hugetlb.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <linux/mutex.h>
  17. #include <asm/page.h>
  18. #include <asm/pgtable.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  22. static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages;
  23. unsigned long max_huge_pages;
  24. static struct list_head hugepage_freelists[MAX_NUMNODES];
  25. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  26. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  27. /*
  28. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  29. */
  30. static DEFINE_SPINLOCK(hugetlb_lock);
  31. static void clear_huge_page(struct page *page, unsigned long addr)
  32. {
  33. int i;
  34. might_sleep();
  35. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
  36. cond_resched();
  37. clear_user_highpage(page + i, addr);
  38. }
  39. }
  40. static void copy_huge_page(struct page *dst, struct page *src,
  41. unsigned long addr)
  42. {
  43. int i;
  44. might_sleep();
  45. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
  46. cond_resched();
  47. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
  48. }
  49. }
  50. static void enqueue_huge_page(struct page *page)
  51. {
  52. int nid = page_to_nid(page);
  53. list_add(&page->lru, &hugepage_freelists[nid]);
  54. free_huge_pages++;
  55. free_huge_pages_node[nid]++;
  56. }
  57. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  58. unsigned long address)
  59. {
  60. int nid = numa_node_id();
  61. struct page *page = NULL;
  62. struct zonelist *zonelist = huge_zonelist(vma, address);
  63. struct zone **z;
  64. for (z = zonelist->zones; *z; z++) {
  65. nid = (*z)->zone_pgdat->node_id;
  66. if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
  67. !list_empty(&hugepage_freelists[nid]))
  68. break;
  69. }
  70. if (*z) {
  71. page = list_entry(hugepage_freelists[nid].next,
  72. struct page, lru);
  73. list_del(&page->lru);
  74. free_huge_pages--;
  75. free_huge_pages_node[nid]--;
  76. }
  77. return page;
  78. }
  79. static void free_huge_page(struct page *page)
  80. {
  81. BUG_ON(page_count(page));
  82. INIT_LIST_HEAD(&page->lru);
  83. spin_lock(&hugetlb_lock);
  84. enqueue_huge_page(page);
  85. spin_unlock(&hugetlb_lock);
  86. }
  87. static int alloc_fresh_huge_page(void)
  88. {
  89. static int nid = 0;
  90. struct page *page;
  91. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  92. HUGETLB_PAGE_ORDER);
  93. nid = next_node(nid, node_online_map);
  94. if (nid == MAX_NUMNODES)
  95. nid = first_node(node_online_map);
  96. if (page) {
  97. page[1].lru.next = (void *)free_huge_page; /* dtor */
  98. spin_lock(&hugetlb_lock);
  99. nr_huge_pages++;
  100. nr_huge_pages_node[page_to_nid(page)]++;
  101. spin_unlock(&hugetlb_lock);
  102. put_page(page); /* free it into the hugepage allocator */
  103. return 1;
  104. }
  105. return 0;
  106. }
  107. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  108. unsigned long addr)
  109. {
  110. struct inode *inode = vma->vm_file->f_dentry->d_inode;
  111. struct page *page;
  112. int use_reserve = 0;
  113. unsigned long idx;
  114. spin_lock(&hugetlb_lock);
  115. if (vma->vm_flags & VM_MAYSHARE) {
  116. /* idx = radix tree index, i.e. offset into file in
  117. * HPAGE_SIZE units */
  118. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  119. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  120. /* The hugetlbfs specific inode info stores the number
  121. * of "guaranteed available" (huge) pages. That is,
  122. * the first 'prereserved_hpages' pages of the inode
  123. * are either already instantiated, or have been
  124. * pre-reserved (by hugetlb_reserve_for_inode()). Here
  125. * we're in the process of instantiating the page, so
  126. * we use this to determine whether to draw from the
  127. * pre-reserved pool or the truly free pool. */
  128. if (idx < HUGETLBFS_I(inode)->prereserved_hpages)
  129. use_reserve = 1;
  130. }
  131. if (!use_reserve) {
  132. if (free_huge_pages <= reserved_huge_pages)
  133. goto fail;
  134. } else {
  135. BUG_ON(reserved_huge_pages == 0);
  136. reserved_huge_pages--;
  137. }
  138. page = dequeue_huge_page(vma, addr);
  139. if (!page)
  140. goto fail;
  141. spin_unlock(&hugetlb_lock);
  142. set_page_refcounted(page);
  143. return page;
  144. fail:
  145. WARN_ON(use_reserve); /* reserved allocations shouldn't fail */
  146. spin_unlock(&hugetlb_lock);
  147. return NULL;
  148. }
  149. /* hugetlb_extend_reservation()
  150. *
  151. * Ensure that at least 'atleast' hugepages are, and will remain,
  152. * available to instantiate the first 'atleast' pages of the given
  153. * inode. If the inode doesn't already have this many pages reserved
  154. * or instantiated, set aside some hugepages in the reserved pool to
  155. * satisfy later faults (or fail now if there aren't enough, rather
  156. * than getting the SIGBUS later).
  157. */
  158. int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info,
  159. unsigned long atleast)
  160. {
  161. struct inode *inode = &info->vfs_inode;
  162. unsigned long change_in_reserve = 0;
  163. int ret = 0;
  164. spin_lock(&hugetlb_lock);
  165. read_lock_irq(&inode->i_mapping->tree_lock);
  166. if (info->prereserved_hpages >= atleast)
  167. goto out;
  168. /* Because we always call this on shared mappings, none of the
  169. * pages beyond info->prereserved_hpages can have been
  170. * instantiated, so we need to reserve all of them now. */
  171. change_in_reserve = atleast - info->prereserved_hpages;
  172. if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) {
  173. ret = -ENOMEM;
  174. goto out;
  175. }
  176. reserved_huge_pages += change_in_reserve;
  177. info->prereserved_hpages = atleast;
  178. out:
  179. read_unlock_irq(&inode->i_mapping->tree_lock);
  180. spin_unlock(&hugetlb_lock);
  181. return ret;
  182. }
  183. /* hugetlb_truncate_reservation()
  184. *
  185. * This returns pages reserved for the given inode to the general free
  186. * hugepage pool. If the inode has any pages prereserved, but not
  187. * instantiated, beyond offset (atmost << HPAGE_SIZE), then release
  188. * them.
  189. */
  190. void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info,
  191. unsigned long atmost)
  192. {
  193. struct inode *inode = &info->vfs_inode;
  194. struct address_space *mapping = inode->i_mapping;
  195. unsigned long idx;
  196. unsigned long change_in_reserve = 0;
  197. struct page *page;
  198. spin_lock(&hugetlb_lock);
  199. read_lock_irq(&inode->i_mapping->tree_lock);
  200. if (info->prereserved_hpages <= atmost)
  201. goto out;
  202. /* Count pages which were reserved, but not instantiated, and
  203. * which we can now release. */
  204. for (idx = atmost; idx < info->prereserved_hpages; idx++) {
  205. page = radix_tree_lookup(&mapping->page_tree, idx);
  206. if (!page)
  207. /* Pages which are already instantiated can't
  208. * be unreserved (and in fact have already
  209. * been removed from the reserved pool) */
  210. change_in_reserve++;
  211. }
  212. BUG_ON(reserved_huge_pages < change_in_reserve);
  213. reserved_huge_pages -= change_in_reserve;
  214. info->prereserved_hpages = atmost;
  215. out:
  216. read_unlock_irq(&inode->i_mapping->tree_lock);
  217. spin_unlock(&hugetlb_lock);
  218. }
  219. static int __init hugetlb_init(void)
  220. {
  221. unsigned long i;
  222. if (HPAGE_SHIFT == 0)
  223. return 0;
  224. for (i = 0; i < MAX_NUMNODES; ++i)
  225. INIT_LIST_HEAD(&hugepage_freelists[i]);
  226. for (i = 0; i < max_huge_pages; ++i) {
  227. if (!alloc_fresh_huge_page())
  228. break;
  229. }
  230. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  231. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  232. return 0;
  233. }
  234. module_init(hugetlb_init);
  235. static int __init hugetlb_setup(char *s)
  236. {
  237. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  238. max_huge_pages = 0;
  239. return 1;
  240. }
  241. __setup("hugepages=", hugetlb_setup);
  242. #ifdef CONFIG_SYSCTL
  243. static void update_and_free_page(struct page *page)
  244. {
  245. int i;
  246. nr_huge_pages--;
  247. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  248. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  249. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  250. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  251. 1 << PG_private | 1<< PG_writeback);
  252. }
  253. page[1].lru.next = NULL;
  254. set_page_refcounted(page);
  255. __free_pages(page, HUGETLB_PAGE_ORDER);
  256. }
  257. #ifdef CONFIG_HIGHMEM
  258. static void try_to_free_low(unsigned long count)
  259. {
  260. int i, nid;
  261. for (i = 0; i < MAX_NUMNODES; ++i) {
  262. struct page *page, *next;
  263. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  264. if (PageHighMem(page))
  265. continue;
  266. list_del(&page->lru);
  267. update_and_free_page(page);
  268. nid = page_zone(page)->zone_pgdat->node_id;
  269. free_huge_pages--;
  270. free_huge_pages_node[nid]--;
  271. if (count >= nr_huge_pages)
  272. return;
  273. }
  274. }
  275. }
  276. #else
  277. static inline void try_to_free_low(unsigned long count)
  278. {
  279. }
  280. #endif
  281. static unsigned long set_max_huge_pages(unsigned long count)
  282. {
  283. while (count > nr_huge_pages) {
  284. if (!alloc_fresh_huge_page())
  285. return nr_huge_pages;
  286. }
  287. if (count >= nr_huge_pages)
  288. return nr_huge_pages;
  289. spin_lock(&hugetlb_lock);
  290. try_to_free_low(count);
  291. while (count < nr_huge_pages) {
  292. struct page *page = dequeue_huge_page(NULL, 0);
  293. if (!page)
  294. break;
  295. update_and_free_page(page);
  296. }
  297. spin_unlock(&hugetlb_lock);
  298. return nr_huge_pages;
  299. }
  300. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  301. struct file *file, void __user *buffer,
  302. size_t *length, loff_t *ppos)
  303. {
  304. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  305. max_huge_pages = set_max_huge_pages(max_huge_pages);
  306. return 0;
  307. }
  308. #endif /* CONFIG_SYSCTL */
  309. int hugetlb_report_meminfo(char *buf)
  310. {
  311. return sprintf(buf,
  312. "HugePages_Total: %5lu\n"
  313. "HugePages_Free: %5lu\n"
  314. "HugePages_Rsvd: %5lu\n"
  315. "Hugepagesize: %5lu kB\n",
  316. nr_huge_pages,
  317. free_huge_pages,
  318. reserved_huge_pages,
  319. HPAGE_SIZE/1024);
  320. }
  321. int hugetlb_report_node_meminfo(int nid, char *buf)
  322. {
  323. return sprintf(buf,
  324. "Node %d HugePages_Total: %5u\n"
  325. "Node %d HugePages_Free: %5u\n",
  326. nid, nr_huge_pages_node[nid],
  327. nid, free_huge_pages_node[nid]);
  328. }
  329. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  330. unsigned long hugetlb_total_pages(void)
  331. {
  332. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  333. }
  334. /*
  335. * We cannot handle pagefaults against hugetlb pages at all. They cause
  336. * handle_mm_fault() to try to instantiate regular-sized pages in the
  337. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  338. * this far.
  339. */
  340. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  341. unsigned long address, int *unused)
  342. {
  343. BUG();
  344. return NULL;
  345. }
  346. struct vm_operations_struct hugetlb_vm_ops = {
  347. .nopage = hugetlb_nopage,
  348. };
  349. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  350. int writable)
  351. {
  352. pte_t entry;
  353. if (writable) {
  354. entry =
  355. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  356. } else {
  357. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  358. }
  359. entry = pte_mkyoung(entry);
  360. entry = pte_mkhuge(entry);
  361. return entry;
  362. }
  363. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  364. unsigned long address, pte_t *ptep)
  365. {
  366. pte_t entry;
  367. entry = pte_mkwrite(pte_mkdirty(*ptep));
  368. ptep_set_access_flags(vma, address, ptep, entry, 1);
  369. update_mmu_cache(vma, address, entry);
  370. lazy_mmu_prot_update(entry);
  371. }
  372. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  373. struct vm_area_struct *vma)
  374. {
  375. pte_t *src_pte, *dst_pte, entry;
  376. struct page *ptepage;
  377. unsigned long addr;
  378. int cow;
  379. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  380. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  381. src_pte = huge_pte_offset(src, addr);
  382. if (!src_pte)
  383. continue;
  384. dst_pte = huge_pte_alloc(dst, addr);
  385. if (!dst_pte)
  386. goto nomem;
  387. spin_lock(&dst->page_table_lock);
  388. spin_lock(&src->page_table_lock);
  389. if (!pte_none(*src_pte)) {
  390. if (cow)
  391. ptep_set_wrprotect(src, addr, src_pte);
  392. entry = *src_pte;
  393. ptepage = pte_page(entry);
  394. get_page(ptepage);
  395. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  396. set_huge_pte_at(dst, addr, dst_pte, entry);
  397. }
  398. spin_unlock(&src->page_table_lock);
  399. spin_unlock(&dst->page_table_lock);
  400. }
  401. return 0;
  402. nomem:
  403. return -ENOMEM;
  404. }
  405. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  406. unsigned long end)
  407. {
  408. struct mm_struct *mm = vma->vm_mm;
  409. unsigned long address;
  410. pte_t *ptep;
  411. pte_t pte;
  412. struct page *page;
  413. WARN_ON(!is_vm_hugetlb_page(vma));
  414. BUG_ON(start & ~HPAGE_MASK);
  415. BUG_ON(end & ~HPAGE_MASK);
  416. spin_lock(&mm->page_table_lock);
  417. /* Update high watermark before we lower rss */
  418. update_hiwater_rss(mm);
  419. for (address = start; address < end; address += HPAGE_SIZE) {
  420. ptep = huge_pte_offset(mm, address);
  421. if (!ptep)
  422. continue;
  423. pte = huge_ptep_get_and_clear(mm, address, ptep);
  424. if (pte_none(pte))
  425. continue;
  426. page = pte_page(pte);
  427. put_page(page);
  428. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  429. }
  430. spin_unlock(&mm->page_table_lock);
  431. flush_tlb_range(vma, start, end);
  432. }
  433. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  434. unsigned long address, pte_t *ptep, pte_t pte)
  435. {
  436. struct page *old_page, *new_page;
  437. int avoidcopy;
  438. old_page = pte_page(pte);
  439. /* If no-one else is actually using this page, avoid the copy
  440. * and just make the page writable */
  441. avoidcopy = (page_count(old_page) == 1);
  442. if (avoidcopy) {
  443. set_huge_ptep_writable(vma, address, ptep);
  444. return VM_FAULT_MINOR;
  445. }
  446. page_cache_get(old_page);
  447. new_page = alloc_huge_page(vma, address);
  448. if (!new_page) {
  449. page_cache_release(old_page);
  450. return VM_FAULT_OOM;
  451. }
  452. spin_unlock(&mm->page_table_lock);
  453. copy_huge_page(new_page, old_page, address);
  454. spin_lock(&mm->page_table_lock);
  455. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  456. if (likely(pte_same(*ptep, pte))) {
  457. /* Break COW */
  458. set_huge_pte_at(mm, address, ptep,
  459. make_huge_pte(vma, new_page, 1));
  460. /* Make the old page be freed below */
  461. new_page = old_page;
  462. }
  463. page_cache_release(new_page);
  464. page_cache_release(old_page);
  465. return VM_FAULT_MINOR;
  466. }
  467. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  468. unsigned long address, pte_t *ptep, int write_access)
  469. {
  470. int ret = VM_FAULT_SIGBUS;
  471. unsigned long idx;
  472. unsigned long size;
  473. struct page *page;
  474. struct address_space *mapping;
  475. pte_t new_pte;
  476. mapping = vma->vm_file->f_mapping;
  477. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  478. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  479. /*
  480. * Use page lock to guard against racing truncation
  481. * before we get page_table_lock.
  482. */
  483. retry:
  484. page = find_lock_page(mapping, idx);
  485. if (!page) {
  486. if (hugetlb_get_quota(mapping))
  487. goto out;
  488. page = alloc_huge_page(vma, address);
  489. if (!page) {
  490. hugetlb_put_quota(mapping);
  491. ret = VM_FAULT_OOM;
  492. goto out;
  493. }
  494. clear_huge_page(page, address);
  495. if (vma->vm_flags & VM_SHARED) {
  496. int err;
  497. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  498. if (err) {
  499. put_page(page);
  500. hugetlb_put_quota(mapping);
  501. if (err == -EEXIST)
  502. goto retry;
  503. goto out;
  504. }
  505. } else
  506. lock_page(page);
  507. }
  508. spin_lock(&mm->page_table_lock);
  509. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  510. if (idx >= size)
  511. goto backout;
  512. ret = VM_FAULT_MINOR;
  513. if (!pte_none(*ptep))
  514. goto backout;
  515. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  516. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  517. && (vma->vm_flags & VM_SHARED)));
  518. set_huge_pte_at(mm, address, ptep, new_pte);
  519. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  520. /* Optimization, do the COW without a second fault */
  521. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  522. }
  523. spin_unlock(&mm->page_table_lock);
  524. unlock_page(page);
  525. out:
  526. return ret;
  527. backout:
  528. spin_unlock(&mm->page_table_lock);
  529. hugetlb_put_quota(mapping);
  530. unlock_page(page);
  531. put_page(page);
  532. goto out;
  533. }
  534. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  535. unsigned long address, int write_access)
  536. {
  537. pte_t *ptep;
  538. pte_t entry;
  539. int ret;
  540. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  541. ptep = huge_pte_alloc(mm, address);
  542. if (!ptep)
  543. return VM_FAULT_OOM;
  544. /*
  545. * Serialize hugepage allocation and instantiation, so that we don't
  546. * get spurious allocation failures if two CPUs race to instantiate
  547. * the same page in the page cache.
  548. */
  549. mutex_lock(&hugetlb_instantiation_mutex);
  550. entry = *ptep;
  551. if (pte_none(entry)) {
  552. ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
  553. mutex_unlock(&hugetlb_instantiation_mutex);
  554. return ret;
  555. }
  556. ret = VM_FAULT_MINOR;
  557. spin_lock(&mm->page_table_lock);
  558. /* Check for a racing update before calling hugetlb_cow */
  559. if (likely(pte_same(entry, *ptep)))
  560. if (write_access && !pte_write(entry))
  561. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  562. spin_unlock(&mm->page_table_lock);
  563. mutex_unlock(&hugetlb_instantiation_mutex);
  564. return ret;
  565. }
  566. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  567. struct page **pages, struct vm_area_struct **vmas,
  568. unsigned long *position, int *length, int i)
  569. {
  570. unsigned long pfn_offset;
  571. unsigned long vaddr = *position;
  572. int remainder = *length;
  573. spin_lock(&mm->page_table_lock);
  574. while (vaddr < vma->vm_end && remainder) {
  575. pte_t *pte;
  576. struct page *page;
  577. /*
  578. * Some archs (sparc64, sh*) have multiple pte_ts to
  579. * each hugepage. We have to make * sure we get the
  580. * first, for the page indexing below to work.
  581. */
  582. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  583. if (!pte || pte_none(*pte)) {
  584. int ret;
  585. spin_unlock(&mm->page_table_lock);
  586. ret = hugetlb_fault(mm, vma, vaddr, 0);
  587. spin_lock(&mm->page_table_lock);
  588. if (ret == VM_FAULT_MINOR)
  589. continue;
  590. remainder = 0;
  591. if (!i)
  592. i = -EFAULT;
  593. break;
  594. }
  595. pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
  596. page = pte_page(*pte);
  597. same_page:
  598. get_page(page);
  599. if (pages)
  600. pages[i] = page + pfn_offset;
  601. if (vmas)
  602. vmas[i] = vma;
  603. vaddr += PAGE_SIZE;
  604. ++pfn_offset;
  605. --remainder;
  606. ++i;
  607. if (vaddr < vma->vm_end && remainder &&
  608. pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
  609. /*
  610. * We use pfn_offset to avoid touching the pageframes
  611. * of this compound page.
  612. */
  613. goto same_page;
  614. }
  615. }
  616. spin_unlock(&mm->page_table_lock);
  617. *length = remainder;
  618. *position = vaddr;
  619. return i;
  620. }
  621. void hugetlb_change_protection(struct vm_area_struct *vma,
  622. unsigned long address, unsigned long end, pgprot_t newprot)
  623. {
  624. struct mm_struct *mm = vma->vm_mm;
  625. unsigned long start = address;
  626. pte_t *ptep;
  627. pte_t pte;
  628. BUG_ON(address >= end);
  629. flush_cache_range(vma, address, end);
  630. spin_lock(&mm->page_table_lock);
  631. for (; address < end; address += HPAGE_SIZE) {
  632. ptep = huge_pte_offset(mm, address);
  633. if (!ptep)
  634. continue;
  635. if (!pte_none(*ptep)) {
  636. pte = huge_ptep_get_and_clear(mm, address, ptep);
  637. pte = pte_mkhuge(pte_modify(pte, newprot));
  638. set_huge_pte_at(mm, address, ptep, pte);
  639. lazy_mmu_prot_update(pte);
  640. }
  641. }
  642. spin_unlock(&mm->page_table_lock);
  643. flush_tlb_range(vma, start, end);
  644. }