af_netlink.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@redhat.com>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  13. * added netlink_proto_exit
  14. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  15. * use nlk_sk, as sk->protinfo is on a diet 8)
  16. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  17. * - inc module use count of module that owns
  18. * the kernel socket in case userspace opens
  19. * socket of same protocol
  20. * - remove all module support, since netlink is
  21. * mandatory if CONFIG_NET=y these days
  22. */
  23. #include <linux/config.h>
  24. #include <linux/module.h>
  25. #include <linux/capability.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/signal.h>
  29. #include <linux/sched.h>
  30. #include <linux/errno.h>
  31. #include <linux/string.h>
  32. #include <linux/stat.h>
  33. #include <linux/socket.h>
  34. #include <linux/un.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/termios.h>
  37. #include <linux/sockios.h>
  38. #include <linux/net.h>
  39. #include <linux/fs.h>
  40. #include <linux/slab.h>
  41. #include <asm/uaccess.h>
  42. #include <linux/skbuff.h>
  43. #include <linux/netdevice.h>
  44. #include <linux/rtnetlink.h>
  45. #include <linux/proc_fs.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/smp_lock.h>
  48. #include <linux/notifier.h>
  49. #include <linux/security.h>
  50. #include <linux/jhash.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/random.h>
  53. #include <linux/bitops.h>
  54. #include <linux/mm.h>
  55. #include <linux/types.h>
  56. #include <linux/audit.h>
  57. #include <net/sock.h>
  58. #include <net/scm.h>
  59. #include <net/netlink.h>
  60. #define Nprintk(a...)
  61. #define NLGRPSZ(x) (ALIGN(x, sizeof(unsigned long) * 8) / 8)
  62. struct netlink_sock {
  63. /* struct sock has to be the first member of netlink_sock */
  64. struct sock sk;
  65. u32 pid;
  66. u32 dst_pid;
  67. u32 dst_group;
  68. u32 flags;
  69. u32 subscriptions;
  70. u32 ngroups;
  71. unsigned long *groups;
  72. unsigned long state;
  73. wait_queue_head_t wait;
  74. struct netlink_callback *cb;
  75. spinlock_t cb_lock;
  76. void (*data_ready)(struct sock *sk, int bytes);
  77. struct module *module;
  78. };
  79. #define NETLINK_KERNEL_SOCKET 0x1
  80. #define NETLINK_RECV_PKTINFO 0x2
  81. static inline struct netlink_sock *nlk_sk(struct sock *sk)
  82. {
  83. return (struct netlink_sock *)sk;
  84. }
  85. struct nl_pid_hash {
  86. struct hlist_head *table;
  87. unsigned long rehash_time;
  88. unsigned int mask;
  89. unsigned int shift;
  90. unsigned int entries;
  91. unsigned int max_shift;
  92. u32 rnd;
  93. };
  94. struct netlink_table {
  95. struct nl_pid_hash hash;
  96. struct hlist_head mc_list;
  97. unsigned long *listeners;
  98. unsigned int nl_nonroot;
  99. unsigned int groups;
  100. struct module *module;
  101. int registered;
  102. };
  103. static struct netlink_table *nl_table;
  104. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  105. static int netlink_dump(struct sock *sk);
  106. static void netlink_destroy_callback(struct netlink_callback *cb);
  107. static DEFINE_RWLOCK(nl_table_lock);
  108. static atomic_t nl_table_users = ATOMIC_INIT(0);
  109. static struct notifier_block *netlink_chain;
  110. static u32 netlink_group_mask(u32 group)
  111. {
  112. return group ? 1 << (group - 1) : 0;
  113. }
  114. static struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
  115. {
  116. return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
  117. }
  118. static void netlink_sock_destruct(struct sock *sk)
  119. {
  120. skb_queue_purge(&sk->sk_receive_queue);
  121. if (!sock_flag(sk, SOCK_DEAD)) {
  122. printk("Freeing alive netlink socket %p\n", sk);
  123. return;
  124. }
  125. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  126. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  127. BUG_TRAP(!nlk_sk(sk)->cb);
  128. BUG_TRAP(!nlk_sk(sk)->groups);
  129. }
  130. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on SMP.
  131. * Look, when several writers sleep and reader wakes them up, all but one
  132. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  133. * this, _but_ remember, it adds useless work on UP machines.
  134. */
  135. static void netlink_table_grab(void)
  136. {
  137. write_lock_bh(&nl_table_lock);
  138. if (atomic_read(&nl_table_users)) {
  139. DECLARE_WAITQUEUE(wait, current);
  140. add_wait_queue_exclusive(&nl_table_wait, &wait);
  141. for(;;) {
  142. set_current_state(TASK_UNINTERRUPTIBLE);
  143. if (atomic_read(&nl_table_users) == 0)
  144. break;
  145. write_unlock_bh(&nl_table_lock);
  146. schedule();
  147. write_lock_bh(&nl_table_lock);
  148. }
  149. __set_current_state(TASK_RUNNING);
  150. remove_wait_queue(&nl_table_wait, &wait);
  151. }
  152. }
  153. static __inline__ void netlink_table_ungrab(void)
  154. {
  155. write_unlock_bh(&nl_table_lock);
  156. wake_up(&nl_table_wait);
  157. }
  158. static __inline__ void
  159. netlink_lock_table(void)
  160. {
  161. /* read_lock() synchronizes us to netlink_table_grab */
  162. read_lock(&nl_table_lock);
  163. atomic_inc(&nl_table_users);
  164. read_unlock(&nl_table_lock);
  165. }
  166. static __inline__ void
  167. netlink_unlock_table(void)
  168. {
  169. if (atomic_dec_and_test(&nl_table_users))
  170. wake_up(&nl_table_wait);
  171. }
  172. static __inline__ struct sock *netlink_lookup(int protocol, u32 pid)
  173. {
  174. struct nl_pid_hash *hash = &nl_table[protocol].hash;
  175. struct hlist_head *head;
  176. struct sock *sk;
  177. struct hlist_node *node;
  178. read_lock(&nl_table_lock);
  179. head = nl_pid_hashfn(hash, pid);
  180. sk_for_each(sk, node, head) {
  181. if (nlk_sk(sk)->pid == pid) {
  182. sock_hold(sk);
  183. goto found;
  184. }
  185. }
  186. sk = NULL;
  187. found:
  188. read_unlock(&nl_table_lock);
  189. return sk;
  190. }
  191. static inline struct hlist_head *nl_pid_hash_alloc(size_t size)
  192. {
  193. if (size <= PAGE_SIZE)
  194. return kmalloc(size, GFP_ATOMIC);
  195. else
  196. return (struct hlist_head *)
  197. __get_free_pages(GFP_ATOMIC, get_order(size));
  198. }
  199. static inline void nl_pid_hash_free(struct hlist_head *table, size_t size)
  200. {
  201. if (size <= PAGE_SIZE)
  202. kfree(table);
  203. else
  204. free_pages((unsigned long)table, get_order(size));
  205. }
  206. static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
  207. {
  208. unsigned int omask, mask, shift;
  209. size_t osize, size;
  210. struct hlist_head *otable, *table;
  211. int i;
  212. omask = mask = hash->mask;
  213. osize = size = (mask + 1) * sizeof(*table);
  214. shift = hash->shift;
  215. if (grow) {
  216. if (++shift > hash->max_shift)
  217. return 0;
  218. mask = mask * 2 + 1;
  219. size *= 2;
  220. }
  221. table = nl_pid_hash_alloc(size);
  222. if (!table)
  223. return 0;
  224. memset(table, 0, size);
  225. otable = hash->table;
  226. hash->table = table;
  227. hash->mask = mask;
  228. hash->shift = shift;
  229. get_random_bytes(&hash->rnd, sizeof(hash->rnd));
  230. for (i = 0; i <= omask; i++) {
  231. struct sock *sk;
  232. struct hlist_node *node, *tmp;
  233. sk_for_each_safe(sk, node, tmp, &otable[i])
  234. __sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
  235. }
  236. nl_pid_hash_free(otable, osize);
  237. hash->rehash_time = jiffies + 10 * 60 * HZ;
  238. return 1;
  239. }
  240. static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
  241. {
  242. int avg = hash->entries >> hash->shift;
  243. if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
  244. return 1;
  245. if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
  246. nl_pid_hash_rehash(hash, 0);
  247. return 1;
  248. }
  249. return 0;
  250. }
  251. static const struct proto_ops netlink_ops;
  252. static void
  253. netlink_update_listeners(struct sock *sk)
  254. {
  255. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  256. struct hlist_node *node;
  257. unsigned long mask;
  258. unsigned int i;
  259. for (i = 0; i < NLGRPSZ(tbl->groups)/sizeof(unsigned long); i++) {
  260. mask = 0;
  261. sk_for_each_bound(sk, node, &tbl->mc_list)
  262. mask |= nlk_sk(sk)->groups[i];
  263. tbl->listeners[i] = mask;
  264. }
  265. /* this function is only called with the netlink table "grabbed", which
  266. * makes sure updates are visible before bind or setsockopt return. */
  267. }
  268. static int netlink_insert(struct sock *sk, u32 pid)
  269. {
  270. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  271. struct hlist_head *head;
  272. int err = -EADDRINUSE;
  273. struct sock *osk;
  274. struct hlist_node *node;
  275. int len;
  276. netlink_table_grab();
  277. head = nl_pid_hashfn(hash, pid);
  278. len = 0;
  279. sk_for_each(osk, node, head) {
  280. if (nlk_sk(osk)->pid == pid)
  281. break;
  282. len++;
  283. }
  284. if (node)
  285. goto err;
  286. err = -EBUSY;
  287. if (nlk_sk(sk)->pid)
  288. goto err;
  289. err = -ENOMEM;
  290. if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
  291. goto err;
  292. if (len && nl_pid_hash_dilute(hash, len))
  293. head = nl_pid_hashfn(hash, pid);
  294. hash->entries++;
  295. nlk_sk(sk)->pid = pid;
  296. sk_add_node(sk, head);
  297. err = 0;
  298. err:
  299. netlink_table_ungrab();
  300. return err;
  301. }
  302. static void netlink_remove(struct sock *sk)
  303. {
  304. netlink_table_grab();
  305. if (sk_del_node_init(sk))
  306. nl_table[sk->sk_protocol].hash.entries--;
  307. if (nlk_sk(sk)->subscriptions)
  308. __sk_del_bind_node(sk);
  309. netlink_table_ungrab();
  310. }
  311. static struct proto netlink_proto = {
  312. .name = "NETLINK",
  313. .owner = THIS_MODULE,
  314. .obj_size = sizeof(struct netlink_sock),
  315. };
  316. static int __netlink_create(struct socket *sock, int protocol)
  317. {
  318. struct sock *sk;
  319. struct netlink_sock *nlk;
  320. sock->ops = &netlink_ops;
  321. sk = sk_alloc(PF_NETLINK, GFP_KERNEL, &netlink_proto, 1);
  322. if (!sk)
  323. return -ENOMEM;
  324. sock_init_data(sock, sk);
  325. nlk = nlk_sk(sk);
  326. spin_lock_init(&nlk->cb_lock);
  327. init_waitqueue_head(&nlk->wait);
  328. sk->sk_destruct = netlink_sock_destruct;
  329. sk->sk_protocol = protocol;
  330. return 0;
  331. }
  332. static int netlink_create(struct socket *sock, int protocol)
  333. {
  334. struct module *module = NULL;
  335. struct netlink_sock *nlk;
  336. unsigned int groups;
  337. int err = 0;
  338. sock->state = SS_UNCONNECTED;
  339. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  340. return -ESOCKTNOSUPPORT;
  341. if (protocol<0 || protocol >= MAX_LINKS)
  342. return -EPROTONOSUPPORT;
  343. netlink_lock_table();
  344. #ifdef CONFIG_KMOD
  345. if (!nl_table[protocol].registered) {
  346. netlink_unlock_table();
  347. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  348. netlink_lock_table();
  349. }
  350. #endif
  351. if (nl_table[protocol].registered &&
  352. try_module_get(nl_table[protocol].module))
  353. module = nl_table[protocol].module;
  354. groups = nl_table[protocol].groups;
  355. netlink_unlock_table();
  356. if ((err = __netlink_create(sock, protocol)) < 0)
  357. goto out_module;
  358. nlk = nlk_sk(sock->sk);
  359. nlk->module = module;
  360. out:
  361. return err;
  362. out_module:
  363. module_put(module);
  364. goto out;
  365. }
  366. static int netlink_release(struct socket *sock)
  367. {
  368. struct sock *sk = sock->sk;
  369. struct netlink_sock *nlk;
  370. if (!sk)
  371. return 0;
  372. netlink_remove(sk);
  373. nlk = nlk_sk(sk);
  374. spin_lock(&nlk->cb_lock);
  375. if (nlk->cb) {
  376. if (nlk->cb->done)
  377. nlk->cb->done(nlk->cb);
  378. netlink_destroy_callback(nlk->cb);
  379. nlk->cb = NULL;
  380. }
  381. spin_unlock(&nlk->cb_lock);
  382. /* OK. Socket is unlinked, and, therefore,
  383. no new packets will arrive */
  384. sock_orphan(sk);
  385. sock->sk = NULL;
  386. wake_up_interruptible_all(&nlk->wait);
  387. skb_queue_purge(&sk->sk_write_queue);
  388. if (nlk->pid && !nlk->subscriptions) {
  389. struct netlink_notify n = {
  390. .protocol = sk->sk_protocol,
  391. .pid = nlk->pid,
  392. };
  393. notifier_call_chain(&netlink_chain, NETLINK_URELEASE, &n);
  394. }
  395. if (nlk->module)
  396. module_put(nlk->module);
  397. netlink_table_grab();
  398. if (nlk->flags & NETLINK_KERNEL_SOCKET) {
  399. kfree(nl_table[sk->sk_protocol].listeners);
  400. nl_table[sk->sk_protocol].module = NULL;
  401. nl_table[sk->sk_protocol].registered = 0;
  402. } else if (nlk->subscriptions)
  403. netlink_update_listeners(sk);
  404. netlink_table_ungrab();
  405. kfree(nlk->groups);
  406. nlk->groups = NULL;
  407. sock_put(sk);
  408. return 0;
  409. }
  410. static int netlink_autobind(struct socket *sock)
  411. {
  412. struct sock *sk = sock->sk;
  413. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  414. struct hlist_head *head;
  415. struct sock *osk;
  416. struct hlist_node *node;
  417. s32 pid = current->tgid;
  418. int err;
  419. static s32 rover = -4097;
  420. retry:
  421. cond_resched();
  422. netlink_table_grab();
  423. head = nl_pid_hashfn(hash, pid);
  424. sk_for_each(osk, node, head) {
  425. if (nlk_sk(osk)->pid == pid) {
  426. /* Bind collision, search negative pid values. */
  427. pid = rover--;
  428. if (rover > -4097)
  429. rover = -4097;
  430. netlink_table_ungrab();
  431. goto retry;
  432. }
  433. }
  434. netlink_table_ungrab();
  435. err = netlink_insert(sk, pid);
  436. if (err == -EADDRINUSE)
  437. goto retry;
  438. /* If 2 threads race to autobind, that is fine. */
  439. if (err == -EBUSY)
  440. err = 0;
  441. return err;
  442. }
  443. static inline int netlink_capable(struct socket *sock, unsigned int flag)
  444. {
  445. return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
  446. capable(CAP_NET_ADMIN);
  447. }
  448. static void
  449. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  450. {
  451. struct netlink_sock *nlk = nlk_sk(sk);
  452. if (nlk->subscriptions && !subscriptions)
  453. __sk_del_bind_node(sk);
  454. else if (!nlk->subscriptions && subscriptions)
  455. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  456. nlk->subscriptions = subscriptions;
  457. }
  458. static int netlink_alloc_groups(struct sock *sk)
  459. {
  460. struct netlink_sock *nlk = nlk_sk(sk);
  461. unsigned int groups;
  462. int err = 0;
  463. netlink_lock_table();
  464. groups = nl_table[sk->sk_protocol].groups;
  465. if (!nl_table[sk->sk_protocol].registered)
  466. err = -ENOENT;
  467. netlink_unlock_table();
  468. if (err)
  469. return err;
  470. nlk->groups = kmalloc(NLGRPSZ(groups), GFP_KERNEL);
  471. if (nlk->groups == NULL)
  472. return -ENOMEM;
  473. memset(nlk->groups, 0, NLGRPSZ(groups));
  474. nlk->ngroups = groups;
  475. return 0;
  476. }
  477. static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
  478. {
  479. struct sock *sk = sock->sk;
  480. struct netlink_sock *nlk = nlk_sk(sk);
  481. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  482. int err;
  483. if (nladdr->nl_family != AF_NETLINK)
  484. return -EINVAL;
  485. /* Only superuser is allowed to listen multicasts */
  486. if (nladdr->nl_groups) {
  487. if (!netlink_capable(sock, NL_NONROOT_RECV))
  488. return -EPERM;
  489. if (nlk->groups == NULL) {
  490. err = netlink_alloc_groups(sk);
  491. if (err)
  492. return err;
  493. }
  494. }
  495. if (nlk->pid) {
  496. if (nladdr->nl_pid != nlk->pid)
  497. return -EINVAL;
  498. } else {
  499. err = nladdr->nl_pid ?
  500. netlink_insert(sk, nladdr->nl_pid) :
  501. netlink_autobind(sock);
  502. if (err)
  503. return err;
  504. }
  505. if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  506. return 0;
  507. netlink_table_grab();
  508. netlink_update_subscriptions(sk, nlk->subscriptions +
  509. hweight32(nladdr->nl_groups) -
  510. hweight32(nlk->groups[0]));
  511. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
  512. netlink_update_listeners(sk);
  513. netlink_table_ungrab();
  514. return 0;
  515. }
  516. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  517. int alen, int flags)
  518. {
  519. int err = 0;
  520. struct sock *sk = sock->sk;
  521. struct netlink_sock *nlk = nlk_sk(sk);
  522. struct sockaddr_nl *nladdr=(struct sockaddr_nl*)addr;
  523. if (addr->sa_family == AF_UNSPEC) {
  524. sk->sk_state = NETLINK_UNCONNECTED;
  525. nlk->dst_pid = 0;
  526. nlk->dst_group = 0;
  527. return 0;
  528. }
  529. if (addr->sa_family != AF_NETLINK)
  530. return -EINVAL;
  531. /* Only superuser is allowed to send multicasts */
  532. if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
  533. return -EPERM;
  534. if (!nlk->pid)
  535. err = netlink_autobind(sock);
  536. if (err == 0) {
  537. sk->sk_state = NETLINK_CONNECTED;
  538. nlk->dst_pid = nladdr->nl_pid;
  539. nlk->dst_group = ffs(nladdr->nl_groups);
  540. }
  541. return err;
  542. }
  543. static int netlink_getname(struct socket *sock, struct sockaddr *addr, int *addr_len, int peer)
  544. {
  545. struct sock *sk = sock->sk;
  546. struct netlink_sock *nlk = nlk_sk(sk);
  547. struct sockaddr_nl *nladdr=(struct sockaddr_nl *)addr;
  548. nladdr->nl_family = AF_NETLINK;
  549. nladdr->nl_pad = 0;
  550. *addr_len = sizeof(*nladdr);
  551. if (peer) {
  552. nladdr->nl_pid = nlk->dst_pid;
  553. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  554. } else {
  555. nladdr->nl_pid = nlk->pid;
  556. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  557. }
  558. return 0;
  559. }
  560. static void netlink_overrun(struct sock *sk)
  561. {
  562. if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
  563. sk->sk_err = ENOBUFS;
  564. sk->sk_error_report(sk);
  565. }
  566. }
  567. static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
  568. {
  569. int protocol = ssk->sk_protocol;
  570. struct sock *sock;
  571. struct netlink_sock *nlk;
  572. sock = netlink_lookup(protocol, pid);
  573. if (!sock)
  574. return ERR_PTR(-ECONNREFUSED);
  575. /* Don't bother queuing skb if kernel socket has no input function */
  576. nlk = nlk_sk(sock);
  577. if ((nlk->pid == 0 && !nlk->data_ready) ||
  578. (sock->sk_state == NETLINK_CONNECTED &&
  579. nlk->dst_pid != nlk_sk(ssk)->pid)) {
  580. sock_put(sock);
  581. return ERR_PTR(-ECONNREFUSED);
  582. }
  583. return sock;
  584. }
  585. struct sock *netlink_getsockbyfilp(struct file *filp)
  586. {
  587. struct inode *inode = filp->f_dentry->d_inode;
  588. struct sock *sock;
  589. if (!S_ISSOCK(inode->i_mode))
  590. return ERR_PTR(-ENOTSOCK);
  591. sock = SOCKET_I(inode)->sk;
  592. if (sock->sk_family != AF_NETLINK)
  593. return ERR_PTR(-EINVAL);
  594. sock_hold(sock);
  595. return sock;
  596. }
  597. /*
  598. * Attach a skb to a netlink socket.
  599. * The caller must hold a reference to the destination socket. On error, the
  600. * reference is dropped. The skb is not send to the destination, just all
  601. * all error checks are performed and memory in the queue is reserved.
  602. * Return values:
  603. * < 0: error. skb freed, reference to sock dropped.
  604. * 0: continue
  605. * 1: repeat lookup - reference dropped while waiting for socket memory.
  606. */
  607. int netlink_attachskb(struct sock *sk, struct sk_buff *skb, int nonblock,
  608. long timeo, struct sock *ssk)
  609. {
  610. struct netlink_sock *nlk;
  611. nlk = nlk_sk(sk);
  612. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  613. test_bit(0, &nlk->state)) {
  614. DECLARE_WAITQUEUE(wait, current);
  615. if (!timeo) {
  616. if (!ssk || nlk_sk(ssk)->pid == 0)
  617. netlink_overrun(sk);
  618. sock_put(sk);
  619. kfree_skb(skb);
  620. return -EAGAIN;
  621. }
  622. __set_current_state(TASK_INTERRUPTIBLE);
  623. add_wait_queue(&nlk->wait, &wait);
  624. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  625. test_bit(0, &nlk->state)) &&
  626. !sock_flag(sk, SOCK_DEAD))
  627. timeo = schedule_timeout(timeo);
  628. __set_current_state(TASK_RUNNING);
  629. remove_wait_queue(&nlk->wait, &wait);
  630. sock_put(sk);
  631. if (signal_pending(current)) {
  632. kfree_skb(skb);
  633. return sock_intr_errno(timeo);
  634. }
  635. return 1;
  636. }
  637. skb_set_owner_r(skb, sk);
  638. return 0;
  639. }
  640. int netlink_sendskb(struct sock *sk, struct sk_buff *skb, int protocol)
  641. {
  642. int len = skb->len;
  643. skb_queue_tail(&sk->sk_receive_queue, skb);
  644. sk->sk_data_ready(sk, len);
  645. sock_put(sk);
  646. return len;
  647. }
  648. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  649. {
  650. kfree_skb(skb);
  651. sock_put(sk);
  652. }
  653. static inline struct sk_buff *netlink_trim(struct sk_buff *skb,
  654. gfp_t allocation)
  655. {
  656. int delta;
  657. skb_orphan(skb);
  658. delta = skb->end - skb->tail;
  659. if (delta * 2 < skb->truesize)
  660. return skb;
  661. if (skb_shared(skb)) {
  662. struct sk_buff *nskb = skb_clone(skb, allocation);
  663. if (!nskb)
  664. return skb;
  665. kfree_skb(skb);
  666. skb = nskb;
  667. }
  668. if (!pskb_expand_head(skb, 0, -delta, allocation))
  669. skb->truesize -= delta;
  670. return skb;
  671. }
  672. int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 pid, int nonblock)
  673. {
  674. struct sock *sk;
  675. int err;
  676. long timeo;
  677. skb = netlink_trim(skb, gfp_any());
  678. timeo = sock_sndtimeo(ssk, nonblock);
  679. retry:
  680. sk = netlink_getsockbypid(ssk, pid);
  681. if (IS_ERR(sk)) {
  682. kfree_skb(skb);
  683. return PTR_ERR(sk);
  684. }
  685. err = netlink_attachskb(sk, skb, nonblock, timeo, ssk);
  686. if (err == 1)
  687. goto retry;
  688. if (err)
  689. return err;
  690. return netlink_sendskb(sk, skb, ssk->sk_protocol);
  691. }
  692. int netlink_has_listeners(struct sock *sk, unsigned int group)
  693. {
  694. int res = 0;
  695. BUG_ON(!(nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET));
  696. if (group - 1 < nl_table[sk->sk_protocol].groups)
  697. res = test_bit(group - 1, nl_table[sk->sk_protocol].listeners);
  698. return res;
  699. }
  700. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  701. static __inline__ int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  702. {
  703. struct netlink_sock *nlk = nlk_sk(sk);
  704. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  705. !test_bit(0, &nlk->state)) {
  706. skb_set_owner_r(skb, sk);
  707. skb_queue_tail(&sk->sk_receive_queue, skb);
  708. sk->sk_data_ready(sk, skb->len);
  709. return atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf;
  710. }
  711. return -1;
  712. }
  713. struct netlink_broadcast_data {
  714. struct sock *exclude_sk;
  715. u32 pid;
  716. u32 group;
  717. int failure;
  718. int congested;
  719. int delivered;
  720. gfp_t allocation;
  721. struct sk_buff *skb, *skb2;
  722. };
  723. static inline int do_one_broadcast(struct sock *sk,
  724. struct netlink_broadcast_data *p)
  725. {
  726. struct netlink_sock *nlk = nlk_sk(sk);
  727. int val;
  728. if (p->exclude_sk == sk)
  729. goto out;
  730. if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
  731. !test_bit(p->group - 1, nlk->groups))
  732. goto out;
  733. if (p->failure) {
  734. netlink_overrun(sk);
  735. goto out;
  736. }
  737. sock_hold(sk);
  738. if (p->skb2 == NULL) {
  739. if (skb_shared(p->skb)) {
  740. p->skb2 = skb_clone(p->skb, p->allocation);
  741. } else {
  742. p->skb2 = skb_get(p->skb);
  743. /*
  744. * skb ownership may have been set when
  745. * delivered to a previous socket.
  746. */
  747. skb_orphan(p->skb2);
  748. }
  749. }
  750. if (p->skb2 == NULL) {
  751. netlink_overrun(sk);
  752. /* Clone failed. Notify ALL listeners. */
  753. p->failure = 1;
  754. } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
  755. netlink_overrun(sk);
  756. } else {
  757. p->congested |= val;
  758. p->delivered = 1;
  759. p->skb2 = NULL;
  760. }
  761. sock_put(sk);
  762. out:
  763. return 0;
  764. }
  765. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
  766. u32 group, gfp_t allocation)
  767. {
  768. struct netlink_broadcast_data info;
  769. struct hlist_node *node;
  770. struct sock *sk;
  771. skb = netlink_trim(skb, allocation);
  772. info.exclude_sk = ssk;
  773. info.pid = pid;
  774. info.group = group;
  775. info.failure = 0;
  776. info.congested = 0;
  777. info.delivered = 0;
  778. info.allocation = allocation;
  779. info.skb = skb;
  780. info.skb2 = NULL;
  781. /* While we sleep in clone, do not allow to change socket list */
  782. netlink_lock_table();
  783. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  784. do_one_broadcast(sk, &info);
  785. kfree_skb(skb);
  786. netlink_unlock_table();
  787. if (info.skb2)
  788. kfree_skb(info.skb2);
  789. if (info.delivered) {
  790. if (info.congested && (allocation & __GFP_WAIT))
  791. yield();
  792. return 0;
  793. }
  794. if (info.failure)
  795. return -ENOBUFS;
  796. return -ESRCH;
  797. }
  798. struct netlink_set_err_data {
  799. struct sock *exclude_sk;
  800. u32 pid;
  801. u32 group;
  802. int code;
  803. };
  804. static inline int do_one_set_err(struct sock *sk,
  805. struct netlink_set_err_data *p)
  806. {
  807. struct netlink_sock *nlk = nlk_sk(sk);
  808. if (sk == p->exclude_sk)
  809. goto out;
  810. if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
  811. !test_bit(p->group - 1, nlk->groups))
  812. goto out;
  813. sk->sk_err = p->code;
  814. sk->sk_error_report(sk);
  815. out:
  816. return 0;
  817. }
  818. void netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
  819. {
  820. struct netlink_set_err_data info;
  821. struct hlist_node *node;
  822. struct sock *sk;
  823. info.exclude_sk = ssk;
  824. info.pid = pid;
  825. info.group = group;
  826. info.code = code;
  827. read_lock(&nl_table_lock);
  828. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  829. do_one_set_err(sk, &info);
  830. read_unlock(&nl_table_lock);
  831. }
  832. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  833. char __user *optval, int optlen)
  834. {
  835. struct sock *sk = sock->sk;
  836. struct netlink_sock *nlk = nlk_sk(sk);
  837. int val = 0, err;
  838. if (level != SOL_NETLINK)
  839. return -ENOPROTOOPT;
  840. if (optlen >= sizeof(int) &&
  841. get_user(val, (int __user *)optval))
  842. return -EFAULT;
  843. switch (optname) {
  844. case NETLINK_PKTINFO:
  845. if (val)
  846. nlk->flags |= NETLINK_RECV_PKTINFO;
  847. else
  848. nlk->flags &= ~NETLINK_RECV_PKTINFO;
  849. err = 0;
  850. break;
  851. case NETLINK_ADD_MEMBERSHIP:
  852. case NETLINK_DROP_MEMBERSHIP: {
  853. unsigned int subscriptions;
  854. int old, new = optname == NETLINK_ADD_MEMBERSHIP ? 1 : 0;
  855. if (!netlink_capable(sock, NL_NONROOT_RECV))
  856. return -EPERM;
  857. if (nlk->groups == NULL) {
  858. err = netlink_alloc_groups(sk);
  859. if (err)
  860. return err;
  861. }
  862. if (!val || val - 1 >= nlk->ngroups)
  863. return -EINVAL;
  864. netlink_table_grab();
  865. old = test_bit(val - 1, nlk->groups);
  866. subscriptions = nlk->subscriptions - old + new;
  867. if (new)
  868. __set_bit(val - 1, nlk->groups);
  869. else
  870. __clear_bit(val - 1, nlk->groups);
  871. netlink_update_subscriptions(sk, subscriptions);
  872. netlink_update_listeners(sk);
  873. netlink_table_ungrab();
  874. err = 0;
  875. break;
  876. }
  877. default:
  878. err = -ENOPROTOOPT;
  879. }
  880. return err;
  881. }
  882. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  883. char __user *optval, int __user *optlen)
  884. {
  885. struct sock *sk = sock->sk;
  886. struct netlink_sock *nlk = nlk_sk(sk);
  887. int len, val, err;
  888. if (level != SOL_NETLINK)
  889. return -ENOPROTOOPT;
  890. if (get_user(len, optlen))
  891. return -EFAULT;
  892. if (len < 0)
  893. return -EINVAL;
  894. switch (optname) {
  895. case NETLINK_PKTINFO:
  896. if (len < sizeof(int))
  897. return -EINVAL;
  898. len = sizeof(int);
  899. val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
  900. put_user(len, optlen);
  901. put_user(val, optval);
  902. err = 0;
  903. break;
  904. default:
  905. err = -ENOPROTOOPT;
  906. }
  907. return err;
  908. }
  909. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  910. {
  911. struct nl_pktinfo info;
  912. info.group = NETLINK_CB(skb).dst_group;
  913. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  914. }
  915. static inline void netlink_rcv_wake(struct sock *sk)
  916. {
  917. struct netlink_sock *nlk = nlk_sk(sk);
  918. if (skb_queue_empty(&sk->sk_receive_queue))
  919. clear_bit(0, &nlk->state);
  920. if (!test_bit(0, &nlk->state))
  921. wake_up_interruptible(&nlk->wait);
  922. }
  923. static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
  924. struct msghdr *msg, size_t len)
  925. {
  926. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  927. struct sock *sk = sock->sk;
  928. struct netlink_sock *nlk = nlk_sk(sk);
  929. struct sockaddr_nl *addr=msg->msg_name;
  930. u32 dst_pid;
  931. u32 dst_group;
  932. struct sk_buff *skb;
  933. int err;
  934. struct scm_cookie scm;
  935. if (msg->msg_flags&MSG_OOB)
  936. return -EOPNOTSUPP;
  937. if (NULL == siocb->scm)
  938. siocb->scm = &scm;
  939. err = scm_send(sock, msg, siocb->scm);
  940. if (err < 0)
  941. return err;
  942. if (msg->msg_namelen) {
  943. if (addr->nl_family != AF_NETLINK)
  944. return -EINVAL;
  945. dst_pid = addr->nl_pid;
  946. dst_group = ffs(addr->nl_groups);
  947. if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND))
  948. return -EPERM;
  949. } else {
  950. dst_pid = nlk->dst_pid;
  951. dst_group = nlk->dst_group;
  952. }
  953. if (!nlk->pid) {
  954. err = netlink_autobind(sock);
  955. if (err)
  956. goto out;
  957. }
  958. err = -EMSGSIZE;
  959. if (len > sk->sk_sndbuf - 32)
  960. goto out;
  961. err = -ENOBUFS;
  962. skb = alloc_skb(len, GFP_KERNEL);
  963. if (skb==NULL)
  964. goto out;
  965. NETLINK_CB(skb).pid = nlk->pid;
  966. NETLINK_CB(skb).dst_pid = dst_pid;
  967. NETLINK_CB(skb).dst_group = dst_group;
  968. NETLINK_CB(skb).loginuid = audit_get_loginuid(current->audit_context);
  969. memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
  970. /* What can I do? Netlink is asynchronous, so that
  971. we will have to save current capabilities to
  972. check them, when this message will be delivered
  973. to corresponding kernel module. --ANK (980802)
  974. */
  975. err = -EFAULT;
  976. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) {
  977. kfree_skb(skb);
  978. goto out;
  979. }
  980. err = security_netlink_send(sk, skb);
  981. if (err) {
  982. kfree_skb(skb);
  983. goto out;
  984. }
  985. if (dst_group) {
  986. atomic_inc(&skb->users);
  987. netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL);
  988. }
  989. err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
  990. out:
  991. return err;
  992. }
  993. static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
  994. struct msghdr *msg, size_t len,
  995. int flags)
  996. {
  997. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  998. struct scm_cookie scm;
  999. struct sock *sk = sock->sk;
  1000. struct netlink_sock *nlk = nlk_sk(sk);
  1001. int noblock = flags&MSG_DONTWAIT;
  1002. size_t copied;
  1003. struct sk_buff *skb;
  1004. int err;
  1005. if (flags&MSG_OOB)
  1006. return -EOPNOTSUPP;
  1007. copied = 0;
  1008. skb = skb_recv_datagram(sk,flags,noblock,&err);
  1009. if (skb==NULL)
  1010. goto out;
  1011. msg->msg_namelen = 0;
  1012. copied = skb->len;
  1013. if (len < copied) {
  1014. msg->msg_flags |= MSG_TRUNC;
  1015. copied = len;
  1016. }
  1017. skb->h.raw = skb->data;
  1018. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  1019. if (msg->msg_name) {
  1020. struct sockaddr_nl *addr = (struct sockaddr_nl*)msg->msg_name;
  1021. addr->nl_family = AF_NETLINK;
  1022. addr->nl_pad = 0;
  1023. addr->nl_pid = NETLINK_CB(skb).pid;
  1024. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1025. msg->msg_namelen = sizeof(*addr);
  1026. }
  1027. if (nlk->flags & NETLINK_RECV_PKTINFO)
  1028. netlink_cmsg_recv_pktinfo(msg, skb);
  1029. if (NULL == siocb->scm) {
  1030. memset(&scm, 0, sizeof(scm));
  1031. siocb->scm = &scm;
  1032. }
  1033. siocb->scm->creds = *NETLINK_CREDS(skb);
  1034. skb_free_datagram(sk, skb);
  1035. if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2)
  1036. netlink_dump(sk);
  1037. scm_recv(sock, msg, siocb->scm, flags);
  1038. out:
  1039. netlink_rcv_wake(sk);
  1040. return err ? : copied;
  1041. }
  1042. static void netlink_data_ready(struct sock *sk, int len)
  1043. {
  1044. struct netlink_sock *nlk = nlk_sk(sk);
  1045. if (nlk->data_ready)
  1046. nlk->data_ready(sk, len);
  1047. netlink_rcv_wake(sk);
  1048. }
  1049. /*
  1050. * We export these functions to other modules. They provide a
  1051. * complete set of kernel non-blocking support for message
  1052. * queueing.
  1053. */
  1054. struct sock *
  1055. netlink_kernel_create(int unit, unsigned int groups,
  1056. void (*input)(struct sock *sk, int len),
  1057. struct module *module)
  1058. {
  1059. struct socket *sock;
  1060. struct sock *sk;
  1061. struct netlink_sock *nlk;
  1062. unsigned long *listeners = NULL;
  1063. if (!nl_table)
  1064. return NULL;
  1065. if (unit<0 || unit>=MAX_LINKS)
  1066. return NULL;
  1067. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1068. return NULL;
  1069. if (__netlink_create(sock, unit) < 0)
  1070. goto out_sock_release;
  1071. if (groups < 32)
  1072. groups = 32;
  1073. listeners = kzalloc(NLGRPSZ(groups), GFP_KERNEL);
  1074. if (!listeners)
  1075. goto out_sock_release;
  1076. sk = sock->sk;
  1077. sk->sk_data_ready = netlink_data_ready;
  1078. if (input)
  1079. nlk_sk(sk)->data_ready = input;
  1080. if (netlink_insert(sk, 0))
  1081. goto out_sock_release;
  1082. nlk = nlk_sk(sk);
  1083. nlk->flags |= NETLINK_KERNEL_SOCKET;
  1084. netlink_table_grab();
  1085. nl_table[unit].groups = groups;
  1086. nl_table[unit].listeners = listeners;
  1087. nl_table[unit].module = module;
  1088. nl_table[unit].registered = 1;
  1089. netlink_table_ungrab();
  1090. return sk;
  1091. out_sock_release:
  1092. kfree(listeners);
  1093. sock_release(sock);
  1094. return NULL;
  1095. }
  1096. void netlink_set_nonroot(int protocol, unsigned int flags)
  1097. {
  1098. if ((unsigned int)protocol < MAX_LINKS)
  1099. nl_table[protocol].nl_nonroot = flags;
  1100. }
  1101. static void netlink_destroy_callback(struct netlink_callback *cb)
  1102. {
  1103. if (cb->skb)
  1104. kfree_skb(cb->skb);
  1105. kfree(cb);
  1106. }
  1107. /*
  1108. * It looks a bit ugly.
  1109. * It would be better to create kernel thread.
  1110. */
  1111. static int netlink_dump(struct sock *sk)
  1112. {
  1113. struct netlink_sock *nlk = nlk_sk(sk);
  1114. struct netlink_callback *cb;
  1115. struct sk_buff *skb;
  1116. struct nlmsghdr *nlh;
  1117. int len;
  1118. skb = sock_rmalloc(sk, NLMSG_GOODSIZE, 0, GFP_KERNEL);
  1119. if (!skb)
  1120. return -ENOBUFS;
  1121. spin_lock(&nlk->cb_lock);
  1122. cb = nlk->cb;
  1123. if (cb == NULL) {
  1124. spin_unlock(&nlk->cb_lock);
  1125. kfree_skb(skb);
  1126. return -EINVAL;
  1127. }
  1128. len = cb->dump(skb, cb);
  1129. if (len > 0) {
  1130. spin_unlock(&nlk->cb_lock);
  1131. skb_queue_tail(&sk->sk_receive_queue, skb);
  1132. sk->sk_data_ready(sk, len);
  1133. return 0;
  1134. }
  1135. nlh = NLMSG_NEW_ANSWER(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
  1136. memcpy(NLMSG_DATA(nlh), &len, sizeof(len));
  1137. skb_queue_tail(&sk->sk_receive_queue, skb);
  1138. sk->sk_data_ready(sk, skb->len);
  1139. if (cb->done)
  1140. cb->done(cb);
  1141. nlk->cb = NULL;
  1142. spin_unlock(&nlk->cb_lock);
  1143. netlink_destroy_callback(cb);
  1144. return 0;
  1145. nlmsg_failure:
  1146. return -ENOBUFS;
  1147. }
  1148. int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1149. struct nlmsghdr *nlh,
  1150. int (*dump)(struct sk_buff *skb, struct netlink_callback*),
  1151. int (*done)(struct netlink_callback*))
  1152. {
  1153. struct netlink_callback *cb;
  1154. struct sock *sk;
  1155. struct netlink_sock *nlk;
  1156. cb = kmalloc(sizeof(*cb), GFP_KERNEL);
  1157. if (cb == NULL)
  1158. return -ENOBUFS;
  1159. memset(cb, 0, sizeof(*cb));
  1160. cb->dump = dump;
  1161. cb->done = done;
  1162. cb->nlh = nlh;
  1163. atomic_inc(&skb->users);
  1164. cb->skb = skb;
  1165. sk = netlink_lookup(ssk->sk_protocol, NETLINK_CB(skb).pid);
  1166. if (sk == NULL) {
  1167. netlink_destroy_callback(cb);
  1168. return -ECONNREFUSED;
  1169. }
  1170. nlk = nlk_sk(sk);
  1171. /* A dump is in progress... */
  1172. spin_lock(&nlk->cb_lock);
  1173. if (nlk->cb) {
  1174. spin_unlock(&nlk->cb_lock);
  1175. netlink_destroy_callback(cb);
  1176. sock_put(sk);
  1177. return -EBUSY;
  1178. }
  1179. nlk->cb = cb;
  1180. spin_unlock(&nlk->cb_lock);
  1181. netlink_dump(sk);
  1182. sock_put(sk);
  1183. return 0;
  1184. }
  1185. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
  1186. {
  1187. struct sk_buff *skb;
  1188. struct nlmsghdr *rep;
  1189. struct nlmsgerr *errmsg;
  1190. int size;
  1191. if (err == 0)
  1192. size = NLMSG_SPACE(sizeof(struct nlmsgerr));
  1193. else
  1194. size = NLMSG_SPACE(4 + NLMSG_ALIGN(nlh->nlmsg_len));
  1195. skb = alloc_skb(size, GFP_KERNEL);
  1196. if (!skb) {
  1197. struct sock *sk;
  1198. sk = netlink_lookup(in_skb->sk->sk_protocol,
  1199. NETLINK_CB(in_skb).pid);
  1200. if (sk) {
  1201. sk->sk_err = ENOBUFS;
  1202. sk->sk_error_report(sk);
  1203. sock_put(sk);
  1204. }
  1205. return;
  1206. }
  1207. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
  1208. NLMSG_ERROR, sizeof(struct nlmsgerr), 0);
  1209. errmsg = NLMSG_DATA(rep);
  1210. errmsg->error = err;
  1211. memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(struct nlmsghdr));
  1212. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
  1213. }
  1214. static int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  1215. struct nlmsghdr *, int *))
  1216. {
  1217. unsigned int total_len;
  1218. struct nlmsghdr *nlh;
  1219. int err;
  1220. while (skb->len >= nlmsg_total_size(0)) {
  1221. nlh = (struct nlmsghdr *) skb->data;
  1222. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  1223. return 0;
  1224. total_len = min(NLMSG_ALIGN(nlh->nlmsg_len), skb->len);
  1225. if (cb(skb, nlh, &err) < 0) {
  1226. /* Not an error, but we have to interrupt processing
  1227. * here. Note: that in this case we do not pull
  1228. * message from skb, it will be processed later.
  1229. */
  1230. if (err == 0)
  1231. return -1;
  1232. netlink_ack(skb, nlh, err);
  1233. } else if (nlh->nlmsg_flags & NLM_F_ACK)
  1234. netlink_ack(skb, nlh, 0);
  1235. skb_pull(skb, total_len);
  1236. }
  1237. return 0;
  1238. }
  1239. /**
  1240. * nelink_run_queue - Process netlink receive queue.
  1241. * @sk: Netlink socket containing the queue
  1242. * @qlen: Place to store queue length upon entry
  1243. * @cb: Callback function invoked for each netlink message found
  1244. *
  1245. * Processes as much as there was in the queue upon entry and invokes
  1246. * a callback function for each netlink message found. The callback
  1247. * function may refuse a message by returning a negative error code
  1248. * but setting the error pointer to 0 in which case this function
  1249. * returns with a qlen != 0.
  1250. *
  1251. * qlen must be initialized to 0 before the initial entry, afterwards
  1252. * the function may be called repeatedly until qlen reaches 0.
  1253. */
  1254. void netlink_run_queue(struct sock *sk, unsigned int *qlen,
  1255. int (*cb)(struct sk_buff *, struct nlmsghdr *, int *))
  1256. {
  1257. struct sk_buff *skb;
  1258. if (!*qlen || *qlen > skb_queue_len(&sk->sk_receive_queue))
  1259. *qlen = skb_queue_len(&sk->sk_receive_queue);
  1260. for (; *qlen; (*qlen)--) {
  1261. skb = skb_dequeue(&sk->sk_receive_queue);
  1262. if (netlink_rcv_skb(skb, cb)) {
  1263. if (skb->len)
  1264. skb_queue_head(&sk->sk_receive_queue, skb);
  1265. else {
  1266. kfree_skb(skb);
  1267. (*qlen)--;
  1268. }
  1269. break;
  1270. }
  1271. kfree_skb(skb);
  1272. }
  1273. }
  1274. /**
  1275. * netlink_queue_skip - Skip netlink message while processing queue.
  1276. * @nlh: Netlink message to be skipped
  1277. * @skb: Socket buffer containing the netlink messages.
  1278. *
  1279. * Pulls the given netlink message off the socket buffer so the next
  1280. * call to netlink_queue_run() will not reconsider the message.
  1281. */
  1282. void netlink_queue_skip(struct nlmsghdr *nlh, struct sk_buff *skb)
  1283. {
  1284. int msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  1285. if (msglen > skb->len)
  1286. msglen = skb->len;
  1287. skb_pull(skb, msglen);
  1288. }
  1289. #ifdef CONFIG_PROC_FS
  1290. struct nl_seq_iter {
  1291. int link;
  1292. int hash_idx;
  1293. };
  1294. static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
  1295. {
  1296. struct nl_seq_iter *iter = seq->private;
  1297. int i, j;
  1298. struct sock *s;
  1299. struct hlist_node *node;
  1300. loff_t off = 0;
  1301. for (i=0; i<MAX_LINKS; i++) {
  1302. struct nl_pid_hash *hash = &nl_table[i].hash;
  1303. for (j = 0; j <= hash->mask; j++) {
  1304. sk_for_each(s, node, &hash->table[j]) {
  1305. if (off == pos) {
  1306. iter->link = i;
  1307. iter->hash_idx = j;
  1308. return s;
  1309. }
  1310. ++off;
  1311. }
  1312. }
  1313. }
  1314. return NULL;
  1315. }
  1316. static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
  1317. {
  1318. read_lock(&nl_table_lock);
  1319. return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  1320. }
  1321. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1322. {
  1323. struct sock *s;
  1324. struct nl_seq_iter *iter;
  1325. int i, j;
  1326. ++*pos;
  1327. if (v == SEQ_START_TOKEN)
  1328. return netlink_seq_socket_idx(seq, 0);
  1329. s = sk_next(v);
  1330. if (s)
  1331. return s;
  1332. iter = seq->private;
  1333. i = iter->link;
  1334. j = iter->hash_idx + 1;
  1335. do {
  1336. struct nl_pid_hash *hash = &nl_table[i].hash;
  1337. for (; j <= hash->mask; j++) {
  1338. s = sk_head(&hash->table[j]);
  1339. if (s) {
  1340. iter->link = i;
  1341. iter->hash_idx = j;
  1342. return s;
  1343. }
  1344. }
  1345. j = 0;
  1346. } while (++i < MAX_LINKS);
  1347. return NULL;
  1348. }
  1349. static void netlink_seq_stop(struct seq_file *seq, void *v)
  1350. {
  1351. read_unlock(&nl_table_lock);
  1352. }
  1353. static int netlink_seq_show(struct seq_file *seq, void *v)
  1354. {
  1355. if (v == SEQ_START_TOKEN)
  1356. seq_puts(seq,
  1357. "sk Eth Pid Groups "
  1358. "Rmem Wmem Dump Locks\n");
  1359. else {
  1360. struct sock *s = v;
  1361. struct netlink_sock *nlk = nlk_sk(s);
  1362. seq_printf(seq, "%p %-3d %-6d %08x %-8d %-8d %p %d\n",
  1363. s,
  1364. s->sk_protocol,
  1365. nlk->pid,
  1366. nlk->groups ? (u32)nlk->groups[0] : 0,
  1367. atomic_read(&s->sk_rmem_alloc),
  1368. atomic_read(&s->sk_wmem_alloc),
  1369. nlk->cb,
  1370. atomic_read(&s->sk_refcnt)
  1371. );
  1372. }
  1373. return 0;
  1374. }
  1375. static struct seq_operations netlink_seq_ops = {
  1376. .start = netlink_seq_start,
  1377. .next = netlink_seq_next,
  1378. .stop = netlink_seq_stop,
  1379. .show = netlink_seq_show,
  1380. };
  1381. static int netlink_seq_open(struct inode *inode, struct file *file)
  1382. {
  1383. struct seq_file *seq;
  1384. struct nl_seq_iter *iter;
  1385. int err;
  1386. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1387. if (!iter)
  1388. return -ENOMEM;
  1389. err = seq_open(file, &netlink_seq_ops);
  1390. if (err) {
  1391. kfree(iter);
  1392. return err;
  1393. }
  1394. memset(iter, 0, sizeof(*iter));
  1395. seq = file->private_data;
  1396. seq->private = iter;
  1397. return 0;
  1398. }
  1399. static struct file_operations netlink_seq_fops = {
  1400. .owner = THIS_MODULE,
  1401. .open = netlink_seq_open,
  1402. .read = seq_read,
  1403. .llseek = seq_lseek,
  1404. .release = seq_release_private,
  1405. };
  1406. #endif
  1407. int netlink_register_notifier(struct notifier_block *nb)
  1408. {
  1409. return notifier_chain_register(&netlink_chain, nb);
  1410. }
  1411. int netlink_unregister_notifier(struct notifier_block *nb)
  1412. {
  1413. return notifier_chain_unregister(&netlink_chain, nb);
  1414. }
  1415. static const struct proto_ops netlink_ops = {
  1416. .family = PF_NETLINK,
  1417. .owner = THIS_MODULE,
  1418. .release = netlink_release,
  1419. .bind = netlink_bind,
  1420. .connect = netlink_connect,
  1421. .socketpair = sock_no_socketpair,
  1422. .accept = sock_no_accept,
  1423. .getname = netlink_getname,
  1424. .poll = datagram_poll,
  1425. .ioctl = sock_no_ioctl,
  1426. .listen = sock_no_listen,
  1427. .shutdown = sock_no_shutdown,
  1428. .setsockopt = netlink_setsockopt,
  1429. .getsockopt = netlink_getsockopt,
  1430. .sendmsg = netlink_sendmsg,
  1431. .recvmsg = netlink_recvmsg,
  1432. .mmap = sock_no_mmap,
  1433. .sendpage = sock_no_sendpage,
  1434. };
  1435. static struct net_proto_family netlink_family_ops = {
  1436. .family = PF_NETLINK,
  1437. .create = netlink_create,
  1438. .owner = THIS_MODULE, /* for consistency 8) */
  1439. };
  1440. extern void netlink_skb_parms_too_large(void);
  1441. static int __init netlink_proto_init(void)
  1442. {
  1443. struct sk_buff *dummy_skb;
  1444. int i;
  1445. unsigned long max;
  1446. unsigned int order;
  1447. int err = proto_register(&netlink_proto, 0);
  1448. if (err != 0)
  1449. goto out;
  1450. if (sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb))
  1451. netlink_skb_parms_too_large();
  1452. nl_table = kmalloc(sizeof(*nl_table) * MAX_LINKS, GFP_KERNEL);
  1453. if (!nl_table) {
  1454. enomem:
  1455. printk(KERN_CRIT "netlink_init: Cannot allocate nl_table\n");
  1456. return -ENOMEM;
  1457. }
  1458. memset(nl_table, 0, sizeof(*nl_table) * MAX_LINKS);
  1459. if (num_physpages >= (128 * 1024))
  1460. max = num_physpages >> (21 - PAGE_SHIFT);
  1461. else
  1462. max = num_physpages >> (23 - PAGE_SHIFT);
  1463. order = get_bitmask_order(max) - 1 + PAGE_SHIFT;
  1464. max = (1UL << order) / sizeof(struct hlist_head);
  1465. order = get_bitmask_order(max > UINT_MAX ? UINT_MAX : max) - 1;
  1466. for (i = 0; i < MAX_LINKS; i++) {
  1467. struct nl_pid_hash *hash = &nl_table[i].hash;
  1468. hash->table = nl_pid_hash_alloc(1 * sizeof(*hash->table));
  1469. if (!hash->table) {
  1470. while (i-- > 0)
  1471. nl_pid_hash_free(nl_table[i].hash.table,
  1472. 1 * sizeof(*hash->table));
  1473. kfree(nl_table);
  1474. goto enomem;
  1475. }
  1476. memset(hash->table, 0, 1 * sizeof(*hash->table));
  1477. hash->max_shift = order;
  1478. hash->shift = 0;
  1479. hash->mask = 0;
  1480. hash->rehash_time = jiffies;
  1481. }
  1482. sock_register(&netlink_family_ops);
  1483. #ifdef CONFIG_PROC_FS
  1484. proc_net_fops_create("netlink", 0, &netlink_seq_fops);
  1485. #endif
  1486. /* The netlink device handler may be needed early. */
  1487. rtnetlink_init();
  1488. out:
  1489. return err;
  1490. }
  1491. core_initcall(netlink_proto_init);
  1492. EXPORT_SYMBOL(netlink_ack);
  1493. EXPORT_SYMBOL(netlink_run_queue);
  1494. EXPORT_SYMBOL(netlink_queue_skip);
  1495. EXPORT_SYMBOL(netlink_broadcast);
  1496. EXPORT_SYMBOL(netlink_dump_start);
  1497. EXPORT_SYMBOL(netlink_kernel_create);
  1498. EXPORT_SYMBOL(netlink_register_notifier);
  1499. EXPORT_SYMBOL(netlink_set_err);
  1500. EXPORT_SYMBOL(netlink_set_nonroot);
  1501. EXPORT_SYMBOL(netlink_unicast);
  1502. EXPORT_SYMBOL(netlink_unregister_notifier);