swapfile.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771
  1. /*
  2. * linux/mm/swapfile.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. */
  7. #include <linux/config.h>
  8. #include <linux/mm.h>
  9. #include <linux/hugetlb.h>
  10. #include <linux/mman.h>
  11. #include <linux/slab.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/swap.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/namei.h>
  17. #include <linux/shm.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/writeback.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/rmap.h>
  25. #include <linux/security.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/mutex.h>
  28. #include <linux/capability.h>
  29. #include <linux/syscalls.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/tlbflush.h>
  32. #include <linux/swapops.h>
  33. DEFINE_SPINLOCK(swap_lock);
  34. unsigned int nr_swapfiles;
  35. long total_swap_pages;
  36. static int swap_overflow;
  37. static const char Bad_file[] = "Bad swap file entry ";
  38. static const char Unused_file[] = "Unused swap file entry ";
  39. static const char Bad_offset[] = "Bad swap offset entry ";
  40. static const char Unused_offset[] = "Unused swap offset entry ";
  41. struct swap_list_t swap_list = {-1, -1};
  42. static struct swap_info_struct swap_info[MAX_SWAPFILES];
  43. static DEFINE_MUTEX(swapon_mutex);
  44. /*
  45. * We need this because the bdev->unplug_fn can sleep and we cannot
  46. * hold swap_lock while calling the unplug_fn. And swap_lock
  47. * cannot be turned into a mutex.
  48. */
  49. static DECLARE_RWSEM(swap_unplug_sem);
  50. void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
  51. {
  52. swp_entry_t entry;
  53. down_read(&swap_unplug_sem);
  54. entry.val = page_private(page);
  55. if (PageSwapCache(page)) {
  56. struct block_device *bdev = swap_info[swp_type(entry)].bdev;
  57. struct backing_dev_info *bdi;
  58. /*
  59. * If the page is removed from swapcache from under us (with a
  60. * racy try_to_unuse/swapoff) we need an additional reference
  61. * count to avoid reading garbage from page_private(page) above.
  62. * If the WARN_ON triggers during a swapoff it maybe the race
  63. * condition and it's harmless. However if it triggers without
  64. * swapoff it signals a problem.
  65. */
  66. WARN_ON(page_count(page) <= 1);
  67. bdi = bdev->bd_inode->i_mapping->backing_dev_info;
  68. blk_run_backing_dev(bdi, page);
  69. }
  70. up_read(&swap_unplug_sem);
  71. }
  72. #define SWAPFILE_CLUSTER 256
  73. #define LATENCY_LIMIT 256
  74. static inline unsigned long scan_swap_map(struct swap_info_struct *si)
  75. {
  76. unsigned long offset, last_in_cluster;
  77. int latency_ration = LATENCY_LIMIT;
  78. /*
  79. * We try to cluster swap pages by allocating them sequentially
  80. * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
  81. * way, however, we resort to first-free allocation, starting
  82. * a new cluster. This prevents us from scattering swap pages
  83. * all over the entire swap partition, so that we reduce
  84. * overall disk seek times between swap pages. -- sct
  85. * But we do now try to find an empty cluster. -Andrea
  86. */
  87. si->flags += SWP_SCANNING;
  88. if (unlikely(!si->cluster_nr)) {
  89. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  90. if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
  91. goto lowest;
  92. spin_unlock(&swap_lock);
  93. offset = si->lowest_bit;
  94. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  95. /* Locate the first empty (unaligned) cluster */
  96. for (; last_in_cluster <= si->highest_bit; offset++) {
  97. if (si->swap_map[offset])
  98. last_in_cluster = offset + SWAPFILE_CLUSTER;
  99. else if (offset == last_in_cluster) {
  100. spin_lock(&swap_lock);
  101. si->cluster_next = offset-SWAPFILE_CLUSTER+1;
  102. goto cluster;
  103. }
  104. if (unlikely(--latency_ration < 0)) {
  105. cond_resched();
  106. latency_ration = LATENCY_LIMIT;
  107. }
  108. }
  109. spin_lock(&swap_lock);
  110. goto lowest;
  111. }
  112. si->cluster_nr--;
  113. cluster:
  114. offset = si->cluster_next;
  115. if (offset > si->highest_bit)
  116. lowest: offset = si->lowest_bit;
  117. checks: if (!(si->flags & SWP_WRITEOK))
  118. goto no_page;
  119. if (!si->highest_bit)
  120. goto no_page;
  121. if (!si->swap_map[offset]) {
  122. if (offset == si->lowest_bit)
  123. si->lowest_bit++;
  124. if (offset == si->highest_bit)
  125. si->highest_bit--;
  126. si->inuse_pages++;
  127. if (si->inuse_pages == si->pages) {
  128. si->lowest_bit = si->max;
  129. si->highest_bit = 0;
  130. }
  131. si->swap_map[offset] = 1;
  132. si->cluster_next = offset + 1;
  133. si->flags -= SWP_SCANNING;
  134. return offset;
  135. }
  136. spin_unlock(&swap_lock);
  137. while (++offset <= si->highest_bit) {
  138. if (!si->swap_map[offset]) {
  139. spin_lock(&swap_lock);
  140. goto checks;
  141. }
  142. if (unlikely(--latency_ration < 0)) {
  143. cond_resched();
  144. latency_ration = LATENCY_LIMIT;
  145. }
  146. }
  147. spin_lock(&swap_lock);
  148. goto lowest;
  149. no_page:
  150. si->flags -= SWP_SCANNING;
  151. return 0;
  152. }
  153. swp_entry_t get_swap_page(void)
  154. {
  155. struct swap_info_struct *si;
  156. pgoff_t offset;
  157. int type, next;
  158. int wrapped = 0;
  159. spin_lock(&swap_lock);
  160. if (nr_swap_pages <= 0)
  161. goto noswap;
  162. nr_swap_pages--;
  163. for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
  164. si = swap_info + type;
  165. next = si->next;
  166. if (next < 0 ||
  167. (!wrapped && si->prio != swap_info[next].prio)) {
  168. next = swap_list.head;
  169. wrapped++;
  170. }
  171. if (!si->highest_bit)
  172. continue;
  173. if (!(si->flags & SWP_WRITEOK))
  174. continue;
  175. swap_list.next = next;
  176. offset = scan_swap_map(si);
  177. if (offset) {
  178. spin_unlock(&swap_lock);
  179. return swp_entry(type, offset);
  180. }
  181. next = swap_list.next;
  182. }
  183. nr_swap_pages++;
  184. noswap:
  185. spin_unlock(&swap_lock);
  186. return (swp_entry_t) {0};
  187. }
  188. swp_entry_t get_swap_page_of_type(int type)
  189. {
  190. struct swap_info_struct *si;
  191. pgoff_t offset;
  192. spin_lock(&swap_lock);
  193. si = swap_info + type;
  194. if (si->flags & SWP_WRITEOK) {
  195. nr_swap_pages--;
  196. offset = scan_swap_map(si);
  197. if (offset) {
  198. spin_unlock(&swap_lock);
  199. return swp_entry(type, offset);
  200. }
  201. nr_swap_pages++;
  202. }
  203. spin_unlock(&swap_lock);
  204. return (swp_entry_t) {0};
  205. }
  206. static struct swap_info_struct * swap_info_get(swp_entry_t entry)
  207. {
  208. struct swap_info_struct * p;
  209. unsigned long offset, type;
  210. if (!entry.val)
  211. goto out;
  212. type = swp_type(entry);
  213. if (type >= nr_swapfiles)
  214. goto bad_nofile;
  215. p = & swap_info[type];
  216. if (!(p->flags & SWP_USED))
  217. goto bad_device;
  218. offset = swp_offset(entry);
  219. if (offset >= p->max)
  220. goto bad_offset;
  221. if (!p->swap_map[offset])
  222. goto bad_free;
  223. spin_lock(&swap_lock);
  224. return p;
  225. bad_free:
  226. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
  227. goto out;
  228. bad_offset:
  229. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
  230. goto out;
  231. bad_device:
  232. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
  233. goto out;
  234. bad_nofile:
  235. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
  236. out:
  237. return NULL;
  238. }
  239. static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
  240. {
  241. int count = p->swap_map[offset];
  242. if (count < SWAP_MAP_MAX) {
  243. count--;
  244. p->swap_map[offset] = count;
  245. if (!count) {
  246. if (offset < p->lowest_bit)
  247. p->lowest_bit = offset;
  248. if (offset > p->highest_bit)
  249. p->highest_bit = offset;
  250. if (p->prio > swap_info[swap_list.next].prio)
  251. swap_list.next = p - swap_info;
  252. nr_swap_pages++;
  253. p->inuse_pages--;
  254. }
  255. }
  256. return count;
  257. }
  258. /*
  259. * Caller has made sure that the swapdevice corresponding to entry
  260. * is still around or has not been recycled.
  261. */
  262. void swap_free(swp_entry_t entry)
  263. {
  264. struct swap_info_struct * p;
  265. p = swap_info_get(entry);
  266. if (p) {
  267. swap_entry_free(p, swp_offset(entry));
  268. spin_unlock(&swap_lock);
  269. }
  270. }
  271. /*
  272. * How many references to page are currently swapped out?
  273. */
  274. static inline int page_swapcount(struct page *page)
  275. {
  276. int count = 0;
  277. struct swap_info_struct *p;
  278. swp_entry_t entry;
  279. entry.val = page_private(page);
  280. p = swap_info_get(entry);
  281. if (p) {
  282. /* Subtract the 1 for the swap cache itself */
  283. count = p->swap_map[swp_offset(entry)] - 1;
  284. spin_unlock(&swap_lock);
  285. }
  286. return count;
  287. }
  288. /*
  289. * We can use this swap cache entry directly
  290. * if there are no other references to it.
  291. */
  292. int can_share_swap_page(struct page *page)
  293. {
  294. int count;
  295. BUG_ON(!PageLocked(page));
  296. count = page_mapcount(page);
  297. if (count <= 1 && PageSwapCache(page))
  298. count += page_swapcount(page);
  299. return count == 1;
  300. }
  301. /*
  302. * Work out if there are any other processes sharing this
  303. * swap cache page. Free it if you can. Return success.
  304. */
  305. int remove_exclusive_swap_page(struct page *page)
  306. {
  307. int retval;
  308. struct swap_info_struct * p;
  309. swp_entry_t entry;
  310. BUG_ON(PagePrivate(page));
  311. BUG_ON(!PageLocked(page));
  312. if (!PageSwapCache(page))
  313. return 0;
  314. if (PageWriteback(page))
  315. return 0;
  316. if (page_count(page) != 2) /* 2: us + cache */
  317. return 0;
  318. entry.val = page_private(page);
  319. p = swap_info_get(entry);
  320. if (!p)
  321. return 0;
  322. /* Is the only swap cache user the cache itself? */
  323. retval = 0;
  324. if (p->swap_map[swp_offset(entry)] == 1) {
  325. /* Recheck the page count with the swapcache lock held.. */
  326. write_lock_irq(&swapper_space.tree_lock);
  327. if ((page_count(page) == 2) && !PageWriteback(page)) {
  328. __delete_from_swap_cache(page);
  329. SetPageDirty(page);
  330. retval = 1;
  331. }
  332. write_unlock_irq(&swapper_space.tree_lock);
  333. }
  334. spin_unlock(&swap_lock);
  335. if (retval) {
  336. swap_free(entry);
  337. page_cache_release(page);
  338. }
  339. return retval;
  340. }
  341. /*
  342. * Free the swap entry like above, but also try to
  343. * free the page cache entry if it is the last user.
  344. */
  345. void free_swap_and_cache(swp_entry_t entry)
  346. {
  347. struct swap_info_struct * p;
  348. struct page *page = NULL;
  349. p = swap_info_get(entry);
  350. if (p) {
  351. if (swap_entry_free(p, swp_offset(entry)) == 1)
  352. page = find_trylock_page(&swapper_space, entry.val);
  353. spin_unlock(&swap_lock);
  354. }
  355. if (page) {
  356. int one_user;
  357. BUG_ON(PagePrivate(page));
  358. page_cache_get(page);
  359. one_user = (page_count(page) == 2);
  360. /* Only cache user (+us), or swap space full? Free it! */
  361. if (!PageWriteback(page) && (one_user || vm_swap_full())) {
  362. delete_from_swap_cache(page);
  363. SetPageDirty(page);
  364. }
  365. unlock_page(page);
  366. page_cache_release(page);
  367. }
  368. }
  369. #ifdef CONFIG_SOFTWARE_SUSPEND
  370. /*
  371. * Find the swap type that corresponds to given device (if any)
  372. *
  373. * This is needed for software suspend and is done in such a way that inode
  374. * aliasing is allowed.
  375. */
  376. int swap_type_of(dev_t device)
  377. {
  378. int i;
  379. spin_lock(&swap_lock);
  380. for (i = 0; i < nr_swapfiles; i++) {
  381. struct inode *inode;
  382. if (!(swap_info[i].flags & SWP_WRITEOK))
  383. continue;
  384. if (!device) {
  385. spin_unlock(&swap_lock);
  386. return i;
  387. }
  388. inode = swap_info->swap_file->f_dentry->d_inode;
  389. if (S_ISBLK(inode->i_mode) &&
  390. device == MKDEV(imajor(inode), iminor(inode))) {
  391. spin_unlock(&swap_lock);
  392. return i;
  393. }
  394. }
  395. spin_unlock(&swap_lock);
  396. return -ENODEV;
  397. }
  398. /*
  399. * Return either the total number of swap pages of given type, or the number
  400. * of free pages of that type (depending on @free)
  401. *
  402. * This is needed for software suspend
  403. */
  404. unsigned int count_swap_pages(int type, int free)
  405. {
  406. unsigned int n = 0;
  407. if (type < nr_swapfiles) {
  408. spin_lock(&swap_lock);
  409. if (swap_info[type].flags & SWP_WRITEOK) {
  410. n = swap_info[type].pages;
  411. if (free)
  412. n -= swap_info[type].inuse_pages;
  413. }
  414. spin_unlock(&swap_lock);
  415. }
  416. return n;
  417. }
  418. #endif
  419. /*
  420. * No need to decide whether this PTE shares the swap entry with others,
  421. * just let do_wp_page work it out if a write is requested later - to
  422. * force COW, vm_page_prot omits write permission from any private vma.
  423. */
  424. static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
  425. unsigned long addr, swp_entry_t entry, struct page *page)
  426. {
  427. inc_mm_counter(vma->vm_mm, anon_rss);
  428. get_page(page);
  429. set_pte_at(vma->vm_mm, addr, pte,
  430. pte_mkold(mk_pte(page, vma->vm_page_prot)));
  431. page_add_anon_rmap(page, vma, addr);
  432. swap_free(entry);
  433. /*
  434. * Move the page to the active list so it is not
  435. * immediately swapped out again after swapon.
  436. */
  437. activate_page(page);
  438. }
  439. static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  440. unsigned long addr, unsigned long end,
  441. swp_entry_t entry, struct page *page)
  442. {
  443. pte_t swp_pte = swp_entry_to_pte(entry);
  444. pte_t *pte;
  445. spinlock_t *ptl;
  446. int found = 0;
  447. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  448. do {
  449. /*
  450. * swapoff spends a _lot_ of time in this loop!
  451. * Test inline before going to call unuse_pte.
  452. */
  453. if (unlikely(pte_same(*pte, swp_pte))) {
  454. unuse_pte(vma, pte++, addr, entry, page);
  455. found = 1;
  456. break;
  457. }
  458. } while (pte++, addr += PAGE_SIZE, addr != end);
  459. pte_unmap_unlock(pte - 1, ptl);
  460. return found;
  461. }
  462. static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  463. unsigned long addr, unsigned long end,
  464. swp_entry_t entry, struct page *page)
  465. {
  466. pmd_t *pmd;
  467. unsigned long next;
  468. pmd = pmd_offset(pud, addr);
  469. do {
  470. next = pmd_addr_end(addr, end);
  471. if (pmd_none_or_clear_bad(pmd))
  472. continue;
  473. if (unuse_pte_range(vma, pmd, addr, next, entry, page))
  474. return 1;
  475. } while (pmd++, addr = next, addr != end);
  476. return 0;
  477. }
  478. static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  479. unsigned long addr, unsigned long end,
  480. swp_entry_t entry, struct page *page)
  481. {
  482. pud_t *pud;
  483. unsigned long next;
  484. pud = pud_offset(pgd, addr);
  485. do {
  486. next = pud_addr_end(addr, end);
  487. if (pud_none_or_clear_bad(pud))
  488. continue;
  489. if (unuse_pmd_range(vma, pud, addr, next, entry, page))
  490. return 1;
  491. } while (pud++, addr = next, addr != end);
  492. return 0;
  493. }
  494. static int unuse_vma(struct vm_area_struct *vma,
  495. swp_entry_t entry, struct page *page)
  496. {
  497. pgd_t *pgd;
  498. unsigned long addr, end, next;
  499. if (page->mapping) {
  500. addr = page_address_in_vma(page, vma);
  501. if (addr == -EFAULT)
  502. return 0;
  503. else
  504. end = addr + PAGE_SIZE;
  505. } else {
  506. addr = vma->vm_start;
  507. end = vma->vm_end;
  508. }
  509. pgd = pgd_offset(vma->vm_mm, addr);
  510. do {
  511. next = pgd_addr_end(addr, end);
  512. if (pgd_none_or_clear_bad(pgd))
  513. continue;
  514. if (unuse_pud_range(vma, pgd, addr, next, entry, page))
  515. return 1;
  516. } while (pgd++, addr = next, addr != end);
  517. return 0;
  518. }
  519. static int unuse_mm(struct mm_struct *mm,
  520. swp_entry_t entry, struct page *page)
  521. {
  522. struct vm_area_struct *vma;
  523. if (!down_read_trylock(&mm->mmap_sem)) {
  524. /*
  525. * Activate page so shrink_cache is unlikely to unmap its
  526. * ptes while lock is dropped, so swapoff can make progress.
  527. */
  528. activate_page(page);
  529. unlock_page(page);
  530. down_read(&mm->mmap_sem);
  531. lock_page(page);
  532. }
  533. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  534. if (vma->anon_vma && unuse_vma(vma, entry, page))
  535. break;
  536. }
  537. up_read(&mm->mmap_sem);
  538. /*
  539. * Currently unuse_mm cannot fail, but leave error handling
  540. * at call sites for now, since we change it from time to time.
  541. */
  542. return 0;
  543. }
  544. #ifdef CONFIG_MIGRATION
  545. int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
  546. {
  547. swp_entry_t entry = { .val = page_private(page) };
  548. return unuse_vma(vma, entry, page);
  549. }
  550. #endif
  551. /*
  552. * Scan swap_map from current position to next entry still in use.
  553. * Recycle to start on reaching the end, returning 0 when empty.
  554. */
  555. static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  556. unsigned int prev)
  557. {
  558. unsigned int max = si->max;
  559. unsigned int i = prev;
  560. int count;
  561. /*
  562. * No need for swap_lock here: we're just looking
  563. * for whether an entry is in use, not modifying it; false
  564. * hits are okay, and sys_swapoff() has already prevented new
  565. * allocations from this area (while holding swap_lock).
  566. */
  567. for (;;) {
  568. if (++i >= max) {
  569. if (!prev) {
  570. i = 0;
  571. break;
  572. }
  573. /*
  574. * No entries in use at top of swap_map,
  575. * loop back to start and recheck there.
  576. */
  577. max = prev + 1;
  578. prev = 0;
  579. i = 1;
  580. }
  581. count = si->swap_map[i];
  582. if (count && count != SWAP_MAP_BAD)
  583. break;
  584. }
  585. return i;
  586. }
  587. /*
  588. * We completely avoid races by reading each swap page in advance,
  589. * and then search for the process using it. All the necessary
  590. * page table adjustments can then be made atomically.
  591. */
  592. static int try_to_unuse(unsigned int type)
  593. {
  594. struct swap_info_struct * si = &swap_info[type];
  595. struct mm_struct *start_mm;
  596. unsigned short *swap_map;
  597. unsigned short swcount;
  598. struct page *page;
  599. swp_entry_t entry;
  600. unsigned int i = 0;
  601. int retval = 0;
  602. int reset_overflow = 0;
  603. int shmem;
  604. /*
  605. * When searching mms for an entry, a good strategy is to
  606. * start at the first mm we freed the previous entry from
  607. * (though actually we don't notice whether we or coincidence
  608. * freed the entry). Initialize this start_mm with a hold.
  609. *
  610. * A simpler strategy would be to start at the last mm we
  611. * freed the previous entry from; but that would take less
  612. * advantage of mmlist ordering, which clusters forked mms
  613. * together, child after parent. If we race with dup_mmap(), we
  614. * prefer to resolve parent before child, lest we miss entries
  615. * duplicated after we scanned child: using last mm would invert
  616. * that. Though it's only a serious concern when an overflowed
  617. * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
  618. */
  619. start_mm = &init_mm;
  620. atomic_inc(&init_mm.mm_users);
  621. /*
  622. * Keep on scanning until all entries have gone. Usually,
  623. * one pass through swap_map is enough, but not necessarily:
  624. * there are races when an instance of an entry might be missed.
  625. */
  626. while ((i = find_next_to_unuse(si, i)) != 0) {
  627. if (signal_pending(current)) {
  628. retval = -EINTR;
  629. break;
  630. }
  631. /*
  632. * Get a page for the entry, using the existing swap
  633. * cache page if there is one. Otherwise, get a clean
  634. * page and read the swap into it.
  635. */
  636. swap_map = &si->swap_map[i];
  637. entry = swp_entry(type, i);
  638. again:
  639. page = read_swap_cache_async(entry, NULL, 0);
  640. if (!page) {
  641. /*
  642. * Either swap_duplicate() failed because entry
  643. * has been freed independently, and will not be
  644. * reused since sys_swapoff() already disabled
  645. * allocation from here, or alloc_page() failed.
  646. */
  647. if (!*swap_map)
  648. continue;
  649. retval = -ENOMEM;
  650. break;
  651. }
  652. /*
  653. * Don't hold on to start_mm if it looks like exiting.
  654. */
  655. if (atomic_read(&start_mm->mm_users) == 1) {
  656. mmput(start_mm);
  657. start_mm = &init_mm;
  658. atomic_inc(&init_mm.mm_users);
  659. }
  660. /*
  661. * Wait for and lock page. When do_swap_page races with
  662. * try_to_unuse, do_swap_page can handle the fault much
  663. * faster than try_to_unuse can locate the entry. This
  664. * apparently redundant "wait_on_page_locked" lets try_to_unuse
  665. * defer to do_swap_page in such a case - in some tests,
  666. * do_swap_page and try_to_unuse repeatedly compete.
  667. */
  668. wait_on_page_locked(page);
  669. wait_on_page_writeback(page);
  670. lock_page(page);
  671. if (!PageSwapCache(page)) {
  672. /* Page migration has occured */
  673. unlock_page(page);
  674. page_cache_release(page);
  675. goto again;
  676. }
  677. wait_on_page_writeback(page);
  678. /*
  679. * Remove all references to entry.
  680. * Whenever we reach init_mm, there's no address space
  681. * to search, but use it as a reminder to search shmem.
  682. */
  683. shmem = 0;
  684. swcount = *swap_map;
  685. if (swcount > 1) {
  686. if (start_mm == &init_mm)
  687. shmem = shmem_unuse(entry, page);
  688. else
  689. retval = unuse_mm(start_mm, entry, page);
  690. }
  691. if (*swap_map > 1) {
  692. int set_start_mm = (*swap_map >= swcount);
  693. struct list_head *p = &start_mm->mmlist;
  694. struct mm_struct *new_start_mm = start_mm;
  695. struct mm_struct *prev_mm = start_mm;
  696. struct mm_struct *mm;
  697. atomic_inc(&new_start_mm->mm_users);
  698. atomic_inc(&prev_mm->mm_users);
  699. spin_lock(&mmlist_lock);
  700. while (*swap_map > 1 && !retval &&
  701. (p = p->next) != &start_mm->mmlist) {
  702. mm = list_entry(p, struct mm_struct, mmlist);
  703. if (atomic_inc_return(&mm->mm_users) == 1) {
  704. atomic_dec(&mm->mm_users);
  705. continue;
  706. }
  707. spin_unlock(&mmlist_lock);
  708. mmput(prev_mm);
  709. prev_mm = mm;
  710. cond_resched();
  711. swcount = *swap_map;
  712. if (swcount <= 1)
  713. ;
  714. else if (mm == &init_mm) {
  715. set_start_mm = 1;
  716. shmem = shmem_unuse(entry, page);
  717. } else
  718. retval = unuse_mm(mm, entry, page);
  719. if (set_start_mm && *swap_map < swcount) {
  720. mmput(new_start_mm);
  721. atomic_inc(&mm->mm_users);
  722. new_start_mm = mm;
  723. set_start_mm = 0;
  724. }
  725. spin_lock(&mmlist_lock);
  726. }
  727. spin_unlock(&mmlist_lock);
  728. mmput(prev_mm);
  729. mmput(start_mm);
  730. start_mm = new_start_mm;
  731. }
  732. if (retval) {
  733. unlock_page(page);
  734. page_cache_release(page);
  735. break;
  736. }
  737. /*
  738. * How could swap count reach 0x7fff when the maximum
  739. * pid is 0x7fff, and there's no way to repeat a swap
  740. * page within an mm (except in shmem, where it's the
  741. * shared object which takes the reference count)?
  742. * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
  743. *
  744. * If that's wrong, then we should worry more about
  745. * exit_mmap() and do_munmap() cases described above:
  746. * we might be resetting SWAP_MAP_MAX too early here.
  747. * We know "Undead"s can happen, they're okay, so don't
  748. * report them; but do report if we reset SWAP_MAP_MAX.
  749. */
  750. if (*swap_map == SWAP_MAP_MAX) {
  751. spin_lock(&swap_lock);
  752. *swap_map = 1;
  753. spin_unlock(&swap_lock);
  754. reset_overflow = 1;
  755. }
  756. /*
  757. * If a reference remains (rare), we would like to leave
  758. * the page in the swap cache; but try_to_unmap could
  759. * then re-duplicate the entry once we drop page lock,
  760. * so we might loop indefinitely; also, that page could
  761. * not be swapped out to other storage meanwhile. So:
  762. * delete from cache even if there's another reference,
  763. * after ensuring that the data has been saved to disk -
  764. * since if the reference remains (rarer), it will be
  765. * read from disk into another page. Splitting into two
  766. * pages would be incorrect if swap supported "shared
  767. * private" pages, but they are handled by tmpfs files.
  768. *
  769. * Note shmem_unuse already deleted a swappage from
  770. * the swap cache, unless the move to filepage failed:
  771. * in which case it left swappage in cache, lowered its
  772. * swap count to pass quickly through the loops above,
  773. * and now we must reincrement count to try again later.
  774. */
  775. if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
  776. struct writeback_control wbc = {
  777. .sync_mode = WB_SYNC_NONE,
  778. };
  779. swap_writepage(page, &wbc);
  780. lock_page(page);
  781. wait_on_page_writeback(page);
  782. }
  783. if (PageSwapCache(page)) {
  784. if (shmem)
  785. swap_duplicate(entry);
  786. else
  787. delete_from_swap_cache(page);
  788. }
  789. /*
  790. * So we could skip searching mms once swap count went
  791. * to 1, we did not mark any present ptes as dirty: must
  792. * mark page dirty so shrink_list will preserve it.
  793. */
  794. SetPageDirty(page);
  795. unlock_page(page);
  796. page_cache_release(page);
  797. /*
  798. * Make sure that we aren't completely killing
  799. * interactive performance.
  800. */
  801. cond_resched();
  802. }
  803. mmput(start_mm);
  804. if (reset_overflow) {
  805. printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
  806. swap_overflow = 0;
  807. }
  808. return retval;
  809. }
  810. /*
  811. * After a successful try_to_unuse, if no swap is now in use, we know
  812. * we can empty the mmlist. swap_lock must be held on entry and exit.
  813. * Note that mmlist_lock nests inside swap_lock, and an mm must be
  814. * added to the mmlist just after page_duplicate - before would be racy.
  815. */
  816. static void drain_mmlist(void)
  817. {
  818. struct list_head *p, *next;
  819. unsigned int i;
  820. for (i = 0; i < nr_swapfiles; i++)
  821. if (swap_info[i].inuse_pages)
  822. return;
  823. spin_lock(&mmlist_lock);
  824. list_for_each_safe(p, next, &init_mm.mmlist)
  825. list_del_init(p);
  826. spin_unlock(&mmlist_lock);
  827. }
  828. /*
  829. * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
  830. * corresponds to page offset `offset'.
  831. */
  832. sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
  833. {
  834. struct swap_extent *se = sis->curr_swap_extent;
  835. struct swap_extent *start_se = se;
  836. for ( ; ; ) {
  837. struct list_head *lh;
  838. if (se->start_page <= offset &&
  839. offset < (se->start_page + se->nr_pages)) {
  840. return se->start_block + (offset - se->start_page);
  841. }
  842. lh = se->list.next;
  843. if (lh == &sis->extent_list)
  844. lh = lh->next;
  845. se = list_entry(lh, struct swap_extent, list);
  846. sis->curr_swap_extent = se;
  847. BUG_ON(se == start_se); /* It *must* be present */
  848. }
  849. }
  850. /*
  851. * Free all of a swapdev's extent information
  852. */
  853. static void destroy_swap_extents(struct swap_info_struct *sis)
  854. {
  855. while (!list_empty(&sis->extent_list)) {
  856. struct swap_extent *se;
  857. se = list_entry(sis->extent_list.next,
  858. struct swap_extent, list);
  859. list_del(&se->list);
  860. kfree(se);
  861. }
  862. }
  863. /*
  864. * Add a block range (and the corresponding page range) into this swapdev's
  865. * extent list. The extent list is kept sorted in page order.
  866. *
  867. * This function rather assumes that it is called in ascending page order.
  868. */
  869. static int
  870. add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
  871. unsigned long nr_pages, sector_t start_block)
  872. {
  873. struct swap_extent *se;
  874. struct swap_extent *new_se;
  875. struct list_head *lh;
  876. lh = sis->extent_list.prev; /* The highest page extent */
  877. if (lh != &sis->extent_list) {
  878. se = list_entry(lh, struct swap_extent, list);
  879. BUG_ON(se->start_page + se->nr_pages != start_page);
  880. if (se->start_block + se->nr_pages == start_block) {
  881. /* Merge it */
  882. se->nr_pages += nr_pages;
  883. return 0;
  884. }
  885. }
  886. /*
  887. * No merge. Insert a new extent, preserving ordering.
  888. */
  889. new_se = kmalloc(sizeof(*se), GFP_KERNEL);
  890. if (new_se == NULL)
  891. return -ENOMEM;
  892. new_se->start_page = start_page;
  893. new_se->nr_pages = nr_pages;
  894. new_se->start_block = start_block;
  895. list_add_tail(&new_se->list, &sis->extent_list);
  896. return 1;
  897. }
  898. /*
  899. * A `swap extent' is a simple thing which maps a contiguous range of pages
  900. * onto a contiguous range of disk blocks. An ordered list of swap extents
  901. * is built at swapon time and is then used at swap_writepage/swap_readpage
  902. * time for locating where on disk a page belongs.
  903. *
  904. * If the swapfile is an S_ISBLK block device, a single extent is installed.
  905. * This is done so that the main operating code can treat S_ISBLK and S_ISREG
  906. * swap files identically.
  907. *
  908. * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
  909. * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
  910. * swapfiles are handled *identically* after swapon time.
  911. *
  912. * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
  913. * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
  914. * some stray blocks are found which do not fall within the PAGE_SIZE alignment
  915. * requirements, they are simply tossed out - we will never use those blocks
  916. * for swapping.
  917. *
  918. * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
  919. * prevents root from shooting her foot off by ftruncating an in-use swapfile,
  920. * which will scribble on the fs.
  921. *
  922. * The amount of disk space which a single swap extent represents varies.
  923. * Typically it is in the 1-4 megabyte range. So we can have hundreds of
  924. * extents in the list. To avoid much list walking, we cache the previous
  925. * search location in `curr_swap_extent', and start new searches from there.
  926. * This is extremely effective. The average number of iterations in
  927. * map_swap_page() has been measured at about 0.3 per page. - akpm.
  928. */
  929. static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
  930. {
  931. struct inode *inode;
  932. unsigned blocks_per_page;
  933. unsigned long page_no;
  934. unsigned blkbits;
  935. sector_t probe_block;
  936. sector_t last_block;
  937. sector_t lowest_block = -1;
  938. sector_t highest_block = 0;
  939. int nr_extents = 0;
  940. int ret;
  941. inode = sis->swap_file->f_mapping->host;
  942. if (S_ISBLK(inode->i_mode)) {
  943. ret = add_swap_extent(sis, 0, sis->max, 0);
  944. *span = sis->pages;
  945. goto done;
  946. }
  947. blkbits = inode->i_blkbits;
  948. blocks_per_page = PAGE_SIZE >> blkbits;
  949. /*
  950. * Map all the blocks into the extent list. This code doesn't try
  951. * to be very smart.
  952. */
  953. probe_block = 0;
  954. page_no = 0;
  955. last_block = i_size_read(inode) >> blkbits;
  956. while ((probe_block + blocks_per_page) <= last_block &&
  957. page_no < sis->max) {
  958. unsigned block_in_page;
  959. sector_t first_block;
  960. first_block = bmap(inode, probe_block);
  961. if (first_block == 0)
  962. goto bad_bmap;
  963. /*
  964. * It must be PAGE_SIZE aligned on-disk
  965. */
  966. if (first_block & (blocks_per_page - 1)) {
  967. probe_block++;
  968. goto reprobe;
  969. }
  970. for (block_in_page = 1; block_in_page < blocks_per_page;
  971. block_in_page++) {
  972. sector_t block;
  973. block = bmap(inode, probe_block + block_in_page);
  974. if (block == 0)
  975. goto bad_bmap;
  976. if (block != first_block + block_in_page) {
  977. /* Discontiguity */
  978. probe_block++;
  979. goto reprobe;
  980. }
  981. }
  982. first_block >>= (PAGE_SHIFT - blkbits);
  983. if (page_no) { /* exclude the header page */
  984. if (first_block < lowest_block)
  985. lowest_block = first_block;
  986. if (first_block > highest_block)
  987. highest_block = first_block;
  988. }
  989. /*
  990. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  991. */
  992. ret = add_swap_extent(sis, page_no, 1, first_block);
  993. if (ret < 0)
  994. goto out;
  995. nr_extents += ret;
  996. page_no++;
  997. probe_block += blocks_per_page;
  998. reprobe:
  999. continue;
  1000. }
  1001. ret = nr_extents;
  1002. *span = 1 + highest_block - lowest_block;
  1003. if (page_no == 0)
  1004. page_no = 1; /* force Empty message */
  1005. sis->max = page_no;
  1006. sis->pages = page_no - 1;
  1007. sis->highest_bit = page_no - 1;
  1008. done:
  1009. sis->curr_swap_extent = list_entry(sis->extent_list.prev,
  1010. struct swap_extent, list);
  1011. goto out;
  1012. bad_bmap:
  1013. printk(KERN_ERR "swapon: swapfile has holes\n");
  1014. ret = -EINVAL;
  1015. out:
  1016. return ret;
  1017. }
  1018. #if 0 /* We don't need this yet */
  1019. #include <linux/backing-dev.h>
  1020. int page_queue_congested(struct page *page)
  1021. {
  1022. struct backing_dev_info *bdi;
  1023. BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
  1024. if (PageSwapCache(page)) {
  1025. swp_entry_t entry = { .val = page_private(page) };
  1026. struct swap_info_struct *sis;
  1027. sis = get_swap_info_struct(swp_type(entry));
  1028. bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
  1029. } else
  1030. bdi = page->mapping->backing_dev_info;
  1031. return bdi_write_congested(bdi);
  1032. }
  1033. #endif
  1034. asmlinkage long sys_swapoff(const char __user * specialfile)
  1035. {
  1036. struct swap_info_struct * p = NULL;
  1037. unsigned short *swap_map;
  1038. struct file *swap_file, *victim;
  1039. struct address_space *mapping;
  1040. struct inode *inode;
  1041. char * pathname;
  1042. int i, type, prev;
  1043. int err;
  1044. if (!capable(CAP_SYS_ADMIN))
  1045. return -EPERM;
  1046. pathname = getname(specialfile);
  1047. err = PTR_ERR(pathname);
  1048. if (IS_ERR(pathname))
  1049. goto out;
  1050. victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
  1051. putname(pathname);
  1052. err = PTR_ERR(victim);
  1053. if (IS_ERR(victim))
  1054. goto out;
  1055. mapping = victim->f_mapping;
  1056. prev = -1;
  1057. spin_lock(&swap_lock);
  1058. for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
  1059. p = swap_info + type;
  1060. if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
  1061. if (p->swap_file->f_mapping == mapping)
  1062. break;
  1063. }
  1064. prev = type;
  1065. }
  1066. if (type < 0) {
  1067. err = -EINVAL;
  1068. spin_unlock(&swap_lock);
  1069. goto out_dput;
  1070. }
  1071. if (!security_vm_enough_memory(p->pages))
  1072. vm_unacct_memory(p->pages);
  1073. else {
  1074. err = -ENOMEM;
  1075. spin_unlock(&swap_lock);
  1076. goto out_dput;
  1077. }
  1078. if (prev < 0) {
  1079. swap_list.head = p->next;
  1080. } else {
  1081. swap_info[prev].next = p->next;
  1082. }
  1083. if (type == swap_list.next) {
  1084. /* just pick something that's safe... */
  1085. swap_list.next = swap_list.head;
  1086. }
  1087. nr_swap_pages -= p->pages;
  1088. total_swap_pages -= p->pages;
  1089. p->flags &= ~SWP_WRITEOK;
  1090. spin_unlock(&swap_lock);
  1091. current->flags |= PF_SWAPOFF;
  1092. err = try_to_unuse(type);
  1093. current->flags &= ~PF_SWAPOFF;
  1094. if (err) {
  1095. /* re-insert swap space back into swap_list */
  1096. spin_lock(&swap_lock);
  1097. for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
  1098. if (p->prio >= swap_info[i].prio)
  1099. break;
  1100. p->next = i;
  1101. if (prev < 0)
  1102. swap_list.head = swap_list.next = p - swap_info;
  1103. else
  1104. swap_info[prev].next = p - swap_info;
  1105. nr_swap_pages += p->pages;
  1106. total_swap_pages += p->pages;
  1107. p->flags |= SWP_WRITEOK;
  1108. spin_unlock(&swap_lock);
  1109. goto out_dput;
  1110. }
  1111. /* wait for any unplug function to finish */
  1112. down_write(&swap_unplug_sem);
  1113. up_write(&swap_unplug_sem);
  1114. destroy_swap_extents(p);
  1115. mutex_lock(&swapon_mutex);
  1116. spin_lock(&swap_lock);
  1117. drain_mmlist();
  1118. /* wait for anyone still in scan_swap_map */
  1119. p->highest_bit = 0; /* cuts scans short */
  1120. while (p->flags >= SWP_SCANNING) {
  1121. spin_unlock(&swap_lock);
  1122. schedule_timeout_uninterruptible(1);
  1123. spin_lock(&swap_lock);
  1124. }
  1125. swap_file = p->swap_file;
  1126. p->swap_file = NULL;
  1127. p->max = 0;
  1128. swap_map = p->swap_map;
  1129. p->swap_map = NULL;
  1130. p->flags = 0;
  1131. spin_unlock(&swap_lock);
  1132. mutex_unlock(&swapon_mutex);
  1133. vfree(swap_map);
  1134. inode = mapping->host;
  1135. if (S_ISBLK(inode->i_mode)) {
  1136. struct block_device *bdev = I_BDEV(inode);
  1137. set_blocksize(bdev, p->old_block_size);
  1138. bd_release(bdev);
  1139. } else {
  1140. mutex_lock(&inode->i_mutex);
  1141. inode->i_flags &= ~S_SWAPFILE;
  1142. mutex_unlock(&inode->i_mutex);
  1143. }
  1144. filp_close(swap_file, NULL);
  1145. err = 0;
  1146. out_dput:
  1147. filp_close(victim, NULL);
  1148. out:
  1149. return err;
  1150. }
  1151. #ifdef CONFIG_PROC_FS
  1152. /* iterator */
  1153. static void *swap_start(struct seq_file *swap, loff_t *pos)
  1154. {
  1155. struct swap_info_struct *ptr = swap_info;
  1156. int i;
  1157. loff_t l = *pos;
  1158. mutex_lock(&swapon_mutex);
  1159. for (i = 0; i < nr_swapfiles; i++, ptr++) {
  1160. if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
  1161. continue;
  1162. if (!l--)
  1163. return ptr;
  1164. }
  1165. return NULL;
  1166. }
  1167. static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
  1168. {
  1169. struct swap_info_struct *ptr = v;
  1170. struct swap_info_struct *endptr = swap_info + nr_swapfiles;
  1171. for (++ptr; ptr < endptr; ptr++) {
  1172. if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
  1173. continue;
  1174. ++*pos;
  1175. return ptr;
  1176. }
  1177. return NULL;
  1178. }
  1179. static void swap_stop(struct seq_file *swap, void *v)
  1180. {
  1181. mutex_unlock(&swapon_mutex);
  1182. }
  1183. static int swap_show(struct seq_file *swap, void *v)
  1184. {
  1185. struct swap_info_struct *ptr = v;
  1186. struct file *file;
  1187. int len;
  1188. if (v == swap_info)
  1189. seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
  1190. file = ptr->swap_file;
  1191. len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
  1192. seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
  1193. len < 40 ? 40 - len : 1, " ",
  1194. S_ISBLK(file->f_dentry->d_inode->i_mode) ?
  1195. "partition" : "file\t",
  1196. ptr->pages << (PAGE_SHIFT - 10),
  1197. ptr->inuse_pages << (PAGE_SHIFT - 10),
  1198. ptr->prio);
  1199. return 0;
  1200. }
  1201. static struct seq_operations swaps_op = {
  1202. .start = swap_start,
  1203. .next = swap_next,
  1204. .stop = swap_stop,
  1205. .show = swap_show
  1206. };
  1207. static int swaps_open(struct inode *inode, struct file *file)
  1208. {
  1209. return seq_open(file, &swaps_op);
  1210. }
  1211. static struct file_operations proc_swaps_operations = {
  1212. .open = swaps_open,
  1213. .read = seq_read,
  1214. .llseek = seq_lseek,
  1215. .release = seq_release,
  1216. };
  1217. static int __init procswaps_init(void)
  1218. {
  1219. struct proc_dir_entry *entry;
  1220. entry = create_proc_entry("swaps", 0, NULL);
  1221. if (entry)
  1222. entry->proc_fops = &proc_swaps_operations;
  1223. return 0;
  1224. }
  1225. __initcall(procswaps_init);
  1226. #endif /* CONFIG_PROC_FS */
  1227. /*
  1228. * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
  1229. *
  1230. * The swapon system call
  1231. */
  1232. asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
  1233. {
  1234. struct swap_info_struct * p;
  1235. char *name = NULL;
  1236. struct block_device *bdev = NULL;
  1237. struct file *swap_file = NULL;
  1238. struct address_space *mapping;
  1239. unsigned int type;
  1240. int i, prev;
  1241. int error;
  1242. static int least_priority;
  1243. union swap_header *swap_header = NULL;
  1244. int swap_header_version;
  1245. unsigned int nr_good_pages = 0;
  1246. int nr_extents = 0;
  1247. sector_t span;
  1248. unsigned long maxpages = 1;
  1249. int swapfilesize;
  1250. unsigned short *swap_map;
  1251. struct page *page = NULL;
  1252. struct inode *inode = NULL;
  1253. int did_down = 0;
  1254. if (!capable(CAP_SYS_ADMIN))
  1255. return -EPERM;
  1256. spin_lock(&swap_lock);
  1257. p = swap_info;
  1258. for (type = 0 ; type < nr_swapfiles ; type++,p++)
  1259. if (!(p->flags & SWP_USED))
  1260. break;
  1261. error = -EPERM;
  1262. /*
  1263. * Test if adding another swap device is possible. There are
  1264. * two limiting factors: 1) the number of bits for the swap
  1265. * type swp_entry_t definition and 2) the number of bits for
  1266. * the swap type in the swap ptes as defined by the different
  1267. * architectures. To honor both limitations a swap entry
  1268. * with swap offset 0 and swap type ~0UL is created, encoded
  1269. * to a swap pte, decoded to a swp_entry_t again and finally
  1270. * the swap type part is extracted. This will mask all bits
  1271. * from the initial ~0UL that can't be encoded in either the
  1272. * swp_entry_t or the architecture definition of a swap pte.
  1273. */
  1274. if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
  1275. spin_unlock(&swap_lock);
  1276. goto out;
  1277. }
  1278. if (type >= nr_swapfiles)
  1279. nr_swapfiles = type+1;
  1280. INIT_LIST_HEAD(&p->extent_list);
  1281. p->flags = SWP_USED;
  1282. p->swap_file = NULL;
  1283. p->old_block_size = 0;
  1284. p->swap_map = NULL;
  1285. p->lowest_bit = 0;
  1286. p->highest_bit = 0;
  1287. p->cluster_nr = 0;
  1288. p->inuse_pages = 0;
  1289. p->next = -1;
  1290. if (swap_flags & SWAP_FLAG_PREFER) {
  1291. p->prio =
  1292. (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
  1293. } else {
  1294. p->prio = --least_priority;
  1295. }
  1296. spin_unlock(&swap_lock);
  1297. name = getname(specialfile);
  1298. error = PTR_ERR(name);
  1299. if (IS_ERR(name)) {
  1300. name = NULL;
  1301. goto bad_swap_2;
  1302. }
  1303. swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
  1304. error = PTR_ERR(swap_file);
  1305. if (IS_ERR(swap_file)) {
  1306. swap_file = NULL;
  1307. goto bad_swap_2;
  1308. }
  1309. p->swap_file = swap_file;
  1310. mapping = swap_file->f_mapping;
  1311. inode = mapping->host;
  1312. error = -EBUSY;
  1313. for (i = 0; i < nr_swapfiles; i++) {
  1314. struct swap_info_struct *q = &swap_info[i];
  1315. if (i == type || !q->swap_file)
  1316. continue;
  1317. if (mapping == q->swap_file->f_mapping)
  1318. goto bad_swap;
  1319. }
  1320. error = -EINVAL;
  1321. if (S_ISBLK(inode->i_mode)) {
  1322. bdev = I_BDEV(inode);
  1323. error = bd_claim(bdev, sys_swapon);
  1324. if (error < 0) {
  1325. bdev = NULL;
  1326. error = -EINVAL;
  1327. goto bad_swap;
  1328. }
  1329. p->old_block_size = block_size(bdev);
  1330. error = set_blocksize(bdev, PAGE_SIZE);
  1331. if (error < 0)
  1332. goto bad_swap;
  1333. p->bdev = bdev;
  1334. } else if (S_ISREG(inode->i_mode)) {
  1335. p->bdev = inode->i_sb->s_bdev;
  1336. mutex_lock(&inode->i_mutex);
  1337. did_down = 1;
  1338. if (IS_SWAPFILE(inode)) {
  1339. error = -EBUSY;
  1340. goto bad_swap;
  1341. }
  1342. } else {
  1343. goto bad_swap;
  1344. }
  1345. swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
  1346. /*
  1347. * Read the swap header.
  1348. */
  1349. if (!mapping->a_ops->readpage) {
  1350. error = -EINVAL;
  1351. goto bad_swap;
  1352. }
  1353. page = read_cache_page(mapping, 0,
  1354. (filler_t *)mapping->a_ops->readpage, swap_file);
  1355. if (IS_ERR(page)) {
  1356. error = PTR_ERR(page);
  1357. goto bad_swap;
  1358. }
  1359. wait_on_page_locked(page);
  1360. if (!PageUptodate(page))
  1361. goto bad_swap;
  1362. kmap(page);
  1363. swap_header = page_address(page);
  1364. if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
  1365. swap_header_version = 1;
  1366. else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
  1367. swap_header_version = 2;
  1368. else {
  1369. printk(KERN_ERR "Unable to find swap-space signature\n");
  1370. error = -EINVAL;
  1371. goto bad_swap;
  1372. }
  1373. switch (swap_header_version) {
  1374. case 1:
  1375. printk(KERN_ERR "version 0 swap is no longer supported. "
  1376. "Use mkswap -v1 %s\n", name);
  1377. error = -EINVAL;
  1378. goto bad_swap;
  1379. case 2:
  1380. /* Check the swap header's sub-version and the size of
  1381. the swap file and bad block lists */
  1382. if (swap_header->info.version != 1) {
  1383. printk(KERN_WARNING
  1384. "Unable to handle swap header version %d\n",
  1385. swap_header->info.version);
  1386. error = -EINVAL;
  1387. goto bad_swap;
  1388. }
  1389. p->lowest_bit = 1;
  1390. p->cluster_next = 1;
  1391. /*
  1392. * Find out how many pages are allowed for a single swap
  1393. * device. There are two limiting factors: 1) the number of
  1394. * bits for the swap offset in the swp_entry_t type and
  1395. * 2) the number of bits in the a swap pte as defined by
  1396. * the different architectures. In order to find the
  1397. * largest possible bit mask a swap entry with swap type 0
  1398. * and swap offset ~0UL is created, encoded to a swap pte,
  1399. * decoded to a swp_entry_t again and finally the swap
  1400. * offset is extracted. This will mask all the bits from
  1401. * the initial ~0UL mask that can't be encoded in either
  1402. * the swp_entry_t or the architecture definition of a
  1403. * swap pte.
  1404. */
  1405. maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
  1406. if (maxpages > swap_header->info.last_page)
  1407. maxpages = swap_header->info.last_page;
  1408. p->highest_bit = maxpages - 1;
  1409. error = -EINVAL;
  1410. if (!maxpages)
  1411. goto bad_swap;
  1412. if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
  1413. goto bad_swap;
  1414. if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
  1415. goto bad_swap;
  1416. /* OK, set up the swap map and apply the bad block list */
  1417. if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
  1418. error = -ENOMEM;
  1419. goto bad_swap;
  1420. }
  1421. error = 0;
  1422. memset(p->swap_map, 0, maxpages * sizeof(short));
  1423. for (i = 0; i < swap_header->info.nr_badpages; i++) {
  1424. int page_nr = swap_header->info.badpages[i];
  1425. if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
  1426. error = -EINVAL;
  1427. else
  1428. p->swap_map[page_nr] = SWAP_MAP_BAD;
  1429. }
  1430. nr_good_pages = swap_header->info.last_page -
  1431. swap_header->info.nr_badpages -
  1432. 1 /* header page */;
  1433. if (error)
  1434. goto bad_swap;
  1435. }
  1436. if (swapfilesize && maxpages > swapfilesize) {
  1437. printk(KERN_WARNING
  1438. "Swap area shorter than signature indicates\n");
  1439. error = -EINVAL;
  1440. goto bad_swap;
  1441. }
  1442. if (nr_good_pages) {
  1443. p->swap_map[0] = SWAP_MAP_BAD;
  1444. p->max = maxpages;
  1445. p->pages = nr_good_pages;
  1446. nr_extents = setup_swap_extents(p, &span);
  1447. if (nr_extents < 0) {
  1448. error = nr_extents;
  1449. goto bad_swap;
  1450. }
  1451. nr_good_pages = p->pages;
  1452. }
  1453. if (!nr_good_pages) {
  1454. printk(KERN_WARNING "Empty swap-file\n");
  1455. error = -EINVAL;
  1456. goto bad_swap;
  1457. }
  1458. mutex_lock(&swapon_mutex);
  1459. spin_lock(&swap_lock);
  1460. p->flags = SWP_ACTIVE;
  1461. nr_swap_pages += nr_good_pages;
  1462. total_swap_pages += nr_good_pages;
  1463. printk(KERN_INFO "Adding %uk swap on %s. "
  1464. "Priority:%d extents:%d across:%lluk\n",
  1465. nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
  1466. nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
  1467. /* insert swap space into swap_list: */
  1468. prev = -1;
  1469. for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
  1470. if (p->prio >= swap_info[i].prio) {
  1471. break;
  1472. }
  1473. prev = i;
  1474. }
  1475. p->next = i;
  1476. if (prev < 0) {
  1477. swap_list.head = swap_list.next = p - swap_info;
  1478. } else {
  1479. swap_info[prev].next = p - swap_info;
  1480. }
  1481. spin_unlock(&swap_lock);
  1482. mutex_unlock(&swapon_mutex);
  1483. error = 0;
  1484. goto out;
  1485. bad_swap:
  1486. if (bdev) {
  1487. set_blocksize(bdev, p->old_block_size);
  1488. bd_release(bdev);
  1489. }
  1490. destroy_swap_extents(p);
  1491. bad_swap_2:
  1492. spin_lock(&swap_lock);
  1493. swap_map = p->swap_map;
  1494. p->swap_file = NULL;
  1495. p->swap_map = NULL;
  1496. p->flags = 0;
  1497. if (!(swap_flags & SWAP_FLAG_PREFER))
  1498. ++least_priority;
  1499. spin_unlock(&swap_lock);
  1500. vfree(swap_map);
  1501. if (swap_file)
  1502. filp_close(swap_file, NULL);
  1503. out:
  1504. if (page && !IS_ERR(page)) {
  1505. kunmap(page);
  1506. page_cache_release(page);
  1507. }
  1508. if (name)
  1509. putname(name);
  1510. if (did_down) {
  1511. if (!error)
  1512. inode->i_flags |= S_SWAPFILE;
  1513. mutex_unlock(&inode->i_mutex);
  1514. }
  1515. return error;
  1516. }
  1517. void si_swapinfo(struct sysinfo *val)
  1518. {
  1519. unsigned int i;
  1520. unsigned long nr_to_be_unused = 0;
  1521. spin_lock(&swap_lock);
  1522. for (i = 0; i < nr_swapfiles; i++) {
  1523. if (!(swap_info[i].flags & SWP_USED) ||
  1524. (swap_info[i].flags & SWP_WRITEOK))
  1525. continue;
  1526. nr_to_be_unused += swap_info[i].inuse_pages;
  1527. }
  1528. val->freeswap = nr_swap_pages + nr_to_be_unused;
  1529. val->totalswap = total_swap_pages + nr_to_be_unused;
  1530. spin_unlock(&swap_lock);
  1531. }
  1532. /*
  1533. * Verify that a swap entry is valid and increment its swap map count.
  1534. *
  1535. * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
  1536. * "permanent", but will be reclaimed by the next swapoff.
  1537. */
  1538. int swap_duplicate(swp_entry_t entry)
  1539. {
  1540. struct swap_info_struct * p;
  1541. unsigned long offset, type;
  1542. int result = 0;
  1543. type = swp_type(entry);
  1544. if (type >= nr_swapfiles)
  1545. goto bad_file;
  1546. p = type + swap_info;
  1547. offset = swp_offset(entry);
  1548. spin_lock(&swap_lock);
  1549. if (offset < p->max && p->swap_map[offset]) {
  1550. if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
  1551. p->swap_map[offset]++;
  1552. result = 1;
  1553. } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
  1554. if (swap_overflow++ < 5)
  1555. printk(KERN_WARNING "swap_dup: swap entry overflow\n");
  1556. p->swap_map[offset] = SWAP_MAP_MAX;
  1557. result = 1;
  1558. }
  1559. }
  1560. spin_unlock(&swap_lock);
  1561. out:
  1562. return result;
  1563. bad_file:
  1564. printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
  1565. goto out;
  1566. }
  1567. struct swap_info_struct *
  1568. get_swap_info_struct(unsigned type)
  1569. {
  1570. return &swap_info[type];
  1571. }
  1572. /*
  1573. * swap_lock prevents swap_map being freed. Don't grab an extra
  1574. * reference on the swaphandle, it doesn't matter if it becomes unused.
  1575. */
  1576. int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
  1577. {
  1578. int ret = 0, i = 1 << page_cluster;
  1579. unsigned long toff;
  1580. struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
  1581. if (!page_cluster) /* no readahead */
  1582. return 0;
  1583. toff = (swp_offset(entry) >> page_cluster) << page_cluster;
  1584. if (!toff) /* first page is swap header */
  1585. toff++, i--;
  1586. *offset = toff;
  1587. spin_lock(&swap_lock);
  1588. do {
  1589. /* Don't read-ahead past the end of the swap area */
  1590. if (toff >= swapdev->max)
  1591. break;
  1592. /* Don't read in free or bad pages */
  1593. if (!swapdev->swap_map[toff])
  1594. break;
  1595. if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
  1596. break;
  1597. toff++;
  1598. ret++;
  1599. } while (--i);
  1600. spin_unlock(&swap_lock);
  1601. return ret;
  1602. }