work->entry);
  1031. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1032. /* work->data points to pwq iff queued, point to pool */
  1033. set_work_pool_and_keep_pending(work, pool->id);
  1034. spin_unlock(&pool->lock);
  1035. return 1;
  1036. }
  1037. spin_unlock(&pool->lock);
  1038. fail:
  1039. local_irq_restore(*flags);
  1040. if (work_is_canceling(work))
  1041. return -ENOENT;
  1042. cpu_relax();
  1043. return -EAGAIN;
  1044. }
  1045. /**
  1046. * insert_work - insert a work into a pool
  1047. * @pwq: pwq @work belongs to
  1048. * @work: work to insert
  1049. * @head: insertion point
  1050. * @extra_flags: extra WORK_STRUCT_* flags to set
  1051. *
  1052. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1053. * work_struct flags.
  1054. *
  1055. * CONTEXT:
  1056. * spin_lock_irq(pool->lock).
  1057. */
  1058. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1059. struct list_head *head, unsigned int extra_flags)
  1060. {
  1061. struct worker_pool *pool = pwq->pool;
  1062. /* we own @work, set data and link */
  1063. set_work_pwq(work, pwq, extra_flags);
  1064. list_add_tail(&work->entry, head);
  1065. get_pwq(pwq);
  1066. /*
  1067. * Ensure either wq_worker_sleeping() sees the above
  1068. * list_add_tail() or we see zero nr_running to avoid workers lying
  1069. * around lazily while there are works to be processed.
  1070. */
  1071. smp_mb();
  1072. if (__need_more_worker(pool))
  1073. wake_up_worker(pool);
  1074. }
  1075. /*
  1076. * Test whether @work is being queued from another work executing on the
  1077. * same workqueue.
  1078. */
  1079. static bool is_chained_work(struct workqueue_struct *wq)
  1080. {
  1081. struct worker *worker;
  1082. worker = current_wq_worker();
  1083. /*
  1084. * Return %true iff I'm a worker execuing a work item on @wq. If
  1085. * I'm @worker, it's safe to dereference it without locking.
  1086. */
  1087. return worker && worker->current_pwq->wq == wq;
  1088. }
  1089. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1090. struct work_struct *work)
  1091. {
  1092. struct pool_workqueue *pwq;
  1093. struct worker_pool *last_pool;
  1094. struct list_head *worklist;
  1095. unsigned int work_flags;
  1096. unsigned int req_cpu = cpu;
  1097. /*
  1098. * While a work item is PENDING && off queue, a task trying to
  1099. * steal the PENDING will busy-loop waiting for it to either get
  1100. * queued or lose PENDING. Grabbing PENDING and queueing should
  1101. * happen with IRQ disabled.
  1102. */
  1103. WARN_ON_ONCE(!irqs_disabled());
  1104. debug_work_activate(work);
  1105. /* if dying, only works from the same workqueue are allowed */
  1106. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1107. WARN_ON_ONCE(!is_chained_work(wq)))
  1108. return;
  1109. retry:
  1110. /* pwq which will be used unless @work is executing elsewhere */
  1111. if (!(wq->flags & WQ_UNBOUND)) {
  1112. if (cpu == WORK_CPU_UNBOUND)
  1113. cpu = raw_smp_processor_id();
  1114. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1115. } else {
  1116. pwq = first_pwq(wq);
  1117. }
  1118. /*
  1119. * If @work was previously on a different pool, it might still be
  1120. * running there, in which case the work needs to be queued on that
  1121. * pool to guarantee non-reentrancy.
  1122. */
  1123. last_pool = get_work_pool(work);
  1124. if (last_pool && last_pool != pwq->pool) {
  1125. struct worker *worker;
  1126. spin_lock(&last_pool->lock);
  1127. worker = find_worker_executing_work(last_pool, work);
  1128. if (worker && worker->current_pwq->wq == wq) {
  1129. pwq = worker->current_pwq;
  1130. } else {
  1131. /* meh... not running there, queue here */
  1132. spin_unlock(&last_pool->lock);
  1133. spin_lock(&pwq->pool->lock);
  1134. }
  1135. } else {
  1136. spin_lock(&pwq->pool->lock);
  1137. }
  1138. /*
  1139. * pwq is determined and locked. For unbound pools, we could have
  1140. * raced with pwq release and it could already be dead. If its
  1141. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1142. * without another pwq replacing it as the first pwq or while a
  1143. * work item is executing on it, so the retying is guaranteed to
  1144. * make forward-progress.
  1145. */
  1146. if (unlikely(!pwq->refcnt)) {
  1147. if (wq->flags & WQ_UNBOUND) {
  1148. spin_unlock(&pwq->pool->lock);
  1149. cpu_relax();
  1150. goto retry;
  1151. }
  1152. /* oops */
  1153. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1154. wq->name, cpu);
  1155. }
  1156. /* pwq determined, queue */
  1157. trace_workqueue_queue_work(req_cpu, pwq, work);
  1158. if (WARN_ON(!list_empty(&work->entry))) {
  1159. spin_unlock(&pwq->pool->lock);
  1160. return;
  1161. }
  1162. pwq->nr_in_flight[pwq->work_color]++;
  1163. work_flags = work_color_to_flags(pwq->work_color);
  1164. if (likely(pwq->nr_active < pwq->max_active)) {
  1165. trace_workqueue_activate_work(work);
  1166. pwq->nr_active++;
  1167. worklist = &pwq->pool->worklist;
  1168. } else {
  1169. work_flags |= WORK_STRUCT_DELAYED;
  1170. worklist = &pwq->delayed_works;
  1171. }
  1172. insert_work(pwq, work, worklist, work_flags);
  1173. spin_unlock(&pwq->pool->lock);
  1174. }
  1175. /**
  1176. * queue_work_on - queue work on specific cpu
  1177. * @cpu: CPU number to execute work on
  1178. * @wq: workqueue to use
  1179. * @work: work to queue
  1180. *
  1181. * Returns %false if @work was already on a queue, %true otherwise.
  1182. *
  1183. * We queue the work to a specific CPU, the caller must ensure it
  1184. * can't go away.
  1185. */
  1186. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1187. struct work_struct *work)
  1188. {
  1189. bool ret = false;
  1190. unsigned long flags;
  1191. local_irq_save(flags);
  1192. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1193. __queue_work(cpu, wq, work);
  1194. ret = true;
  1195. }
  1196. local_irq_restore(flags);
  1197. return ret;
  1198. }
  1199. EXPORT_SYMBOL_GPL(queue_work_on);
  1200. void delayed_work_timer_fn(unsigned long __data)
  1201. {
  1202. struct delayed_work *dwork = (struct delayed_work *)__data;
  1203. /* should have been called from irqsafe timer with irq already off */
  1204. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1205. }
  1206. EXPORT_SYMBOL(delayed_work_timer_fn);
  1207. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1208. struct delayed_work *dwork, unsigned long delay)
  1209. {
  1210. struct timer_list *timer = &dwork->timer;
  1211. struct work_struct *work = &dwork->work;
  1212. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1213. timer->data != (unsigned long)dwork);
  1214. WARN_ON_ONCE(timer_pending(timer));
  1215. WARN_ON_ONCE(!list_empty(&work->entry));
  1216. /*
  1217. * If @delay is 0, queue @dwork->work immediately. This is for
  1218. * both optimization and correctness. The earliest @timer can
  1219. * expire is on the closest next tick and delayed_work users depend
  1220. * on that there's no such delay when @delay is 0.
  1221. */
  1222. if (!delay) {
  1223. __queue_work(cpu, wq, &dwork->work);
  1224. return;
  1225. }
  1226. timer_stats_timer_set_start_info(&dwork->timer);
  1227. dwork->wq = wq;
  1228. dwork->cpu = cpu;
  1229. timer->expires = jiffies + delay;
  1230. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1231. add_timer_on(timer, cpu);
  1232. else
  1233. add_timer(timer);
  1234. }
  1235. /**
  1236. * queue_delayed_work_on - queue work on specific CPU after delay
  1237. * @cpu: CPU number to execute work on
  1238. * @wq: workqueue to use
  1239. * @dwork: work to queue
  1240. * @delay: number of jiffies to wait before queueing
  1241. *
  1242. * Returns %false if @work was already on a queue, %true otherwise. If
  1243. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1244. * execution.
  1245. */
  1246. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1247. struct delayed_work *dwork, unsigned long delay)
  1248. {
  1249. struct work_struct *work = &dwork->work;
  1250. bool ret = false;
  1251. unsigned long flags;
  1252. /* read the comment in __queue_work() */
  1253. local_irq_save(flags);
  1254. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1255. __queue_delayed_work(cpu, wq, dwork, delay);
  1256. ret = true;
  1257. }
  1258. local_irq_restore(flags);
  1259. return ret;
  1260. }
  1261. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  1262. /**
  1263. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1264. * @cpu: CPU number to execute work on
  1265. * @wq: workqueue to use
  1266. * @dwork: work to queue
  1267. * @delay: number of jiffies to wait before queueing
  1268. *
  1269. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1270. * modify @dwork's timer so that it expires after @delay. If @delay is
  1271. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1272. * current state.
  1273. *
  1274. * Returns %false if @dwork was idle and queued, %true if @dwork was
  1275. * pending and its timer was modified.
  1276. *
  1277. * This function is safe to call from any context including IRQ handler.
  1278. * See try_to_grab_pending() for details.
  1279. */
  1280. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1281. struct delayed_work *dwork, unsigned long delay)
  1282. {
  1283. unsigned long flags;
  1284. int ret;
  1285. do {
  1286. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1287. } while (unlikely(ret == -EAGAIN));
  1288. if (likely(ret >= 0)) {
  1289. __queue_delayed_work(cpu, wq, dwork, delay);
  1290. local_irq_restore(flags);
  1291. }
  1292. /* -ENOENT from try_to_grab_pending() becomes %true */
  1293. return ret;
  1294. }
  1295. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1296. /**
  1297. * worker_enter_idle - enter idle state
  1298. * @worker: worker which is entering idle state
  1299. *
  1300. * @worker is entering idle state. Update stats and idle timer if
  1301. * necessary.
  1302. *
  1303. * LOCKING:
  1304. * spin_lock_irq(pool->lock).
  1305. */
  1306. static void worker_enter_idle(struct worker *worker)
  1307. {
  1308. struct worker_pool *pool = worker->pool;
  1309. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1310. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1311. (worker->hentry.next || worker->hentry.pprev)))
  1312. return;
  1313. /* can't use worker_set_flags(), also called from start_worker() */
  1314. worker->flags |= WORKER_IDLE;
  1315. pool->nr_idle++;
  1316. worker->last_active = jiffies;
  1317. /* idle_list is LIFO */
  1318. list_add(&worker->entry, &pool->idle_list);
  1319. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1320. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1321. /*
  1322. * Sanity check nr_running. Because wq_unbind_fn() releases
  1323. * pool->lock between setting %WORKER_UNBOUND and zapping
  1324. * nr_running, the warning may trigger spuriously. Check iff
  1325. * unbind is not in progress.
  1326. */
  1327. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1328. pool->nr_workers == pool->nr_idle &&
  1329. atomic_read(&pool->nr_running));
  1330. }
  1331. /**
  1332. * worker_leave_idle - leave idle state
  1333. * @worker: worker which is leaving idle state
  1334. *
  1335. * @worker is leaving idle state. Update stats.
  1336. *
  1337. * LOCKING:
  1338. * spin_lock_irq(pool->lock).
  1339. */
  1340. static void worker_leave_idle(struct worker *worker)
  1341. {
  1342. struct worker_pool *pool = worker->pool;
  1343. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1344. return;
  1345. worker_clr_flags(worker, WORKER_IDLE);
  1346. pool->nr_idle--;
  1347. list_del_init(&worker->entry);
  1348. }
  1349. /**
  1350. * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
  1351. * @pool: target worker_pool
  1352. *
  1353. * Bind %current to the cpu of @pool if it is associated and lock @pool.
  1354. *
  1355. * Works which are scheduled while the cpu is online must at least be
  1356. * scheduled to a worker which is bound to the cpu so that if they are
  1357. * flushed from cpu callbacks while cpu is going down, they are
  1358. * guaranteed to execute on the cpu.
  1359. *
  1360. * This function is to be used by unbound workers and rescuers to bind
  1361. * themselves to the target cpu and may race with cpu going down or
  1362. * coming online. kthread_bind() can't be used because it may put the
  1363. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1364. * verbatim as it's best effort and blocking and pool may be
  1365. * [dis]associated in the meantime.
  1366. *
  1367. * This function tries set_cpus_allowed() and locks pool and verifies the
  1368. * binding against %POOL_DISASSOCIATED which is set during
  1369. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1370. * enters idle state or fetches works without dropping lock, it can
  1371. * guarantee the scheduling requirement described in the first paragraph.
  1372. *
  1373. * CONTEXT:
  1374. * Might sleep. Called without any lock but returns with pool->lock
  1375. * held.
  1376. *
  1377. * RETURNS:
  1378. * %true if the associated pool is online (@worker is successfully
  1379. * bound), %false if offline.
  1380. */
  1381. static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
  1382. __acquires(&pool->lock)
  1383. {
  1384. while (true) {
  1385. /*
  1386. * The following call may fail, succeed or succeed
  1387. * without actually migrating the task to the cpu if
  1388. * it races with cpu hotunplug operation. Verify
  1389. * against POOL_DISASSOCIATED.
  1390. */
  1391. if (!(pool->flags & POOL_DISASSOCIATED))
  1392. set_cpus_allowed_ptr(current, pool->attrs->cpumask);
  1393. spin_lock_irq(&pool->lock);
  1394. if (pool->flags & POOL_DISASSOCIATED)
  1395. return false;
  1396. if (task_cpu(current) == pool->cpu &&
  1397. cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
  1398. return true;
  1399. spin_unlock_irq(&pool->lock);
  1400. /*
  1401. * We've raced with CPU hot[un]plug. Give it a breather
  1402. * and retry migration. cond_resched() is required here;
  1403. * otherwise, we might deadlock against cpu_stop trying to
  1404. * bring down the CPU on non-preemptive kernel.
  1405. */
  1406. cpu_relax();
  1407. cond_resched();
  1408. }
  1409. }
  1410. static struct worker *alloc_worker(void)
  1411. {
  1412. struct worker *worker;
  1413. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1414. if (worker) {
  1415. INIT_LIST_HEAD(&worker->entry);
  1416. INIT_LIST_HEAD(&worker->scheduled);
  1417. /* on creation a worker is in !idle && prep state */
  1418. worker->flags = WORKER_PREP;
  1419. }
  1420. return worker;
  1421. }
  1422. /**
  1423. * create_worker - create a new workqueue worker
  1424. * @pool: pool the new worker will belong to
  1425. *
  1426. * Create a new worker which is bound to @pool. The returned worker
  1427. * can be started by calling start_worker() or destroyed using
  1428. * destroy_worker().
  1429. *
  1430. * CONTEXT:
  1431. * Might sleep. Does GFP_KERNEL allocations.
  1432. *
  1433. * RETURNS:
  1434. * Pointer to the newly created worker.
  1435. */
  1436. static struct worker *create_worker(struct worker_pool *pool)
  1437. {
  1438. struct worker *worker = NULL;
  1439. int node = pool->cpu >= 0 ? cpu_to_node(pool->cpu) : NUMA_NO_NODE;
  1440. int id = -1;
  1441. char id_buf[16];
  1442. lockdep_assert_held(&pool->manager_mutex);
  1443. /*
  1444. * ID is needed to determine kthread name. Allocate ID first
  1445. * without installing the pointer.
  1446. */
  1447. idr_preload(GFP_KERNEL);
  1448. spin_lock_irq(&pool->lock);
  1449. id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
  1450. spin_unlock_irq(&pool->lock);
  1451. idr_preload_end();
  1452. if (id < 0)
  1453. goto fail;
  1454. worker = alloc_worker();
  1455. if (!worker)
  1456. goto fail;
  1457. worker->pool = pool;
  1458. worker->id = id;
  1459. if (pool->cpu >= 0)
  1460. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1461. pool->attrs->nice < 0 ? "H" : "");
  1462. else
  1463. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1464. worker->task = kthread_create_on_node(worker_thread, worker, node,
  1465. "kworker/%s", id_buf);
  1466. if (IS_ERR(worker->task))
  1467. goto fail;
  1468. /*
  1469. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1470. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1471. */
  1472. set_user_nice(worker->task, pool->attrs->nice);
  1473. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1474. /* prevent userland from meddling with cpumask of workqueue workers */
  1475. worker->task->flags |= PF_NO_SETAFFINITY;
  1476. /*
  1477. * The caller is responsible for ensuring %POOL_DISASSOCIATED
  1478. * remains stable across this function. See the comments above the
  1479. * flag definition for details.
  1480. */
  1481. if (pool->flags & POOL_DISASSOCIATED)
  1482. worker->flags |= WORKER_UNBOUND;
  1483. /* successful, commit the pointer to idr */
  1484. spin_lock_irq(&pool->lock);
  1485. idr_replace(&pool->worker_idr, worker, worker->id);
  1486. spin_unlock_irq(&pool->lock);
  1487. return worker;
  1488. fail:
  1489. if (id >= 0) {
  1490. spin_lock_irq(&pool->lock);
  1491. idr_remove(&pool->worker_idr, id);
  1492. spin_unlock_irq(&pool->lock);
  1493. }
  1494. kfree(worker);
  1495. return NULL;
  1496. }
  1497. /**
  1498. * start_worker - start a newly created worker
  1499. * @worker: worker to start
  1500. *
  1501. * Make the pool aware of @worker and start it.
  1502. *
  1503. * CONTEXT:
  1504. * spin_lock_irq(pool->lock).
  1505. */
  1506. static void start_worker(struct worker *worker)
  1507. {
  1508. worker->flags |= WORKER_STARTED;
  1509. worker->pool->nr_workers++;
  1510. worker_enter_idle(worker);
  1511. wake_up_process(worker->task);
  1512. }
  1513. /**
  1514. * create_and_start_worker - create and start a worker for a pool
  1515. * @pool: the target pool
  1516. *
  1517. * Grab the managership of @pool and create and start a new worker for it.
  1518. */
  1519. static int create_and_start_worker(struct worker_pool *pool)
  1520. {
  1521. struct worker *worker;
  1522. mutex_lock(&pool->manager_mutex);
  1523. worker = create_worker(pool);
  1524. if (worker) {
  1525. spin_lock_irq(&pool->lock);
  1526. start_worker(worker);
  1527. spin_unlock_irq(&pool->lock);
  1528. }
  1529. mutex_unlock(&pool->manager_mutex);
  1530. return worker ? 0 : -ENOMEM;
  1531. }
  1532. /**
  1533. * destroy_worker - destroy a workqueue worker
  1534. * @worker: worker to be destroyed
  1535. *
  1536. * Destroy @worker and adjust @pool stats accordingly.
  1537. *
  1538. * CONTEXT:
  1539. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1540. */
  1541. static void destroy_worker(struct worker *worker)
  1542. {
  1543. struct worker_pool *pool = worker->pool;
  1544. lockdep_assert_held(&pool->manager_mutex);
  1545. lockdep_assert_held(&pool->lock);
  1546. /* sanity check frenzy */
  1547. if (WARN_ON(worker->current_work) ||
  1548. WARN_ON(!list_empty(&worker->scheduled)))
  1549. return;
  1550. if (worker->flags & WORKER_STARTED)
  1551. pool->nr_workers--;
  1552. if (worker->flags & WORKER_IDLE)
  1553. pool->nr_idle--;
  1554. list_del_init(&worker->entry);
  1555. worker->flags |= WORKER_DIE;
  1556. idr_remove(&pool->worker_idr, worker->id);
  1557. spin_unlock_irq(&pool->lock);
  1558. kthread_stop(worker->task);
  1559. kfree(worker);
  1560. spin_lock_irq(&pool->lock);
  1561. }
  1562. static void idle_worker_timeout(unsigned long __pool)
  1563. {
  1564. struct worker_pool *pool = (void *)__pool;
  1565. spin_lock_irq(&pool->lock);
  1566. if (too_many_workers(pool)) {
  1567. struct worker *worker;
  1568. unsigned long expires;
  1569. /* idle_list is kept in LIFO order, check the last one */
  1570. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1571. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1572. if (time_before(jiffies, expires))
  1573. mod_timer(&pool->idle_timer, expires);
  1574. else {
  1575. /* it's been idle for too long, wake up manager */
  1576. pool->flags |= POOL_MANAGE_WORKERS;
  1577. wake_up_worker(pool);
  1578. }
  1579. }
  1580. spin_unlock_irq(&pool->lock);
  1581. }
  1582. static void send_mayday(struct work_struct *work)
  1583. {
  1584. struct pool_workqueue *pwq = get_work_pwq(work);
  1585. struct workqueue_struct *wq = pwq->wq;
  1586. lockdep_assert_held(&wq_mayday_lock);
  1587. if (!wq->rescuer)
  1588. return;
  1589. /* mayday mayday mayday */
  1590. if (list_empty(&pwq->mayday_node)) {
  1591. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1592. wake_up_process(wq->rescuer->task);
  1593. }
  1594. }
  1595. static void pool_mayday_timeout(unsigned long __pool)
  1596. {
  1597. struct worker_pool *pool = (void *)__pool;
  1598. struct work_struct *work;
  1599. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1600. spin_lock(&pool->lock);
  1601. if (need_to_create_worker(pool)) {
  1602. /*
  1603. * We've been trying to create a new worker but
  1604. * haven't been successful. We might be hitting an
  1605. * allocation deadlock. Send distress signals to
  1606. * rescuers.
  1607. */
  1608. list_for_each_entry(work, &pool->worklist, entry)
  1609. send_mayday(work);
  1610. }
  1611. spin_unlock(&pool->lock);
  1612. spin_unlock_irq(&wq_mayday_lock);
  1613. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1614. }
  1615. /**
  1616. * maybe_create_worker - create a new worker if necessary
  1617. * @pool: pool to create a new worker for
  1618. *
  1619. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1620. * have at least one idle worker on return from this function. If
  1621. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1622. * sent to all rescuers with works scheduled on @pool to resolve
  1623. * possible allocation deadlock.
  1624. *
  1625. * On return, need_to_create_worker() is guaranteed to be %false and
  1626. * may_start_working() %true.
  1627. *
  1628. * LOCKING:
  1629. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1630. * multiple times. Does GFP_KERNEL allocations. Called only from
  1631. * manager.
  1632. *
  1633. * RETURNS:
  1634. * %false if no action was taken and pool->lock stayed locked, %true
  1635. * otherwise.
  1636. */
  1637. static bool maybe_create_worker(struct worker_pool *pool)
  1638. __releases(&pool->lock)
  1639. __acquires(&pool->lock)
  1640. {
  1641. if (!need_to_create_worker(pool))
  1642. return false;
  1643. restart:
  1644. spin_unlock_irq(&pool->lock);
  1645. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1646. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1647. while (true) {
  1648. struct worker *worker;
  1649. worker = create_worker(pool);
  1650. if (worker) {
  1651. del_timer_sync(&pool->mayday_timer);
  1652. spin_lock_irq(&pool->lock);
  1653. start_worker(worker);
  1654. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1655. goto restart;
  1656. return true;
  1657. }
  1658. if (!need_to_create_worker(pool))
  1659. break;
  1660. __set_current_state(TASK_INTERRUPTIBLE);
  1661. schedule_timeout(CREATE_COOLDOWN);
  1662. if (!need_to_create_worker(pool))
  1663. break;
  1664. }
  1665. del_timer_sync(&pool->mayday_timer);
  1666. spin_lock_irq(&pool->lock);
  1667. if (need_to_create_worker(pool))
  1668. goto restart;
  1669. return true;
  1670. }
  1671. /**
  1672. * maybe_destroy_worker - destroy workers which have been idle for a while
  1673. * @pool: pool to destroy workers for
  1674. *
  1675. * Destroy @pool workers which have been idle for longer than
  1676. * IDLE_WORKER_TIMEOUT.
  1677. *
  1678. * LOCKING:
  1679. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1680. * multiple times. Called only from manager.
  1681. *
  1682. * RETURNS:
  1683. * %false if no action was taken and pool->lock stayed locked, %true
  1684. * otherwise.
  1685. */
  1686. static bool maybe_destroy_workers(struct worker_pool *pool)
  1687. {
  1688. bool ret = false;
  1689. while (too_many_workers(pool)) {
  1690. struct worker *worker;
  1691. unsigned long expires;
  1692. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1693. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1694. if (time_before(jiffies, expires)) {
  1695. mod_timer(&pool->idle_timer, expires);
  1696. break;
  1697. }
  1698. destroy_worker(worker);
  1699. ret = true;
  1700. }
  1701. return ret;
  1702. }
  1703. /**
  1704. * manage_workers - manage worker pool
  1705. * @worker: self
  1706. *
  1707. * Assume the manager role and manage the worker pool @worker belongs
  1708. * to. At any given time, there can be only zero or one manager per
  1709. * pool. The exclusion is handled automatically by this function.
  1710. *
  1711. * The caller can safely start processing works on false return. On
  1712. * true return, it's guaranteed that need_to_create_worker() is false
  1713. * and may_start_working() is true.
  1714. *
  1715. * CONTEXT:
  1716. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1717. * multiple times. Does GFP_KERNEL allocations.
  1718. *
  1719. * RETURNS:
  1720. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1721. * multiple times. Does GFP_KERNEL allocations.
  1722. */
  1723. static bool manage_workers(struct worker *worker)
  1724. {
  1725. struct worker_pool *pool = worker->pool;
  1726. bool ret = false;
  1727. /*
  1728. * Managership is governed by two mutexes - manager_arb and
  1729. * manager_mutex. manager_arb handles arbitration of manager role.
  1730. * Anyone who successfully grabs manager_arb wins the arbitration
  1731. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1732. * failure while holding pool->lock reliably indicates that someone
  1733. * else is managing the pool and the worker which failed trylock
  1734. * can proceed to executing work items. This means that anyone
  1735. * grabbing manager_arb is responsible for actually performing
  1736. * manager duties. If manager_arb is grabbed and released without
  1737. * actual management, the pool may stall indefinitely.
  1738. *
  1739. * manager_mutex is used for exclusion of actual management
  1740. * operations. The holder of manager_mutex can be sure that none
  1741. * of management operations, including creation and destruction of
  1742. * workers, won't take place until the mutex is released. Because
  1743. * manager_mutex doesn't interfere with manager role arbitration,
  1744. * it is guaranteed that the pool's management, while may be
  1745. * delayed, won't be disturbed by someone else grabbing
  1746. * manager_mutex.
  1747. */
  1748. if (!mutex_trylock(&pool->manager_arb))
  1749. return ret;
  1750. /*
  1751. * With manager arbitration won, manager_mutex would be free in
  1752. * most cases. trylock first without dropping @pool->lock.
  1753. */
  1754. if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
  1755. spin_unlock_irq(&pool->lock);
  1756. mutex_lock(&pool->manager_mutex);
  1757. ret = true;
  1758. }
  1759. pool->flags &= ~POOL_MANAGE_WORKERS;
  1760. /*
  1761. * Destroy and then create so that may_start_working() is true
  1762. * on return.
  1763. */
  1764. ret |= maybe_destroy_workers(pool);
  1765. ret |= maybe_create_worker(pool);
  1766. mutex_unlock(&pool->manager_mutex);
  1767. mutex_unlock(&pool->manager_arb);
  1768. return ret;
  1769. }
  1770. /**
  1771. * process_one_work - process single work
  1772. * @worker: self
  1773. * @work: work to process
  1774. *
  1775. * Process @work. This function contains all the logics necessary to
  1776. * process a single work including synchronization against and
  1777. * interaction with other workers on the same cpu, queueing and
  1778. * flushing. As long as context requirement is met, any worker can
  1779. * call this function to process a work.
  1780. *
  1781. * CONTEXT:
  1782. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1783. */
  1784. static void process_one_work(struct worker *worker, struct work_struct *work)
  1785. __releases(&pool->lock)
  1786. __acquires(&pool->lock)
  1787. {
  1788. struct pool_workqueue *pwq = get_work_pwq(work);
  1789. struct worker_pool *pool = worker->pool;
  1790. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1791. int work_color;
  1792. struct worker *collision;
  1793. #ifdef CONFIG_LOCKDEP
  1794. /*
  1795. * It is permissible to free the struct work_struct from
  1796. * inside the function that is called from it, this we need to
  1797. * take into account for lockdep too. To avoid bogus "held
  1798. * lock freed" warnings as well as problems when looking into
  1799. * work->lockdep_map, make a copy and use that here.
  1800. */
  1801. struct lockdep_map lockdep_map;
  1802. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1803. #endif
  1804. /*
  1805. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1806. * necessary to avoid spurious warnings from rescuers servicing the
  1807. * unbound or a disassociated pool.
  1808. */
  1809. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1810. !(pool->flags & POOL_DISASSOCIATED) &&
  1811. raw_smp_processor_id() != pool->cpu);
  1812. /*
  1813. * A single work shouldn't be executed concurrently by
  1814. * multiple workers on a single cpu. Check whether anyone is
  1815. * already processing the work. If so, defer the work to the
  1816. * currently executing one.
  1817. */
  1818. collision = find_worker_executing_work(pool, work);
  1819. if (unlikely(collision)) {
  1820. move_linked_works(work, &collision->scheduled, NULL);
  1821. return;
  1822. }
  1823. /* claim and dequeue */
  1824. debug_work_deactivate(work);
  1825. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1826. worker->current_work = work;
  1827. worker->current_func = work->func;
  1828. worker->current_pwq = pwq;
  1829. work_color = get_work_color(work);
  1830. list_del_init(&work->entry);
  1831. /*
  1832. * CPU intensive works don't participate in concurrency
  1833. * management. They're the scheduler's responsibility.
  1834. */
  1835. if (unlikely(cpu_intensive))
  1836. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1837. /*
  1838. * Unbound pool isn't concurrency managed and work items should be
  1839. * executed ASAP. Wake up another worker if necessary.
  1840. */
  1841. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1842. wake_up_worker(pool);
  1843. /*
  1844. * Record the last pool and clear PENDING which should be the last
  1845. * update to @work. Also, do this inside @pool->lock so that
  1846. * PENDING and queued state changes happen together while IRQ is
  1847. * disabled.
  1848. */
  1849. set_work_pool_and_clear_pending(work, pool->id);
  1850. spin_unlock_irq(&pool->lock);
  1851. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1852. lock_map_acquire(&lockdep_map);
  1853. trace_workqueue_execute_start(work);
  1854. worker->current_func(work);
  1855. /*
  1856. * While we must be careful to not use "work" after this, the trace
  1857. * point will only record its address.
  1858. */
  1859. trace_workqueue_execute_end(work);
  1860. lock_map_release(&lockdep_map);
  1861. lock_map_release(&pwq->wq->lockdep_map);
  1862. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1863. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1864. " last function: %pf\n",
  1865. current->comm, preempt_count(), task_pid_nr(current),
  1866. worker->current_func);
  1867. debug_show_held_locks(current);
  1868. dump_stack();
  1869. }
  1870. spin_lock_irq(&pool->lock);
  1871. /* clear cpu intensive status */
  1872. if (unlikely(cpu_intensive))
  1873. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1874. /* we're done with it, release */
  1875. hash_del(&worker->hentry);
  1876. worker->current_work = NULL;
  1877. worker->current_func = NULL;
  1878. worker->current_pwq = NULL;
  1879. pwq_dec_nr_in_flight(pwq, work_color);
  1880. }
  1881. /**
  1882. * process_scheduled_works - process scheduled works
  1883. * @worker: self
  1884. *
  1885. * Process all scheduled works. Please note that the scheduled list
  1886. * may change while processing a work, so this function repeatedly
  1887. * fetches a work from the top and executes it.
  1888. *
  1889. * CONTEXT:
  1890. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1891. * multiple times.
  1892. */
  1893. static void process_scheduled_works(struct worker *worker)
  1894. {
  1895. while (!list_empty(&worker->scheduled)) {
  1896. struct work_struct *work = list_first_entry(&worker->scheduled,
  1897. struct work_struct, entry);
  1898. process_one_work(worker, work);
  1899. }
  1900. }
  1901. /**
  1902. * worker_thread - the worker thread function
  1903. * @__worker: self
  1904. *
  1905. * The worker thread function. All workers belong to a worker_pool -
  1906. * either a per-cpu one or dynamic unbound one. These workers process all
  1907. * work items regardless of their specific target workqueue. The only
  1908. * exception is work items which belong to workqueues with a rescuer which
  1909. * will be explained in rescuer_thread().
  1910. */
  1911. static int worker_thread(void *__worker)
  1912. {
  1913. struct worker *worker = __worker;
  1914. struct worker_pool *pool = worker->pool;
  1915. /* tell the scheduler that this is a workqueue worker */
  1916. worker->task->flags |= PF_WQ_WORKER;
  1917. woke_up:
  1918. spin_lock_irq(&pool->lock);
  1919. /* am I supposed to die? */
  1920. if (unlikely(worker->flags & WORKER_DIE)) {
  1921. spin_unlock_irq(&pool->lock);
  1922. WARN_ON_ONCE(!list_empty(&worker->entry));
  1923. worker->task->flags &= ~PF_WQ_WORKER;
  1924. return 0;
  1925. }
  1926. worker_leave_idle(worker);
  1927. recheck:
  1928. /* no more worker necessary? */
  1929. if (!need_more_worker(pool))
  1930. goto sleep;
  1931. /* do we need to manage? */
  1932. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1933. goto recheck;
  1934. /*
  1935. * ->scheduled list can only be filled while a worker is
  1936. * preparing to process a work or actually processing it.
  1937. * Make sure nobody diddled with it while I was sleeping.
  1938. */
  1939. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  1940. /*
  1941. * Finish PREP stage. We're guaranteed to have at least one idle
  1942. * worker or that someone else has already assumed the manager
  1943. * role. This is where @worker starts participating in concurrency
  1944. * management if applicable and concurrency management is restored
  1945. * after being rebound. See rebind_workers() for details.
  1946. */
  1947. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  1948. do {
  1949. struct work_struct *work =
  1950. list_first_entry(&pool->worklist,
  1951. struct work_struct, entry);
  1952. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1953. /* optimization path, not strictly necessary */
  1954. process_one_work(worker, work);
  1955. if (unlikely(!list_empty(&worker->scheduled)))
  1956. process_scheduled_works(worker);
  1957. } else {
  1958. move_linked_works(work, &worker->scheduled, NULL);
  1959. process_scheduled_works(worker);
  1960. }
  1961. } while (keep_working(pool));
  1962. worker_set_flags(worker, WORKER_PREP, false);
  1963. sleep:
  1964. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  1965. goto recheck;
  1966. /*
  1967. * pool->lock is held and there's no work to process and no need to
  1968. * manage, sleep. Workers are woken up only while holding
  1969. * pool->lock or from local cpu, so setting the current state
  1970. * before releasing pool->lock is enough to prevent losing any
  1971. * event.
  1972. */
  1973. worker_enter_idle(worker);
  1974. __set_current_state(TASK_INTERRUPTIBLE);
  1975. spin_unlock_irq(&pool->lock);
  1976. schedule();
  1977. goto woke_up;
  1978. }
  1979. /**
  1980. * rescuer_thread - the rescuer thread function
  1981. * @__rescuer: self
  1982. *
  1983. * Workqueue rescuer thread function. There's one rescuer for each
  1984. * workqueue which has WQ_MEM_RECLAIM set.
  1985. *
  1986. * Regular work processing on a pool may block trying to create a new
  1987. * worker which uses GFP_KERNEL allocation which has slight chance of
  1988. * developing into deadlock if some works currently on the same queue
  1989. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  1990. * the problem rescuer solves.
  1991. *
  1992. * When such condition is possible, the pool summons rescuers of all
  1993. * workqueues which have works queued on the pool and let them process
  1994. * those works so that forward progress can be guaranteed.
  1995. *
  1996. * This should happen rarely.
  1997. */
  1998. static int rescuer_thread(void *__rescuer)
  1999. {
  2000. struct worker *rescuer = __rescuer;
  2001. struct workqueue_struct *wq = rescuer->rescue_wq;
  2002. struct list_head *scheduled = &rescuer->scheduled;
  2003. set_user_nice(current, RESCUER_NICE_LEVEL);
  2004. /*
  2005. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2006. * doesn't participate in concurrency management.
  2007. */
  2008. rescuer->task->flags |= PF_WQ_WORKER;
  2009. repeat:
  2010. set_current_state(TASK_INTERRUPTIBLE);
  2011. if (kthread_should_stop()) {
  2012. __set_current_state(TASK_RUNNING);
  2013. rescuer->task->flags &= ~PF_WQ_WORKER;
  2014. return 0;
  2015. }
  2016. /* see whether any pwq is asking for help */
  2017. spin_lock_irq(&wq_mayday_lock);
  2018. while (!list_empty(&wq->maydays)) {
  2019. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2020. struct pool_workqueue, mayday_node);
  2021. struct worker_pool *pool = pwq->pool;
  2022. struct work_struct *work, *n;
  2023. __set_current_state(TASK_RUNNING);
  2024. list_del_init(&pwq->mayday_node);
  2025. spin_unlock_irq(&wq_mayday_lock);
  2026. /* migrate to the target cpu if possible */
  2027. worker_maybe_bind_and_lock(pool);
  2028. rescuer->pool = pool;
  2029. /*
  2030. * Slurp in all works issued via this workqueue and
  2031. * process'em.
  2032. */
  2033. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2034. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2035. if (get_work_pwq(work) == pwq)
  2036. move_linked_works(work, scheduled, &n);
  2037. process_scheduled_works(rescuer);
  2038. /*
  2039. * Leave this pool. If keep_working() is %true, notify a
  2040. * regular worker; otherwise, we end up with 0 concurrency
  2041. * and stalling the execution.
  2042. */
  2043. if (keep_working(pool))
  2044. wake_up_worker(pool);
  2045. rescuer->pool = NULL;
  2046. spin_unlock(&pool->lock);
  2047. spin_lock(&wq_mayday_lock);
  2048. }
  2049. spin_unlock_irq(&wq_mayday_lock);
  2050. /* rescuers should never participate in concurrency management */
  2051. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2052. schedule();
  2053. goto repeat;
  2054. }
  2055. struct wq_barrier {
  2056. struct work_struct work;
  2057. struct completion done;
  2058. };
  2059. static void wq_barrier_func(struct work_struct *work)
  2060. {
  2061. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2062. complete(&barr->done);
  2063. }
  2064. /**
  2065. * insert_wq_barrier - insert a barrier work
  2066. * @pwq: pwq to insert barrier into
  2067. * @barr: wq_barrier to insert
  2068. * @target: target work to attach @barr to
  2069. * @worker: worker currently executing @target, NULL if @target is not executing
  2070. *
  2071. * @barr is linked to @target such that @barr is completed only after
  2072. * @target finishes execution. Please note that the ordering
  2073. * guarantee is observed only with respect to @target and on the local
  2074. * cpu.
  2075. *
  2076. * Currently, a queued barrier can't be canceled. This is because
  2077. * try_to_grab_pending() can't determine whether the work to be
  2078. * grabbed is at the head of the queue and thus can't clear LINKED
  2079. * flag of the previous work while there must be a valid next work
  2080. * after a work with LINKED flag set.
  2081. *
  2082. * Note that when @worker is non-NULL, @target may be modified
  2083. * underneath us, so we can't reliably determine pwq from @target.
  2084. *
  2085. * CONTEXT:
  2086. * spin_lock_irq(pool->lock).
  2087. */
  2088. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2089. struct wq_barrier *barr,
  2090. struct work_struct *target, struct worker *worker)
  2091. {
  2092. struct list_head *head;
  2093. unsigned int linked = 0;
  2094. /*
  2095. * debugobject calls are safe here even with pool->lock locked
  2096. * as we know for sure that this will not trigger any of the
  2097. * checks and call back into the fixup functions where we
  2098. * might deadlock.
  2099. */
  2100. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2101. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2102. init_completion(&barr->done);
  2103. /*
  2104. * If @target is currently being executed, schedule the
  2105. * barrier to the worker; otherwise, put it after @target.
  2106. */
  2107. if (worker)
  2108. head = worker->scheduled.next;
  2109. else {
  2110. unsigned long *bits = work_data_bits(target);
  2111. head = target->entry.next;
  2112. /* there can already be other linked works, inherit and set */
  2113. linked = *bits & WORK_STRUCT_LINKED;
  2114. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2115. }
  2116. debug_work_activate(&barr->work);
  2117. insert_work(pwq, &barr->work, head,
  2118. work_color_to_flags(WORK_NO_COLOR) | linked);
  2119. }
  2120. /**
  2121. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2122. * @wq: workqueue being flushed
  2123. * @flush_color: new flush color, < 0 for no-op
  2124. * @work_color: new work color, < 0 for no-op
  2125. *
  2126. * Prepare pwqs for workqueue flushing.
  2127. *
  2128. * If @flush_color is non-negative, flush_color on all pwqs should be
  2129. * -1. If no pwq has in-flight commands at the specified color, all
  2130. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2131. * has in flight commands, its pwq->flush_color is set to
  2132. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2133. * wakeup logic is armed and %true is returned.
  2134. *
  2135. * The caller should have initialized @wq->first_flusher prior to
  2136. * calling this function with non-negative @flush_color. If
  2137. * @flush_color is negative, no flush color update is done and %false
  2138. * is returned.
  2139. *
  2140. * If @work_color is non-negative, all pwqs should have the same
  2141. * work_color which is previous to @work_color and all will be
  2142. * advanced to @work_color.
  2143. *
  2144. * CONTEXT:
  2145. * mutex_lock(wq->mutex).
  2146. *
  2147. * RETURNS:
  2148. * %true if @flush_color >= 0 and there's something to flush. %false
  2149. * otherwise.
  2150. */
  2151. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2152. int flush_color, int work_color)
  2153. {
  2154. bool wait = false;
  2155. struct pool_workqueue *pwq;
  2156. if (flush_color >= 0) {
  2157. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2158. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2159. }
  2160. for_each_pwq(pwq, wq) {
  2161. struct worker_pool *pool = pwq->pool;
  2162. spin_lock_irq(&pool->lock);
  2163. if (flush_color >= 0) {
  2164. WARN_ON_ONCE(pwq->flush_color != -1);
  2165. if (pwq->nr_in_flight[flush_color]) {
  2166. pwq->flush_color = flush_color;
  2167. atomic_inc(&wq->nr_pwqs_to_flush);
  2168. wait = true;
  2169. }
  2170. }
  2171. if (work_color >= 0) {
  2172. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2173. pwq->work_color = work_color;
  2174. }
  2175. spin_unlock_irq(&pool->lock);
  2176. }
  2177. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2178. complete(&wq->first_flusher->done);
  2179. return wait;
  2180. }
  2181. /**
  2182. * flush_workqueue - ensure that any scheduled work has run to completion.
  2183. * @wq: workqueue to flush
  2184. *
  2185. * This function sleeps until all work items which were queued on entry
  2186. * have finished execution, but it is not livelocked by new incoming ones.
  2187. */
  2188. void flush_workqueue(struct workqueue_struct *wq)
  2189. {
  2190. struct wq_flusher this_flusher = {
  2191. .list = LIST_HEAD_INIT(this_flusher.list),
  2192. .flush_color = -1,
  2193. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2194. };
  2195. int next_color;
  2196. lock_map_acquire(&wq->lockdep_map);
  2197. lock_map_release(&wq->lockdep_map);
  2198. mutex_lock(&wq->mutex);
  2199. /*
  2200. * Start-to-wait phase
  2201. */
  2202. next_color = work_next_color(wq->work_color);
  2203. if (next_color != wq->flush_color) {
  2204. /*
  2205. * Color space is not full. The current work_color
  2206. * becomes our flush_color and work_color is advanced
  2207. * by one.
  2208. */
  2209. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2210. this_flusher.flush_color = wq->work_color;
  2211. wq->work_color = next_color;
  2212. if (!wq->first_flusher) {
  2213. /* no flush in progress, become the first flusher */
  2214. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2215. wq->first_flusher = &this_flusher;
  2216. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2217. wq->work_color)) {
  2218. /* nothing to flush, done */
  2219. wq->flush_color = next_color;
  2220. wq->first_flusher = NULL;
  2221. goto out_unlock;
  2222. }
  2223. } else {
  2224. /* wait in queue */
  2225. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2226. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2227. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2228. }
  2229. } else {
  2230. /*
  2231. * Oops, color space is full, wait on overflow queue.
  2232. * The next flush completion will assign us
  2233. * flush_color and transfer to flusher_queue.
  2234. */
  2235. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2236. }
  2237. mutex_unlock(&wq->mutex);
  2238. wait_for_completion(&this_flusher.done);
  2239. /*
  2240. * Wake-up-and-cascade phase
  2241. *
  2242. * First flushers are responsible for cascading flushes and
  2243. * handling overflow. Non-first flushers can simply return.
  2244. */
  2245. if (wq->first_flusher != &this_flusher)
  2246. return;
  2247. mutex_lock(&wq->mutex);
  2248. /* we might have raced, check again with mutex held */
  2249. if (wq->first_flusher != &this_flusher)
  2250. goto out_unlock;
  2251. wq->first_flusher = NULL;
  2252. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2253. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2254. while (true) {
  2255. struct wq_flusher *next, *tmp;
  2256. /* complete all the flushers sharing the current flush color */
  2257. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2258. if (next->flush_color != wq->flush_color)
  2259. break;
  2260. list_del_init(&next->list);
  2261. complete(&next->done);
  2262. }
  2263. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2264. wq->flush_color != work_next_color(wq->work_color));
  2265. /* this flush_color is finished, advance by one */
  2266. wq->flush_color = work_next_color(wq->flush_color);
  2267. /* one color has been freed, handle overflow queue */
  2268. if (!list_empty(&wq->flusher_overflow)) {
  2269. /*
  2270. * Assign the same color to all overflowed
  2271. * flushers, advance work_color and append to
  2272. * flusher_queue. This is the start-to-wait
  2273. * phase for these overflowed flushers.
  2274. */
  2275. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2276. tmp->flush_color = wq->work_color;
  2277. wq->work_color = work_next_color(wq->work_color);
  2278. list_splice_tail_init(&wq->flusher_overflow,
  2279. &wq->flusher_queue);
  2280. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2281. }
  2282. if (list_empty(&wq->flusher_queue)) {
  2283. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2284. break;
  2285. }
  2286. /*
  2287. * Need to flush more colors. Make the next flusher
  2288. * the new first flusher and arm pwqs.
  2289. */
  2290. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2291. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2292. list_del_init(&next->list);
  2293. wq->first_flusher = next;
  2294. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2295. break;
  2296. /*
  2297. * Meh... this color is already done, clear first
  2298. * flusher and repeat cascading.
  2299. */
  2300. wq->first_flusher = NULL;
  2301. }
  2302. out_unlock:
  2303. mutex_unlock(&wq->mutex);
  2304. }
  2305. EXPORT_SYMBOL_GPL(flush_workqueue);
  2306. /**
  2307. * drain_workqueue - drain a workqueue
  2308. * @wq: workqueue to drain
  2309. *
  2310. * Wait until the workqueue becomes empty. While draining is in progress,
  2311. * only chain queueing is allowed. IOW, only currently pending or running
  2312. * work items on @wq can queue further work items on it. @wq is flushed
  2313. * repeatedly until it becomes empty. The number of flushing is detemined
  2314. * by the depth of chaining and should be relatively short. Whine if it
  2315. * takes too long.
  2316. */
  2317. void drain_workqueue(struct workqueue_struct *wq)
  2318. {
  2319. unsigned int flush_cnt = 0;
  2320. struct pool_workqueue *pwq;
  2321. /*
  2322. * __queue_work() needs to test whether there are drainers, is much
  2323. * hotter than drain_workqueue() and already looks at @wq->flags.
  2324. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2325. */
  2326. mutex_lock(&wq->mutex);
  2327. if (!wq->nr_drainers++)
  2328. wq->flags |= __WQ_DRAINING;
  2329. mutex_unlock(&wq->mutex);
  2330. reflush:
  2331. flush_workqueue(wq);
  2332. mutex_lock(&wq->mutex);
  2333. for_each_pwq(pwq, wq) {
  2334. bool drained;
  2335. spin_lock_irq(&pwq->pool->lock);
  2336. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2337. spin_unlock_irq(&pwq->pool->lock);
  2338. if (drained)
  2339. continue;
  2340. if (++flush_cnt == 10 ||
  2341. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2342. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2343. wq->name, flush_cnt);
  2344. mutex_unlock(&wq->mutex);
  2345. goto reflush;
  2346. }
  2347. if (!--wq->nr_drainers)
  2348. wq->flags &= ~__WQ_DRAINING;
  2349. mutex_unlock(&wq->mutex);
  2350. }
  2351. EXPORT_SYMBOL_GPL(drain_workqueue);
  2352. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2353. {
  2354. struct worker *worker = NULL;
  2355. struct worker_pool *pool;
  2356. struct pool_workqueue *pwq;
  2357. might_sleep();
  2358. local_irq_disable();
  2359. pool = get_work_pool(work);
  2360. if (!pool) {
  2361. local_irq_enable();
  2362. return false;
  2363. }
  2364. spin_lock(&pool->lock);
  2365. /* see the comment in try_to_grab_pending() with the same code */
  2366. pwq = get_work_pwq(work);
  2367. if (pwq) {
  2368. if (unlikely(pwq->pool != pool))
  2369. goto already_gone;
  2370. } else {
  2371. worker = find_worker_executing_work(pool, work);
  2372. if (!worker)
  2373. goto already_gone;
  2374. pwq = worker->current_pwq;
  2375. }
  2376. insert_wq_barrier(pwq, barr, work, worker);
  2377. spin_unlock_irq(&pool->lock);
  2378. /*
  2379. * If @max_active is 1 or rescuer is in use, flushing another work
  2380. * item on the same workqueue may lead to deadlock. Make sure the
  2381. * flusher is not running on the same workqueue by verifying write
  2382. * access.
  2383. */
  2384. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2385. lock_map_acquire(&pwq->wq->lockdep_map);
  2386. else
  2387. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2388. lock_map_release(&pwq->wq->lockdep_map);
  2389. return true;
  2390. already_gone:
  2391. spin_unlock_irq(&pool->lock);
  2392. return false;
  2393. }
  2394. /**
  2395. * flush_work - wait for a work to finish executing the last queueing instance
  2396. * @work: the work to flush
  2397. *
  2398. * Wait until @work has finished execution. @work is guaranteed to be idle
  2399. * on return if it hasn't been requeued since flush started.
  2400. *
  2401. * RETURNS:
  2402. * %true if flush_work() waited for the work to finish execution,
  2403. * %false if it was already idle.
  2404. */
  2405. bool flush_work(struct work_struct *work)
  2406. {
  2407. struct wq_barrier barr;
  2408. lock_map_acquire(&work->lockdep_map);
  2409. lock_map_release(&work->lockdep_map);
  2410. if (start_flush_work(work, &barr)) {
  2411. wait_for_completion(&barr.done);
  2412. destroy_work_on_stack(&barr.work);
  2413. return true;
  2414. } else {
  2415. return false;
  2416. }
  2417. }
  2418. EXPORT_SYMBOL_GPL(flush_work);
  2419. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2420. {
  2421. unsigned long flags;
  2422. int ret;
  2423. do {
  2424. ret = try_to_grab_pending(work, is_dwork, &flags);
  2425. /*
  2426. * If someone else is canceling, wait for the same event it
  2427. * would be waiting for before retrying.
  2428. */
  2429. if (unlikely(ret == -ENOENT))
  2430. flush_work(work);
  2431. } while (unlikely(ret < 0));
  2432. /* tell other tasks trying to grab @work to back off */
  2433. mark_work_canceling(work);
  2434. local_irq_restore(flags);
  2435. flush_work(work);
  2436. clear_work_data(work);
  2437. return ret;
  2438. }
  2439. /**
  2440. * cancel_work_sync - cancel a work and wait for it to finish
  2441. * @work: the work to cancel
  2442. *
  2443. * Cancel @work and wait for its execution to finish. This function
  2444. * can be used even if the work re-queues itself or migrates to
  2445. * another workqueue. On return from this function, @work is
  2446. * guaranteed to be not pending or executing on any CPU.
  2447. *
  2448. * cancel_work_sync(&delayed_work->work) must not be used for
  2449. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2450. *
  2451. * The caller must ensure that the workqueue on which @work was last
  2452. * queued can't be destroyed before this function returns.
  2453. *
  2454. * RETURNS:
  2455. * %true if @work was pending, %false otherwise.
  2456. */
  2457. bool cancel_work_sync(struct work_struct *work)
  2458. {
  2459. return __cancel_work_timer(work, false);
  2460. }
  2461. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2462. /**
  2463. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2464. * @dwork: the delayed work to flush
  2465. *
  2466. * Delayed timer is cancelled and the pending work is queued for
  2467. * immediate execution. Like flush_work(), this function only
  2468. * considers the last queueing instance of @dwork.
  2469. *
  2470. * RETURNS:
  2471. * %true if flush_work() waited for the work to finish execution,
  2472. * %false if it was already idle.
  2473. */
  2474. bool flush_delayed_work(struct delayed_work *dwork)
  2475. {
  2476. local_irq_disable();
  2477. if (del_timer_sync(&dwork->timer))
  2478. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2479. local_irq_enable();
  2480. return flush_work(&dwork->work);
  2481. }
  2482. EXPORT_SYMBOL(flush_delayed_work);
  2483. /**
  2484. * cancel_delayed_work - cancel a delayed work
  2485. * @dwork: delayed_work to cancel
  2486. *
  2487. * Kill off a pending delayed_work. Returns %true if @dwork was pending
  2488. * and canceled; %false if wasn't pending. Note that the work callback
  2489. * function may still be running on return, unless it returns %true and the
  2490. * work doesn't re-arm itself. Explicitly flush or use
  2491. * cancel_delayed_work_sync() to wait on it.
  2492. *
  2493. * This function is safe to call from any context including IRQ handler.
  2494. */
  2495. bool cancel_delayed_work(struct delayed_work *dwork)
  2496. {
  2497. unsigned long flags;
  2498. int ret;
  2499. do {
  2500. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2501. } while (unlikely(ret == -EAGAIN));
  2502. if (unlikely(ret < 0))
  2503. return false;
  2504. set_work_pool_and_clear_pending(&dwork->work,
  2505. get_work_pool_id(&dwork->work));
  2506. local_irq_restore(flags);
  2507. return ret;
  2508. }
  2509. EXPORT_SYMBOL(cancel_delayed_work);
  2510. /**
  2511. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2512. * @dwork: the delayed work cancel
  2513. *
  2514. * This is cancel_work_sync() for delayed works.
  2515. *
  2516. * RETURNS:
  2517. * %true if @dwork was pending, %false otherwise.
  2518. */
  2519. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2520. {
  2521. return __cancel_work_timer(&dwork->work, true);
  2522. }
  2523. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2524. /**
  2525. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2526. * @func: the function to call
  2527. *
  2528. * schedule_on_each_cpu() executes @func on each online CPU using the
  2529. * system workqueue and blocks until all CPUs have completed.
  2530. * schedule_on_each_cpu() is very slow.
  2531. *
  2532. * RETURNS:
  2533. * 0 on success, -errno on failure.
  2534. */
  2535. int schedule_on_each_cpu(work_func_t func)
  2536. {
  2537. int cpu;
  2538. struct work_struct __percpu *works;
  2539. works = alloc_percpu(struct work_struct);
  2540. if (!works)
  2541. return -ENOMEM;
  2542. get_online_cpus();
  2543. for_each_online_cpu(cpu) {
  2544. struct work_struct *work = per_cpu_ptr(works, cpu);
  2545. INIT_WORK(work, func);
  2546. schedule_work_on(cpu, work);
  2547. }
  2548. for_each_online_cpu(cpu)
  2549. flush_work(per_cpu_ptr(works, cpu));
  2550. put_online_cpus();
  2551. free_percpu(works);
  2552. return 0;
  2553. }
  2554. /**
  2555. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2556. *
  2557. * Forces execution of the kernel-global workqueue and blocks until its
  2558. * completion.
  2559. *
  2560. * Think twice before calling this function! It's very easy to get into
  2561. * trouble if you don't take great care. Either of the following situations
  2562. * will lead to deadlock:
  2563. *
  2564. * One of the work items currently on the workqueue needs to acquire
  2565. * a lock held by your code or its caller.
  2566. *
  2567. * Your code is running in the context of a work routine.
  2568. *
  2569. * They will be detected by lockdep when they occur, but the first might not
  2570. * occur very often. It depends on what work items are on the workqueue and
  2571. * what locks they need, which you have no control over.
  2572. *
  2573. * In most situations flushing the entire workqueue is overkill; you merely
  2574. * need to know that a particular work item isn't queued and isn't running.
  2575. * In such cases you should use cancel_delayed_work_sync() or
  2576. * cancel_work_sync() instead.
  2577. */
  2578. void flush_scheduled_work(void)
  2579. {
  2580. flush_workqueue(system_wq);
  2581. }
  2582. EXPORT_SYMBOL(flush_scheduled_work);
  2583. /**
  2584. * execute_in_process_context - reliably execute the routine with user context
  2585. * @fn: the function to execute
  2586. * @ew: guaranteed storage for the execute work structure (must
  2587. * be available when the work executes)
  2588. *
  2589. * Executes the function immediately if process context is available,
  2590. * otherwise schedules the function for delayed execution.
  2591. *
  2592. * Returns: 0 - function was executed
  2593. * 1 - function was scheduled for execution
  2594. */
  2595. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2596. {
  2597. if (!in_interrupt()) {
  2598. fn(&ew->work);
  2599. return 0;
  2600. }
  2601. INIT_WORK(&ew->work, fn);
  2602. schedule_work(&ew->work);
  2603. return 1;
  2604. }
  2605. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2606. #ifdef CONFIG_SYSFS
  2607. /*
  2608. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2609. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2610. * following attributes.
  2611. *
  2612. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2613. * max_active RW int : maximum number of in-flight work items
  2614. *
  2615. * Unbound workqueues have the following extra attributes.
  2616. *
  2617. * id RO int : the associated pool ID
  2618. * nice RW int : nice value of the workers
  2619. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2620. */
  2621. struct wq_device {
  2622. struct workqueue_struct *wq;
  2623. struct device dev;
  2624. };
  2625. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2626. {
  2627. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2628. return wq_dev->wq;
  2629. }
  2630. static ssize_t wq_per_cpu_show(struct device *dev,
  2631. struct device_attribute *attr, char *buf)
  2632. {
  2633. struct workqueue_struct *wq = dev_to_wq(dev);
  2634. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2635. }
  2636. static ssize_t wq_max_active_show(struct device *dev,
  2637. struct device_attribute *attr, char *buf)
  2638. {
  2639. struct workqueue_struct *wq = dev_to_wq(dev);
  2640. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2641. }
  2642. static ssize_t wq_max_active_store(struct device *dev,
  2643. struct device_attribute *attr,
  2644. const char *buf, size_t count)
  2645. {
  2646. struct workqueue_struct *wq = dev_to_wq(dev);
  2647. int val;
  2648. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2649. return -EINVAL;
  2650. workqueue_set_max_active(wq, val);
  2651. return count;
  2652. }
  2653. static struct device_attribute wq_sysfs_attrs[] = {
  2654. __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
  2655. __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
  2656. __ATTR_NULL,
  2657. };
  2658. static ssize_t wq_pool_id_show(struct device *dev,
  2659. struct device_attribute *attr, char *buf)
  2660. {
  2661. struct workqueue_struct *wq = dev_to_wq(dev);
  2662. struct worker_pool *pool;
  2663. int written;
  2664. rcu_read_lock_sched();
  2665. pool = first_pwq(wq)->pool;
  2666. written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
  2667. rcu_read_unlock_sched();
  2668. return written;
  2669. }
  2670. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2671. char *buf)
  2672. {
  2673. struct workqueue_struct *wq = dev_to_wq(dev);
  2674. int written;
  2675. rcu_read_lock_sched();
  2676. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  2677. first_pwq(wq)->pool->attrs->nice);
  2678. rcu_read_unlock_sched();
  2679. return written;
  2680. }
  2681. /* prepare workqueue_attrs for sysfs store operations */
  2682. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2683. {
  2684. struct workqueue_attrs *attrs;
  2685. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2686. if (!attrs)
  2687. return NULL;
  2688. rcu_read_lock_sched();
  2689. copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
  2690. rcu_read_unlock_sched();
  2691. return attrs;
  2692. }
  2693. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2694. const char *buf, size_t count)
  2695. {
  2696. struct workqueue_struct *wq = dev_to_wq(dev);
  2697. struct workqueue_attrs *attrs;
  2698. int ret;
  2699. attrs = wq_sysfs_prep_attrs(wq);
  2700. if (!attrs)
  2701. return -ENOMEM;
  2702. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2703. attrs->nice >= -20 && attrs->nice <= 19)
  2704. ret = apply_workqueue_attrs(wq, attrs);
  2705. else
  2706. ret = -EINVAL;
  2707. free_workqueue_attrs(attrs);
  2708. return ret ?: count;
  2709. }
  2710. static ssize_t wq_cpumask_show(struct device *dev,
  2711. struct device_attribute *attr, char *buf)
  2712. {
  2713. struct workqueue_struct *wq = dev_to_wq(dev);
  2714. int written;
  2715. rcu_read_lock_sched();
  2716. written = cpumask_scnprintf(buf, PAGE_SIZE,
  2717. first_pwq(wq)->pool->attrs->cpumask);
  2718. rcu_read_unlock_sched();
  2719. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2720. return written;
  2721. }
  2722. static ssize_t wq_cpumask_store(struct device *dev,
  2723. struct device_attribute *attr,
  2724. const char *buf, size_t count)
  2725. {
  2726. struct workqueue_struct *wq = dev_to_wq(dev);
  2727. struct workqueue_attrs *attrs;
  2728. int ret;
  2729. attrs = wq_sysfs_prep_attrs(wq);
  2730. if (!attrs)
  2731. return -ENOMEM;
  2732. ret = cpumask_parse(buf, attrs->cpumask);
  2733. if (!ret)
  2734. ret = apply_workqueue_attrs(wq, attrs);
  2735. free_workqueue_attrs(attrs);
  2736. return ret ?: count;
  2737. }
  2738. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2739. __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
  2740. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2741. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2742. __ATTR_NULL,
  2743. };
  2744. static struct bus_type wq_subsys = {
  2745. .name = "workqueue",
  2746. .dev_attrs = wq_sysfs_attrs,
  2747. };
  2748. static int __init wq_sysfs_init(void)
  2749. {
  2750. return subsys_virtual_register(&wq_subsys, NULL);
  2751. }
  2752. core_initcall(wq_sysfs_init);
  2753. static void wq_device_release(struct device *dev)
  2754. {
  2755. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2756. kfree(wq_dev);
  2757. }
  2758. /**
  2759. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2760. * @wq: the workqueue to register
  2761. *
  2762. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2763. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2764. * which is the preferred method.
  2765. *
  2766. * Workqueue user should use this function directly iff it wants to apply
  2767. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2768. * apply_workqueue_attrs() may race against userland updating the
  2769. * attributes.
  2770. *
  2771. * Returns 0 on success, -errno on failure.
  2772. */
  2773. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2774. {
  2775. struct wq_device *wq_dev;
  2776. int ret;
  2777. /*
  2778. * Adjusting max_active or creating new pwqs by applyting
  2779. * attributes breaks ordering guarantee. Disallow exposing ordered
  2780. * workqueues.
  2781. */
  2782. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2783. return -EINVAL;
  2784. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2785. if (!wq_dev)
  2786. return -ENOMEM;
  2787. wq_dev->wq = wq;
  2788. wq_dev->dev.bus = &wq_subsys;
  2789. wq_dev->dev.init_name = wq->name;
  2790. wq_dev->dev.release = wq_device_release;
  2791. /*
  2792. * unbound_attrs are created separately. Suppress uevent until
  2793. * everything is ready.
  2794. */
  2795. dev_set_uevent_suppress(&wq_dev->dev, true);
  2796. ret = device_register(&wq_dev->dev);
  2797. if (ret) {
  2798. kfree(wq_dev);
  2799. wq->wq_dev = NULL;
  2800. return ret;
  2801. }
  2802. if (wq->flags & WQ_UNBOUND) {
  2803. struct device_attribute *attr;
  2804. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2805. ret = device_create_file(&wq_dev->dev, attr);
  2806. if (ret) {
  2807. device_unregister(&wq_dev->dev);
  2808. wq->wq_dev = NULL;
  2809. return ret;
  2810. }
  2811. }
  2812. }
  2813. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2814. return 0;
  2815. }
  2816. /**
  2817. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2818. * @wq: the workqueue to unregister
  2819. *
  2820. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2821. */
  2822. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2823. {
  2824. struct wq_device *wq_dev = wq->wq_dev;
  2825. if (!wq->wq_dev)
  2826. return;
  2827. wq->wq_dev = NULL;
  2828. device_unregister(&wq_dev->dev);
  2829. }
  2830. #else /* CONFIG_SYSFS */
  2831. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2832. #endif /* CONFIG_SYSFS */
  2833. /**
  2834. * free_workqueue_attrs - free a workqueue_attrs
  2835. * @attrs: workqueue_attrs to free
  2836. *
  2837. * Undo alloc_workqueue_attrs().
  2838. */
  2839. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2840. {
  2841. if (attrs) {
  2842. free_cpumask_var(attrs->cpumask);
  2843. kfree(attrs);
  2844. }
  2845. }
  2846. /**
  2847. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2848. * @gfp_mask: allocation mask to use
  2849. *
  2850. * Allocate a new workqueue_attrs, initialize with default settings and
  2851. * return it. Returns NULL on failure.
  2852. */
  2853. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2854. {
  2855. struct workqueue_attrs *attrs;
  2856. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2857. if (!attrs)
  2858. goto fail;
  2859. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2860. goto fail;
  2861. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2862. return attrs;
  2863. fail:
  2864. free_workqueue_attrs(attrs);
  2865. return NULL;
  2866. }
  2867. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2868. const struct workqueue_attrs *from)
  2869. {
  2870. to->nice = from->nice;
  2871. cpumask_copy(to->cpumask, from->cpumask);
  2872. }
  2873. /* hash value of the content of @attr */
  2874. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2875. {
  2876. u32 hash = 0;
  2877. hash = jhash_1word(attrs->nice, hash);
  2878. hash = jhash(cpumask_bits(attrs->cpumask),
  2879. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  2880. return hash;
  2881. }
  2882. /* content equality test */
  2883. static bool wqattrs_equal(const struct workqueue_attrs *a,
  2884. const struct workqueue_attrs *b)
  2885. {
  2886. if (a->nice != b->nice)
  2887. return false;
  2888. if (!cpumask_equal(a->cpumask, b->cpumask))
  2889. return false;
  2890. return true;
  2891. }
  2892. /**
  2893. * init_worker_pool - initialize a newly zalloc'd worker_pool
  2894. * @pool: worker_pool to initialize
  2895. *
  2896. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  2897. * Returns 0 on success, -errno on failure. Even on failure, all fields
  2898. * inside @pool proper are initialized and put_unbound_pool() can be called
  2899. * on @pool safely to release it.
  2900. */
  2901. static int init_worker_pool(struct worker_pool *pool)
  2902. {
  2903. spin_lock_init(&pool->lock);
  2904. pool->id = -1;
  2905. pool->cpu = -1;
  2906. pool->flags |= POOL_DISASSOCIATED;
  2907. INIT_LIST_HEAD(&pool->worklist);
  2908. INIT_LIST_HEAD(&pool->idle_list);
  2909. hash_init(pool->busy_hash);
  2910. init_timer_deferrable(&pool->idle_timer);
  2911. pool->idle_timer.function = idle_worker_timeout;
  2912. pool->idle_timer.data = (unsigned long)pool;
  2913. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  2914. (unsigned long)pool);
  2915. mutex_init(&pool->manager_arb);
  2916. mutex_init(&pool->manager_mutex);
  2917. idr_init(&pool->worker_idr);
  2918. INIT_HLIST_NODE(&pool->hash_node);
  2919. pool->refcnt = 1;
  2920. /* shouldn't fail above this point */
  2921. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2922. if (!pool->attrs)
  2923. return -ENOMEM;
  2924. return 0;
  2925. }
  2926. static void rcu_free_pool(struct rcu_head *rcu)
  2927. {
  2928. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  2929. idr_destroy(&pool->worker_idr);
  2930. free_workqueue_attrs(pool->attrs);
  2931. kfree(pool);
  2932. }
  2933. /**
  2934. * put_unbound_pool - put a worker_pool
  2935. * @pool: worker_pool to put
  2936. *
  2937. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  2938. * safe manner. get_unbound_pool() calls this function on its failure path
  2939. * and this function should be able to release pools which went through,
  2940. * successfully or not, init_worker_pool().
  2941. *
  2942. * Should be called with wq_pool_mutex held.
  2943. */
  2944. static void put_unbound_pool(struct worker_pool *pool)
  2945. {
  2946. struct worker *worker;
  2947. lockdep_assert_held(&wq_pool_mutex);
  2948. if (--pool->refcnt)
  2949. return;
  2950. /* sanity checks */
  2951. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  2952. WARN_ON(!list_empty(&pool->worklist)))
  2953. return;
  2954. /* release id and unhash */
  2955. if (pool->id >= 0)
  2956. idr_remove(&worker_pool_idr, pool->id);
  2957. hash_del(&pool->hash_node);
  2958. /*
  2959. * Become the manager and destroy all workers. Grabbing
  2960. * manager_arb prevents @pool's workers from blocking on
  2961. * manager_mutex.
  2962. */
  2963. mutex_lock(&pool->manager_arb);
  2964. mutex_lock(&pool->manager_mutex);
  2965. spin_lock_irq(&pool->lock);
  2966. while ((worker = first_worker(pool)))
  2967. destroy_worker(worker);
  2968. WARN_ON(pool->nr_workers || pool->nr_idle);
  2969. spin_unlock_irq(&pool->lock);
  2970. mutex_unlock(&pool->manager_mutex);
  2971. mutex_unlock(&pool->manager_arb);
  2972. /* shut down the timers */
  2973. del_timer_sync(&pool->idle_timer);
  2974. del_timer_sync(&pool->mayday_timer);
  2975. /* sched-RCU protected to allow dereferences from get_work_pool() */
  2976. call_rcu_sched(&pool->rcu, rcu_free_pool);
  2977. }
  2978. /**
  2979. * get_unbound_pool - get a worker_pool with the specified attributes
  2980. * @attrs: the attributes of the worker_pool to get
  2981. *
  2982. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  2983. * reference count and return it. If there already is a matching
  2984. * worker_pool, it will be used; otherwise, this function attempts to
  2985. * create a new one. On failure, returns NULL.
  2986. *
  2987. * Should be called with wq_pool_mutex held.
  2988. */
  2989. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  2990. {
  2991. u32 hash = wqattrs_hash(attrs);
  2992. struct worker_pool *pool;
  2993. lockdep_assert_held(&wq_pool_mutex);
  2994. /* do we already have a matching pool? */
  2995. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  2996. if (wqattrs_equal(pool->attrs, attrs)) {
  2997. pool->refcnt++;
  2998. goto out_unlock;
  2999. }
  3000. }
  3001. /* nope, create a new one */
  3002. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3003. if (!pool || init_worker_pool(pool) < 0)
  3004. goto fail;
  3005. if (workqueue_freezing)
  3006. pool->flags |= POOL_FREEZING;
  3007. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3008. copy_workqueue_attrs(pool->attrs, attrs);
  3009. if (worker_pool_assign_id(pool) < 0)
  3010. goto fail;
  3011. /* create and start the initial worker */
  3012. if (create_and_start_worker(pool) < 0)
  3013. goto fail;
  3014. /* install */
  3015. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3016. out_unlock:
  3017. return pool;
  3018. fail:
  3019. if (pool)
  3020. put_unbound_pool(pool);
  3021. return NULL;
  3022. }
  3023. static void rcu_free_pwq(struct rcu_head *rcu)
  3024. {
  3025. kmem_cache_free(pwq_cache,
  3026. container_of(rcu, struct pool_workqueue, rcu));
  3027. }
  3028. /*
  3029. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3030. * and needs to be destroyed.
  3031. */
  3032. static void pwq_unbound_release_workfn(struct work_struct *work)
  3033. {
  3034. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3035. unbound_release_work);
  3036. struct workqueue_struct *wq = pwq->wq;
  3037. struct worker_pool *pool = pwq->pool;
  3038. bool is_last;
  3039. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3040. return;
  3041. /*
  3042. * Unlink @pwq. Synchronization against wq->mutex isn't strictly
  3043. * necessary on release but do it anyway. It's easier to verify
  3044. * and consistent with the linking path.
  3045. */
  3046. mutex_lock(&wq->mutex);
  3047. list_del_rcu(&pwq->pwqs_node);
  3048. is_last = list_empty(&wq->pwqs);
  3049. mutex_unlock(&wq->mutex);
  3050. mutex_lock(&wq_pool_mutex);
  3051. put_unbound_pool(pool);
  3052. mutex_unlock(&wq_pool_mutex);
  3053. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3054. /*
  3055. * If we're the last pwq going away, @wq is already dead and no one
  3056. * is gonna access it anymore. Free it.
  3057. */
  3058. if (is_last)
  3059. kfree(wq);
  3060. }
  3061. /**
  3062. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3063. * @pwq: target pool_workqueue
  3064. *
  3065. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3066. * workqueue's saved_max_active and activate delayed work items
  3067. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3068. */
  3069. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3070. {
  3071. struct workqueue_struct *wq = pwq->wq;
  3072. bool freezable = wq->flags & WQ_FREEZABLE;
  3073. /* for @wq->saved_max_active */
  3074. lockdep_assert_held(&wq->mutex);
  3075. /* fast exit for non-freezable wqs */
  3076. if (!freezable && pwq->max_active == wq->saved_max_active)
  3077. return;
  3078. spin_lock_irq(&pwq->pool->lock);
  3079. if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
  3080. pwq->max_active = wq->saved_max_active;
  3081. while (!list_empty(&pwq->delayed_works) &&
  3082. pwq->nr_active < pwq->max_active)
  3083. pwq_activate_first_delayed(pwq);
  3084. /*
  3085. * Need to kick a worker after thawed or an unbound wq's
  3086. * max_active is bumped. It's a slow path. Do it always.
  3087. */
  3088. wake_up_worker(pwq->pool);
  3089. } else {
  3090. pwq->max_active = 0;
  3091. }
  3092. spin_unlock_irq(&pwq->pool->lock);
  3093. }
  3094. static void init_and_link_pwq(struct pool_workqueue *pwq,
  3095. struct workqueue_struct *wq,
  3096. struct worker_pool *pool,
  3097. struct pool_workqueue **p_last_pwq)
  3098. {
  3099. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3100. pwq->pool = pool;
  3101. pwq->wq = wq;
  3102. pwq->flush_color = -1;
  3103. pwq->refcnt = 1;
  3104. INIT_LIST_HEAD(&pwq->delayed_works);
  3105. INIT_LIST_HEAD(&pwq->mayday_node);
  3106. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3107. mutex_lock(&wq->mutex);
  3108. /*
  3109. * Set the matching work_color. This is synchronized with
  3110. * wq->mutex to avoid confusing flush_workqueue().
  3111. */
  3112. if (p_last_pwq)
  3113. *p_last_pwq = first_pwq(wq);
  3114. pwq->work_color = wq->work_color;
  3115. /* sync max_active to the current setting */
  3116. pwq_adjust_max_active(pwq);
  3117. /* link in @pwq */
  3118. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3119. mutex_unlock(&wq->mutex);
  3120. }
  3121. /**
  3122. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3123. * @wq: the target workqueue
  3124. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3125. *
  3126. * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
  3127. * current attributes, a new pwq is created and made the first pwq which
  3128. * will serve all new work items. Older pwqs are released as in-flight
  3129. * work items finish. Note that a work item which repeatedly requeues
  3130. * itself back-to-back will stay on its current pwq.
  3131. *
  3132. * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
  3133. * failure.
  3134. */
  3135. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3136. const struct workqueue_attrs *attrs)
  3137. {
  3138. struct workqueue_attrs *new_attrs;
  3139. struct pool_workqueue *pwq = NULL, *last_pwq;
  3140. struct worker_pool *pool;
  3141. int ret;
  3142. /* only unbound workqueues can change attributes */
  3143. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3144. return -EINVAL;
  3145. /* creating multiple pwqs breaks ordering guarantee */
  3146. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3147. return -EINVAL;
  3148. /* make a copy of @attrs and sanitize it */
  3149. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3150. if (!new_attrs)
  3151. goto enomem;
  3152. copy_workqueue_attrs(new_attrs, attrs);
  3153. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3154. mutex_lock(&wq_pool_mutex);
  3155. pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
  3156. if (!pwq) {
  3157. mutex_unlock(&wq_pool_mutex);
  3158. goto enomem;
  3159. }
  3160. pool = get_unbound_pool(new_attrs);
  3161. if (!pool) {
  3162. mutex_unlock(&wq_pool_mutex);
  3163. goto enomem;
  3164. }
  3165. mutex_unlock(&wq_pool_mutex);
  3166. init_and_link_pwq(pwq, wq, pool, &last_pwq);
  3167. if (last_pwq) {
  3168. spin_lock_irq(&last_pwq->pool->lock);
  3169. put_pwq(last_pwq);
  3170. spin_unlock_irq(&last_pwq->pool->lock);
  3171. }
  3172. ret = 0;
  3173. /* fall through */
  3174. out_free:
  3175. free_workqueue_attrs(new_attrs);
  3176. return ret;
  3177. enomem:
  3178. kmem_cache_free(pwq_cache, pwq);
  3179. ret = -ENOMEM;
  3180. goto out_free;
  3181. }
  3182. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3183. {
  3184. bool highpri = wq->flags & WQ_HIGHPRI;
  3185. int cpu;
  3186. if (!(wq->flags & WQ_UNBOUND)) {
  3187. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3188. if (!wq->cpu_pwqs)
  3189. return -ENOMEM;
  3190. for_each_possible_cpu(cpu) {
  3191. struct pool_workqueue *pwq =
  3192. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3193. struct worker_pool *cpu_pools =
  3194. per_cpu(cpu_worker_pools, cpu);
  3195. init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
  3196. }
  3197. return 0;
  3198. } else {
  3199. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3200. }
  3201. }
  3202. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3203. const char *name)
  3204. {
  3205. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3206. if (max_active < 1 || max_active > lim)
  3207. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3208. max_active, name, 1, lim);
  3209. return clamp_val(max_active, 1, lim);
  3210. }
  3211. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3212. unsigned int flags,
  3213. int max_active,
  3214. struct lock_class_key *key,
  3215. const char *lock_name, ...)
  3216. {
  3217. va_list args, args1;
  3218. struct workqueue_struct *wq;
  3219. struct pool_workqueue *pwq;
  3220. size_t namelen;
  3221. /* determine namelen, allocate wq and format name */
  3222. va_start(args, lock_name);
  3223. va_copy(args1, args);
  3224. namelen = vsnprintf(NULL, 0, fmt, args) + 1;
  3225. wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
  3226. if (!wq)
  3227. return NULL;
  3228. vsnprintf(wq->name, namelen, fmt, args1);
  3229. va_end(args);
  3230. va_end(args1);
  3231. max_active = max_active ?: WQ_DFL_ACTIVE;
  3232. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3233. /* init wq */
  3234. wq->flags = flags;
  3235. wq->saved_max_active = max_active;
  3236. mutex_init(&wq->mutex);
  3237. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3238. INIT_LIST_HEAD(&wq->pwqs);
  3239. INIT_LIST_HEAD(&wq->flusher_queue);
  3240. INIT_LIST_HEAD(&wq->flusher_overflow);
  3241. INIT_LIST_HEAD(&wq->maydays);
  3242. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3243. INIT_LIST_HEAD(&wq->list);
  3244. if (alloc_and_link_pwqs(wq) < 0)
  3245. goto err_free_wq;
  3246. /*
  3247. * Workqueues which may be used during memory reclaim should
  3248. * have a rescuer to guarantee forward progress.
  3249. */
  3250. if (flags & WQ_MEM_RECLAIM) {
  3251. struct worker *rescuer;
  3252. rescuer = alloc_worker();
  3253. if (!rescuer)
  3254. goto err_destroy;
  3255. rescuer->rescue_wq = wq;
  3256. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3257. wq->name);
  3258. if (IS_ERR(rescuer->task)) {
  3259. kfree(rescuer);
  3260. goto err_destroy;
  3261. }
  3262. wq->rescuer = rescuer;
  3263. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3264. wake_up_process(rescuer->task);
  3265. }
  3266. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3267. goto err_destroy;
  3268. /*
  3269. * wq_pool_mutex protects global freeze state and workqueues list.
  3270. * Grab it, adjust max_active and add the new @wq to workqueues
  3271. * list.
  3272. */
  3273. mutex_lock(&wq_pool_mutex);
  3274. mutex_lock(&wq->mutex);
  3275. for_each_pwq(pwq, wq)
  3276. pwq_adjust_max_active(pwq);
  3277. mutex_unlock(&wq->mutex);
  3278. list_add(&wq->list, &workqueues);
  3279. mutex_unlock(&wq_pool_mutex);
  3280. return wq;
  3281. err_free_wq:
  3282. kfree(wq);
  3283. return NULL;
  3284. err_destroy:
  3285. destroy_workqueue(wq);
  3286. return NULL;
  3287. }
  3288. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3289. /**
  3290. * destroy_workqueue - safely terminate a workqueue
  3291. * @wq: target workqueue
  3292. *
  3293. * Safely destroy a workqueue. All work currently pending will be done first.
  3294. */
  3295. void destroy_workqueue(struct workqueue_struct *wq)
  3296. {
  3297. struct pool_workqueue *pwq;
  3298. /* drain it before proceeding with destruction */
  3299. drain_workqueue(wq);
  3300. /* sanity checks */
  3301. mutex_lock(&wq->mutex);
  3302. for_each_pwq(pwq, wq) {
  3303. int i;
  3304. for (i = 0; i < WORK_NR_COLORS; i++) {
  3305. if (WARN_ON(pwq->nr_in_flight[i])) {
  3306. mutex_unlock(&wq->mutex);
  3307. return;
  3308. }
  3309. }
  3310. if (WARN_ON(pwq->refcnt > 1) ||
  3311. WARN_ON(pwq->nr_active) ||
  3312. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3313. mutex_unlock(&wq->mutex);
  3314. return;
  3315. }
  3316. }
  3317. mutex_unlock(&wq->mutex);
  3318. /*
  3319. * wq list is used to freeze wq, remove from list after
  3320. * flushing is complete in case freeze races us.
  3321. */
  3322. mutex_lock(&wq_pool_mutex);
  3323. list_del_init(&wq->list);
  3324. mutex_unlock(&wq_pool_mutex);
  3325. workqueue_sysfs_unregister(wq);
  3326. if (wq->rescuer) {
  3327. kthread_stop(wq->rescuer->task);
  3328. kfree(wq->rescuer);
  3329. wq->rescuer = NULL;
  3330. }
  3331. if (!(wq->flags & WQ_UNBOUND)) {
  3332. /*
  3333. * The base ref is never dropped on per-cpu pwqs. Directly
  3334. * free the pwqs and wq.
  3335. */
  3336. free_percpu(wq->cpu_pwqs);
  3337. kfree(wq);
  3338. } else {
  3339. /*
  3340. * We're the sole accessor of @wq at this point. Directly
  3341. * access the first pwq and put the base ref. As both pwqs
  3342. * and pools are sched-RCU protected, the lock operations
  3343. * are safe. @wq will be freed when the last pwq is
  3344. * released.
  3345. */
  3346. pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
  3347. pwqs_node);
  3348. spin_lock_irq(&pwq->pool->lock);
  3349. put_pwq(pwq);
  3350. spin_unlock_irq(&pwq->pool->lock);
  3351. }
  3352. }
  3353. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3354. /**
  3355. * workqueue_set_max_active - adjust max_active of a workqueue
  3356. * @wq: target workqueue
  3357. * @max_active: new max_active value.
  3358. *
  3359. * Set max_active of @wq to @max_active.
  3360. *
  3361. * CONTEXT:
  3362. * Don't call from IRQ context.
  3363. */
  3364. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3365. {
  3366. struct pool_workqueue *pwq;
  3367. /* disallow meddling with max_active for ordered workqueues */
  3368. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3369. return;
  3370. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3371. mutex_lock(&wq->mutex);
  3372. wq->saved_max_active = max_active;
  3373. for_each_pwq(pwq, wq)
  3374. pwq_adjust_max_active(pwq);
  3375. mutex_unlock(&wq->mutex);
  3376. }
  3377. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3378. /**
  3379. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3380. *
  3381. * Determine whether %current is a workqueue rescuer. Can be used from
  3382. * work functions to determine whether it's being run off the rescuer task.
  3383. */
  3384. bool current_is_workqueue_rescuer(void)
  3385. {
  3386. struct worker *worker = current_wq_worker();
  3387. return worker && worker->rescue_wq;
  3388. }
  3389. /**
  3390. * workqueue_congested - test whether a workqueue is congested
  3391. * @cpu: CPU in question
  3392. * @wq: target workqueue
  3393. *
  3394. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3395. * no synchronization around this function and the test result is
  3396. * unreliable and only useful as advisory hints or for debugging.
  3397. *
  3398. * RETURNS:
  3399. * %true if congested, %false otherwise.
  3400. */
  3401. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3402. {
  3403. struct pool_workqueue *pwq;
  3404. bool ret;
  3405. rcu_read_lock_sched();
  3406. if (!(wq->flags & WQ_UNBOUND))
  3407. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3408. else
  3409. pwq = first_pwq(wq);
  3410. ret = !list_empty(&pwq->delayed_works);
  3411. rcu_read_unlock_sched();
  3412. return ret;
  3413. }
  3414. EXPORT_SYMBOL_GPL(workqueue_congested);
  3415. /**
  3416. * work_busy - test whether a work is currently pending or running
  3417. * @work: the work to be tested
  3418. *
  3419. * Test whether @work is currently pending or running. There is no
  3420. * synchronization around this function and the test result is
  3421. * unreliable and only useful as advisory hints or for debugging.
  3422. *
  3423. * RETURNS:
  3424. * OR'd bitmask of WORK_BUSY_* bits.
  3425. */
  3426. unsigned int work_busy(struct work_struct *work)
  3427. {
  3428. struct worker_pool *pool;
  3429. unsigned long flags;
  3430. unsigned int ret = 0;
  3431. if (work_pending(work))
  3432. ret |= WORK_BUSY_PENDING;
  3433. local_irq_save(flags);
  3434. pool = get_work_pool(work);
  3435. if (pool) {
  3436. spin_lock(&pool->lock);
  3437. if (find_worker_executing_work(pool, work))
  3438. ret |= WORK_BUSY_RUNNING;
  3439. spin_unlock(&pool->lock);
  3440. }
  3441. local_irq_restore(flags);
  3442. return ret;
  3443. }
  3444. EXPORT_SYMBOL_GPL(work_busy);
  3445. /*
  3446. * CPU hotplug.
  3447. *
  3448. * There are two challenges in supporting CPU hotplug. Firstly, there
  3449. * are a lot of assumptions on strong associations among work, pwq and
  3450. * pool which make migrating pending and scheduled works very
  3451. * difficult to implement without impacting hot paths. Secondly,
  3452. * worker pools serve mix of short, long and very long running works making
  3453. * blocked draining impractical.
  3454. *
  3455. * This is solved by allowing the pools to be disassociated from the CPU
  3456. * running as an unbound one and allowing it to be reattached later if the
  3457. * cpu comes back online.
  3458. */
  3459. static void wq_unbind_fn(struct work_struct *work)
  3460. {
  3461. int cpu = smp_processor_id();
  3462. struct worker_pool *pool;
  3463. struct worker *worker;
  3464. int wi;
  3465. for_each_cpu_worker_pool(pool, cpu) {
  3466. WARN_ON_ONCE(cpu != smp_processor_id());
  3467. mutex_lock(&pool->manager_mutex);
  3468. spin_lock_irq(&pool->lock);
  3469. /*
  3470. * We've blocked all manager operations. Make all workers
  3471. * unbound and set DISASSOCIATED. Before this, all workers
  3472. * except for the ones which are still executing works from
  3473. * before the last CPU down must be on the cpu. After
  3474. * this, they may become diasporas.
  3475. */
  3476. for_each_pool_worker(worker, wi, pool)
  3477. worker->flags |= WORKER_UNBOUND;
  3478. pool->flags |= POOL_DISASSOCIATED;
  3479. spin_unlock_irq(&pool->lock);
  3480. mutex_unlock(&pool->manager_mutex);
  3481. }
  3482. /*
  3483. * Call schedule() so that we cross rq->lock and thus can guarantee
  3484. * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
  3485. * as scheduler callbacks may be invoked from other cpus.
  3486. */
  3487. schedule();
  3488. /*
  3489. * Sched callbacks are disabled now. Zap nr_running. After this,
  3490. * nr_running stays zero and need_more_worker() and keep_working()
  3491. * are always true as long as the worklist is not empty. Pools on
  3492. * @cpu now behave as unbound (in terms of concurrency management)
  3493. * pools which are served by workers tied to the CPU.
  3494. *
  3495. * On return from this function, the current worker would trigger
  3496. * unbound chain execution of pending work items if other workers
  3497. * didn't already.
  3498. */
  3499. for_each_cpu_worker_pool(pool, cpu)
  3500. atomic_set(&pool->nr_running, 0);
  3501. }
  3502. /**
  3503. * rebind_workers - rebind all workers of a pool to the associated CPU
  3504. * @pool: pool of interest
  3505. *
  3506. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3507. */
  3508. static void rebind_workers(struct worker_pool *pool)
  3509. {
  3510. struct worker *worker;
  3511. int wi;
  3512. lockdep_assert_held(&pool->manager_mutex);
  3513. /*
  3514. * Restore CPU affinity of all workers. As all idle workers should
  3515. * be on the run-queue of the associated CPU before any local
  3516. * wake-ups for concurrency management happen, restore CPU affinty
  3517. * of all workers first and then clear UNBOUND. As we're called
  3518. * from CPU_ONLINE, the following shouldn't fail.
  3519. */
  3520. for_each_pool_worker(worker, wi, pool)
  3521. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3522. pool->attrs->cpumask) < 0);
  3523. spin_lock_irq(&pool->lock);
  3524. for_each_pool_worker(worker, wi, pool) {
  3525. unsigned int worker_flags = worker->flags;
  3526. /*
  3527. * A bound idle worker should actually be on the runqueue
  3528. * of the associated CPU for local wake-ups targeting it to
  3529. * work. Kick all idle workers so that they migrate to the
  3530. * associated CPU. Doing this in the same loop as
  3531. * replacing UNBOUND with REBOUND is safe as no worker will
  3532. * be bound before @pool->lock is released.
  3533. */
  3534. if (worker_flags & WORKER_IDLE)
  3535. wake_up_process(worker->task);
  3536. /*
  3537. * We want to clear UNBOUND but can't directly call
  3538. * worker_clr_flags() or adjust nr_running. Atomically
  3539. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  3540. * @worker will clear REBOUND using worker_clr_flags() when
  3541. * it initiates the next execution cycle thus restoring
  3542. * concurrency management. Note that when or whether
  3543. * @worker clears REBOUND doesn't affect correctness.
  3544. *
  3545. * ACCESS_ONCE() is necessary because @worker->flags may be
  3546. * tested without holding any lock in
  3547. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  3548. * fail incorrectly leading to premature concurrency
  3549. * management operations.
  3550. */
  3551. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  3552. worker_flags |= WORKER_REBOUND;
  3553. worker_flags &= ~WORKER_UNBOUND;
  3554. ACCESS_ONCE(worker->flags) = worker_flags;
  3555. }
  3556. spin_unlock_irq(&pool->lock);
  3557. }
  3558. /**
  3559. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  3560. * @pool: unbound pool of interest
  3561. * @cpu: the CPU which is coming up
  3562. *
  3563. * An unbound pool may end up with a cpumask which doesn't have any online
  3564. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  3565. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  3566. * online CPU before, cpus_allowed of all its workers should be restored.
  3567. */
  3568. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  3569. {
  3570. static cpumask_t cpumask;
  3571. struct worker *worker;
  3572. int wi;
  3573. lockdep_assert_held(&pool->manager_mutex);
  3574. /* is @cpu allowed for @pool? */
  3575. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  3576. return;
  3577. /* is @cpu the only online CPU? */
  3578. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  3579. if (cpumask_weight(&cpumask) != 1)
  3580. return;
  3581. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  3582. for_each_pool_worker(worker, wi, pool)
  3583. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3584. pool->attrs->cpumask) < 0);
  3585. }
  3586. /*
  3587. * Workqueues should be brought up before normal priority CPU notifiers.
  3588. * This will be registered high priority CPU notifier.
  3589. */
  3590. static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
  3591. unsigned long action,
  3592. void *hcpu)
  3593. {
  3594. int cpu = (unsigned long)hcpu;
  3595. struct worker_pool *pool;
  3596. int pi;
  3597. switch (action & ~CPU_TASKS_FROZEN) {
  3598. case CPU_UP_PREPARE:
  3599. for_each_cpu_worker_pool(pool, cpu) {
  3600. if (pool->nr_workers)
  3601. continue;
  3602. if (create_and_start_worker(pool) < 0)
  3603. return NOTIFY_BAD;
  3604. }
  3605. break;
  3606. case CPU_DOWN_FAILED:
  3607. case CPU_ONLINE:
  3608. mutex_lock(&wq_pool_mutex);
  3609. for_each_pool(pool, pi) {
  3610. mutex_lock(&pool->manager_mutex);
  3611. if (pool->cpu == cpu) {
  3612. spin_lock_irq(&pool->lock);
  3613. pool->flags &= ~POOL_DISASSOCIATED;
  3614. spin_unlock_irq(&pool->lock);
  3615. rebind_workers(pool);
  3616. } else if (pool->cpu < 0) {
  3617. restore_unbound_workers_cpumask(pool, cpu);
  3618. }
  3619. mutex_unlock(&pool->manager_mutex);
  3620. }
  3621. mutex_unlock(&wq_pool_mutex);
  3622. break;
  3623. }
  3624. return NOTIFY_OK;
  3625. }
  3626. /*
  3627. * Workqueues should be brought down after normal priority CPU notifiers.
  3628. * This will be registered as low priority CPU notifier.
  3629. */
  3630. static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
  3631. unsigned long action,
  3632. void *hcpu)
  3633. {
  3634. int cpu = (unsigned long)hcpu;
  3635. struct work_struct unbind_work;
  3636. switch (action & ~CPU_TASKS_FROZEN) {
  3637. case CPU_DOWN_PREPARE:
  3638. /* unbinding should happen on the local CPU */
  3639. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  3640. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  3641. flush_work(&unbind_work);
  3642. break;
  3643. }
  3644. return NOTIFY_OK;
  3645. }
  3646. #ifdef CONFIG_SMP
  3647. struct work_for_cpu {
  3648. struct work_struct work;
  3649. long (*fn)(void *);
  3650. void *arg;
  3651. long ret;
  3652. };
  3653. static void work_for_cpu_fn(struct work_struct *work)
  3654. {
  3655. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  3656. wfc->ret = wfc->fn(wfc->arg);
  3657. }
  3658. /**
  3659. * work_on_cpu - run a function in user context on a particular cpu
  3660. * @cpu: the cpu to run on
  3661. * @fn: the function to run
  3662. * @arg: the function arg
  3663. *
  3664. * This will return the value @fn returns.
  3665. * It is up to the caller to ensure that the cpu doesn't go offline.
  3666. * The caller must not hold any locks which would prevent @fn from completing.
  3667. */
  3668. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  3669. {
  3670. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  3671. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  3672. schedule_work_on(cpu, &wfc.work);
  3673. flush_work(&wfc.work);
  3674. return wfc.ret;
  3675. }
  3676. EXPORT_SYMBOL_GPL(work_on_cpu);
  3677. #endif /* CONFIG_SMP */
  3678. #ifdef CONFIG_FREEZER
  3679. /**
  3680. * freeze_workqueues_begin - begin freezing workqueues
  3681. *
  3682. * Start freezing workqueues. After this function returns, all freezable
  3683. * workqueues will queue new works to their delayed_works list instead of
  3684. * pool->worklist.
  3685. *
  3686. * CONTEXT:
  3687. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  3688. */
  3689. void freeze_workqueues_begin(void)
  3690. {
  3691. struct worker_pool *pool;
  3692. struct workqueue_struct *wq;
  3693. struct pool_workqueue *pwq;
  3694. int pi;
  3695. mutex_lock(&wq_pool_mutex);
  3696. WARN_ON_ONCE(workqueue_freezing);
  3697. workqueue_freezing = true;
  3698. /* set FREEZING */
  3699. for_each_pool(pool, pi) {
  3700. spin_lock_irq(&pool->lock);
  3701. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  3702. pool->flags |= POOL_FREEZING;
  3703. spin_unlock_irq(&pool->lock);
  3704. }
  3705. list_for_each_entry(wq, &workqueues, list) {
  3706. mutex_lock(&wq->mutex);
  3707. for_each_pwq(pwq, wq)
  3708. pwq_adjust_max_active(pwq);
  3709. mutex_unlock(&wq->mutex);
  3710. }
  3711. mutex_unlock(&wq_pool_mutex);
  3712. }
  3713. /**
  3714. * freeze_workqueues_busy - are freezable workqueues still busy?
  3715. *
  3716. * Check whether freezing is complete. This function must be called
  3717. * between freeze_workqueues_begin() and thaw_workqueues().
  3718. *
  3719. * CONTEXT:
  3720. * Grabs and releases wq_pool_mutex.
  3721. *
  3722. * RETURNS:
  3723. * %true if some freezable workqueues are still busy. %false if freezing
  3724. * is complete.
  3725. */
  3726. bool freeze_workqueues_busy(void)
  3727. {
  3728. bool busy = false;
  3729. struct workqueue_struct *wq;
  3730. struct pool_workqueue *pwq;
  3731. mutex_lock(&wq_pool_mutex);
  3732. WARN_ON_ONCE(!workqueue_freezing);
  3733. list_for_each_entry(wq, &workqueues, list) {
  3734. if (!(wq->flags & WQ_FREEZABLE))
  3735. continue;
  3736. /*
  3737. * nr_active is monotonically decreasing. It's safe
  3738. * to peek without lock.
  3739. */
  3740. rcu_read_lock_sched();
  3741. for_each_pwq(pwq, wq) {
  3742. WARN_ON_ONCE(pwq->nr_active < 0);
  3743. if (pwq->nr_active) {
  3744. busy = true;
  3745. rcu_read_unlock_sched();
  3746. goto out_unlock;
  3747. }
  3748. }
  3749. rcu_read_unlock_sched();
  3750. }
  3751. out_unlock:
  3752. mutex_unlock(&wq_pool_mutex);
  3753. return busy;
  3754. }
  3755. /**
  3756. * thaw_workqueues - thaw workqueues
  3757. *
  3758. * Thaw workqueues. Normal queueing is restored and all collected
  3759. * frozen works are transferred to their respective pool worklists.
  3760. *
  3761. * CONTEXT:
  3762. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  3763. */
  3764. void thaw_workqueues(void)
  3765. {
  3766. struct workqueue_struct *wq;
  3767. struct pool_workqueue *pwq;
  3768. struct worker_pool *pool;
  3769. int pi;
  3770. mutex_lock(&wq_pool_mutex);
  3771. if (!workqueue_freezing)
  3772. goto out_unlock;
  3773. /* clear FREEZING */
  3774. for_each_pool(pool, pi) {
  3775. spin_lock_irq(&pool->lock);
  3776. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  3777. pool->flags &= ~POOL_FREEZING;
  3778. spin_unlock_irq(&pool->lock);
  3779. }
  3780. /* restore max_active and repopulate worklist */
  3781. list_for_each_entry(wq, &workqueues, list) {
  3782. mutex_lock(&wq->mutex);
  3783. for_each_pwq(pwq, wq)
  3784. pwq_adjust_max_active(pwq);
  3785. mutex_unlock(&wq->mutex);
  3786. }
  3787. workqueue_freezing = false;
  3788. out_unlock:
  3789. mutex_unlock(&wq_pool_mutex);
  3790. }
  3791. #endif /* CONFIG_FREEZER */
  3792. static void __init wq_numa_init(void)
  3793. {
  3794. cpumask_var_t *tbl;
  3795. int node, cpu;
  3796. /* determine NUMA pwq table len - highest node id + 1 */
  3797. for_each_node(node)
  3798. wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
  3799. if (num_possible_nodes() <= 1)
  3800. return;
  3801. /*
  3802. * We want masks of possible CPUs of each node which isn't readily
  3803. * available. Build one from cpu_to_node() which should have been
  3804. * fully initialized by now.
  3805. */
  3806. tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
  3807. BUG_ON(!tbl);
  3808. for_each_node(node)
  3809. BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
  3810. for_each_possible_cpu(cpu) {
  3811. node = cpu_to_node(cpu);
  3812. if (WARN_ON(node == NUMA_NO_NODE)) {
  3813. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  3814. /* happens iff arch is bonkers, let's just proceed */
  3815. return;
  3816. }
  3817. cpumask_set_cpu(cpu, tbl[node]);
  3818. }
  3819. wq_numa_possible_cpumask = tbl;
  3820. wq_numa_enabled = true;
  3821. }
  3822. static int __init init_workqueues(void)
  3823. {
  3824. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  3825. int i, cpu;
  3826. /* make sure we have enough bits for OFFQ pool ID */
  3827. BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
  3828. WORK_CPU_END * NR_STD_WORKER_POOLS);
  3829. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  3830. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  3831. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  3832. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  3833. wq_numa_init();
  3834. /* initialize CPU pools */
  3835. for_each_possible_cpu(cpu) {
  3836. struct worker_pool *pool;
  3837. i = 0;
  3838. for_each_cpu_worker_pool(pool, cpu) {
  3839. BUG_ON(init_worker_pool(pool));
  3840. pool->cpu = cpu;
  3841. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  3842. pool->attrs->nice = std_nice[i++];
  3843. /* alloc pool ID */
  3844. mutex_lock(&wq_pool_mutex);
  3845. BUG_ON(worker_pool_assign_id(pool));
  3846. mutex_unlock(&wq_pool_mutex);
  3847. }
  3848. }
  3849. /* create the initial worker */
  3850. for_each_online_cpu(cpu) {
  3851. struct worker_pool *pool;
  3852. for_each_cpu_worker_pool(pool, cpu) {
  3853. pool->flags &= ~POOL_DISASSOCIATED;
  3854. BUG_ON(create_and_start_worker(pool) < 0);
  3855. }
  3856. }
  3857. /* create default unbound wq attrs */
  3858. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  3859. struct workqueue_attrs *attrs;
  3860. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  3861. attrs->nice = std_nice[i];
  3862. unbound_std_wq_attrs[i] = attrs;
  3863. }
  3864. system_wq = alloc_workqueue("events", 0, 0);
  3865. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  3866. system_long_wq = alloc_workqueue("events_long", 0, 0);
  3867. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  3868. WQ_UNBOUND_MAX_ACTIVE);
  3869. system_freezable_wq = alloc_workqueue("events_freezable",
  3870. WQ_FREEZABLE, 0);
  3871. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  3872. !system_unbound_wq || !system_freezable_wq);
  3873. return 0;
  3874. }
  3875. early_initcall(init_workqueues);