mmu.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "kvm.h"
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <asm/page.h>
  27. #include <asm/cmpxchg.h>
  28. #undef MMU_DEBUG
  29. #undef AUDIT
  30. #ifdef AUDIT
  31. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  32. #else
  33. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  34. #endif
  35. #ifdef MMU_DEBUG
  36. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  37. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  38. #else
  39. #define pgprintk(x...) do { } while (0)
  40. #define rmap_printk(x...) do { } while (0)
  41. #endif
  42. #if defined(MMU_DEBUG) || defined(AUDIT)
  43. static int dbg = 1;
  44. #endif
  45. #ifndef MMU_DEBUG
  46. #define ASSERT(x) do { } while (0)
  47. #else
  48. #define ASSERT(x) \
  49. if (!(x)) { \
  50. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  51. __FILE__, __LINE__, #x); \
  52. }
  53. #endif
  54. #define PT64_PT_BITS 9
  55. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  56. #define PT32_PT_BITS 10
  57. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  58. #define PT_WRITABLE_SHIFT 1
  59. #define PT_PRESENT_MASK (1ULL << 0)
  60. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  61. #define PT_USER_MASK (1ULL << 2)
  62. #define PT_PWT_MASK (1ULL << 3)
  63. #define PT_PCD_MASK (1ULL << 4)
  64. #define PT_ACCESSED_MASK (1ULL << 5)
  65. #define PT_DIRTY_MASK (1ULL << 6)
  66. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  67. #define PT_PAT_MASK (1ULL << 7)
  68. #define PT_GLOBAL_MASK (1ULL << 8)
  69. #define PT64_NX_MASK (1ULL << 63)
  70. #define PT_PAT_SHIFT 7
  71. #define PT_DIR_PAT_SHIFT 12
  72. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  73. #define PT32_DIR_PSE36_SIZE 4
  74. #define PT32_DIR_PSE36_SHIFT 13
  75. #define PT32_DIR_PSE36_MASK \
  76. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  77. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  78. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  79. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  80. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  81. #define PT64_LEVEL_BITS 9
  82. #define PT64_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  84. #define PT64_LEVEL_MASK(level) \
  85. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  86. #define PT64_INDEX(address, level)\
  87. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  88. #define PT32_LEVEL_BITS 10
  89. #define PT32_LEVEL_SHIFT(level) \
  90. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  91. #define PT32_LEVEL_MASK(level) \
  92. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT32_BASE_ADDR_MASK PAGE_MASK
  99. #define PT32_DIR_BASE_ADDR_MASK \
  100. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  101. #define PFERR_PRESENT_MASK (1U << 0)
  102. #define PFERR_WRITE_MASK (1U << 1)
  103. #define PFERR_USER_MASK (1U << 2)
  104. #define PFERR_FETCH_MASK (1U << 4)
  105. #define PT64_ROOT_LEVEL 4
  106. #define PT32_ROOT_LEVEL 2
  107. #define PT32E_ROOT_LEVEL 3
  108. #define PT_DIRECTORY_LEVEL 2
  109. #define PT_PAGE_TABLE_LEVEL 1
  110. #define RMAP_EXT 4
  111. struct kvm_rmap_desc {
  112. u64 *shadow_ptes[RMAP_EXT];
  113. struct kvm_rmap_desc *more;
  114. };
  115. static struct kmem_cache *pte_chain_cache;
  116. static struct kmem_cache *rmap_desc_cache;
  117. static struct kmem_cache *mmu_page_header_cache;
  118. static u64 __read_mostly shadow_trap_nonpresent_pte;
  119. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  120. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  121. {
  122. shadow_trap_nonpresent_pte = trap_pte;
  123. shadow_notrap_nonpresent_pte = notrap_pte;
  124. }
  125. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  126. static int is_write_protection(struct kvm_vcpu *vcpu)
  127. {
  128. return vcpu->cr0 & X86_CR0_WP;
  129. }
  130. static int is_cpuid_PSE36(void)
  131. {
  132. return 1;
  133. }
  134. static int is_nx(struct kvm_vcpu *vcpu)
  135. {
  136. return vcpu->shadow_efer & EFER_NX;
  137. }
  138. static int is_present_pte(unsigned long pte)
  139. {
  140. return pte & PT_PRESENT_MASK;
  141. }
  142. static int is_shadow_present_pte(u64 pte)
  143. {
  144. pte &= ~PT_SHADOW_IO_MARK;
  145. return pte != shadow_trap_nonpresent_pte
  146. && pte != shadow_notrap_nonpresent_pte;
  147. }
  148. static int is_writeble_pte(unsigned long pte)
  149. {
  150. return pte & PT_WRITABLE_MASK;
  151. }
  152. static int is_dirty_pte(unsigned long pte)
  153. {
  154. return pte & PT_DIRTY_MASK;
  155. }
  156. static int is_io_pte(unsigned long pte)
  157. {
  158. return pte & PT_SHADOW_IO_MARK;
  159. }
  160. static int is_rmap_pte(u64 pte)
  161. {
  162. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  163. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  164. }
  165. static void set_shadow_pte(u64 *sptep, u64 spte)
  166. {
  167. #ifdef CONFIG_X86_64
  168. set_64bit((unsigned long *)sptep, spte);
  169. #else
  170. set_64bit((unsigned long long *)sptep, spte);
  171. #endif
  172. }
  173. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  174. struct kmem_cache *base_cache, int min)
  175. {
  176. void *obj;
  177. if (cache->nobjs >= min)
  178. return 0;
  179. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  180. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  181. if (!obj)
  182. return -ENOMEM;
  183. cache->objects[cache->nobjs++] = obj;
  184. }
  185. return 0;
  186. }
  187. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  188. {
  189. while (mc->nobjs)
  190. kfree(mc->objects[--mc->nobjs]);
  191. }
  192. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  193. int min)
  194. {
  195. struct page *page;
  196. if (cache->nobjs >= min)
  197. return 0;
  198. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  199. page = alloc_page(GFP_KERNEL);
  200. if (!page)
  201. return -ENOMEM;
  202. set_page_private(page, 0);
  203. cache->objects[cache->nobjs++] = page_address(page);
  204. }
  205. return 0;
  206. }
  207. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  208. {
  209. while (mc->nobjs)
  210. free_page((unsigned long)mc->objects[--mc->nobjs]);
  211. }
  212. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  213. {
  214. int r;
  215. kvm_mmu_free_some_pages(vcpu);
  216. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  217. pte_chain_cache, 4);
  218. if (r)
  219. goto out;
  220. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  221. rmap_desc_cache, 1);
  222. if (r)
  223. goto out;
  224. r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
  225. if (r)
  226. goto out;
  227. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  228. mmu_page_header_cache, 4);
  229. out:
  230. return r;
  231. }
  232. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  233. {
  234. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  235. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  236. mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
  237. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  238. }
  239. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  240. size_t size)
  241. {
  242. void *p;
  243. BUG_ON(!mc->nobjs);
  244. p = mc->objects[--mc->nobjs];
  245. memset(p, 0, size);
  246. return p;
  247. }
  248. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  249. {
  250. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  251. sizeof(struct kvm_pte_chain));
  252. }
  253. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  254. {
  255. kfree(pc);
  256. }
  257. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  258. {
  259. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  260. sizeof(struct kvm_rmap_desc));
  261. }
  262. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  263. {
  264. kfree(rd);
  265. }
  266. /*
  267. * Take gfn and return the reverse mapping to it.
  268. * Note: gfn must be unaliased before this function get called
  269. */
  270. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
  271. {
  272. struct kvm_memory_slot *slot;
  273. slot = gfn_to_memslot(kvm, gfn);
  274. return &slot->rmap[gfn - slot->base_gfn];
  275. }
  276. /*
  277. * Reverse mapping data structures:
  278. *
  279. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  280. * that points to page_address(page).
  281. *
  282. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  283. * containing more mappings.
  284. */
  285. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  286. {
  287. struct kvm_mmu_page *page;
  288. struct kvm_rmap_desc *desc;
  289. unsigned long *rmapp;
  290. int i;
  291. if (!is_rmap_pte(*spte))
  292. return;
  293. gfn = unalias_gfn(vcpu->kvm, gfn);
  294. page = page_header(__pa(spte));
  295. page->gfns[spte - page->spt] = gfn;
  296. rmapp = gfn_to_rmap(vcpu->kvm, gfn);
  297. if (!*rmapp) {
  298. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  299. *rmapp = (unsigned long)spte;
  300. } else if (!(*rmapp & 1)) {
  301. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  302. desc = mmu_alloc_rmap_desc(vcpu);
  303. desc->shadow_ptes[0] = (u64 *)*rmapp;
  304. desc->shadow_ptes[1] = spte;
  305. *rmapp = (unsigned long)desc | 1;
  306. } else {
  307. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  308. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  309. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  310. desc = desc->more;
  311. if (desc->shadow_ptes[RMAP_EXT-1]) {
  312. desc->more = mmu_alloc_rmap_desc(vcpu);
  313. desc = desc->more;
  314. }
  315. for (i = 0; desc->shadow_ptes[i]; ++i)
  316. ;
  317. desc->shadow_ptes[i] = spte;
  318. }
  319. }
  320. static void rmap_desc_remove_entry(unsigned long *rmapp,
  321. struct kvm_rmap_desc *desc,
  322. int i,
  323. struct kvm_rmap_desc *prev_desc)
  324. {
  325. int j;
  326. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  327. ;
  328. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  329. desc->shadow_ptes[j] = NULL;
  330. if (j != 0)
  331. return;
  332. if (!prev_desc && !desc->more)
  333. *rmapp = (unsigned long)desc->shadow_ptes[0];
  334. else
  335. if (prev_desc)
  336. prev_desc->more = desc->more;
  337. else
  338. *rmapp = (unsigned long)desc->more | 1;
  339. mmu_free_rmap_desc(desc);
  340. }
  341. static void rmap_remove(struct kvm *kvm, u64 *spte)
  342. {
  343. struct kvm_rmap_desc *desc;
  344. struct kvm_rmap_desc *prev_desc;
  345. struct kvm_mmu_page *page;
  346. unsigned long *rmapp;
  347. int i;
  348. if (!is_rmap_pte(*spte))
  349. return;
  350. page = page_header(__pa(spte));
  351. rmapp = gfn_to_rmap(kvm, page->gfns[spte - page->spt]);
  352. if (!*rmapp) {
  353. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  354. BUG();
  355. } else if (!(*rmapp & 1)) {
  356. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  357. if ((u64 *)*rmapp != spte) {
  358. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  359. spte, *spte);
  360. BUG();
  361. }
  362. *rmapp = 0;
  363. } else {
  364. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  365. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  366. prev_desc = NULL;
  367. while (desc) {
  368. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  369. if (desc->shadow_ptes[i] == spte) {
  370. rmap_desc_remove_entry(rmapp,
  371. desc, i,
  372. prev_desc);
  373. return;
  374. }
  375. prev_desc = desc;
  376. desc = desc->more;
  377. }
  378. BUG();
  379. }
  380. }
  381. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  382. {
  383. struct kvm_rmap_desc *desc;
  384. unsigned long *rmapp;
  385. u64 *spte;
  386. gfn = unalias_gfn(kvm, gfn);
  387. rmapp = gfn_to_rmap(kvm, gfn);
  388. while (*rmapp) {
  389. if (!(*rmapp & 1))
  390. spte = (u64 *)*rmapp;
  391. else {
  392. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  393. spte = desc->shadow_ptes[0];
  394. }
  395. BUG_ON(!spte);
  396. BUG_ON(!(*spte & PT_PRESENT_MASK));
  397. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  398. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  399. rmap_remove(kvm, spte);
  400. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  401. kvm_flush_remote_tlbs(kvm);
  402. }
  403. }
  404. #ifdef MMU_DEBUG
  405. static int is_empty_shadow_page(u64 *spt)
  406. {
  407. u64 *pos;
  408. u64 *end;
  409. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  410. if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
  411. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  412. pos, *pos);
  413. return 0;
  414. }
  415. return 1;
  416. }
  417. #endif
  418. static void kvm_mmu_free_page(struct kvm *kvm,
  419. struct kvm_mmu_page *page_head)
  420. {
  421. ASSERT(is_empty_shadow_page(page_head->spt));
  422. list_del(&page_head->link);
  423. __free_page(virt_to_page(page_head->spt));
  424. __free_page(virt_to_page(page_head->gfns));
  425. kfree(page_head);
  426. ++kvm->n_free_mmu_pages;
  427. }
  428. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  429. {
  430. return gfn;
  431. }
  432. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  433. u64 *parent_pte)
  434. {
  435. struct kvm_mmu_page *page;
  436. if (!vcpu->kvm->n_free_mmu_pages)
  437. return NULL;
  438. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  439. sizeof *page);
  440. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  441. page->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  442. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  443. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  444. ASSERT(is_empty_shadow_page(page->spt));
  445. page->slot_bitmap = 0;
  446. page->multimapped = 0;
  447. page->parent_pte = parent_pte;
  448. --vcpu->kvm->n_free_mmu_pages;
  449. return page;
  450. }
  451. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  452. struct kvm_mmu_page *page, u64 *parent_pte)
  453. {
  454. struct kvm_pte_chain *pte_chain;
  455. struct hlist_node *node;
  456. int i;
  457. if (!parent_pte)
  458. return;
  459. if (!page->multimapped) {
  460. u64 *old = page->parent_pte;
  461. if (!old) {
  462. page->parent_pte = parent_pte;
  463. return;
  464. }
  465. page->multimapped = 1;
  466. pte_chain = mmu_alloc_pte_chain(vcpu);
  467. INIT_HLIST_HEAD(&page->parent_ptes);
  468. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  469. pte_chain->parent_ptes[0] = old;
  470. }
  471. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  472. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  473. continue;
  474. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  475. if (!pte_chain->parent_ptes[i]) {
  476. pte_chain->parent_ptes[i] = parent_pte;
  477. return;
  478. }
  479. }
  480. pte_chain = mmu_alloc_pte_chain(vcpu);
  481. BUG_ON(!pte_chain);
  482. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  483. pte_chain->parent_ptes[0] = parent_pte;
  484. }
  485. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  486. u64 *parent_pte)
  487. {
  488. struct kvm_pte_chain *pte_chain;
  489. struct hlist_node *node;
  490. int i;
  491. if (!page->multimapped) {
  492. BUG_ON(page->parent_pte != parent_pte);
  493. page->parent_pte = NULL;
  494. return;
  495. }
  496. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  497. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  498. if (!pte_chain->parent_ptes[i])
  499. break;
  500. if (pte_chain->parent_ptes[i] != parent_pte)
  501. continue;
  502. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  503. && pte_chain->parent_ptes[i + 1]) {
  504. pte_chain->parent_ptes[i]
  505. = pte_chain->parent_ptes[i + 1];
  506. ++i;
  507. }
  508. pte_chain->parent_ptes[i] = NULL;
  509. if (i == 0) {
  510. hlist_del(&pte_chain->link);
  511. mmu_free_pte_chain(pte_chain);
  512. if (hlist_empty(&page->parent_ptes)) {
  513. page->multimapped = 0;
  514. page->parent_pte = NULL;
  515. }
  516. }
  517. return;
  518. }
  519. BUG();
  520. }
  521. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm,
  522. gfn_t gfn)
  523. {
  524. unsigned index;
  525. struct hlist_head *bucket;
  526. struct kvm_mmu_page *page;
  527. struct hlist_node *node;
  528. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  529. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  530. bucket = &kvm->mmu_page_hash[index];
  531. hlist_for_each_entry(page, node, bucket, hash_link)
  532. if (page->gfn == gfn && !page->role.metaphysical) {
  533. pgprintk("%s: found role %x\n",
  534. __FUNCTION__, page->role.word);
  535. return page;
  536. }
  537. return NULL;
  538. }
  539. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  540. gfn_t gfn,
  541. gva_t gaddr,
  542. unsigned level,
  543. int metaphysical,
  544. unsigned hugepage_access,
  545. u64 *parent_pte)
  546. {
  547. union kvm_mmu_page_role role;
  548. unsigned index;
  549. unsigned quadrant;
  550. struct hlist_head *bucket;
  551. struct kvm_mmu_page *page;
  552. struct hlist_node *node;
  553. role.word = 0;
  554. role.glevels = vcpu->mmu.root_level;
  555. role.level = level;
  556. role.metaphysical = metaphysical;
  557. role.hugepage_access = hugepage_access;
  558. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  559. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  560. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  561. role.quadrant = quadrant;
  562. }
  563. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  564. gfn, role.word);
  565. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  566. bucket = &vcpu->kvm->mmu_page_hash[index];
  567. hlist_for_each_entry(page, node, bucket, hash_link)
  568. if (page->gfn == gfn && page->role.word == role.word) {
  569. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  570. pgprintk("%s: found\n", __FUNCTION__);
  571. return page;
  572. }
  573. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  574. if (!page)
  575. return page;
  576. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  577. page->gfn = gfn;
  578. page->role = role;
  579. hlist_add_head(&page->hash_link, bucket);
  580. vcpu->mmu.prefetch_page(vcpu, page);
  581. if (!metaphysical)
  582. rmap_write_protect(vcpu->kvm, gfn);
  583. return page;
  584. }
  585. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  586. struct kvm_mmu_page *page)
  587. {
  588. unsigned i;
  589. u64 *pt;
  590. u64 ent;
  591. pt = page->spt;
  592. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  593. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  594. if (is_shadow_present_pte(pt[i]))
  595. rmap_remove(kvm, &pt[i]);
  596. pt[i] = shadow_trap_nonpresent_pte;
  597. }
  598. kvm_flush_remote_tlbs(kvm);
  599. return;
  600. }
  601. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  602. ent = pt[i];
  603. pt[i] = shadow_trap_nonpresent_pte;
  604. if (!is_shadow_present_pte(ent))
  605. continue;
  606. ent &= PT64_BASE_ADDR_MASK;
  607. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  608. }
  609. kvm_flush_remote_tlbs(kvm);
  610. }
  611. static void kvm_mmu_put_page(struct kvm_mmu_page *page,
  612. u64 *parent_pte)
  613. {
  614. mmu_page_remove_parent_pte(page, parent_pte);
  615. }
  616. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  617. {
  618. int i;
  619. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  620. if (kvm->vcpus[i])
  621. kvm->vcpus[i]->last_pte_updated = NULL;
  622. }
  623. static void kvm_mmu_zap_page(struct kvm *kvm,
  624. struct kvm_mmu_page *page)
  625. {
  626. u64 *parent_pte;
  627. while (page->multimapped || page->parent_pte) {
  628. if (!page->multimapped)
  629. parent_pte = page->parent_pte;
  630. else {
  631. struct kvm_pte_chain *chain;
  632. chain = container_of(page->parent_ptes.first,
  633. struct kvm_pte_chain, link);
  634. parent_pte = chain->parent_ptes[0];
  635. }
  636. BUG_ON(!parent_pte);
  637. kvm_mmu_put_page(page, parent_pte);
  638. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  639. }
  640. kvm_mmu_page_unlink_children(kvm, page);
  641. if (!page->root_count) {
  642. hlist_del(&page->hash_link);
  643. kvm_mmu_free_page(kvm, page);
  644. } else
  645. list_move(&page->link, &kvm->active_mmu_pages);
  646. kvm_mmu_reset_last_pte_updated(kvm);
  647. }
  648. /*
  649. * Changing the number of mmu pages allocated to the vm
  650. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  651. */
  652. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  653. {
  654. /*
  655. * If we set the number of mmu pages to be smaller be than the
  656. * number of actived pages , we must to free some mmu pages before we
  657. * change the value
  658. */
  659. if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
  660. kvm_nr_mmu_pages) {
  661. int n_used_mmu_pages = kvm->n_alloc_mmu_pages
  662. - kvm->n_free_mmu_pages;
  663. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  664. struct kvm_mmu_page *page;
  665. page = container_of(kvm->active_mmu_pages.prev,
  666. struct kvm_mmu_page, link);
  667. kvm_mmu_zap_page(kvm, page);
  668. n_used_mmu_pages--;
  669. }
  670. kvm->n_free_mmu_pages = 0;
  671. }
  672. else
  673. kvm->n_free_mmu_pages += kvm_nr_mmu_pages
  674. - kvm->n_alloc_mmu_pages;
  675. kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
  676. }
  677. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  678. {
  679. unsigned index;
  680. struct hlist_head *bucket;
  681. struct kvm_mmu_page *page;
  682. struct hlist_node *node, *n;
  683. int r;
  684. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  685. r = 0;
  686. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  687. bucket = &kvm->mmu_page_hash[index];
  688. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  689. if (page->gfn == gfn && !page->role.metaphysical) {
  690. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  691. page->role.word);
  692. kvm_mmu_zap_page(kvm, page);
  693. r = 1;
  694. }
  695. return r;
  696. }
  697. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  698. {
  699. struct kvm_mmu_page *page;
  700. while ((page = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  701. pgprintk("%s: zap %lx %x\n",
  702. __FUNCTION__, gfn, page->role.word);
  703. kvm_mmu_zap_page(kvm, page);
  704. }
  705. }
  706. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  707. {
  708. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  709. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  710. __set_bit(slot, &page_head->slot_bitmap);
  711. }
  712. hpa_t safe_gpa_to_hpa(struct kvm *kvm, gpa_t gpa)
  713. {
  714. hpa_t hpa = gpa_to_hpa(kvm, gpa);
  715. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  716. }
  717. hpa_t gpa_to_hpa(struct kvm *kvm, gpa_t gpa)
  718. {
  719. struct page *page;
  720. ASSERT((gpa & HPA_ERR_MASK) == 0);
  721. page = gfn_to_page(kvm, gpa >> PAGE_SHIFT);
  722. if (!page)
  723. return gpa | HPA_ERR_MASK;
  724. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  725. | (gpa & (PAGE_SIZE-1));
  726. }
  727. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  728. {
  729. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  730. if (gpa == UNMAPPED_GVA)
  731. return UNMAPPED_GVA;
  732. return gpa_to_hpa(vcpu->kvm, gpa);
  733. }
  734. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  735. {
  736. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  737. if (gpa == UNMAPPED_GVA)
  738. return NULL;
  739. return pfn_to_page(gpa_to_hpa(vcpu->kvm, gpa) >> PAGE_SHIFT);
  740. }
  741. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  742. {
  743. }
  744. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  745. {
  746. int level = PT32E_ROOT_LEVEL;
  747. hpa_t table_addr = vcpu->mmu.root_hpa;
  748. for (; ; level--) {
  749. u32 index = PT64_INDEX(v, level);
  750. u64 *table;
  751. u64 pte;
  752. ASSERT(VALID_PAGE(table_addr));
  753. table = __va(table_addr);
  754. if (level == 1) {
  755. pte = table[index];
  756. if (is_shadow_present_pte(pte) && is_writeble_pte(pte))
  757. return 0;
  758. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  759. page_header_update_slot(vcpu->kvm, table, v);
  760. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  761. PT_USER_MASK;
  762. rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
  763. return 0;
  764. }
  765. if (table[index] == shadow_trap_nonpresent_pte) {
  766. struct kvm_mmu_page *new_table;
  767. gfn_t pseudo_gfn;
  768. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  769. >> PAGE_SHIFT;
  770. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  771. v, level - 1,
  772. 1, 0, &table[index]);
  773. if (!new_table) {
  774. pgprintk("nonpaging_map: ENOMEM\n");
  775. return -ENOMEM;
  776. }
  777. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  778. | PT_WRITABLE_MASK | PT_USER_MASK;
  779. }
  780. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  781. }
  782. }
  783. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  784. struct kvm_mmu_page *sp)
  785. {
  786. int i;
  787. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  788. sp->spt[i] = shadow_trap_nonpresent_pte;
  789. }
  790. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  791. {
  792. int i;
  793. struct kvm_mmu_page *page;
  794. if (!VALID_PAGE(vcpu->mmu.root_hpa))
  795. return;
  796. #ifdef CONFIG_X86_64
  797. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  798. hpa_t root = vcpu->mmu.root_hpa;
  799. page = page_header(root);
  800. --page->root_count;
  801. vcpu->mmu.root_hpa = INVALID_PAGE;
  802. return;
  803. }
  804. #endif
  805. for (i = 0; i < 4; ++i) {
  806. hpa_t root = vcpu->mmu.pae_root[i];
  807. if (root) {
  808. root &= PT64_BASE_ADDR_MASK;
  809. page = page_header(root);
  810. --page->root_count;
  811. }
  812. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  813. }
  814. vcpu->mmu.root_hpa = INVALID_PAGE;
  815. }
  816. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  817. {
  818. int i;
  819. gfn_t root_gfn;
  820. struct kvm_mmu_page *page;
  821. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  822. #ifdef CONFIG_X86_64
  823. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  824. hpa_t root = vcpu->mmu.root_hpa;
  825. ASSERT(!VALID_PAGE(root));
  826. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  827. PT64_ROOT_LEVEL, 0, 0, NULL);
  828. root = __pa(page->spt);
  829. ++page->root_count;
  830. vcpu->mmu.root_hpa = root;
  831. return;
  832. }
  833. #endif
  834. for (i = 0; i < 4; ++i) {
  835. hpa_t root = vcpu->mmu.pae_root[i];
  836. ASSERT(!VALID_PAGE(root));
  837. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  838. if (!is_present_pte(vcpu->pdptrs[i])) {
  839. vcpu->mmu.pae_root[i] = 0;
  840. continue;
  841. }
  842. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  843. } else if (vcpu->mmu.root_level == 0)
  844. root_gfn = 0;
  845. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  846. PT32_ROOT_LEVEL, !is_paging(vcpu),
  847. 0, NULL);
  848. root = __pa(page->spt);
  849. ++page->root_count;
  850. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  851. }
  852. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  853. }
  854. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  855. {
  856. return vaddr;
  857. }
  858. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  859. u32 error_code)
  860. {
  861. gpa_t addr = gva;
  862. hpa_t paddr;
  863. int r;
  864. r = mmu_topup_memory_caches(vcpu);
  865. if (r)
  866. return r;
  867. ASSERT(vcpu);
  868. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  869. paddr = gpa_to_hpa(vcpu->kvm, addr & PT64_BASE_ADDR_MASK);
  870. if (is_error_hpa(paddr))
  871. return 1;
  872. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  873. }
  874. static void nonpaging_free(struct kvm_vcpu *vcpu)
  875. {
  876. mmu_free_roots(vcpu);
  877. }
  878. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  879. {
  880. struct kvm_mmu *context = &vcpu->mmu;
  881. context->new_cr3 = nonpaging_new_cr3;
  882. context->page_fault = nonpaging_page_fault;
  883. context->gva_to_gpa = nonpaging_gva_to_gpa;
  884. context->free = nonpaging_free;
  885. context->prefetch_page = nonpaging_prefetch_page;
  886. context->root_level = 0;
  887. context->shadow_root_level = PT32E_ROOT_LEVEL;
  888. context->root_hpa = INVALID_PAGE;
  889. return 0;
  890. }
  891. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  892. {
  893. ++vcpu->stat.tlb_flush;
  894. kvm_x86_ops->tlb_flush(vcpu);
  895. }
  896. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  897. {
  898. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  899. mmu_free_roots(vcpu);
  900. }
  901. static void inject_page_fault(struct kvm_vcpu *vcpu,
  902. u64 addr,
  903. u32 err_code)
  904. {
  905. kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
  906. }
  907. static void paging_free(struct kvm_vcpu *vcpu)
  908. {
  909. nonpaging_free(vcpu);
  910. }
  911. #define PTTYPE 64
  912. #include "paging_tmpl.h"
  913. #undef PTTYPE
  914. #define PTTYPE 32
  915. #include "paging_tmpl.h"
  916. #undef PTTYPE
  917. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  918. {
  919. struct kvm_mmu *context = &vcpu->mmu;
  920. ASSERT(is_pae(vcpu));
  921. context->new_cr3 = paging_new_cr3;
  922. context->page_fault = paging64_page_fault;
  923. context->gva_to_gpa = paging64_gva_to_gpa;
  924. context->prefetch_page = paging64_prefetch_page;
  925. context->free = paging_free;
  926. context->root_level = level;
  927. context->shadow_root_level = level;
  928. context->root_hpa = INVALID_PAGE;
  929. return 0;
  930. }
  931. static int paging64_init_context(struct kvm_vcpu *vcpu)
  932. {
  933. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  934. }
  935. static int paging32_init_context(struct kvm_vcpu *vcpu)
  936. {
  937. struct kvm_mmu *context = &vcpu->mmu;
  938. context->new_cr3 = paging_new_cr3;
  939. context->page_fault = paging32_page_fault;
  940. context->gva_to_gpa = paging32_gva_to_gpa;
  941. context->free = paging_free;
  942. context->prefetch_page = paging32_prefetch_page;
  943. context->root_level = PT32_ROOT_LEVEL;
  944. context->shadow_root_level = PT32E_ROOT_LEVEL;
  945. context->root_hpa = INVALID_PAGE;
  946. return 0;
  947. }
  948. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  949. {
  950. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  951. }
  952. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  953. {
  954. ASSERT(vcpu);
  955. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  956. if (!is_paging(vcpu))
  957. return nonpaging_init_context(vcpu);
  958. else if (is_long_mode(vcpu))
  959. return paging64_init_context(vcpu);
  960. else if (is_pae(vcpu))
  961. return paging32E_init_context(vcpu);
  962. else
  963. return paging32_init_context(vcpu);
  964. }
  965. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  966. {
  967. ASSERT(vcpu);
  968. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  969. vcpu->mmu.free(vcpu);
  970. vcpu->mmu.root_hpa = INVALID_PAGE;
  971. }
  972. }
  973. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  974. {
  975. destroy_kvm_mmu(vcpu);
  976. return init_kvm_mmu(vcpu);
  977. }
  978. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  979. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  980. {
  981. int r;
  982. mutex_lock(&vcpu->kvm->lock);
  983. r = mmu_topup_memory_caches(vcpu);
  984. if (r)
  985. goto out;
  986. mmu_alloc_roots(vcpu);
  987. kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  988. kvm_mmu_flush_tlb(vcpu);
  989. out:
  990. mutex_unlock(&vcpu->kvm->lock);
  991. return r;
  992. }
  993. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  994. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  995. {
  996. mmu_free_roots(vcpu);
  997. }
  998. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  999. struct kvm_mmu_page *page,
  1000. u64 *spte)
  1001. {
  1002. u64 pte;
  1003. struct kvm_mmu_page *child;
  1004. pte = *spte;
  1005. if (is_shadow_present_pte(pte)) {
  1006. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  1007. rmap_remove(vcpu->kvm, spte);
  1008. else {
  1009. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1010. mmu_page_remove_parent_pte(child, spte);
  1011. }
  1012. }
  1013. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1014. kvm_flush_remote_tlbs(vcpu->kvm);
  1015. }
  1016. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1017. struct kvm_mmu_page *page,
  1018. u64 *spte,
  1019. const void *new, int bytes,
  1020. int offset_in_pte)
  1021. {
  1022. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1023. return;
  1024. if (page->role.glevels == PT32_ROOT_LEVEL)
  1025. paging32_update_pte(vcpu, page, spte, new, bytes,
  1026. offset_in_pte);
  1027. else
  1028. paging64_update_pte(vcpu, page, spte, new, bytes,
  1029. offset_in_pte);
  1030. }
  1031. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1032. {
  1033. u64 *spte = vcpu->last_pte_updated;
  1034. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1035. }
  1036. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1037. const u8 *new, int bytes)
  1038. {
  1039. gfn_t gfn = gpa >> PAGE_SHIFT;
  1040. struct kvm_mmu_page *page;
  1041. struct hlist_node *node, *n;
  1042. struct hlist_head *bucket;
  1043. unsigned index;
  1044. u64 *spte;
  1045. unsigned offset = offset_in_page(gpa);
  1046. unsigned pte_size;
  1047. unsigned page_offset;
  1048. unsigned misaligned;
  1049. unsigned quadrant;
  1050. int level;
  1051. int flooded = 0;
  1052. int npte;
  1053. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  1054. kvm_mmu_audit(vcpu, "pre pte write");
  1055. if (gfn == vcpu->last_pt_write_gfn
  1056. && !last_updated_pte_accessed(vcpu)) {
  1057. ++vcpu->last_pt_write_count;
  1058. if (vcpu->last_pt_write_count >= 3)
  1059. flooded = 1;
  1060. } else {
  1061. vcpu->last_pt_write_gfn = gfn;
  1062. vcpu->last_pt_write_count = 1;
  1063. vcpu->last_pte_updated = NULL;
  1064. }
  1065. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  1066. bucket = &vcpu->kvm->mmu_page_hash[index];
  1067. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  1068. if (page->gfn != gfn || page->role.metaphysical)
  1069. continue;
  1070. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1071. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1072. misaligned |= bytes < 4;
  1073. if (misaligned || flooded) {
  1074. /*
  1075. * Misaligned accesses are too much trouble to fix
  1076. * up; also, they usually indicate a page is not used
  1077. * as a page table.
  1078. *
  1079. * If we're seeing too many writes to a page,
  1080. * it may no longer be a page table, or we may be
  1081. * forking, in which case it is better to unmap the
  1082. * page.
  1083. */
  1084. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1085. gpa, bytes, page->role.word);
  1086. kvm_mmu_zap_page(vcpu->kvm, page);
  1087. continue;
  1088. }
  1089. page_offset = offset;
  1090. level = page->role.level;
  1091. npte = 1;
  1092. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1093. page_offset <<= 1; /* 32->64 */
  1094. /*
  1095. * A 32-bit pde maps 4MB while the shadow pdes map
  1096. * only 2MB. So we need to double the offset again
  1097. * and zap two pdes instead of one.
  1098. */
  1099. if (level == PT32_ROOT_LEVEL) {
  1100. page_offset &= ~7; /* kill rounding error */
  1101. page_offset <<= 1;
  1102. npte = 2;
  1103. }
  1104. quadrant = page_offset >> PAGE_SHIFT;
  1105. page_offset &= ~PAGE_MASK;
  1106. if (quadrant != page->role.quadrant)
  1107. continue;
  1108. }
  1109. spte = &page->spt[page_offset / sizeof(*spte)];
  1110. while (npte--) {
  1111. mmu_pte_write_zap_pte(vcpu, page, spte);
  1112. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
  1113. page_offset & (pte_size - 1));
  1114. ++spte;
  1115. }
  1116. }
  1117. kvm_mmu_audit(vcpu, "post pte write");
  1118. }
  1119. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1120. {
  1121. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1122. return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1123. }
  1124. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1125. {
  1126. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1127. struct kvm_mmu_page *page;
  1128. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1129. struct kvm_mmu_page, link);
  1130. kvm_mmu_zap_page(vcpu->kvm, page);
  1131. }
  1132. }
  1133. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1134. {
  1135. struct kvm_mmu_page *page;
  1136. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1137. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1138. struct kvm_mmu_page, link);
  1139. kvm_mmu_zap_page(vcpu->kvm, page);
  1140. }
  1141. free_page((unsigned long)vcpu->mmu.pae_root);
  1142. }
  1143. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1144. {
  1145. struct page *page;
  1146. int i;
  1147. ASSERT(vcpu);
  1148. if (vcpu->kvm->n_requested_mmu_pages)
  1149. vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
  1150. else
  1151. vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
  1152. /*
  1153. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1154. * Therefore we need to allocate shadow page tables in the first
  1155. * 4GB of memory, which happens to fit the DMA32 zone.
  1156. */
  1157. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1158. if (!page)
  1159. goto error_1;
  1160. vcpu->mmu.pae_root = page_address(page);
  1161. for (i = 0; i < 4; ++i)
  1162. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1163. return 0;
  1164. error_1:
  1165. free_mmu_pages(vcpu);
  1166. return -ENOMEM;
  1167. }
  1168. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1169. {
  1170. ASSERT(vcpu);
  1171. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1172. return alloc_mmu_pages(vcpu);
  1173. }
  1174. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1175. {
  1176. ASSERT(vcpu);
  1177. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1178. return init_kvm_mmu(vcpu);
  1179. }
  1180. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1181. {
  1182. ASSERT(vcpu);
  1183. destroy_kvm_mmu(vcpu);
  1184. free_mmu_pages(vcpu);
  1185. mmu_free_memory_caches(vcpu);
  1186. }
  1187. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1188. {
  1189. struct kvm_mmu_page *page;
  1190. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1191. int i;
  1192. u64 *pt;
  1193. if (!test_bit(slot, &page->slot_bitmap))
  1194. continue;
  1195. pt = page->spt;
  1196. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1197. /* avoid RMW */
  1198. if (pt[i] & PT_WRITABLE_MASK) {
  1199. rmap_remove(kvm, &pt[i]);
  1200. pt[i] &= ~PT_WRITABLE_MASK;
  1201. }
  1202. }
  1203. }
  1204. void kvm_mmu_zap_all(struct kvm *kvm)
  1205. {
  1206. struct kvm_mmu_page *page, *node;
  1207. list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
  1208. kvm_mmu_zap_page(kvm, page);
  1209. kvm_flush_remote_tlbs(kvm);
  1210. }
  1211. void kvm_mmu_module_exit(void)
  1212. {
  1213. if (pte_chain_cache)
  1214. kmem_cache_destroy(pte_chain_cache);
  1215. if (rmap_desc_cache)
  1216. kmem_cache_destroy(rmap_desc_cache);
  1217. if (mmu_page_header_cache)
  1218. kmem_cache_destroy(mmu_page_header_cache);
  1219. }
  1220. int kvm_mmu_module_init(void)
  1221. {
  1222. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1223. sizeof(struct kvm_pte_chain),
  1224. 0, 0, NULL);
  1225. if (!pte_chain_cache)
  1226. goto nomem;
  1227. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1228. sizeof(struct kvm_rmap_desc),
  1229. 0, 0, NULL);
  1230. if (!rmap_desc_cache)
  1231. goto nomem;
  1232. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1233. sizeof(struct kvm_mmu_page),
  1234. 0, 0, NULL);
  1235. if (!mmu_page_header_cache)
  1236. goto nomem;
  1237. return 0;
  1238. nomem:
  1239. kvm_mmu_module_exit();
  1240. return -ENOMEM;
  1241. }
  1242. #ifdef AUDIT
  1243. static const char *audit_msg;
  1244. static gva_t canonicalize(gva_t gva)
  1245. {
  1246. #ifdef CONFIG_X86_64
  1247. gva = (long long)(gva << 16) >> 16;
  1248. #endif
  1249. return gva;
  1250. }
  1251. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1252. gva_t va, int level)
  1253. {
  1254. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1255. int i;
  1256. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1257. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1258. u64 ent = pt[i];
  1259. if (ent == shadow_trap_nonpresent_pte)
  1260. continue;
  1261. va = canonicalize(va);
  1262. if (level > 1) {
  1263. if (ent == shadow_notrap_nonpresent_pte)
  1264. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1265. " in nonleaf level: levels %d gva %lx"
  1266. " level %d pte %llx\n", audit_msg,
  1267. vcpu->mmu.root_level, va, level, ent);
  1268. audit_mappings_page(vcpu, ent, va, level - 1);
  1269. } else {
  1270. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1271. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1272. if (is_shadow_present_pte(ent)
  1273. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1274. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1275. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1276. audit_msg, vcpu->mmu.root_level,
  1277. va, gpa, hpa, ent,
  1278. is_shadow_present_pte(ent));
  1279. else if (ent == shadow_notrap_nonpresent_pte
  1280. && !is_error_hpa(hpa))
  1281. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1282. " valid guest gva %lx\n", audit_msg, va);
  1283. }
  1284. }
  1285. }
  1286. static void audit_mappings(struct kvm_vcpu *vcpu)
  1287. {
  1288. unsigned i;
  1289. if (vcpu->mmu.root_level == 4)
  1290. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1291. else
  1292. for (i = 0; i < 4; ++i)
  1293. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1294. audit_mappings_page(vcpu,
  1295. vcpu->mmu.pae_root[i],
  1296. i << 30,
  1297. 2);
  1298. }
  1299. static int count_rmaps(struct kvm_vcpu *vcpu)
  1300. {
  1301. int nmaps = 0;
  1302. int i, j, k;
  1303. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1304. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1305. struct kvm_rmap_desc *d;
  1306. for (j = 0; j < m->npages; ++j) {
  1307. unsigned long *rmapp = &m->rmap[j];
  1308. if (!*rmapp)
  1309. continue;
  1310. if (!(*rmapp & 1)) {
  1311. ++nmaps;
  1312. continue;
  1313. }
  1314. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1315. while (d) {
  1316. for (k = 0; k < RMAP_EXT; ++k)
  1317. if (d->shadow_ptes[k])
  1318. ++nmaps;
  1319. else
  1320. break;
  1321. d = d->more;
  1322. }
  1323. }
  1324. }
  1325. return nmaps;
  1326. }
  1327. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1328. {
  1329. int nmaps = 0;
  1330. struct kvm_mmu_page *page;
  1331. int i;
  1332. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1333. u64 *pt = page->spt;
  1334. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1335. continue;
  1336. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1337. u64 ent = pt[i];
  1338. if (!(ent & PT_PRESENT_MASK))
  1339. continue;
  1340. if (!(ent & PT_WRITABLE_MASK))
  1341. continue;
  1342. ++nmaps;
  1343. }
  1344. }
  1345. return nmaps;
  1346. }
  1347. static void audit_rmap(struct kvm_vcpu *vcpu)
  1348. {
  1349. int n_rmap = count_rmaps(vcpu);
  1350. int n_actual = count_writable_mappings(vcpu);
  1351. if (n_rmap != n_actual)
  1352. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1353. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1354. }
  1355. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1356. {
  1357. struct kvm_mmu_page *page;
  1358. struct kvm_memory_slot *slot;
  1359. unsigned long *rmapp;
  1360. gfn_t gfn;
  1361. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1362. if (page->role.metaphysical)
  1363. continue;
  1364. slot = gfn_to_memslot(vcpu->kvm, page->gfn);
  1365. gfn = unalias_gfn(vcpu->kvm, page->gfn);
  1366. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1367. if (*rmapp)
  1368. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1369. " mappings: gfn %lx role %x\n",
  1370. __FUNCTION__, audit_msg, page->gfn,
  1371. page->role.word);
  1372. }
  1373. }
  1374. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1375. {
  1376. int olddbg = dbg;
  1377. dbg = 0;
  1378. audit_msg = msg;
  1379. audit_rmap(vcpu);
  1380. audit_write_protection(vcpu);
  1381. audit_mappings(vcpu);
  1382. dbg = olddbg;
  1383. }
  1384. #endif