paging_tmpl.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t *table;
  60. pt_element_t pte;
  61. pt_element_t *ptep;
  62. struct page *page;
  63. int index;
  64. pt_element_t inherited_ar;
  65. gfn_t gfn;
  66. u32 error_code;
  67. };
  68. /*
  69. * Fetch a guest pte for a guest virtual address
  70. */
  71. static int FNAME(walk_addr)(struct guest_walker *walker,
  72. struct kvm_vcpu *vcpu, gva_t addr,
  73. int write_fault, int user_fault, int fetch_fault)
  74. {
  75. hpa_t hpa;
  76. struct kvm_memory_slot *slot;
  77. pt_element_t *ptep;
  78. pt_element_t root;
  79. gfn_t table_gfn;
  80. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  81. walker->level = vcpu->mmu.root_level;
  82. walker->table = NULL;
  83. walker->page = NULL;
  84. walker->ptep = NULL;
  85. root = vcpu->cr3;
  86. #if PTTYPE == 64
  87. if (!is_long_mode(vcpu)) {
  88. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  89. root = *walker->ptep;
  90. walker->pte = root;
  91. if (!(root & PT_PRESENT_MASK))
  92. goto not_present;
  93. --walker->level;
  94. }
  95. #endif
  96. table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  97. walker->table_gfn[walker->level - 1] = table_gfn;
  98. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  99. walker->level - 1, table_gfn);
  100. slot = gfn_to_memslot(vcpu->kvm, table_gfn);
  101. hpa = safe_gpa_to_hpa(vcpu->kvm, root & PT64_BASE_ADDR_MASK);
  102. walker->page = pfn_to_page(hpa >> PAGE_SHIFT);
  103. walker->table = kmap_atomic(walker->page, KM_USER0);
  104. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  105. (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  106. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  107. for (;;) {
  108. int index = PT_INDEX(addr, walker->level);
  109. hpa_t paddr;
  110. ptep = &walker->table[index];
  111. walker->index = index;
  112. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  113. ((unsigned long)ptep & PAGE_MASK));
  114. if (!is_present_pte(*ptep))
  115. goto not_present;
  116. if (write_fault && !is_writeble_pte(*ptep))
  117. if (user_fault || is_write_protection(vcpu))
  118. goto access_error;
  119. if (user_fault && !(*ptep & PT_USER_MASK))
  120. goto access_error;
  121. #if PTTYPE == 64
  122. if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
  123. goto access_error;
  124. #endif
  125. if (!(*ptep & PT_ACCESSED_MASK)) {
  126. mark_page_dirty(vcpu->kvm, table_gfn);
  127. *ptep |= PT_ACCESSED_MASK;
  128. }
  129. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  130. walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
  131. >> PAGE_SHIFT;
  132. if (write_fault && !is_dirty_pte(*ptep)) {
  133. mark_page_dirty(vcpu->kvm, table_gfn);
  134. *ptep |= PT_DIRTY_MASK;
  135. }
  136. break;
  137. }
  138. if (walker->level == PT_DIRECTORY_LEVEL
  139. && (*ptep & PT_PAGE_SIZE_MASK)
  140. && (PTTYPE == 64 || is_pse(vcpu))) {
  141. walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
  142. >> PAGE_SHIFT;
  143. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  144. if (write_fault && !is_dirty_pte(*ptep)) {
  145. mark_page_dirty(vcpu->kvm, table_gfn);
  146. *ptep |= PT_DIRTY_MASK;
  147. }
  148. break;
  149. }
  150. walker->inherited_ar &= walker->table[index];
  151. table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  152. kunmap_atomic(walker->table, KM_USER0);
  153. paddr = safe_gpa_to_hpa(vcpu->kvm, table_gfn << PAGE_SHIFT);
  154. walker->page = pfn_to_page(paddr >> PAGE_SHIFT);
  155. walker->table = kmap_atomic(walker->page, KM_USER0);
  156. --walker->level;
  157. walker->table_gfn[walker->level - 1] = table_gfn;
  158. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  159. walker->level - 1, table_gfn);
  160. }
  161. walker->pte = *ptep;
  162. if (walker->page)
  163. walker->ptep = NULL;
  164. if (walker->table)
  165. kunmap_atomic(walker->table, KM_USER0);
  166. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
  167. return 1;
  168. not_present:
  169. walker->error_code = 0;
  170. goto err;
  171. access_error:
  172. walker->error_code = PFERR_PRESENT_MASK;
  173. err:
  174. if (write_fault)
  175. walker->error_code |= PFERR_WRITE_MASK;
  176. if (user_fault)
  177. walker->error_code |= PFERR_USER_MASK;
  178. if (fetch_fault)
  179. walker->error_code |= PFERR_FETCH_MASK;
  180. if (walker->table)
  181. kunmap_atomic(walker->table, KM_USER0);
  182. return 0;
  183. }
  184. static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
  185. u64 *shadow_pte,
  186. gpa_t gaddr,
  187. pt_element_t gpte,
  188. u64 access_bits,
  189. int user_fault,
  190. int write_fault,
  191. int *ptwrite,
  192. struct guest_walker *walker,
  193. gfn_t gfn)
  194. {
  195. hpa_t paddr;
  196. int dirty = gpte & PT_DIRTY_MASK;
  197. u64 spte;
  198. int was_rmapped = is_rmap_pte(*shadow_pte);
  199. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  200. " user_fault %d gfn %lx\n",
  201. __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
  202. write_fault, user_fault, gfn);
  203. /*
  204. * We don't set the accessed bit, since we sometimes want to see
  205. * whether the guest actually used the pte (in order to detect
  206. * demand paging).
  207. */
  208. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  209. spte |= gpte & PT64_NX_MASK;
  210. if (!dirty)
  211. access_bits &= ~PT_WRITABLE_MASK;
  212. paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
  213. spte |= PT_PRESENT_MASK;
  214. if (access_bits & PT_USER_MASK)
  215. spte |= PT_USER_MASK;
  216. if (is_error_hpa(paddr)) {
  217. set_shadow_pte(shadow_pte,
  218. shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
  219. return;
  220. }
  221. spte |= paddr;
  222. if ((access_bits & PT_WRITABLE_MASK)
  223. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  224. struct kvm_mmu_page *shadow;
  225. spte |= PT_WRITABLE_MASK;
  226. if (user_fault) {
  227. mmu_unshadow(vcpu->kvm, gfn);
  228. goto unshadowed;
  229. }
  230. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  231. if (shadow) {
  232. pgprintk("%s: found shadow page for %lx, marking ro\n",
  233. __FUNCTION__, gfn);
  234. access_bits &= ~PT_WRITABLE_MASK;
  235. if (is_writeble_pte(spte)) {
  236. spte &= ~PT_WRITABLE_MASK;
  237. kvm_x86_ops->tlb_flush(vcpu);
  238. }
  239. if (write_fault)
  240. *ptwrite = 1;
  241. }
  242. }
  243. unshadowed:
  244. if (access_bits & PT_WRITABLE_MASK)
  245. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  246. pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
  247. set_shadow_pte(shadow_pte, spte);
  248. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  249. if (!was_rmapped)
  250. rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
  251. >> PAGE_SHIFT);
  252. if (!ptwrite || !*ptwrite)
  253. vcpu->last_pte_updated = shadow_pte;
  254. }
  255. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
  256. u64 *shadow_pte, u64 access_bits,
  257. int user_fault, int write_fault, int *ptwrite,
  258. struct guest_walker *walker, gfn_t gfn)
  259. {
  260. access_bits &= gpte;
  261. FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
  262. gpte, access_bits, user_fault, write_fault,
  263. ptwrite, walker, gfn);
  264. }
  265. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  266. u64 *spte, const void *pte, int bytes,
  267. int offset_in_pte)
  268. {
  269. pt_element_t gpte;
  270. gpte = *(const pt_element_t *)pte;
  271. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  272. if (!offset_in_pte && !is_present_pte(gpte))
  273. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  274. return;
  275. }
  276. if (bytes < sizeof(pt_element_t))
  277. return;
  278. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  279. FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  280. 0, NULL, NULL,
  281. (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
  282. }
  283. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
  284. u64 *shadow_pte, u64 access_bits,
  285. int user_fault, int write_fault, int *ptwrite,
  286. struct guest_walker *walker, gfn_t gfn)
  287. {
  288. gpa_t gaddr;
  289. access_bits &= gpde;
  290. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  291. if (PTTYPE == 32 && is_cpuid_PSE36())
  292. gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
  293. (32 - PT32_DIR_PSE36_SHIFT);
  294. FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
  295. gpde, access_bits, user_fault, write_fault,
  296. ptwrite, walker, gfn);
  297. }
  298. /*
  299. * Fetch a shadow pte for a specific level in the paging hierarchy.
  300. */
  301. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  302. struct guest_walker *walker,
  303. int user_fault, int write_fault, int *ptwrite)
  304. {
  305. hpa_t shadow_addr;
  306. int level;
  307. u64 *shadow_ent;
  308. u64 *prev_shadow_ent = NULL;
  309. if (!is_present_pte(walker->pte))
  310. return NULL;
  311. shadow_addr = vcpu->mmu.root_hpa;
  312. level = vcpu->mmu.shadow_root_level;
  313. if (level == PT32E_ROOT_LEVEL) {
  314. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  315. shadow_addr &= PT64_BASE_ADDR_MASK;
  316. --level;
  317. }
  318. for (; ; level--) {
  319. u32 index = SHADOW_PT_INDEX(addr, level);
  320. struct kvm_mmu_page *shadow_page;
  321. u64 shadow_pte;
  322. int metaphysical;
  323. gfn_t table_gfn;
  324. unsigned hugepage_access = 0;
  325. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  326. if (is_shadow_present_pte(*shadow_ent)) {
  327. if (level == PT_PAGE_TABLE_LEVEL)
  328. break;
  329. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  330. prev_shadow_ent = shadow_ent;
  331. continue;
  332. }
  333. if (level == PT_PAGE_TABLE_LEVEL)
  334. break;
  335. if (level - 1 == PT_PAGE_TABLE_LEVEL
  336. && walker->level == PT_DIRECTORY_LEVEL) {
  337. metaphysical = 1;
  338. hugepage_access = walker->pte;
  339. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  340. if (walker->pte & PT64_NX_MASK)
  341. hugepage_access |= (1 << 2);
  342. hugepage_access >>= PT_WRITABLE_SHIFT;
  343. table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
  344. >> PAGE_SHIFT;
  345. } else {
  346. metaphysical = 0;
  347. table_gfn = walker->table_gfn[level - 2];
  348. }
  349. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  350. metaphysical, hugepage_access,
  351. shadow_ent);
  352. shadow_addr = __pa(shadow_page->spt);
  353. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  354. | PT_WRITABLE_MASK | PT_USER_MASK;
  355. *shadow_ent = shadow_pte;
  356. prev_shadow_ent = shadow_ent;
  357. }
  358. if (walker->level == PT_DIRECTORY_LEVEL) {
  359. FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
  360. walker->inherited_ar, user_fault, write_fault,
  361. ptwrite, walker, walker->gfn);
  362. } else {
  363. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  364. FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
  365. walker->inherited_ar, user_fault, write_fault,
  366. ptwrite, walker, walker->gfn);
  367. }
  368. return shadow_ent;
  369. }
  370. /*
  371. * Page fault handler. There are several causes for a page fault:
  372. * - there is no shadow pte for the guest pte
  373. * - write access through a shadow pte marked read only so that we can set
  374. * the dirty bit
  375. * - write access to a shadow pte marked read only so we can update the page
  376. * dirty bitmap, when userspace requests it
  377. * - mmio access; in this case we will never install a present shadow pte
  378. * - normal guest page fault due to the guest pte marked not present, not
  379. * writable, or not executable
  380. *
  381. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  382. * a negative value on error.
  383. */
  384. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  385. u32 error_code)
  386. {
  387. int write_fault = error_code & PFERR_WRITE_MASK;
  388. int user_fault = error_code & PFERR_USER_MASK;
  389. int fetch_fault = error_code & PFERR_FETCH_MASK;
  390. struct guest_walker walker;
  391. u64 *shadow_pte;
  392. int write_pt = 0;
  393. int r;
  394. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  395. kvm_mmu_audit(vcpu, "pre page fault");
  396. r = mmu_topup_memory_caches(vcpu);
  397. if (r)
  398. return r;
  399. /*
  400. * Look up the shadow pte for the faulting address.
  401. */
  402. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  403. fetch_fault);
  404. /*
  405. * The page is not mapped by the guest. Let the guest handle it.
  406. */
  407. if (!r) {
  408. pgprintk("%s: guest page fault\n", __FUNCTION__);
  409. inject_page_fault(vcpu, addr, walker.error_code);
  410. vcpu->last_pt_write_count = 0; /* reset fork detector */
  411. return 0;
  412. }
  413. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  414. &write_pt);
  415. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  416. shadow_pte, *shadow_pte, write_pt);
  417. if (!write_pt)
  418. vcpu->last_pt_write_count = 0; /* reset fork detector */
  419. /*
  420. * mmio: emulate if accessible, otherwise its a guest fault.
  421. */
  422. if (is_io_pte(*shadow_pte))
  423. return 1;
  424. ++vcpu->stat.pf_fixed;
  425. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  426. return write_pt;
  427. }
  428. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  429. {
  430. struct guest_walker walker;
  431. gpa_t gpa = UNMAPPED_GVA;
  432. int r;
  433. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  434. if (r) {
  435. gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
  436. gpa |= vaddr & ~PAGE_MASK;
  437. }
  438. return gpa;
  439. }
  440. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  441. struct kvm_mmu_page *sp)
  442. {
  443. int i;
  444. pt_element_t *gpt;
  445. if (sp->role.metaphysical || PTTYPE == 32) {
  446. nonpaging_prefetch_page(vcpu, sp);
  447. return;
  448. }
  449. gpt = kmap_atomic(gfn_to_page(vcpu->kvm, sp->gfn), KM_USER0);
  450. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  451. if (is_present_pte(gpt[i]))
  452. sp->spt[i] = shadow_trap_nonpresent_pte;
  453. else
  454. sp->spt[i] = shadow_notrap_nonpresent_pte;
  455. kunmap_atomic(gpt, KM_USER0);
  456. }
  457. #undef pt_element_t
  458. #undef guest_walker
  459. #undef FNAME
  460. #undef PT_BASE_ADDR_MASK
  461. #undef PT_INDEX
  462. #undef SHADOW_PT_INDEX
  463. #undef PT_LEVEL_MASK
  464. #undef PT_DIR_BASE_ADDR_MASK
  465. #undef PT_LEVEL_BITS
  466. #undef PT_MAX_FULL_LEVELS