xfs_inode.c 136 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725
  1. /*
  2. * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir_sf.h"
  37. #include "xfs_dir2_sf.h"
  38. #include "xfs_attr_sf.h"
  39. #include "xfs_dinode.h"
  40. #include "xfs_inode.h"
  41. #include "xfs_buf_item.h"
  42. #include "xfs_inode_item.h"
  43. #include "xfs_btree.h"
  44. #include "xfs_alloc.h"
  45. #include "xfs_ialloc.h"
  46. #include "xfs_bmap.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_error.h"
  49. #include "xfs_utils.h"
  50. #include "xfs_dir2_trace.h"
  51. #include "xfs_quota.h"
  52. #include "xfs_mac.h"
  53. #include "xfs_acl.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. kmem_zone_t *xfs_chashlist_zone;
  57. /*
  58. * Used in xfs_itruncate(). This is the maximum number of extents
  59. * freed from a file in a single transaction.
  60. */
  61. #define XFS_ITRUNC_MAX_EXTENTS 2
  62. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  64. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  65. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  66. #ifdef DEBUG
  67. /*
  68. * Make sure that the extents in the given memory buffer
  69. * are valid.
  70. */
  71. STATIC void
  72. xfs_validate_extents(
  73. xfs_ifork_t *ifp,
  74. int nrecs,
  75. int disk,
  76. xfs_exntfmt_t fmt)
  77. {
  78. xfs_bmbt_rec_t *ep;
  79. xfs_bmbt_irec_t irec;
  80. xfs_bmbt_rec_t rec;
  81. int i;
  82. for (i = 0; i < nrecs; i++) {
  83. ep = xfs_iext_get_ext(ifp, i);
  84. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  85. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  86. if (disk)
  87. xfs_bmbt_disk_get_all(&rec, &irec);
  88. else
  89. xfs_bmbt_get_all(&rec, &irec);
  90. if (fmt == XFS_EXTFMT_NOSTATE)
  91. ASSERT(irec.br_state == XFS_EXT_NORM);
  92. }
  93. }
  94. #else /* DEBUG */
  95. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  96. #endif /* DEBUG */
  97. /*
  98. * Check that none of the inode's in the buffer have a next
  99. * unlinked field of 0.
  100. */
  101. #if defined(DEBUG)
  102. void
  103. xfs_inobp_check(
  104. xfs_mount_t *mp,
  105. xfs_buf_t *bp)
  106. {
  107. int i;
  108. int j;
  109. xfs_dinode_t *dip;
  110. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  111. for (i = 0; i < j; i++) {
  112. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  113. i * mp->m_sb.sb_inodesize);
  114. if (!dip->di_next_unlinked) {
  115. xfs_fs_cmn_err(CE_ALERT, mp,
  116. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  117. bp);
  118. ASSERT(dip->di_next_unlinked);
  119. }
  120. }
  121. }
  122. #endif
  123. /*
  124. * This routine is called to map an inode number within a file
  125. * system to the buffer containing the on-disk version of the
  126. * inode. It returns a pointer to the buffer containing the
  127. * on-disk inode in the bpp parameter, and in the dip parameter
  128. * it returns a pointer to the on-disk inode within that buffer.
  129. *
  130. * If a non-zero error is returned, then the contents of bpp and
  131. * dipp are undefined.
  132. *
  133. * Use xfs_imap() to determine the size and location of the
  134. * buffer to read from disk.
  135. */
  136. STATIC int
  137. xfs_inotobp(
  138. xfs_mount_t *mp,
  139. xfs_trans_t *tp,
  140. xfs_ino_t ino,
  141. xfs_dinode_t **dipp,
  142. xfs_buf_t **bpp,
  143. int *offset)
  144. {
  145. int di_ok;
  146. xfs_imap_t imap;
  147. xfs_buf_t *bp;
  148. int error;
  149. xfs_dinode_t *dip;
  150. /*
  151. * Call the space managment code to find the location of the
  152. * inode on disk.
  153. */
  154. imap.im_blkno = 0;
  155. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  156. if (error != 0) {
  157. cmn_err(CE_WARN,
  158. "xfs_inotobp: xfs_imap() returned an "
  159. "error %d on %s. Returning error.", error, mp->m_fsname);
  160. return error;
  161. }
  162. /*
  163. * If the inode number maps to a block outside the bounds of the
  164. * file system then return NULL rather than calling read_buf
  165. * and panicing when we get an error from the driver.
  166. */
  167. if ((imap.im_blkno + imap.im_len) >
  168. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  169. cmn_err(CE_WARN,
  170. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  171. "of the file system %s. Returning EINVAL.",
  172. (unsigned long long)imap.im_blkno,
  173. imap.im_len, mp->m_fsname);
  174. return XFS_ERROR(EINVAL);
  175. }
  176. /*
  177. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  178. * default to just a read_buf() call.
  179. */
  180. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  181. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  182. if (error) {
  183. cmn_err(CE_WARN,
  184. "xfs_inotobp: xfs_trans_read_buf() returned an "
  185. "error %d on %s. Returning error.", error, mp->m_fsname);
  186. return error;
  187. }
  188. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  189. di_ok =
  190. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  191. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  192. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  193. XFS_RANDOM_ITOBP_INOTOBP))) {
  194. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  195. xfs_trans_brelse(tp, bp);
  196. cmn_err(CE_WARN,
  197. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  198. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  199. return XFS_ERROR(EFSCORRUPTED);
  200. }
  201. xfs_inobp_check(mp, bp);
  202. /*
  203. * Set *dipp to point to the on-disk inode in the buffer.
  204. */
  205. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  206. *bpp = bp;
  207. *offset = imap.im_boffset;
  208. return 0;
  209. }
  210. /*
  211. * This routine is called to map an inode to the buffer containing
  212. * the on-disk version of the inode. It returns a pointer to the
  213. * buffer containing the on-disk inode in the bpp parameter, and in
  214. * the dip parameter it returns a pointer to the on-disk inode within
  215. * that buffer.
  216. *
  217. * If a non-zero error is returned, then the contents of bpp and
  218. * dipp are undefined.
  219. *
  220. * If the inode is new and has not yet been initialized, use xfs_imap()
  221. * to determine the size and location of the buffer to read from disk.
  222. * If the inode has already been mapped to its buffer and read in once,
  223. * then use the mapping information stored in the inode rather than
  224. * calling xfs_imap(). This allows us to avoid the overhead of looking
  225. * at the inode btree for small block file systems (see xfs_dilocate()).
  226. * We can tell whether the inode has been mapped in before by comparing
  227. * its disk block address to 0. Only uninitialized inodes will have
  228. * 0 for the disk block address.
  229. */
  230. int
  231. xfs_itobp(
  232. xfs_mount_t *mp,
  233. xfs_trans_t *tp,
  234. xfs_inode_t *ip,
  235. xfs_dinode_t **dipp,
  236. xfs_buf_t **bpp,
  237. xfs_daddr_t bno,
  238. uint imap_flags)
  239. {
  240. xfs_buf_t *bp;
  241. int error;
  242. xfs_imap_t imap;
  243. #ifdef __KERNEL__
  244. int i;
  245. int ni;
  246. #endif
  247. if (ip->i_blkno == (xfs_daddr_t)0) {
  248. /*
  249. * Call the space management code to find the location of the
  250. * inode on disk.
  251. */
  252. imap.im_blkno = bno;
  253. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  254. XFS_IMAP_LOOKUP | imap_flags)))
  255. return error;
  256. /*
  257. * If the inode number maps to a block outside the bounds
  258. * of the file system then return NULL rather than calling
  259. * read_buf and panicing when we get an error from the
  260. * driver.
  261. */
  262. if ((imap.im_blkno + imap.im_len) >
  263. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  264. #ifdef DEBUG
  265. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  266. "(imap.im_blkno (0x%llx) "
  267. "+ imap.im_len (0x%llx)) > "
  268. " XFS_FSB_TO_BB(mp, "
  269. "mp->m_sb.sb_dblocks) (0x%llx)",
  270. (unsigned long long) imap.im_blkno,
  271. (unsigned long long) imap.im_len,
  272. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  273. #endif /* DEBUG */
  274. return XFS_ERROR(EINVAL);
  275. }
  276. /*
  277. * Fill in the fields in the inode that will be used to
  278. * map the inode to its buffer from now on.
  279. */
  280. ip->i_blkno = imap.im_blkno;
  281. ip->i_len = imap.im_len;
  282. ip->i_boffset = imap.im_boffset;
  283. } else {
  284. /*
  285. * We've already mapped the inode once, so just use the
  286. * mapping that we saved the first time.
  287. */
  288. imap.im_blkno = ip->i_blkno;
  289. imap.im_len = ip->i_len;
  290. imap.im_boffset = ip->i_boffset;
  291. }
  292. ASSERT(bno == 0 || bno == imap.im_blkno);
  293. /*
  294. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  295. * default to just a read_buf() call.
  296. */
  297. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  298. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  299. if (error) {
  300. #ifdef DEBUG
  301. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  302. "xfs_trans_read_buf() returned error %d, "
  303. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  304. error, (unsigned long long) imap.im_blkno,
  305. (unsigned long long) imap.im_len);
  306. #endif /* DEBUG */
  307. return error;
  308. }
  309. #ifdef __KERNEL__
  310. /*
  311. * Validate the magic number and version of every inode in the buffer
  312. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  313. */
  314. #ifdef DEBUG
  315. ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
  316. (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
  317. #else
  318. ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
  319. #endif
  320. for (i = 0; i < ni; i++) {
  321. int di_ok;
  322. xfs_dinode_t *dip;
  323. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  324. (i << mp->m_sb.sb_inodelog));
  325. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  326. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  327. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  328. XFS_RANDOM_ITOBP_INOTOBP))) {
  329. #ifdef DEBUG
  330. prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
  331. mp->m_ddev_targp,
  332. (unsigned long long)imap.im_blkno, i,
  333. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  334. #endif
  335. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  336. mp, dip);
  337. xfs_trans_brelse(tp, bp);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. }
  341. #endif /* __KERNEL__ */
  342. xfs_inobp_check(mp, bp);
  343. /*
  344. * Mark the buffer as an inode buffer now that it looks good
  345. */
  346. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  347. /*
  348. * Set *dipp to point to the on-disk inode in the buffer.
  349. */
  350. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  351. *bpp = bp;
  352. return 0;
  353. }
  354. /*
  355. * Move inode type and inode format specific information from the
  356. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  357. * this means set if_rdev to the proper value. For files, directories,
  358. * and symlinks this means to bring in the in-line data or extent
  359. * pointers. For a file in B-tree format, only the root is immediately
  360. * brought in-core. The rest will be in-lined in if_extents when it
  361. * is first referenced (see xfs_iread_extents()).
  362. */
  363. STATIC int
  364. xfs_iformat(
  365. xfs_inode_t *ip,
  366. xfs_dinode_t *dip)
  367. {
  368. xfs_attr_shortform_t *atp;
  369. int size;
  370. int error;
  371. xfs_fsize_t di_size;
  372. ip->i_df.if_ext_max =
  373. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  374. error = 0;
  375. if (unlikely(
  376. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  377. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  378. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  379. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  380. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  381. (unsigned long long)ip->i_ino,
  382. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  383. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  384. (unsigned long long)
  385. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  386. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  387. ip->i_mount, dip);
  388. return XFS_ERROR(EFSCORRUPTED);
  389. }
  390. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  391. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  392. "corrupt dinode %Lu, forkoff = 0x%x.",
  393. (unsigned long long)ip->i_ino,
  394. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  395. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  396. ip->i_mount, dip);
  397. return XFS_ERROR(EFSCORRUPTED);
  398. }
  399. switch (ip->i_d.di_mode & S_IFMT) {
  400. case S_IFIFO:
  401. case S_IFCHR:
  402. case S_IFBLK:
  403. case S_IFSOCK:
  404. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  405. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  406. ip->i_mount, dip);
  407. return XFS_ERROR(EFSCORRUPTED);
  408. }
  409. ip->i_d.di_size = 0;
  410. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  411. break;
  412. case S_IFREG:
  413. case S_IFLNK:
  414. case S_IFDIR:
  415. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  416. case XFS_DINODE_FMT_LOCAL:
  417. /*
  418. * no local regular files yet
  419. */
  420. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  421. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  422. "corrupt inode %Lu "
  423. "(local format for regular file).",
  424. (unsigned long long) ip->i_ino);
  425. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  426. XFS_ERRLEVEL_LOW,
  427. ip->i_mount, dip);
  428. return XFS_ERROR(EFSCORRUPTED);
  429. }
  430. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  431. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  432. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  433. "corrupt inode %Lu "
  434. "(bad size %Ld for local inode).",
  435. (unsigned long long) ip->i_ino,
  436. (long long) di_size);
  437. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  438. XFS_ERRLEVEL_LOW,
  439. ip->i_mount, dip);
  440. return XFS_ERROR(EFSCORRUPTED);
  441. }
  442. size = (int)di_size;
  443. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  444. break;
  445. case XFS_DINODE_FMT_EXTENTS:
  446. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  447. break;
  448. case XFS_DINODE_FMT_BTREE:
  449. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  450. break;
  451. default:
  452. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  453. ip->i_mount);
  454. return XFS_ERROR(EFSCORRUPTED);
  455. }
  456. break;
  457. default:
  458. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. if (error) {
  462. return error;
  463. }
  464. if (!XFS_DFORK_Q(dip))
  465. return 0;
  466. ASSERT(ip->i_afp == NULL);
  467. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  468. ip->i_afp->if_ext_max =
  469. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  470. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  471. case XFS_DINODE_FMT_LOCAL:
  472. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  473. size = be16_to_cpu(atp->hdr.totsize);
  474. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  475. break;
  476. case XFS_DINODE_FMT_EXTENTS:
  477. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  478. break;
  479. case XFS_DINODE_FMT_BTREE:
  480. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. default:
  483. error = XFS_ERROR(EFSCORRUPTED);
  484. break;
  485. }
  486. if (error) {
  487. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  488. ip->i_afp = NULL;
  489. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  490. }
  491. return error;
  492. }
  493. /*
  494. * The file is in-lined in the on-disk inode.
  495. * If it fits into if_inline_data, then copy
  496. * it there, otherwise allocate a buffer for it
  497. * and copy the data there. Either way, set
  498. * if_data to point at the data.
  499. * If we allocate a buffer for the data, make
  500. * sure that its size is a multiple of 4 and
  501. * record the real size in i_real_bytes.
  502. */
  503. STATIC int
  504. xfs_iformat_local(
  505. xfs_inode_t *ip,
  506. xfs_dinode_t *dip,
  507. int whichfork,
  508. int size)
  509. {
  510. xfs_ifork_t *ifp;
  511. int real_size;
  512. /*
  513. * If the size is unreasonable, then something
  514. * is wrong and we just bail out rather than crash in
  515. * kmem_alloc() or memcpy() below.
  516. */
  517. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  518. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  519. "corrupt inode %Lu "
  520. "(bad size %d for local fork, size = %d).",
  521. (unsigned long long) ip->i_ino, size,
  522. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  523. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp = XFS_IFORK_PTR(ip, whichfork);
  528. real_size = 0;
  529. if (size == 0)
  530. ifp->if_u1.if_data = NULL;
  531. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  532. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  533. else {
  534. real_size = roundup(size, 4);
  535. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  536. }
  537. ifp->if_bytes = size;
  538. ifp->if_real_bytes = real_size;
  539. if (size)
  540. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  541. ifp->if_flags &= ~XFS_IFEXTENTS;
  542. ifp->if_flags |= XFS_IFINLINE;
  543. return 0;
  544. }
  545. /*
  546. * The file consists of a set of extents all
  547. * of which fit into the on-disk inode.
  548. * If there are few enough extents to fit into
  549. * the if_inline_ext, then copy them there.
  550. * Otherwise allocate a buffer for them and copy
  551. * them into it. Either way, set if_extents
  552. * to point at the extents.
  553. */
  554. STATIC int
  555. xfs_iformat_extents(
  556. xfs_inode_t *ip,
  557. xfs_dinode_t *dip,
  558. int whichfork)
  559. {
  560. xfs_bmbt_rec_t *ep, *dp;
  561. xfs_ifork_t *ifp;
  562. int nex;
  563. int size;
  564. int i;
  565. ifp = XFS_IFORK_PTR(ip, whichfork);
  566. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  567. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  568. /*
  569. * If the number of extents is unreasonable, then something
  570. * is wrong and we just bail out rather than crash in
  571. * kmem_alloc() or memcpy() below.
  572. */
  573. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  574. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  575. "corrupt inode %Lu ((a)extents = %d).",
  576. (unsigned long long) ip->i_ino, nex);
  577. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  578. ip->i_mount, dip);
  579. return XFS_ERROR(EFSCORRUPTED);
  580. }
  581. ifp->if_real_bytes = 0;
  582. if (nex == 0)
  583. ifp->if_u1.if_extents = NULL;
  584. else if (nex <= XFS_INLINE_EXTS)
  585. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  586. else
  587. xfs_iext_add(ifp, 0, nex);
  588. ifp->if_bytes = size;
  589. if (size) {
  590. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  591. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  592. for (i = 0; i < nex; i++, dp++) {
  593. ep = xfs_iext_get_ext(ifp, i);
  594. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  595. ARCH_CONVERT);
  596. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  597. ARCH_CONVERT);
  598. }
  599. xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
  600. whichfork);
  601. if (whichfork != XFS_DATA_FORK ||
  602. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  603. if (unlikely(xfs_check_nostate_extents(
  604. ifp, 0, nex))) {
  605. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  606. XFS_ERRLEVEL_LOW,
  607. ip->i_mount);
  608. return XFS_ERROR(EFSCORRUPTED);
  609. }
  610. }
  611. ifp->if_flags |= XFS_IFEXTENTS;
  612. return 0;
  613. }
  614. /*
  615. * The file has too many extents to fit into
  616. * the inode, so they are in B-tree format.
  617. * Allocate a buffer for the root of the B-tree
  618. * and copy the root into it. The i_extents
  619. * field will remain NULL until all of the
  620. * extents are read in (when they are needed).
  621. */
  622. STATIC int
  623. xfs_iformat_btree(
  624. xfs_inode_t *ip,
  625. xfs_dinode_t *dip,
  626. int whichfork)
  627. {
  628. xfs_bmdr_block_t *dfp;
  629. xfs_ifork_t *ifp;
  630. /* REFERENCED */
  631. int nrecs;
  632. int size;
  633. ifp = XFS_IFORK_PTR(ip, whichfork);
  634. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  635. size = XFS_BMAP_BROOT_SPACE(dfp);
  636. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  637. /*
  638. * blow out if -- fork has less extents than can fit in
  639. * fork (fork shouldn't be a btree format), root btree
  640. * block has more records than can fit into the fork,
  641. * or the number of extents is greater than the number of
  642. * blocks.
  643. */
  644. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  645. || XFS_BMDR_SPACE_CALC(nrecs) >
  646. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  647. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  648. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  649. "corrupt inode %Lu (btree).",
  650. (unsigned long long) ip->i_ino);
  651. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  652. ip->i_mount);
  653. return XFS_ERROR(EFSCORRUPTED);
  654. }
  655. ifp->if_broot_bytes = size;
  656. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  657. ASSERT(ifp->if_broot != NULL);
  658. /*
  659. * Copy and convert from the on-disk structure
  660. * to the in-memory structure.
  661. */
  662. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  663. ifp->if_broot, size);
  664. ifp->if_flags &= ~XFS_IFEXTENTS;
  665. ifp->if_flags |= XFS_IFBROOT;
  666. return 0;
  667. }
  668. /*
  669. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  670. * and native format
  671. *
  672. * buf = on-disk representation
  673. * dip = native representation
  674. * dir = direction - +ve -> disk to native
  675. * -ve -> native to disk
  676. */
  677. void
  678. xfs_xlate_dinode_core(
  679. xfs_caddr_t buf,
  680. xfs_dinode_core_t *dip,
  681. int dir)
  682. {
  683. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  684. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  685. xfs_arch_t arch = ARCH_CONVERT;
  686. ASSERT(dir);
  687. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  688. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  689. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  690. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  691. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  692. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  693. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  694. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  695. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  696. if (dir > 0) {
  697. memcpy(mem_core->di_pad, buf_core->di_pad,
  698. sizeof(buf_core->di_pad));
  699. } else {
  700. memcpy(buf_core->di_pad, mem_core->di_pad,
  701. sizeof(buf_core->di_pad));
  702. }
  703. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  704. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  705. dir, arch);
  706. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  707. dir, arch);
  708. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  709. dir, arch);
  710. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  711. dir, arch);
  712. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  713. dir, arch);
  714. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  715. dir, arch);
  716. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  717. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  718. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  719. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  720. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  721. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  722. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  723. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  724. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  725. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  726. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  727. }
  728. STATIC uint
  729. _xfs_dic2xflags(
  730. xfs_dinode_core_t *dic,
  731. __uint16_t di_flags)
  732. {
  733. uint flags = 0;
  734. if (di_flags & XFS_DIFLAG_ANY) {
  735. if (di_flags & XFS_DIFLAG_REALTIME)
  736. flags |= XFS_XFLAG_REALTIME;
  737. if (di_flags & XFS_DIFLAG_PREALLOC)
  738. flags |= XFS_XFLAG_PREALLOC;
  739. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  740. flags |= XFS_XFLAG_IMMUTABLE;
  741. if (di_flags & XFS_DIFLAG_APPEND)
  742. flags |= XFS_XFLAG_APPEND;
  743. if (di_flags & XFS_DIFLAG_SYNC)
  744. flags |= XFS_XFLAG_SYNC;
  745. if (di_flags & XFS_DIFLAG_NOATIME)
  746. flags |= XFS_XFLAG_NOATIME;
  747. if (di_flags & XFS_DIFLAG_NODUMP)
  748. flags |= XFS_XFLAG_NODUMP;
  749. if (di_flags & XFS_DIFLAG_RTINHERIT)
  750. flags |= XFS_XFLAG_RTINHERIT;
  751. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  752. flags |= XFS_XFLAG_PROJINHERIT;
  753. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  754. flags |= XFS_XFLAG_NOSYMLINKS;
  755. if (di_flags & XFS_DIFLAG_EXTSIZE)
  756. flags |= XFS_XFLAG_EXTSIZE;
  757. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  758. flags |= XFS_XFLAG_EXTSZINHERIT;
  759. }
  760. return flags;
  761. }
  762. uint
  763. xfs_ip2xflags(
  764. xfs_inode_t *ip)
  765. {
  766. xfs_dinode_core_t *dic = &ip->i_d;
  767. return _xfs_dic2xflags(dic, dic->di_flags) |
  768. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  769. }
  770. uint
  771. xfs_dic2xflags(
  772. xfs_dinode_core_t *dic)
  773. {
  774. return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
  775. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  776. }
  777. /*
  778. * Given a mount structure and an inode number, return a pointer
  779. * to a newly allocated in-core inode coresponding to the given
  780. * inode number.
  781. *
  782. * Initialize the inode's attributes and extent pointers if it
  783. * already has them (it will not if the inode has no links).
  784. */
  785. int
  786. xfs_iread(
  787. xfs_mount_t *mp,
  788. xfs_trans_t *tp,
  789. xfs_ino_t ino,
  790. xfs_inode_t **ipp,
  791. xfs_daddr_t bno)
  792. {
  793. xfs_buf_t *bp;
  794. xfs_dinode_t *dip;
  795. xfs_inode_t *ip;
  796. int error;
  797. ASSERT(xfs_inode_zone != NULL);
  798. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  799. ip->i_ino = ino;
  800. ip->i_mount = mp;
  801. /*
  802. * Get pointer's to the on-disk inode and the buffer containing it.
  803. * If the inode number refers to a block outside the file system
  804. * then xfs_itobp() will return NULL. In this case we should
  805. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  806. * know that this is a new incore inode.
  807. */
  808. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
  809. if (error) {
  810. kmem_zone_free(xfs_inode_zone, ip);
  811. return error;
  812. }
  813. /*
  814. * Initialize inode's trace buffers.
  815. * Do this before xfs_iformat in case it adds entries.
  816. */
  817. #ifdef XFS_BMAP_TRACE
  818. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  819. #endif
  820. #ifdef XFS_BMBT_TRACE
  821. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  822. #endif
  823. #ifdef XFS_RW_TRACE
  824. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  825. #endif
  826. #ifdef XFS_ILOCK_TRACE
  827. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  828. #endif
  829. #ifdef XFS_DIR2_TRACE
  830. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  831. #endif
  832. /*
  833. * If we got something that isn't an inode it means someone
  834. * (nfs or dmi) has a stale handle.
  835. */
  836. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  837. kmem_zone_free(xfs_inode_zone, ip);
  838. xfs_trans_brelse(tp, bp);
  839. #ifdef DEBUG
  840. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  841. "dip->di_core.di_magic (0x%x) != "
  842. "XFS_DINODE_MAGIC (0x%x)",
  843. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  844. XFS_DINODE_MAGIC);
  845. #endif /* DEBUG */
  846. return XFS_ERROR(EINVAL);
  847. }
  848. /*
  849. * If the on-disk inode is already linked to a directory
  850. * entry, copy all of the inode into the in-core inode.
  851. * xfs_iformat() handles copying in the inode format
  852. * specific information.
  853. * Otherwise, just get the truly permanent information.
  854. */
  855. if (dip->di_core.di_mode) {
  856. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  857. &(ip->i_d), 1);
  858. error = xfs_iformat(ip, dip);
  859. if (error) {
  860. kmem_zone_free(xfs_inode_zone, ip);
  861. xfs_trans_brelse(tp, bp);
  862. #ifdef DEBUG
  863. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  864. "xfs_iformat() returned error %d",
  865. error);
  866. #endif /* DEBUG */
  867. return error;
  868. }
  869. } else {
  870. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  871. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  872. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  873. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  874. /*
  875. * Make sure to pull in the mode here as well in
  876. * case the inode is released without being used.
  877. * This ensures that xfs_inactive() will see that
  878. * the inode is already free and not try to mess
  879. * with the uninitialized part of it.
  880. */
  881. ip->i_d.di_mode = 0;
  882. /*
  883. * Initialize the per-fork minima and maxima for a new
  884. * inode here. xfs_iformat will do it for old inodes.
  885. */
  886. ip->i_df.if_ext_max =
  887. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  888. }
  889. INIT_LIST_HEAD(&ip->i_reclaim);
  890. /*
  891. * The inode format changed when we moved the link count and
  892. * made it 32 bits long. If this is an old format inode,
  893. * convert it in memory to look like a new one. If it gets
  894. * flushed to disk we will convert back before flushing or
  895. * logging it. We zero out the new projid field and the old link
  896. * count field. We'll handle clearing the pad field (the remains
  897. * of the old uuid field) when we actually convert the inode to
  898. * the new format. We don't change the version number so that we
  899. * can distinguish this from a real new format inode.
  900. */
  901. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  902. ip->i_d.di_nlink = ip->i_d.di_onlink;
  903. ip->i_d.di_onlink = 0;
  904. ip->i_d.di_projid = 0;
  905. }
  906. ip->i_delayed_blks = 0;
  907. /*
  908. * Mark the buffer containing the inode as something to keep
  909. * around for a while. This helps to keep recently accessed
  910. * meta-data in-core longer.
  911. */
  912. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  913. /*
  914. * Use xfs_trans_brelse() to release the buffer containing the
  915. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  916. * in xfs_itobp() above. If tp is NULL, this is just a normal
  917. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  918. * will only release the buffer if it is not dirty within the
  919. * transaction. It will be OK to release the buffer in this case,
  920. * because inodes on disk are never destroyed and we will be
  921. * locking the new in-core inode before putting it in the hash
  922. * table where other processes can find it. Thus we don't have
  923. * to worry about the inode being changed just because we released
  924. * the buffer.
  925. */
  926. xfs_trans_brelse(tp, bp);
  927. *ipp = ip;
  928. return 0;
  929. }
  930. /*
  931. * Read in extents from a btree-format inode.
  932. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  933. */
  934. int
  935. xfs_iread_extents(
  936. xfs_trans_t *tp,
  937. xfs_inode_t *ip,
  938. int whichfork)
  939. {
  940. int error;
  941. xfs_ifork_t *ifp;
  942. xfs_extnum_t nextents;
  943. size_t size;
  944. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  945. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  946. ip->i_mount);
  947. return XFS_ERROR(EFSCORRUPTED);
  948. }
  949. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  950. size = nextents * sizeof(xfs_bmbt_rec_t);
  951. ifp = XFS_IFORK_PTR(ip, whichfork);
  952. /*
  953. * We know that the size is valid (it's checked in iformat_btree)
  954. */
  955. ifp->if_lastex = NULLEXTNUM;
  956. ifp->if_bytes = ifp->if_real_bytes = 0;
  957. ifp->if_flags |= XFS_IFEXTENTS;
  958. xfs_iext_add(ifp, 0, nextents);
  959. error = xfs_bmap_read_extents(tp, ip, whichfork);
  960. if (error) {
  961. xfs_iext_destroy(ifp);
  962. ifp->if_flags &= ~XFS_IFEXTENTS;
  963. return error;
  964. }
  965. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  966. return 0;
  967. }
  968. /*
  969. * Allocate an inode on disk and return a copy of its in-core version.
  970. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  971. * appropriately within the inode. The uid and gid for the inode are
  972. * set according to the contents of the given cred structure.
  973. *
  974. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  975. * has a free inode available, call xfs_iget()
  976. * to obtain the in-core version of the allocated inode. Finally,
  977. * fill in the inode and log its initial contents. In this case,
  978. * ialloc_context would be set to NULL and call_again set to false.
  979. *
  980. * If xfs_dialloc() does not have an available inode,
  981. * it will replenish its supply by doing an allocation. Since we can
  982. * only do one allocation within a transaction without deadlocks, we
  983. * must commit the current transaction before returning the inode itself.
  984. * In this case, therefore, we will set call_again to true and return.
  985. * The caller should then commit the current transaction, start a new
  986. * transaction, and call xfs_ialloc() again to actually get the inode.
  987. *
  988. * To ensure that some other process does not grab the inode that
  989. * was allocated during the first call to xfs_ialloc(), this routine
  990. * also returns the [locked] bp pointing to the head of the freelist
  991. * as ialloc_context. The caller should hold this buffer across
  992. * the commit and pass it back into this routine on the second call.
  993. */
  994. int
  995. xfs_ialloc(
  996. xfs_trans_t *tp,
  997. xfs_inode_t *pip,
  998. mode_t mode,
  999. xfs_nlink_t nlink,
  1000. xfs_dev_t rdev,
  1001. cred_t *cr,
  1002. xfs_prid_t prid,
  1003. int okalloc,
  1004. xfs_buf_t **ialloc_context,
  1005. boolean_t *call_again,
  1006. xfs_inode_t **ipp)
  1007. {
  1008. xfs_ino_t ino;
  1009. xfs_inode_t *ip;
  1010. vnode_t *vp;
  1011. uint flags;
  1012. int error;
  1013. /*
  1014. * Call the space management code to pick
  1015. * the on-disk inode to be allocated.
  1016. */
  1017. error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
  1018. ialloc_context, call_again, &ino);
  1019. if (error != 0) {
  1020. return error;
  1021. }
  1022. if (*call_again || ino == NULLFSINO) {
  1023. *ipp = NULL;
  1024. return 0;
  1025. }
  1026. ASSERT(*ialloc_context == NULL);
  1027. /*
  1028. * Get the in-core inode with the lock held exclusively.
  1029. * This is because we're setting fields here we need
  1030. * to prevent others from looking at until we're done.
  1031. */
  1032. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1033. IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1034. if (error != 0) {
  1035. return error;
  1036. }
  1037. ASSERT(ip != NULL);
  1038. vp = XFS_ITOV(ip);
  1039. ip->i_d.di_mode = (__uint16_t)mode;
  1040. ip->i_d.di_onlink = 0;
  1041. ip->i_d.di_nlink = nlink;
  1042. ASSERT(ip->i_d.di_nlink == nlink);
  1043. ip->i_d.di_uid = current_fsuid(cr);
  1044. ip->i_d.di_gid = current_fsgid(cr);
  1045. ip->i_d.di_projid = prid;
  1046. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1047. /*
  1048. * If the superblock version is up to where we support new format
  1049. * inodes and this is currently an old format inode, then change
  1050. * the inode version number now. This way we only do the conversion
  1051. * here rather than here and in the flush/logging code.
  1052. */
  1053. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1054. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1055. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1056. /*
  1057. * We've already zeroed the old link count, the projid field,
  1058. * and the pad field.
  1059. */
  1060. }
  1061. /*
  1062. * Project ids won't be stored on disk if we are using a version 1 inode.
  1063. */
  1064. if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1065. xfs_bump_ino_vers2(tp, ip);
  1066. if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1067. ip->i_d.di_gid = pip->i_d.di_gid;
  1068. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1069. ip->i_d.di_mode |= S_ISGID;
  1070. }
  1071. }
  1072. /*
  1073. * If the group ID of the new file does not match the effective group
  1074. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1075. * (and only if the irix_sgid_inherit compatibility variable is set).
  1076. */
  1077. if ((irix_sgid_inherit) &&
  1078. (ip->i_d.di_mode & S_ISGID) &&
  1079. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1080. ip->i_d.di_mode &= ~S_ISGID;
  1081. }
  1082. ip->i_d.di_size = 0;
  1083. ip->i_d.di_nextents = 0;
  1084. ASSERT(ip->i_d.di_nblocks == 0);
  1085. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1086. /*
  1087. * di_gen will have been taken care of in xfs_iread.
  1088. */
  1089. ip->i_d.di_extsize = 0;
  1090. ip->i_d.di_dmevmask = 0;
  1091. ip->i_d.di_dmstate = 0;
  1092. ip->i_d.di_flags = 0;
  1093. flags = XFS_ILOG_CORE;
  1094. switch (mode & S_IFMT) {
  1095. case S_IFIFO:
  1096. case S_IFCHR:
  1097. case S_IFBLK:
  1098. case S_IFSOCK:
  1099. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1100. ip->i_df.if_u2.if_rdev = rdev;
  1101. ip->i_df.if_flags = 0;
  1102. flags |= XFS_ILOG_DEV;
  1103. break;
  1104. case S_IFREG:
  1105. case S_IFDIR:
  1106. if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1107. uint di_flags = 0;
  1108. if ((mode & S_IFMT) == S_IFDIR) {
  1109. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1110. di_flags |= XFS_DIFLAG_RTINHERIT;
  1111. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1112. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1113. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1114. }
  1115. } else if ((mode & S_IFMT) == S_IFREG) {
  1116. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1117. di_flags |= XFS_DIFLAG_REALTIME;
  1118. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1119. }
  1120. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1121. di_flags |= XFS_DIFLAG_EXTSIZE;
  1122. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1123. }
  1124. }
  1125. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1126. xfs_inherit_noatime)
  1127. di_flags |= XFS_DIFLAG_NOATIME;
  1128. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1129. xfs_inherit_nodump)
  1130. di_flags |= XFS_DIFLAG_NODUMP;
  1131. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1132. xfs_inherit_sync)
  1133. di_flags |= XFS_DIFLAG_SYNC;
  1134. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1135. xfs_inherit_nosymlinks)
  1136. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1137. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1138. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1139. ip->i_d.di_flags |= di_flags;
  1140. }
  1141. /* FALLTHROUGH */
  1142. case S_IFLNK:
  1143. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1144. ip->i_df.if_flags = XFS_IFEXTENTS;
  1145. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1146. ip->i_df.if_u1.if_extents = NULL;
  1147. break;
  1148. default:
  1149. ASSERT(0);
  1150. }
  1151. /*
  1152. * Attribute fork settings for new inode.
  1153. */
  1154. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1155. ip->i_d.di_anextents = 0;
  1156. /*
  1157. * Log the new values stuffed into the inode.
  1158. */
  1159. xfs_trans_log_inode(tp, ip, flags);
  1160. /* now that we have an i_mode we can set Linux inode ops (& unlock) */
  1161. VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1162. *ipp = ip;
  1163. return 0;
  1164. }
  1165. /*
  1166. * Check to make sure that there are no blocks allocated to the
  1167. * file beyond the size of the file. We don't check this for
  1168. * files with fixed size extents or real time extents, but we
  1169. * at least do it for regular files.
  1170. */
  1171. #ifdef DEBUG
  1172. void
  1173. xfs_isize_check(
  1174. xfs_mount_t *mp,
  1175. xfs_inode_t *ip,
  1176. xfs_fsize_t isize)
  1177. {
  1178. xfs_fileoff_t map_first;
  1179. int nimaps;
  1180. xfs_bmbt_irec_t imaps[2];
  1181. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1182. return;
  1183. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1184. return;
  1185. nimaps = 2;
  1186. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1187. /*
  1188. * The filesystem could be shutting down, so bmapi may return
  1189. * an error.
  1190. */
  1191. if (xfs_bmapi(NULL, ip, map_first,
  1192. (XFS_B_TO_FSB(mp,
  1193. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1194. map_first),
  1195. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1196. NULL))
  1197. return;
  1198. ASSERT(nimaps == 1);
  1199. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1200. }
  1201. #endif /* DEBUG */
  1202. /*
  1203. * Calculate the last possible buffered byte in a file. This must
  1204. * include data that was buffered beyond the EOF by the write code.
  1205. * This also needs to deal with overflowing the xfs_fsize_t type
  1206. * which can happen for sizes near the limit.
  1207. *
  1208. * We also need to take into account any blocks beyond the EOF. It
  1209. * may be the case that they were buffered by a write which failed.
  1210. * In that case the pages will still be in memory, but the inode size
  1211. * will never have been updated.
  1212. */
  1213. xfs_fsize_t
  1214. xfs_file_last_byte(
  1215. xfs_inode_t *ip)
  1216. {
  1217. xfs_mount_t *mp;
  1218. xfs_fsize_t last_byte;
  1219. xfs_fileoff_t last_block;
  1220. xfs_fileoff_t size_last_block;
  1221. int error;
  1222. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1223. mp = ip->i_mount;
  1224. /*
  1225. * Only check for blocks beyond the EOF if the extents have
  1226. * been read in. This eliminates the need for the inode lock,
  1227. * and it also saves us from looking when it really isn't
  1228. * necessary.
  1229. */
  1230. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1231. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1232. XFS_DATA_FORK);
  1233. if (error) {
  1234. last_block = 0;
  1235. }
  1236. } else {
  1237. last_block = 0;
  1238. }
  1239. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
  1240. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1241. last_byte = XFS_FSB_TO_B(mp, last_block);
  1242. if (last_byte < 0) {
  1243. return XFS_MAXIOFFSET(mp);
  1244. }
  1245. last_byte += (1 << mp->m_writeio_log);
  1246. if (last_byte < 0) {
  1247. return XFS_MAXIOFFSET(mp);
  1248. }
  1249. return last_byte;
  1250. }
  1251. #if defined(XFS_RW_TRACE)
  1252. STATIC void
  1253. xfs_itrunc_trace(
  1254. int tag,
  1255. xfs_inode_t *ip,
  1256. int flag,
  1257. xfs_fsize_t new_size,
  1258. xfs_off_t toss_start,
  1259. xfs_off_t toss_finish)
  1260. {
  1261. if (ip->i_rwtrace == NULL) {
  1262. return;
  1263. }
  1264. ktrace_enter(ip->i_rwtrace,
  1265. (void*)((long)tag),
  1266. (void*)ip,
  1267. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1268. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1269. (void*)((long)flag),
  1270. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1271. (void*)(unsigned long)(new_size & 0xffffffff),
  1272. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1273. (void*)(unsigned long)(toss_start & 0xffffffff),
  1274. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1275. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1276. (void*)(unsigned long)current_cpu(),
  1277. (void*)(unsigned long)current_pid(),
  1278. (void*)NULL,
  1279. (void*)NULL,
  1280. (void*)NULL);
  1281. }
  1282. #else
  1283. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1284. #endif
  1285. /*
  1286. * Start the truncation of the file to new_size. The new size
  1287. * must be smaller than the current size. This routine will
  1288. * clear the buffer and page caches of file data in the removed
  1289. * range, and xfs_itruncate_finish() will remove the underlying
  1290. * disk blocks.
  1291. *
  1292. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1293. * must NOT have the inode lock held at all. This is because we're
  1294. * calling into the buffer/page cache code and we can't hold the
  1295. * inode lock when we do so.
  1296. *
  1297. * We need to wait for any direct I/Os in flight to complete before we
  1298. * proceed with the truncate. This is needed to prevent the extents
  1299. * being read or written by the direct I/Os from being removed while the
  1300. * I/O is in flight as there is no other method of synchronising
  1301. * direct I/O with the truncate operation. Also, because we hold
  1302. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1303. * started until the truncate completes and drops the lock. Essentially,
  1304. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1305. * between direct I/Os and the truncate operation.
  1306. *
  1307. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1308. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1309. * in the case that the caller is locking things out of order and
  1310. * may not be able to call xfs_itruncate_finish() with the inode lock
  1311. * held without dropping the I/O lock. If the caller must drop the
  1312. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1313. * must be called again with all the same restrictions as the initial
  1314. * call.
  1315. */
  1316. void
  1317. xfs_itruncate_start(
  1318. xfs_inode_t *ip,
  1319. uint flags,
  1320. xfs_fsize_t new_size)
  1321. {
  1322. xfs_fsize_t last_byte;
  1323. xfs_off_t toss_start;
  1324. xfs_mount_t *mp;
  1325. vnode_t *vp;
  1326. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1327. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1328. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1329. (flags == XFS_ITRUNC_MAYBE));
  1330. mp = ip->i_mount;
  1331. vp = XFS_ITOV(ip);
  1332. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1333. /*
  1334. * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
  1335. * overlapping the region being removed. We have to use
  1336. * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
  1337. * caller may not be able to finish the truncate without
  1338. * dropping the inode's I/O lock. Make sure
  1339. * to catch any pages brought in by buffers overlapping
  1340. * the EOF by searching out beyond the isize by our
  1341. * block size. We round new_size up to a block boundary
  1342. * so that we don't toss things on the same block as
  1343. * new_size but before it.
  1344. *
  1345. * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
  1346. * call remapf() over the same region if the file is mapped.
  1347. * This frees up mapped file references to the pages in the
  1348. * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
  1349. * that we get the latest mapped changes flushed out.
  1350. */
  1351. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1352. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1353. if (toss_start < 0) {
  1354. /*
  1355. * The place to start tossing is beyond our maximum
  1356. * file size, so there is no way that the data extended
  1357. * out there.
  1358. */
  1359. return;
  1360. }
  1361. last_byte = xfs_file_last_byte(ip);
  1362. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1363. last_byte);
  1364. if (last_byte > toss_start) {
  1365. if (flags & XFS_ITRUNC_DEFINITE) {
  1366. VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1367. } else {
  1368. VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1369. }
  1370. }
  1371. #ifdef DEBUG
  1372. if (new_size == 0) {
  1373. ASSERT(VN_CACHED(vp) == 0);
  1374. }
  1375. #endif
  1376. }
  1377. /*
  1378. * Shrink the file to the given new_size. The new
  1379. * size must be smaller than the current size.
  1380. * This will free up the underlying blocks
  1381. * in the removed range after a call to xfs_itruncate_start()
  1382. * or xfs_atruncate_start().
  1383. *
  1384. * The transaction passed to this routine must have made
  1385. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1386. * This routine may commit the given transaction and
  1387. * start new ones, so make sure everything involved in
  1388. * the transaction is tidy before calling here.
  1389. * Some transaction will be returned to the caller to be
  1390. * committed. The incoming transaction must already include
  1391. * the inode, and both inode locks must be held exclusively.
  1392. * The inode must also be "held" within the transaction. On
  1393. * return the inode will be "held" within the returned transaction.
  1394. * This routine does NOT require any disk space to be reserved
  1395. * for it within the transaction.
  1396. *
  1397. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1398. * and it indicates the fork which is to be truncated. For the
  1399. * attribute fork we only support truncation to size 0.
  1400. *
  1401. * We use the sync parameter to indicate whether or not the first
  1402. * transaction we perform might have to be synchronous. For the attr fork,
  1403. * it needs to be so if the unlink of the inode is not yet known to be
  1404. * permanent in the log. This keeps us from freeing and reusing the
  1405. * blocks of the attribute fork before the unlink of the inode becomes
  1406. * permanent.
  1407. *
  1408. * For the data fork, we normally have to run synchronously if we're
  1409. * being called out of the inactive path or we're being called
  1410. * out of the create path where we're truncating an existing file.
  1411. * Either way, the truncate needs to be sync so blocks don't reappear
  1412. * in the file with altered data in case of a crash. wsync filesystems
  1413. * can run the first case async because anything that shrinks the inode
  1414. * has to run sync so by the time we're called here from inactive, the
  1415. * inode size is permanently set to 0.
  1416. *
  1417. * Calls from the truncate path always need to be sync unless we're
  1418. * in a wsync filesystem and the file has already been unlinked.
  1419. *
  1420. * The caller is responsible for correctly setting the sync parameter.
  1421. * It gets too hard for us to guess here which path we're being called
  1422. * out of just based on inode state.
  1423. */
  1424. int
  1425. xfs_itruncate_finish(
  1426. xfs_trans_t **tp,
  1427. xfs_inode_t *ip,
  1428. xfs_fsize_t new_size,
  1429. int fork,
  1430. int sync)
  1431. {
  1432. xfs_fsblock_t first_block;
  1433. xfs_fileoff_t first_unmap_block;
  1434. xfs_fileoff_t last_block;
  1435. xfs_filblks_t unmap_len=0;
  1436. xfs_mount_t *mp;
  1437. xfs_trans_t *ntp;
  1438. int done;
  1439. int committed;
  1440. xfs_bmap_free_t free_list;
  1441. int error;
  1442. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1443. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1444. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1445. ASSERT(*tp != NULL);
  1446. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1447. ASSERT(ip->i_transp == *tp);
  1448. ASSERT(ip->i_itemp != NULL);
  1449. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1450. ntp = *tp;
  1451. mp = (ntp)->t_mountp;
  1452. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1453. /*
  1454. * We only support truncating the entire attribute fork.
  1455. */
  1456. if (fork == XFS_ATTR_FORK) {
  1457. new_size = 0LL;
  1458. }
  1459. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1460. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1461. /*
  1462. * The first thing we do is set the size to new_size permanently
  1463. * on disk. This way we don't have to worry about anyone ever
  1464. * being able to look at the data being freed even in the face
  1465. * of a crash. What we're getting around here is the case where
  1466. * we free a block, it is allocated to another file, it is written
  1467. * to, and then we crash. If the new data gets written to the
  1468. * file but the log buffers containing the free and reallocation
  1469. * don't, then we'd end up with garbage in the blocks being freed.
  1470. * As long as we make the new_size permanent before actually
  1471. * freeing any blocks it doesn't matter if they get writtten to.
  1472. *
  1473. * The callers must signal into us whether or not the size
  1474. * setting here must be synchronous. There are a few cases
  1475. * where it doesn't have to be synchronous. Those cases
  1476. * occur if the file is unlinked and we know the unlink is
  1477. * permanent or if the blocks being truncated are guaranteed
  1478. * to be beyond the inode eof (regardless of the link count)
  1479. * and the eof value is permanent. Both of these cases occur
  1480. * only on wsync-mounted filesystems. In those cases, we're
  1481. * guaranteed that no user will ever see the data in the blocks
  1482. * that are being truncated so the truncate can run async.
  1483. * In the free beyond eof case, the file may wind up with
  1484. * more blocks allocated to it than it needs if we crash
  1485. * and that won't get fixed until the next time the file
  1486. * is re-opened and closed but that's ok as that shouldn't
  1487. * be too many blocks.
  1488. *
  1489. * However, we can't just make all wsync xactions run async
  1490. * because there's one call out of the create path that needs
  1491. * to run sync where it's truncating an existing file to size
  1492. * 0 whose size is > 0.
  1493. *
  1494. * It's probably possible to come up with a test in this
  1495. * routine that would correctly distinguish all the above
  1496. * cases from the values of the function parameters and the
  1497. * inode state but for sanity's sake, I've decided to let the
  1498. * layers above just tell us. It's simpler to correctly figure
  1499. * out in the layer above exactly under what conditions we
  1500. * can run async and I think it's easier for others read and
  1501. * follow the logic in case something has to be changed.
  1502. * cscope is your friend -- rcc.
  1503. *
  1504. * The attribute fork is much simpler.
  1505. *
  1506. * For the attribute fork we allow the caller to tell us whether
  1507. * the unlink of the inode that led to this call is yet permanent
  1508. * in the on disk log. If it is not and we will be freeing extents
  1509. * in this inode then we make the first transaction synchronous
  1510. * to make sure that the unlink is permanent by the time we free
  1511. * the blocks.
  1512. */
  1513. if (fork == XFS_DATA_FORK) {
  1514. if (ip->i_d.di_nextents > 0) {
  1515. ip->i_d.di_size = new_size;
  1516. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1517. }
  1518. } else if (sync) {
  1519. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1520. if (ip->i_d.di_anextents > 0)
  1521. xfs_trans_set_sync(ntp);
  1522. }
  1523. ASSERT(fork == XFS_DATA_FORK ||
  1524. (fork == XFS_ATTR_FORK &&
  1525. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1526. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1527. /*
  1528. * Since it is possible for space to become allocated beyond
  1529. * the end of the file (in a crash where the space is allocated
  1530. * but the inode size is not yet updated), simply remove any
  1531. * blocks which show up between the new EOF and the maximum
  1532. * possible file size. If the first block to be removed is
  1533. * beyond the maximum file size (ie it is the same as last_block),
  1534. * then there is nothing to do.
  1535. */
  1536. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1537. ASSERT(first_unmap_block <= last_block);
  1538. done = 0;
  1539. if (last_block == first_unmap_block) {
  1540. done = 1;
  1541. } else {
  1542. unmap_len = last_block - first_unmap_block + 1;
  1543. }
  1544. while (!done) {
  1545. /*
  1546. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1547. * will tell us whether it freed the entire range or
  1548. * not. If this is a synchronous mount (wsync),
  1549. * then we can tell bunmapi to keep all the
  1550. * transactions asynchronous since the unlink
  1551. * transaction that made this inode inactive has
  1552. * already hit the disk. There's no danger of
  1553. * the freed blocks being reused, there being a
  1554. * crash, and the reused blocks suddenly reappearing
  1555. * in this file with garbage in them once recovery
  1556. * runs.
  1557. */
  1558. XFS_BMAP_INIT(&free_list, &first_block);
  1559. error = xfs_bunmapi(ntp, ip, first_unmap_block,
  1560. unmap_len,
  1561. XFS_BMAPI_AFLAG(fork) |
  1562. (sync ? 0 : XFS_BMAPI_ASYNC),
  1563. XFS_ITRUNC_MAX_EXTENTS,
  1564. &first_block, &free_list, &done);
  1565. if (error) {
  1566. /*
  1567. * If the bunmapi call encounters an error,
  1568. * return to the caller where the transaction
  1569. * can be properly aborted. We just need to
  1570. * make sure we're not holding any resources
  1571. * that we were not when we came in.
  1572. */
  1573. xfs_bmap_cancel(&free_list);
  1574. return error;
  1575. }
  1576. /*
  1577. * Duplicate the transaction that has the permanent
  1578. * reservation and commit the old transaction.
  1579. */
  1580. error = xfs_bmap_finish(tp, &free_list, first_block,
  1581. &committed);
  1582. ntp = *tp;
  1583. if (error) {
  1584. /*
  1585. * If the bmap finish call encounters an error,
  1586. * return to the caller where the transaction
  1587. * can be properly aborted. We just need to
  1588. * make sure we're not holding any resources
  1589. * that we were not when we came in.
  1590. *
  1591. * Aborting from this point might lose some
  1592. * blocks in the file system, but oh well.
  1593. */
  1594. xfs_bmap_cancel(&free_list);
  1595. if (committed) {
  1596. /*
  1597. * If the passed in transaction committed
  1598. * in xfs_bmap_finish(), then we want to
  1599. * add the inode to this one before returning.
  1600. * This keeps things simple for the higher
  1601. * level code, because it always knows that
  1602. * the inode is locked and held in the
  1603. * transaction that returns to it whether
  1604. * errors occur or not. We don't mark the
  1605. * inode dirty so that this transaction can
  1606. * be easily aborted if possible.
  1607. */
  1608. xfs_trans_ijoin(ntp, ip,
  1609. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1610. xfs_trans_ihold(ntp, ip);
  1611. }
  1612. return error;
  1613. }
  1614. if (committed) {
  1615. /*
  1616. * The first xact was committed,
  1617. * so add the inode to the new one.
  1618. * Mark it dirty so it will be logged
  1619. * and moved forward in the log as
  1620. * part of every commit.
  1621. */
  1622. xfs_trans_ijoin(ntp, ip,
  1623. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1624. xfs_trans_ihold(ntp, ip);
  1625. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1626. }
  1627. ntp = xfs_trans_dup(ntp);
  1628. (void) xfs_trans_commit(*tp, 0, NULL);
  1629. *tp = ntp;
  1630. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1631. XFS_TRANS_PERM_LOG_RES,
  1632. XFS_ITRUNCATE_LOG_COUNT);
  1633. /*
  1634. * Add the inode being truncated to the next chained
  1635. * transaction.
  1636. */
  1637. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1638. xfs_trans_ihold(ntp, ip);
  1639. if (error)
  1640. return (error);
  1641. }
  1642. /*
  1643. * Only update the size in the case of the data fork, but
  1644. * always re-log the inode so that our permanent transaction
  1645. * can keep on rolling it forward in the log.
  1646. */
  1647. if (fork == XFS_DATA_FORK) {
  1648. xfs_isize_check(mp, ip, new_size);
  1649. ip->i_d.di_size = new_size;
  1650. }
  1651. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1652. ASSERT((new_size != 0) ||
  1653. (fork == XFS_ATTR_FORK) ||
  1654. (ip->i_delayed_blks == 0));
  1655. ASSERT((new_size != 0) ||
  1656. (fork == XFS_ATTR_FORK) ||
  1657. (ip->i_d.di_nextents == 0));
  1658. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1659. return 0;
  1660. }
  1661. /*
  1662. * xfs_igrow_start
  1663. *
  1664. * Do the first part of growing a file: zero any data in the last
  1665. * block that is beyond the old EOF. We need to do this before
  1666. * the inode is joined to the transaction to modify the i_size.
  1667. * That way we can drop the inode lock and call into the buffer
  1668. * cache to get the buffer mapping the EOF.
  1669. */
  1670. int
  1671. xfs_igrow_start(
  1672. xfs_inode_t *ip,
  1673. xfs_fsize_t new_size,
  1674. cred_t *credp)
  1675. {
  1676. int error;
  1677. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1678. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1679. ASSERT(new_size > ip->i_d.di_size);
  1680. /*
  1681. * Zero any pages that may have been created by
  1682. * xfs_write_file() beyond the end of the file
  1683. * and any blocks between the old and new file sizes.
  1684. */
  1685. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1686. ip->i_d.di_size, new_size);
  1687. return error;
  1688. }
  1689. /*
  1690. * xfs_igrow_finish
  1691. *
  1692. * This routine is called to extend the size of a file.
  1693. * The inode must have both the iolock and the ilock locked
  1694. * for update and it must be a part of the current transaction.
  1695. * The xfs_igrow_start() function must have been called previously.
  1696. * If the change_flag is not zero, the inode change timestamp will
  1697. * be updated.
  1698. */
  1699. void
  1700. xfs_igrow_finish(
  1701. xfs_trans_t *tp,
  1702. xfs_inode_t *ip,
  1703. xfs_fsize_t new_size,
  1704. int change_flag)
  1705. {
  1706. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1707. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1708. ASSERT(ip->i_transp == tp);
  1709. ASSERT(new_size > ip->i_d.di_size);
  1710. /*
  1711. * Update the file size. Update the inode change timestamp
  1712. * if change_flag set.
  1713. */
  1714. ip->i_d.di_size = new_size;
  1715. if (change_flag)
  1716. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1717. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1718. }
  1719. /*
  1720. * This is called when the inode's link count goes to 0.
  1721. * We place the on-disk inode on a list in the AGI. It
  1722. * will be pulled from this list when the inode is freed.
  1723. */
  1724. int
  1725. xfs_iunlink(
  1726. xfs_trans_t *tp,
  1727. xfs_inode_t *ip)
  1728. {
  1729. xfs_mount_t *mp;
  1730. xfs_agi_t *agi;
  1731. xfs_dinode_t *dip;
  1732. xfs_buf_t *agibp;
  1733. xfs_buf_t *ibp;
  1734. xfs_agnumber_t agno;
  1735. xfs_daddr_t agdaddr;
  1736. xfs_agino_t agino;
  1737. short bucket_index;
  1738. int offset;
  1739. int error;
  1740. int agi_ok;
  1741. ASSERT(ip->i_d.di_nlink == 0);
  1742. ASSERT(ip->i_d.di_mode != 0);
  1743. ASSERT(ip->i_transp == tp);
  1744. mp = tp->t_mountp;
  1745. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1746. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1747. /*
  1748. * Get the agi buffer first. It ensures lock ordering
  1749. * on the list.
  1750. */
  1751. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1752. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1753. if (error) {
  1754. return error;
  1755. }
  1756. /*
  1757. * Validate the magic number of the agi block.
  1758. */
  1759. agi = XFS_BUF_TO_AGI(agibp);
  1760. agi_ok =
  1761. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1762. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1763. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1764. XFS_RANDOM_IUNLINK))) {
  1765. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1766. xfs_trans_brelse(tp, agibp);
  1767. return XFS_ERROR(EFSCORRUPTED);
  1768. }
  1769. /*
  1770. * Get the index into the agi hash table for the
  1771. * list this inode will go on.
  1772. */
  1773. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1774. ASSERT(agino != 0);
  1775. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1776. ASSERT(agi->agi_unlinked[bucket_index]);
  1777. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1778. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1779. /*
  1780. * There is already another inode in the bucket we need
  1781. * to add ourselves to. Add us at the front of the list.
  1782. * Here we put the head pointer into our next pointer,
  1783. * and then we fall through to point the head at us.
  1784. */
  1785. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1786. if (error) {
  1787. return error;
  1788. }
  1789. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1790. ASSERT(dip->di_next_unlinked);
  1791. /* both on-disk, don't endian flip twice */
  1792. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1793. offset = ip->i_boffset +
  1794. offsetof(xfs_dinode_t, di_next_unlinked);
  1795. xfs_trans_inode_buf(tp, ibp);
  1796. xfs_trans_log_buf(tp, ibp, offset,
  1797. (offset + sizeof(xfs_agino_t) - 1));
  1798. xfs_inobp_check(mp, ibp);
  1799. }
  1800. /*
  1801. * Point the bucket head pointer at the inode being inserted.
  1802. */
  1803. ASSERT(agino != 0);
  1804. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1805. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1806. (sizeof(xfs_agino_t) * bucket_index);
  1807. xfs_trans_log_buf(tp, agibp, offset,
  1808. (offset + sizeof(xfs_agino_t) - 1));
  1809. return 0;
  1810. }
  1811. /*
  1812. * Pull the on-disk inode from the AGI unlinked list.
  1813. */
  1814. STATIC int
  1815. xfs_iunlink_remove(
  1816. xfs_trans_t *tp,
  1817. xfs_inode_t *ip)
  1818. {
  1819. xfs_ino_t next_ino;
  1820. xfs_mount_t *mp;
  1821. xfs_agi_t *agi;
  1822. xfs_dinode_t *dip;
  1823. xfs_buf_t *agibp;
  1824. xfs_buf_t *ibp;
  1825. xfs_agnumber_t agno;
  1826. xfs_daddr_t agdaddr;
  1827. xfs_agino_t agino;
  1828. xfs_agino_t next_agino;
  1829. xfs_buf_t *last_ibp;
  1830. xfs_dinode_t *last_dip;
  1831. short bucket_index;
  1832. int offset, last_offset;
  1833. int error;
  1834. int agi_ok;
  1835. /*
  1836. * First pull the on-disk inode from the AGI unlinked list.
  1837. */
  1838. mp = tp->t_mountp;
  1839. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1840. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1841. /*
  1842. * Get the agi buffer first. It ensures lock ordering
  1843. * on the list.
  1844. */
  1845. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1846. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1847. if (error) {
  1848. cmn_err(CE_WARN,
  1849. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1850. error, mp->m_fsname);
  1851. return error;
  1852. }
  1853. /*
  1854. * Validate the magic number of the agi block.
  1855. */
  1856. agi = XFS_BUF_TO_AGI(agibp);
  1857. agi_ok =
  1858. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1859. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1860. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1861. XFS_RANDOM_IUNLINK_REMOVE))) {
  1862. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1863. mp, agi);
  1864. xfs_trans_brelse(tp, agibp);
  1865. cmn_err(CE_WARN,
  1866. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1867. mp->m_fsname);
  1868. return XFS_ERROR(EFSCORRUPTED);
  1869. }
  1870. /*
  1871. * Get the index into the agi hash table for the
  1872. * list this inode will go on.
  1873. */
  1874. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1875. ASSERT(agino != 0);
  1876. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1877. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1878. ASSERT(agi->agi_unlinked[bucket_index]);
  1879. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1880. /*
  1881. * We're at the head of the list. Get the inode's
  1882. * on-disk buffer to see if there is anyone after us
  1883. * on the list. Only modify our next pointer if it
  1884. * is not already NULLAGINO. This saves us the overhead
  1885. * of dealing with the buffer when there is no need to
  1886. * change it.
  1887. */
  1888. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1889. if (error) {
  1890. cmn_err(CE_WARN,
  1891. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1892. error, mp->m_fsname);
  1893. return error;
  1894. }
  1895. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1896. ASSERT(next_agino != 0);
  1897. if (next_agino != NULLAGINO) {
  1898. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1899. offset = ip->i_boffset +
  1900. offsetof(xfs_dinode_t, di_next_unlinked);
  1901. xfs_trans_inode_buf(tp, ibp);
  1902. xfs_trans_log_buf(tp, ibp, offset,
  1903. (offset + sizeof(xfs_agino_t) - 1));
  1904. xfs_inobp_check(mp, ibp);
  1905. } else {
  1906. xfs_trans_brelse(tp, ibp);
  1907. }
  1908. /*
  1909. * Point the bucket head pointer at the next inode.
  1910. */
  1911. ASSERT(next_agino != 0);
  1912. ASSERT(next_agino != agino);
  1913. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1914. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1915. (sizeof(xfs_agino_t) * bucket_index);
  1916. xfs_trans_log_buf(tp, agibp, offset,
  1917. (offset + sizeof(xfs_agino_t) - 1));
  1918. } else {
  1919. /*
  1920. * We need to search the list for the inode being freed.
  1921. */
  1922. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1923. last_ibp = NULL;
  1924. while (next_agino != agino) {
  1925. /*
  1926. * If the last inode wasn't the one pointing to
  1927. * us, then release its buffer since we're not
  1928. * going to do anything with it.
  1929. */
  1930. if (last_ibp != NULL) {
  1931. xfs_trans_brelse(tp, last_ibp);
  1932. }
  1933. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1934. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1935. &last_ibp, &last_offset);
  1936. if (error) {
  1937. cmn_err(CE_WARN,
  1938. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1939. error, mp->m_fsname);
  1940. return error;
  1941. }
  1942. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1943. ASSERT(next_agino != NULLAGINO);
  1944. ASSERT(next_agino != 0);
  1945. }
  1946. /*
  1947. * Now last_ibp points to the buffer previous to us on
  1948. * the unlinked list. Pull us from the list.
  1949. */
  1950. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1951. if (error) {
  1952. cmn_err(CE_WARN,
  1953. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1954. error, mp->m_fsname);
  1955. return error;
  1956. }
  1957. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1958. ASSERT(next_agino != 0);
  1959. ASSERT(next_agino != agino);
  1960. if (next_agino != NULLAGINO) {
  1961. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1962. offset = ip->i_boffset +
  1963. offsetof(xfs_dinode_t, di_next_unlinked);
  1964. xfs_trans_inode_buf(tp, ibp);
  1965. xfs_trans_log_buf(tp, ibp, offset,
  1966. (offset + sizeof(xfs_agino_t) - 1));
  1967. xfs_inobp_check(mp, ibp);
  1968. } else {
  1969. xfs_trans_brelse(tp, ibp);
  1970. }
  1971. /*
  1972. * Point the previous inode on the list to the next inode.
  1973. */
  1974. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  1975. ASSERT(next_agino != 0);
  1976. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1977. xfs_trans_inode_buf(tp, last_ibp);
  1978. xfs_trans_log_buf(tp, last_ibp, offset,
  1979. (offset + sizeof(xfs_agino_t) - 1));
  1980. xfs_inobp_check(mp, last_ibp);
  1981. }
  1982. return 0;
  1983. }
  1984. static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
  1985. {
  1986. return (((ip->i_itemp == NULL) ||
  1987. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  1988. (ip->i_update_core == 0));
  1989. }
  1990. STATIC void
  1991. xfs_ifree_cluster(
  1992. xfs_inode_t *free_ip,
  1993. xfs_trans_t *tp,
  1994. xfs_ino_t inum)
  1995. {
  1996. xfs_mount_t *mp = free_ip->i_mount;
  1997. int blks_per_cluster;
  1998. int nbufs;
  1999. int ninodes;
  2000. int i, j, found, pre_flushed;
  2001. xfs_daddr_t blkno;
  2002. xfs_buf_t *bp;
  2003. xfs_ihash_t *ih;
  2004. xfs_inode_t *ip, **ip_found;
  2005. xfs_inode_log_item_t *iip;
  2006. xfs_log_item_t *lip;
  2007. SPLDECL(s);
  2008. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2009. blks_per_cluster = 1;
  2010. ninodes = mp->m_sb.sb_inopblock;
  2011. nbufs = XFS_IALLOC_BLOCKS(mp);
  2012. } else {
  2013. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2014. mp->m_sb.sb_blocksize;
  2015. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2016. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2017. }
  2018. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2019. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2020. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2021. XFS_INO_TO_AGBNO(mp, inum));
  2022. /*
  2023. * Look for each inode in memory and attempt to lock it,
  2024. * we can be racing with flush and tail pushing here.
  2025. * any inode we get the locks on, add to an array of
  2026. * inode items to process later.
  2027. *
  2028. * The get the buffer lock, we could beat a flush
  2029. * or tail pushing thread to the lock here, in which
  2030. * case they will go looking for the inode buffer
  2031. * and fail, we need some other form of interlock
  2032. * here.
  2033. */
  2034. found = 0;
  2035. for (i = 0; i < ninodes; i++) {
  2036. ih = XFS_IHASH(mp, inum + i);
  2037. read_lock(&ih->ih_lock);
  2038. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2039. if (ip->i_ino == inum + i)
  2040. break;
  2041. }
  2042. /* Inode not in memory or we found it already,
  2043. * nothing to do
  2044. */
  2045. if (!ip || (ip->i_flags & XFS_ISTALE)) {
  2046. read_unlock(&ih->ih_lock);
  2047. continue;
  2048. }
  2049. if (xfs_inode_clean(ip)) {
  2050. read_unlock(&ih->ih_lock);
  2051. continue;
  2052. }
  2053. /* If we can get the locks then add it to the
  2054. * list, otherwise by the time we get the bp lock
  2055. * below it will already be attached to the
  2056. * inode buffer.
  2057. */
  2058. /* This inode will already be locked - by us, lets
  2059. * keep it that way.
  2060. */
  2061. if (ip == free_ip) {
  2062. if (xfs_iflock_nowait(ip)) {
  2063. ip->i_flags |= XFS_ISTALE;
  2064. if (xfs_inode_clean(ip)) {
  2065. xfs_ifunlock(ip);
  2066. } else {
  2067. ip_found[found++] = ip;
  2068. }
  2069. }
  2070. read_unlock(&ih->ih_lock);
  2071. continue;
  2072. }
  2073. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2074. if (xfs_iflock_nowait(ip)) {
  2075. ip->i_flags |= XFS_ISTALE;
  2076. if (xfs_inode_clean(ip)) {
  2077. xfs_ifunlock(ip);
  2078. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2079. } else {
  2080. ip_found[found++] = ip;
  2081. }
  2082. } else {
  2083. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2084. }
  2085. }
  2086. read_unlock(&ih->ih_lock);
  2087. }
  2088. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2089. mp->m_bsize * blks_per_cluster,
  2090. XFS_BUF_LOCK);
  2091. pre_flushed = 0;
  2092. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2093. while (lip) {
  2094. if (lip->li_type == XFS_LI_INODE) {
  2095. iip = (xfs_inode_log_item_t *)lip;
  2096. ASSERT(iip->ili_logged == 1);
  2097. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2098. AIL_LOCK(mp,s);
  2099. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2100. AIL_UNLOCK(mp, s);
  2101. iip->ili_inode->i_flags |= XFS_ISTALE;
  2102. pre_flushed++;
  2103. }
  2104. lip = lip->li_bio_list;
  2105. }
  2106. for (i = 0; i < found; i++) {
  2107. ip = ip_found[i];
  2108. iip = ip->i_itemp;
  2109. if (!iip) {
  2110. ip->i_update_core = 0;
  2111. xfs_ifunlock(ip);
  2112. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2113. continue;
  2114. }
  2115. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2116. iip->ili_format.ilf_fields = 0;
  2117. iip->ili_logged = 1;
  2118. AIL_LOCK(mp,s);
  2119. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2120. AIL_UNLOCK(mp, s);
  2121. xfs_buf_attach_iodone(bp,
  2122. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2123. xfs_istale_done, (xfs_log_item_t *)iip);
  2124. if (ip != free_ip) {
  2125. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2126. }
  2127. }
  2128. if (found || pre_flushed)
  2129. xfs_trans_stale_inode_buf(tp, bp);
  2130. xfs_trans_binval(tp, bp);
  2131. }
  2132. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2133. }
  2134. /*
  2135. * This is called to return an inode to the inode free list.
  2136. * The inode should already be truncated to 0 length and have
  2137. * no pages associated with it. This routine also assumes that
  2138. * the inode is already a part of the transaction.
  2139. *
  2140. * The on-disk copy of the inode will have been added to the list
  2141. * of unlinked inodes in the AGI. We need to remove the inode from
  2142. * that list atomically with respect to freeing it here.
  2143. */
  2144. int
  2145. xfs_ifree(
  2146. xfs_trans_t *tp,
  2147. xfs_inode_t *ip,
  2148. xfs_bmap_free_t *flist)
  2149. {
  2150. int error;
  2151. int delete;
  2152. xfs_ino_t first_ino;
  2153. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2154. ASSERT(ip->i_transp == tp);
  2155. ASSERT(ip->i_d.di_nlink == 0);
  2156. ASSERT(ip->i_d.di_nextents == 0);
  2157. ASSERT(ip->i_d.di_anextents == 0);
  2158. ASSERT((ip->i_d.di_size == 0) ||
  2159. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2160. ASSERT(ip->i_d.di_nblocks == 0);
  2161. /*
  2162. * Pull the on-disk inode from the AGI unlinked list.
  2163. */
  2164. error = xfs_iunlink_remove(tp, ip);
  2165. if (error != 0) {
  2166. return error;
  2167. }
  2168. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2169. if (error != 0) {
  2170. return error;
  2171. }
  2172. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2173. ip->i_d.di_flags = 0;
  2174. ip->i_d.di_dmevmask = 0;
  2175. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2176. ip->i_df.if_ext_max =
  2177. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2178. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2179. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2180. /*
  2181. * Bump the generation count so no one will be confused
  2182. * by reincarnations of this inode.
  2183. */
  2184. ip->i_d.di_gen++;
  2185. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2186. if (delete) {
  2187. xfs_ifree_cluster(ip, tp, first_ino);
  2188. }
  2189. return 0;
  2190. }
  2191. /*
  2192. * Reallocate the space for if_broot based on the number of records
  2193. * being added or deleted as indicated in rec_diff. Move the records
  2194. * and pointers in if_broot to fit the new size. When shrinking this
  2195. * will eliminate holes between the records and pointers created by
  2196. * the caller. When growing this will create holes to be filled in
  2197. * by the caller.
  2198. *
  2199. * The caller must not request to add more records than would fit in
  2200. * the on-disk inode root. If the if_broot is currently NULL, then
  2201. * if we adding records one will be allocated. The caller must also
  2202. * not request that the number of records go below zero, although
  2203. * it can go to zero.
  2204. *
  2205. * ip -- the inode whose if_broot area is changing
  2206. * ext_diff -- the change in the number of records, positive or negative,
  2207. * requested for the if_broot array.
  2208. */
  2209. void
  2210. xfs_iroot_realloc(
  2211. xfs_inode_t *ip,
  2212. int rec_diff,
  2213. int whichfork)
  2214. {
  2215. int cur_max;
  2216. xfs_ifork_t *ifp;
  2217. xfs_bmbt_block_t *new_broot;
  2218. int new_max;
  2219. size_t new_size;
  2220. char *np;
  2221. char *op;
  2222. /*
  2223. * Handle the degenerate case quietly.
  2224. */
  2225. if (rec_diff == 0) {
  2226. return;
  2227. }
  2228. ifp = XFS_IFORK_PTR(ip, whichfork);
  2229. if (rec_diff > 0) {
  2230. /*
  2231. * If there wasn't any memory allocated before, just
  2232. * allocate it now and get out.
  2233. */
  2234. if (ifp->if_broot_bytes == 0) {
  2235. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2236. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2237. KM_SLEEP);
  2238. ifp->if_broot_bytes = (int)new_size;
  2239. return;
  2240. }
  2241. /*
  2242. * If there is already an existing if_broot, then we need
  2243. * to realloc() it and shift the pointers to their new
  2244. * location. The records don't change location because
  2245. * they are kept butted up against the btree block header.
  2246. */
  2247. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2248. new_max = cur_max + rec_diff;
  2249. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2250. ifp->if_broot = (xfs_bmbt_block_t *)
  2251. kmem_realloc(ifp->if_broot,
  2252. new_size,
  2253. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2254. KM_SLEEP);
  2255. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2256. ifp->if_broot_bytes);
  2257. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2258. (int)new_size);
  2259. ifp->if_broot_bytes = (int)new_size;
  2260. ASSERT(ifp->if_broot_bytes <=
  2261. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2262. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2263. return;
  2264. }
  2265. /*
  2266. * rec_diff is less than 0. In this case, we are shrinking the
  2267. * if_broot buffer. It must already exist. If we go to zero
  2268. * records, just get rid of the root and clear the status bit.
  2269. */
  2270. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2271. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2272. new_max = cur_max + rec_diff;
  2273. ASSERT(new_max >= 0);
  2274. if (new_max > 0)
  2275. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2276. else
  2277. new_size = 0;
  2278. if (new_size > 0) {
  2279. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2280. /*
  2281. * First copy over the btree block header.
  2282. */
  2283. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2284. } else {
  2285. new_broot = NULL;
  2286. ifp->if_flags &= ~XFS_IFBROOT;
  2287. }
  2288. /*
  2289. * Only copy the records and pointers if there are any.
  2290. */
  2291. if (new_max > 0) {
  2292. /*
  2293. * First copy the records.
  2294. */
  2295. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2296. ifp->if_broot_bytes);
  2297. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2298. (int)new_size);
  2299. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2300. /*
  2301. * Then copy the pointers.
  2302. */
  2303. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2304. ifp->if_broot_bytes);
  2305. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2306. (int)new_size);
  2307. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2308. }
  2309. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2310. ifp->if_broot = new_broot;
  2311. ifp->if_broot_bytes = (int)new_size;
  2312. ASSERT(ifp->if_broot_bytes <=
  2313. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2314. return;
  2315. }
  2316. /*
  2317. * This is called when the amount of space needed for if_data
  2318. * is increased or decreased. The change in size is indicated by
  2319. * the number of bytes that need to be added or deleted in the
  2320. * byte_diff parameter.
  2321. *
  2322. * If the amount of space needed has decreased below the size of the
  2323. * inline buffer, then switch to using the inline buffer. Otherwise,
  2324. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2325. * to what is needed.
  2326. *
  2327. * ip -- the inode whose if_data area is changing
  2328. * byte_diff -- the change in the number of bytes, positive or negative,
  2329. * requested for the if_data array.
  2330. */
  2331. void
  2332. xfs_idata_realloc(
  2333. xfs_inode_t *ip,
  2334. int byte_diff,
  2335. int whichfork)
  2336. {
  2337. xfs_ifork_t *ifp;
  2338. int new_size;
  2339. int real_size;
  2340. if (byte_diff == 0) {
  2341. return;
  2342. }
  2343. ifp = XFS_IFORK_PTR(ip, whichfork);
  2344. new_size = (int)ifp->if_bytes + byte_diff;
  2345. ASSERT(new_size >= 0);
  2346. if (new_size == 0) {
  2347. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2348. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2349. }
  2350. ifp->if_u1.if_data = NULL;
  2351. real_size = 0;
  2352. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2353. /*
  2354. * If the valid extents/data can fit in if_inline_ext/data,
  2355. * copy them from the malloc'd vector and free it.
  2356. */
  2357. if (ifp->if_u1.if_data == NULL) {
  2358. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2359. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2360. ASSERT(ifp->if_real_bytes != 0);
  2361. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2362. new_size);
  2363. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2364. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2365. }
  2366. real_size = 0;
  2367. } else {
  2368. /*
  2369. * Stuck with malloc/realloc.
  2370. * For inline data, the underlying buffer must be
  2371. * a multiple of 4 bytes in size so that it can be
  2372. * logged and stay on word boundaries. We enforce
  2373. * that here.
  2374. */
  2375. real_size = roundup(new_size, 4);
  2376. if (ifp->if_u1.if_data == NULL) {
  2377. ASSERT(ifp->if_real_bytes == 0);
  2378. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2379. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2380. /*
  2381. * Only do the realloc if the underlying size
  2382. * is really changing.
  2383. */
  2384. if (ifp->if_real_bytes != real_size) {
  2385. ifp->if_u1.if_data =
  2386. kmem_realloc(ifp->if_u1.if_data,
  2387. real_size,
  2388. ifp->if_real_bytes,
  2389. KM_SLEEP);
  2390. }
  2391. } else {
  2392. ASSERT(ifp->if_real_bytes == 0);
  2393. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2394. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2395. ifp->if_bytes);
  2396. }
  2397. }
  2398. ifp->if_real_bytes = real_size;
  2399. ifp->if_bytes = new_size;
  2400. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2401. }
  2402. /*
  2403. * Map inode to disk block and offset.
  2404. *
  2405. * mp -- the mount point structure for the current file system
  2406. * tp -- the current transaction
  2407. * ino -- the inode number of the inode to be located
  2408. * imap -- this structure is filled in with the information necessary
  2409. * to retrieve the given inode from disk
  2410. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2411. * lookups in the inode btree were OK or not
  2412. */
  2413. int
  2414. xfs_imap(
  2415. xfs_mount_t *mp,
  2416. xfs_trans_t *tp,
  2417. xfs_ino_t ino,
  2418. xfs_imap_t *imap,
  2419. uint flags)
  2420. {
  2421. xfs_fsblock_t fsbno;
  2422. int len;
  2423. int off;
  2424. int error;
  2425. fsbno = imap->im_blkno ?
  2426. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2427. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2428. if (error != 0) {
  2429. return error;
  2430. }
  2431. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2432. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2433. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2434. imap->im_ioffset = (ushort)off;
  2435. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2436. return 0;
  2437. }
  2438. void
  2439. xfs_idestroy_fork(
  2440. xfs_inode_t *ip,
  2441. int whichfork)
  2442. {
  2443. xfs_ifork_t *ifp;
  2444. ifp = XFS_IFORK_PTR(ip, whichfork);
  2445. if (ifp->if_broot != NULL) {
  2446. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2447. ifp->if_broot = NULL;
  2448. }
  2449. /*
  2450. * If the format is local, then we can't have an extents
  2451. * array so just look for an inline data array. If we're
  2452. * not local then we may or may not have an extents list,
  2453. * so check and free it up if we do.
  2454. */
  2455. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2456. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2457. (ifp->if_u1.if_data != NULL)) {
  2458. ASSERT(ifp->if_real_bytes != 0);
  2459. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2460. ifp->if_u1.if_data = NULL;
  2461. ifp->if_real_bytes = 0;
  2462. }
  2463. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2464. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2465. ((ifp->if_u1.if_extents != NULL) &&
  2466. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2467. ASSERT(ifp->if_real_bytes != 0);
  2468. xfs_iext_destroy(ifp);
  2469. }
  2470. ASSERT(ifp->if_u1.if_extents == NULL ||
  2471. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2472. ASSERT(ifp->if_real_bytes == 0);
  2473. if (whichfork == XFS_ATTR_FORK) {
  2474. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2475. ip->i_afp = NULL;
  2476. }
  2477. }
  2478. /*
  2479. * This is called free all the memory associated with an inode.
  2480. * It must free the inode itself and any buffers allocated for
  2481. * if_extents/if_data and if_broot. It must also free the lock
  2482. * associated with the inode.
  2483. */
  2484. void
  2485. xfs_idestroy(
  2486. xfs_inode_t *ip)
  2487. {
  2488. switch (ip->i_d.di_mode & S_IFMT) {
  2489. case S_IFREG:
  2490. case S_IFDIR:
  2491. case S_IFLNK:
  2492. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2493. break;
  2494. }
  2495. if (ip->i_afp)
  2496. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2497. mrfree(&ip->i_lock);
  2498. mrfree(&ip->i_iolock);
  2499. freesema(&ip->i_flock);
  2500. #ifdef XFS_BMAP_TRACE
  2501. ktrace_free(ip->i_xtrace);
  2502. #endif
  2503. #ifdef XFS_BMBT_TRACE
  2504. ktrace_free(ip->i_btrace);
  2505. #endif
  2506. #ifdef XFS_RW_TRACE
  2507. ktrace_free(ip->i_rwtrace);
  2508. #endif
  2509. #ifdef XFS_ILOCK_TRACE
  2510. ktrace_free(ip->i_lock_trace);
  2511. #endif
  2512. #ifdef XFS_DIR2_TRACE
  2513. ktrace_free(ip->i_dir_trace);
  2514. #endif
  2515. if (ip->i_itemp) {
  2516. /* XXXdpd should be able to assert this but shutdown
  2517. * is leaving the AIL behind. */
  2518. ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
  2519. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2520. xfs_inode_item_destroy(ip);
  2521. }
  2522. kmem_zone_free(xfs_inode_zone, ip);
  2523. }
  2524. /*
  2525. * Increment the pin count of the given buffer.
  2526. * This value is protected by ipinlock spinlock in the mount structure.
  2527. */
  2528. void
  2529. xfs_ipin(
  2530. xfs_inode_t *ip)
  2531. {
  2532. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2533. atomic_inc(&ip->i_pincount);
  2534. }
  2535. /*
  2536. * Decrement the pin count of the given inode, and wake up
  2537. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2538. * inode must have been previoulsy pinned with a call to xfs_ipin().
  2539. */
  2540. void
  2541. xfs_iunpin(
  2542. xfs_inode_t *ip)
  2543. {
  2544. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2545. if (atomic_dec_and_test(&ip->i_pincount)) {
  2546. vnode_t *vp = XFS_ITOV_NULL(ip);
  2547. /* make sync come back and flush this inode */
  2548. if (vp) {
  2549. struct inode *inode = vn_to_inode(vp);
  2550. if (!(inode->i_state & I_NEW))
  2551. mark_inode_dirty_sync(inode);
  2552. }
  2553. wake_up(&ip->i_ipin_wait);
  2554. }
  2555. }
  2556. /*
  2557. * This is called to wait for the given inode to be unpinned.
  2558. * It will sleep until this happens. The caller must have the
  2559. * inode locked in at least shared mode so that the buffer cannot
  2560. * be subsequently pinned once someone is waiting for it to be
  2561. * unpinned.
  2562. */
  2563. STATIC void
  2564. xfs_iunpin_wait(
  2565. xfs_inode_t *ip)
  2566. {
  2567. xfs_inode_log_item_t *iip;
  2568. xfs_lsn_t lsn;
  2569. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2570. if (atomic_read(&ip->i_pincount) == 0) {
  2571. return;
  2572. }
  2573. iip = ip->i_itemp;
  2574. if (iip && iip->ili_last_lsn) {
  2575. lsn = iip->ili_last_lsn;
  2576. } else {
  2577. lsn = (xfs_lsn_t)0;
  2578. }
  2579. /*
  2580. * Give the log a push so we don't wait here too long.
  2581. */
  2582. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2583. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2584. }
  2585. /*
  2586. * xfs_iextents_copy()
  2587. *
  2588. * This is called to copy the REAL extents (as opposed to the delayed
  2589. * allocation extents) from the inode into the given buffer. It
  2590. * returns the number of bytes copied into the buffer.
  2591. *
  2592. * If there are no delayed allocation extents, then we can just
  2593. * memcpy() the extents into the buffer. Otherwise, we need to
  2594. * examine each extent in turn and skip those which are delayed.
  2595. */
  2596. int
  2597. xfs_iextents_copy(
  2598. xfs_inode_t *ip,
  2599. xfs_bmbt_rec_t *buffer,
  2600. int whichfork)
  2601. {
  2602. int copied;
  2603. xfs_bmbt_rec_t *dest_ep;
  2604. xfs_bmbt_rec_t *ep;
  2605. #ifdef XFS_BMAP_TRACE
  2606. static char fname[] = "xfs_iextents_copy";
  2607. #endif
  2608. int i;
  2609. xfs_ifork_t *ifp;
  2610. int nrecs;
  2611. xfs_fsblock_t start_block;
  2612. ifp = XFS_IFORK_PTR(ip, whichfork);
  2613. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2614. ASSERT(ifp->if_bytes > 0);
  2615. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2616. xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
  2617. ASSERT(nrecs > 0);
  2618. /*
  2619. * There are some delayed allocation extents in the
  2620. * inode, so copy the extents one at a time and skip
  2621. * the delayed ones. There must be at least one
  2622. * non-delayed extent.
  2623. */
  2624. dest_ep = buffer;
  2625. copied = 0;
  2626. for (i = 0; i < nrecs; i++) {
  2627. ep = xfs_iext_get_ext(ifp, i);
  2628. start_block = xfs_bmbt_get_startblock(ep);
  2629. if (ISNULLSTARTBLOCK(start_block)) {
  2630. /*
  2631. * It's a delayed allocation extent, so skip it.
  2632. */
  2633. continue;
  2634. }
  2635. /* Translate to on disk format */
  2636. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2637. (__uint64_t*)&dest_ep->l0);
  2638. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2639. (__uint64_t*)&dest_ep->l1);
  2640. dest_ep++;
  2641. copied++;
  2642. }
  2643. ASSERT(copied != 0);
  2644. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2645. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2646. }
  2647. /*
  2648. * Each of the following cases stores data into the same region
  2649. * of the on-disk inode, so only one of them can be valid at
  2650. * any given time. While it is possible to have conflicting formats
  2651. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2652. * in EXTENTS format, this can only happen when the fork has
  2653. * changed formats after being modified but before being flushed.
  2654. * In these cases, the format always takes precedence, because the
  2655. * format indicates the current state of the fork.
  2656. */
  2657. /*ARGSUSED*/
  2658. STATIC int
  2659. xfs_iflush_fork(
  2660. xfs_inode_t *ip,
  2661. xfs_dinode_t *dip,
  2662. xfs_inode_log_item_t *iip,
  2663. int whichfork,
  2664. xfs_buf_t *bp)
  2665. {
  2666. char *cp;
  2667. xfs_ifork_t *ifp;
  2668. xfs_mount_t *mp;
  2669. #ifdef XFS_TRANS_DEBUG
  2670. int first;
  2671. #endif
  2672. static const short brootflag[2] =
  2673. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2674. static const short dataflag[2] =
  2675. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2676. static const short extflag[2] =
  2677. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2678. if (iip == NULL)
  2679. return 0;
  2680. ifp = XFS_IFORK_PTR(ip, whichfork);
  2681. /*
  2682. * This can happen if we gave up in iformat in an error path,
  2683. * for the attribute fork.
  2684. */
  2685. if (ifp == NULL) {
  2686. ASSERT(whichfork == XFS_ATTR_FORK);
  2687. return 0;
  2688. }
  2689. cp = XFS_DFORK_PTR(dip, whichfork);
  2690. mp = ip->i_mount;
  2691. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2692. case XFS_DINODE_FMT_LOCAL:
  2693. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2694. (ifp->if_bytes > 0)) {
  2695. ASSERT(ifp->if_u1.if_data != NULL);
  2696. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2697. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2698. }
  2699. if (whichfork == XFS_DATA_FORK) {
  2700. if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
  2701. XFS_ERROR_REPORT("xfs_iflush_fork",
  2702. XFS_ERRLEVEL_LOW, mp);
  2703. return XFS_ERROR(EFSCORRUPTED);
  2704. }
  2705. }
  2706. break;
  2707. case XFS_DINODE_FMT_EXTENTS:
  2708. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2709. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2710. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2711. (ifp->if_bytes == 0));
  2712. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2713. (ifp->if_bytes > 0));
  2714. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2715. (ifp->if_bytes > 0)) {
  2716. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2717. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2718. whichfork);
  2719. }
  2720. break;
  2721. case XFS_DINODE_FMT_BTREE:
  2722. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2723. (ifp->if_broot_bytes > 0)) {
  2724. ASSERT(ifp->if_broot != NULL);
  2725. ASSERT(ifp->if_broot_bytes <=
  2726. (XFS_IFORK_SIZE(ip, whichfork) +
  2727. XFS_BROOT_SIZE_ADJ));
  2728. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2729. (xfs_bmdr_block_t *)cp,
  2730. XFS_DFORK_SIZE(dip, mp, whichfork));
  2731. }
  2732. break;
  2733. case XFS_DINODE_FMT_DEV:
  2734. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2735. ASSERT(whichfork == XFS_DATA_FORK);
  2736. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2737. }
  2738. break;
  2739. case XFS_DINODE_FMT_UUID:
  2740. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2741. ASSERT(whichfork == XFS_DATA_FORK);
  2742. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2743. sizeof(uuid_t));
  2744. }
  2745. break;
  2746. default:
  2747. ASSERT(0);
  2748. break;
  2749. }
  2750. return 0;
  2751. }
  2752. /*
  2753. * xfs_iflush() will write a modified inode's changes out to the
  2754. * inode's on disk home. The caller must have the inode lock held
  2755. * in at least shared mode and the inode flush semaphore must be
  2756. * held as well. The inode lock will still be held upon return from
  2757. * the call and the caller is free to unlock it.
  2758. * The inode flush lock will be unlocked when the inode reaches the disk.
  2759. * The flags indicate how the inode's buffer should be written out.
  2760. */
  2761. int
  2762. xfs_iflush(
  2763. xfs_inode_t *ip,
  2764. uint flags)
  2765. {
  2766. xfs_inode_log_item_t *iip;
  2767. xfs_buf_t *bp;
  2768. xfs_dinode_t *dip;
  2769. xfs_mount_t *mp;
  2770. int error;
  2771. /* REFERENCED */
  2772. xfs_chash_t *ch;
  2773. xfs_inode_t *iq;
  2774. int clcount; /* count of inodes clustered */
  2775. int bufwasdelwri;
  2776. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2777. SPLDECL(s);
  2778. XFS_STATS_INC(xs_iflush_count);
  2779. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2780. ASSERT(valusema(&ip->i_flock) <= 0);
  2781. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2782. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2783. iip = ip->i_itemp;
  2784. mp = ip->i_mount;
  2785. /*
  2786. * If the inode isn't dirty, then just release the inode
  2787. * flush lock and do nothing.
  2788. */
  2789. if ((ip->i_update_core == 0) &&
  2790. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2791. ASSERT((iip != NULL) ?
  2792. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2793. xfs_ifunlock(ip);
  2794. return 0;
  2795. }
  2796. /*
  2797. * We can't flush the inode until it is unpinned, so
  2798. * wait for it. We know noone new can pin it, because
  2799. * we are holding the inode lock shared and you need
  2800. * to hold it exclusively to pin the inode.
  2801. */
  2802. xfs_iunpin_wait(ip);
  2803. /*
  2804. * This may have been unpinned because the filesystem is shutting
  2805. * down forcibly. If that's the case we must not write this inode
  2806. * to disk, because the log record didn't make it to disk!
  2807. */
  2808. if (XFS_FORCED_SHUTDOWN(mp)) {
  2809. ip->i_update_core = 0;
  2810. if (iip)
  2811. iip->ili_format.ilf_fields = 0;
  2812. xfs_ifunlock(ip);
  2813. return XFS_ERROR(EIO);
  2814. }
  2815. /*
  2816. * Get the buffer containing the on-disk inode.
  2817. */
  2818. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2819. if (error) {
  2820. xfs_ifunlock(ip);
  2821. return error;
  2822. }
  2823. /*
  2824. * Decide how buffer will be flushed out. This is done before
  2825. * the call to xfs_iflush_int because this field is zeroed by it.
  2826. */
  2827. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2828. /*
  2829. * Flush out the inode buffer according to the directions
  2830. * of the caller. In the cases where the caller has given
  2831. * us a choice choose the non-delwri case. This is because
  2832. * the inode is in the AIL and we need to get it out soon.
  2833. */
  2834. switch (flags) {
  2835. case XFS_IFLUSH_SYNC:
  2836. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2837. flags = 0;
  2838. break;
  2839. case XFS_IFLUSH_ASYNC:
  2840. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2841. flags = INT_ASYNC;
  2842. break;
  2843. case XFS_IFLUSH_DELWRI:
  2844. flags = INT_DELWRI;
  2845. break;
  2846. default:
  2847. ASSERT(0);
  2848. flags = 0;
  2849. break;
  2850. }
  2851. } else {
  2852. switch (flags) {
  2853. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2854. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2855. case XFS_IFLUSH_DELWRI:
  2856. flags = INT_DELWRI;
  2857. break;
  2858. case XFS_IFLUSH_ASYNC:
  2859. flags = INT_ASYNC;
  2860. break;
  2861. case XFS_IFLUSH_SYNC:
  2862. flags = 0;
  2863. break;
  2864. default:
  2865. ASSERT(0);
  2866. flags = 0;
  2867. break;
  2868. }
  2869. }
  2870. /*
  2871. * First flush out the inode that xfs_iflush was called with.
  2872. */
  2873. error = xfs_iflush_int(ip, bp);
  2874. if (error) {
  2875. goto corrupt_out;
  2876. }
  2877. /*
  2878. * inode clustering:
  2879. * see if other inodes can be gathered into this write
  2880. */
  2881. ip->i_chash->chl_buf = bp;
  2882. ch = XFS_CHASH(mp, ip->i_blkno);
  2883. s = mutex_spinlock(&ch->ch_lock);
  2884. clcount = 0;
  2885. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2886. /*
  2887. * Do an un-protected check to see if the inode is dirty and
  2888. * is a candidate for flushing. These checks will be repeated
  2889. * later after the appropriate locks are acquired.
  2890. */
  2891. iip = iq->i_itemp;
  2892. if ((iq->i_update_core == 0) &&
  2893. ((iip == NULL) ||
  2894. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2895. xfs_ipincount(iq) == 0) {
  2896. continue;
  2897. }
  2898. /*
  2899. * Try to get locks. If any are unavailable,
  2900. * then this inode cannot be flushed and is skipped.
  2901. */
  2902. /* get inode locks (just i_lock) */
  2903. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2904. /* get inode flush lock */
  2905. if (xfs_iflock_nowait(iq)) {
  2906. /* check if pinned */
  2907. if (xfs_ipincount(iq) == 0) {
  2908. /* arriving here means that
  2909. * this inode can be flushed.
  2910. * first re-check that it's
  2911. * dirty
  2912. */
  2913. iip = iq->i_itemp;
  2914. if ((iq->i_update_core != 0)||
  2915. ((iip != NULL) &&
  2916. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2917. clcount++;
  2918. error = xfs_iflush_int(iq, bp);
  2919. if (error) {
  2920. xfs_iunlock(iq,
  2921. XFS_ILOCK_SHARED);
  2922. goto cluster_corrupt_out;
  2923. }
  2924. } else {
  2925. xfs_ifunlock(iq);
  2926. }
  2927. } else {
  2928. xfs_ifunlock(iq);
  2929. }
  2930. }
  2931. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2932. }
  2933. }
  2934. mutex_spinunlock(&ch->ch_lock, s);
  2935. if (clcount) {
  2936. XFS_STATS_INC(xs_icluster_flushcnt);
  2937. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2938. }
  2939. /*
  2940. * If the buffer is pinned then push on the log so we won't
  2941. * get stuck waiting in the write for too long.
  2942. */
  2943. if (XFS_BUF_ISPINNED(bp)){
  2944. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2945. }
  2946. if (flags & INT_DELWRI) {
  2947. xfs_bdwrite(mp, bp);
  2948. } else if (flags & INT_ASYNC) {
  2949. xfs_bawrite(mp, bp);
  2950. } else {
  2951. error = xfs_bwrite(mp, bp);
  2952. }
  2953. return error;
  2954. corrupt_out:
  2955. xfs_buf_relse(bp);
  2956. xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
  2957. xfs_iflush_abort(ip);
  2958. /*
  2959. * Unlocks the flush lock
  2960. */
  2961. return XFS_ERROR(EFSCORRUPTED);
  2962. cluster_corrupt_out:
  2963. /* Corruption detected in the clustering loop. Invalidate the
  2964. * inode buffer and shut down the filesystem.
  2965. */
  2966. mutex_spinunlock(&ch->ch_lock, s);
  2967. /*
  2968. * Clean up the buffer. If it was B_DELWRI, just release it --
  2969. * brelse can handle it with no problems. If not, shut down the
  2970. * filesystem before releasing the buffer.
  2971. */
  2972. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  2973. xfs_buf_relse(bp);
  2974. }
  2975. xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
  2976. if(!bufwasdelwri) {
  2977. /*
  2978. * Just like incore_relse: if we have b_iodone functions,
  2979. * mark the buffer as an error and call them. Otherwise
  2980. * mark it as stale and brelse.
  2981. */
  2982. if (XFS_BUF_IODONE_FUNC(bp)) {
  2983. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2984. XFS_BUF_UNDONE(bp);
  2985. XFS_BUF_STALE(bp);
  2986. XFS_BUF_SHUT(bp);
  2987. XFS_BUF_ERROR(bp,EIO);
  2988. xfs_biodone(bp);
  2989. } else {
  2990. XFS_BUF_STALE(bp);
  2991. xfs_buf_relse(bp);
  2992. }
  2993. }
  2994. xfs_iflush_abort(iq);
  2995. /*
  2996. * Unlocks the flush lock
  2997. */
  2998. return XFS_ERROR(EFSCORRUPTED);
  2999. }
  3000. STATIC int
  3001. xfs_iflush_int(
  3002. xfs_inode_t *ip,
  3003. xfs_buf_t *bp)
  3004. {
  3005. xfs_inode_log_item_t *iip;
  3006. xfs_dinode_t *dip;
  3007. xfs_mount_t *mp;
  3008. #ifdef XFS_TRANS_DEBUG
  3009. int first;
  3010. #endif
  3011. SPLDECL(s);
  3012. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3013. ASSERT(valusema(&ip->i_flock) <= 0);
  3014. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3015. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3016. iip = ip->i_itemp;
  3017. mp = ip->i_mount;
  3018. /*
  3019. * If the inode isn't dirty, then just release the inode
  3020. * flush lock and do nothing.
  3021. */
  3022. if ((ip->i_update_core == 0) &&
  3023. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3024. xfs_ifunlock(ip);
  3025. return 0;
  3026. }
  3027. /* set *dip = inode's place in the buffer */
  3028. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3029. /*
  3030. * Clear i_update_core before copying out the data.
  3031. * This is for coordination with our timestamp updates
  3032. * that don't hold the inode lock. They will always
  3033. * update the timestamps BEFORE setting i_update_core,
  3034. * so if we clear i_update_core after they set it we
  3035. * are guaranteed to see their updates to the timestamps.
  3036. * I believe that this depends on strongly ordered memory
  3037. * semantics, but we have that. We use the SYNCHRONIZE
  3038. * macro to make sure that the compiler does not reorder
  3039. * the i_update_core access below the data copy below.
  3040. */
  3041. ip->i_update_core = 0;
  3042. SYNCHRONIZE();
  3043. /*
  3044. * Make sure to get the latest atime from the Linux inode.
  3045. */
  3046. xfs_synchronize_atime(ip);
  3047. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3048. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3049. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3050. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3051. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3052. goto corrupt_out;
  3053. }
  3054. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3055. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3056. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3057. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3058. ip->i_ino, ip, ip->i_d.di_magic);
  3059. goto corrupt_out;
  3060. }
  3061. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3062. if (XFS_TEST_ERROR(
  3063. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3064. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3065. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3066. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3067. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3068. ip->i_ino, ip);
  3069. goto corrupt_out;
  3070. }
  3071. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3072. if (XFS_TEST_ERROR(
  3073. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3074. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3075. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3076. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3077. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3078. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3079. ip->i_ino, ip);
  3080. goto corrupt_out;
  3081. }
  3082. }
  3083. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3084. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3085. XFS_RANDOM_IFLUSH_5)) {
  3086. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3087. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3088. ip->i_ino,
  3089. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3090. ip->i_d.di_nblocks,
  3091. ip);
  3092. goto corrupt_out;
  3093. }
  3094. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3095. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3096. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3097. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3098. ip->i_ino, ip->i_d.di_forkoff, ip);
  3099. goto corrupt_out;
  3100. }
  3101. /*
  3102. * bump the flush iteration count, used to detect flushes which
  3103. * postdate a log record during recovery.
  3104. */
  3105. ip->i_d.di_flushiter++;
  3106. /*
  3107. * Copy the dirty parts of the inode into the on-disk
  3108. * inode. We always copy out the core of the inode,
  3109. * because if the inode is dirty at all the core must
  3110. * be.
  3111. */
  3112. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3113. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3114. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3115. ip->i_d.di_flushiter = 0;
  3116. /*
  3117. * If this is really an old format inode and the superblock version
  3118. * has not been updated to support only new format inodes, then
  3119. * convert back to the old inode format. If the superblock version
  3120. * has been updated, then make the conversion permanent.
  3121. */
  3122. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3123. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3124. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3125. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3126. /*
  3127. * Convert it back.
  3128. */
  3129. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3130. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3131. } else {
  3132. /*
  3133. * The superblock version has already been bumped,
  3134. * so just make the conversion to the new inode
  3135. * format permanent.
  3136. */
  3137. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3138. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3139. ip->i_d.di_onlink = 0;
  3140. dip->di_core.di_onlink = 0;
  3141. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3142. memset(&(dip->di_core.di_pad[0]), 0,
  3143. sizeof(dip->di_core.di_pad));
  3144. ASSERT(ip->i_d.di_projid == 0);
  3145. }
  3146. }
  3147. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3148. goto corrupt_out;
  3149. }
  3150. if (XFS_IFORK_Q(ip)) {
  3151. /*
  3152. * The only error from xfs_iflush_fork is on the data fork.
  3153. */
  3154. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3155. }
  3156. xfs_inobp_check(mp, bp);
  3157. /*
  3158. * We've recorded everything logged in the inode, so we'd
  3159. * like to clear the ilf_fields bits so we don't log and
  3160. * flush things unnecessarily. However, we can't stop
  3161. * logging all this information until the data we've copied
  3162. * into the disk buffer is written to disk. If we did we might
  3163. * overwrite the copy of the inode in the log with all the
  3164. * data after re-logging only part of it, and in the face of
  3165. * a crash we wouldn't have all the data we need to recover.
  3166. *
  3167. * What we do is move the bits to the ili_last_fields field.
  3168. * When logging the inode, these bits are moved back to the
  3169. * ilf_fields field. In the xfs_iflush_done() routine we
  3170. * clear ili_last_fields, since we know that the information
  3171. * those bits represent is permanently on disk. As long as
  3172. * the flush completes before the inode is logged again, then
  3173. * both ilf_fields and ili_last_fields will be cleared.
  3174. *
  3175. * We can play with the ilf_fields bits here, because the inode
  3176. * lock must be held exclusively in order to set bits there
  3177. * and the flush lock protects the ili_last_fields bits.
  3178. * Set ili_logged so the flush done
  3179. * routine can tell whether or not to look in the AIL.
  3180. * Also, store the current LSN of the inode so that we can tell
  3181. * whether the item has moved in the AIL from xfs_iflush_done().
  3182. * In order to read the lsn we need the AIL lock, because
  3183. * it is a 64 bit value that cannot be read atomically.
  3184. */
  3185. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3186. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3187. iip->ili_format.ilf_fields = 0;
  3188. iip->ili_logged = 1;
  3189. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3190. AIL_LOCK(mp,s);
  3191. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3192. AIL_UNLOCK(mp, s);
  3193. /*
  3194. * Attach the function xfs_iflush_done to the inode's
  3195. * buffer. This will remove the inode from the AIL
  3196. * and unlock the inode's flush lock when the inode is
  3197. * completely written to disk.
  3198. */
  3199. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3200. xfs_iflush_done, (xfs_log_item_t *)iip);
  3201. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3202. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3203. } else {
  3204. /*
  3205. * We're flushing an inode which is not in the AIL and has
  3206. * not been logged but has i_update_core set. For this
  3207. * case we can use a B_DELWRI flush and immediately drop
  3208. * the inode flush lock because we can avoid the whole
  3209. * AIL state thing. It's OK to drop the flush lock now,
  3210. * because we've already locked the buffer and to do anything
  3211. * you really need both.
  3212. */
  3213. if (iip != NULL) {
  3214. ASSERT(iip->ili_logged == 0);
  3215. ASSERT(iip->ili_last_fields == 0);
  3216. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3217. }
  3218. xfs_ifunlock(ip);
  3219. }
  3220. return 0;
  3221. corrupt_out:
  3222. return XFS_ERROR(EFSCORRUPTED);
  3223. }
  3224. /*
  3225. * Flush all inactive inodes in mp.
  3226. */
  3227. void
  3228. xfs_iflush_all(
  3229. xfs_mount_t *mp)
  3230. {
  3231. xfs_inode_t *ip;
  3232. vnode_t *vp;
  3233. again:
  3234. XFS_MOUNT_ILOCK(mp);
  3235. ip = mp->m_inodes;
  3236. if (ip == NULL)
  3237. goto out;
  3238. do {
  3239. /* Make sure we skip markers inserted by sync */
  3240. if (ip->i_mount == NULL) {
  3241. ip = ip->i_mnext;
  3242. continue;
  3243. }
  3244. vp = XFS_ITOV_NULL(ip);
  3245. if (!vp) {
  3246. XFS_MOUNT_IUNLOCK(mp);
  3247. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3248. goto again;
  3249. }
  3250. ASSERT(vn_count(vp) == 0);
  3251. ip = ip->i_mnext;
  3252. } while (ip != mp->m_inodes);
  3253. out:
  3254. XFS_MOUNT_IUNLOCK(mp);
  3255. }
  3256. /*
  3257. * xfs_iaccess: check accessibility of inode for mode.
  3258. */
  3259. int
  3260. xfs_iaccess(
  3261. xfs_inode_t *ip,
  3262. mode_t mode,
  3263. cred_t *cr)
  3264. {
  3265. int error;
  3266. mode_t orgmode = mode;
  3267. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3268. if (mode & S_IWUSR) {
  3269. umode_t imode = inode->i_mode;
  3270. if (IS_RDONLY(inode) &&
  3271. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3272. return XFS_ERROR(EROFS);
  3273. if (IS_IMMUTABLE(inode))
  3274. return XFS_ERROR(EACCES);
  3275. }
  3276. /*
  3277. * If there's an Access Control List it's used instead of
  3278. * the mode bits.
  3279. */
  3280. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3281. return error ? XFS_ERROR(error) : 0;
  3282. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3283. mode >>= 3;
  3284. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3285. mode >>= 3;
  3286. }
  3287. /*
  3288. * If the DACs are ok we don't need any capability check.
  3289. */
  3290. if ((ip->i_d.di_mode & mode) == mode)
  3291. return 0;
  3292. /*
  3293. * Read/write DACs are always overridable.
  3294. * Executable DACs are overridable if at least one exec bit is set.
  3295. */
  3296. if (!(orgmode & S_IXUSR) ||
  3297. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3298. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3299. return 0;
  3300. if ((orgmode == S_IRUSR) ||
  3301. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3302. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3303. return 0;
  3304. #ifdef NOISE
  3305. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3306. #endif /* NOISE */
  3307. return XFS_ERROR(EACCES);
  3308. }
  3309. return XFS_ERROR(EACCES);
  3310. }
  3311. /*
  3312. * xfs_iroundup: round up argument to next power of two
  3313. */
  3314. uint
  3315. xfs_iroundup(
  3316. uint v)
  3317. {
  3318. int i;
  3319. uint m;
  3320. if ((v & (v - 1)) == 0)
  3321. return v;
  3322. ASSERT((v & 0x80000000) == 0);
  3323. if ((v & (v + 1)) == 0)
  3324. return v + 1;
  3325. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3326. if (v & m)
  3327. continue;
  3328. v |= m;
  3329. if ((v & (v + 1)) == 0)
  3330. return v + 1;
  3331. }
  3332. ASSERT(0);
  3333. return( 0 );
  3334. }
  3335. #ifdef XFS_ILOCK_TRACE
  3336. ktrace_t *xfs_ilock_trace_buf;
  3337. void
  3338. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3339. {
  3340. ktrace_enter(ip->i_lock_trace,
  3341. (void *)ip,
  3342. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3343. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3344. (void *)ra, /* caller of ilock */
  3345. (void *)(unsigned long)current_cpu(),
  3346. (void *)(unsigned long)current_pid(),
  3347. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3348. }
  3349. #endif
  3350. /*
  3351. * Return a pointer to the extent record at file index idx.
  3352. */
  3353. xfs_bmbt_rec_t *
  3354. xfs_iext_get_ext(
  3355. xfs_ifork_t *ifp, /* inode fork pointer */
  3356. xfs_extnum_t idx) /* index of target extent */
  3357. {
  3358. ASSERT(idx >= 0);
  3359. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3360. return ifp->if_u1.if_ext_irec->er_extbuf;
  3361. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3362. xfs_ext_irec_t *erp; /* irec pointer */
  3363. int erp_idx = 0; /* irec index */
  3364. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3365. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3366. return &erp->er_extbuf[page_idx];
  3367. } else if (ifp->if_bytes) {
  3368. return &ifp->if_u1.if_extents[idx];
  3369. } else {
  3370. return NULL;
  3371. }
  3372. }
  3373. /*
  3374. * Insert new item(s) into the extent records for incore inode
  3375. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3376. */
  3377. void
  3378. xfs_iext_insert(
  3379. xfs_ifork_t *ifp, /* inode fork pointer */
  3380. xfs_extnum_t idx, /* starting index of new items */
  3381. xfs_extnum_t count, /* number of inserted items */
  3382. xfs_bmbt_irec_t *new) /* items to insert */
  3383. {
  3384. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3385. xfs_extnum_t i; /* extent record index */
  3386. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3387. xfs_iext_add(ifp, idx, count);
  3388. for (i = idx; i < idx + count; i++, new++) {
  3389. ep = xfs_iext_get_ext(ifp, i);
  3390. xfs_bmbt_set_all(ep, new);
  3391. }
  3392. }
  3393. /*
  3394. * This is called when the amount of space required for incore file
  3395. * extents needs to be increased. The ext_diff parameter stores the
  3396. * number of new extents being added and the idx parameter contains
  3397. * the extent index where the new extents will be added. If the new
  3398. * extents are being appended, then we just need to (re)allocate and
  3399. * initialize the space. Otherwise, if the new extents are being
  3400. * inserted into the middle of the existing entries, a bit more work
  3401. * is required to make room for the new extents to be inserted. The
  3402. * caller is responsible for filling in the new extent entries upon
  3403. * return.
  3404. */
  3405. void
  3406. xfs_iext_add(
  3407. xfs_ifork_t *ifp, /* inode fork pointer */
  3408. xfs_extnum_t idx, /* index to begin adding exts */
  3409. int ext_diff) /* nubmer of extents to add */
  3410. {
  3411. int byte_diff; /* new bytes being added */
  3412. int new_size; /* size of extents after adding */
  3413. xfs_extnum_t nextents; /* number of extents in file */
  3414. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3415. ASSERT((idx >= 0) && (idx <= nextents));
  3416. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3417. new_size = ifp->if_bytes + byte_diff;
  3418. /*
  3419. * If the new number of extents (nextents + ext_diff)
  3420. * fits inside the inode, then continue to use the inline
  3421. * extent buffer.
  3422. */
  3423. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3424. if (idx < nextents) {
  3425. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3426. &ifp->if_u2.if_inline_ext[idx],
  3427. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3428. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3429. }
  3430. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3431. ifp->if_real_bytes = 0;
  3432. ifp->if_lastex = nextents + ext_diff;
  3433. }
  3434. /*
  3435. * Otherwise use a linear (direct) extent list.
  3436. * If the extents are currently inside the inode,
  3437. * xfs_iext_realloc_direct will switch us from
  3438. * inline to direct extent allocation mode.
  3439. */
  3440. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3441. xfs_iext_realloc_direct(ifp, new_size);
  3442. if (idx < nextents) {
  3443. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3444. &ifp->if_u1.if_extents[idx],
  3445. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3446. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3447. }
  3448. }
  3449. /* Indirection array */
  3450. else {
  3451. xfs_ext_irec_t *erp;
  3452. int erp_idx = 0;
  3453. int page_idx = idx;
  3454. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3455. if (ifp->if_flags & XFS_IFEXTIREC) {
  3456. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3457. } else {
  3458. xfs_iext_irec_init(ifp);
  3459. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3460. erp = ifp->if_u1.if_ext_irec;
  3461. }
  3462. /* Extents fit in target extent page */
  3463. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3464. if (page_idx < erp->er_extcount) {
  3465. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3466. &erp->er_extbuf[page_idx],
  3467. (erp->er_extcount - page_idx) *
  3468. sizeof(xfs_bmbt_rec_t));
  3469. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3470. }
  3471. erp->er_extcount += ext_diff;
  3472. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3473. }
  3474. /* Insert a new extent page */
  3475. else if (erp) {
  3476. xfs_iext_add_indirect_multi(ifp,
  3477. erp_idx, page_idx, ext_diff);
  3478. }
  3479. /*
  3480. * If extent(s) are being appended to the last page in
  3481. * the indirection array and the new extent(s) don't fit
  3482. * in the page, then erp is NULL and erp_idx is set to
  3483. * the next index needed in the indirection array.
  3484. */
  3485. else {
  3486. int count = ext_diff;
  3487. while (count) {
  3488. erp = xfs_iext_irec_new(ifp, erp_idx);
  3489. erp->er_extcount = count;
  3490. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3491. if (count) {
  3492. erp_idx++;
  3493. }
  3494. }
  3495. }
  3496. }
  3497. ifp->if_bytes = new_size;
  3498. }
  3499. /*
  3500. * This is called when incore extents are being added to the indirection
  3501. * array and the new extents do not fit in the target extent list. The
  3502. * erp_idx parameter contains the irec index for the target extent list
  3503. * in the indirection array, and the idx parameter contains the extent
  3504. * index within the list. The number of extents being added is stored
  3505. * in the count parameter.
  3506. *
  3507. * |-------| |-------|
  3508. * | | | | idx - number of extents before idx
  3509. * | idx | | count |
  3510. * | | | | count - number of extents being inserted at idx
  3511. * |-------| |-------|
  3512. * | count | | nex2 | nex2 - number of extents after idx + count
  3513. * |-------| |-------|
  3514. */
  3515. void
  3516. xfs_iext_add_indirect_multi(
  3517. xfs_ifork_t *ifp, /* inode fork pointer */
  3518. int erp_idx, /* target extent irec index */
  3519. xfs_extnum_t idx, /* index within target list */
  3520. int count) /* new extents being added */
  3521. {
  3522. int byte_diff; /* new bytes being added */
  3523. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3524. xfs_extnum_t ext_diff; /* number of extents to add */
  3525. xfs_extnum_t ext_cnt; /* new extents still needed */
  3526. xfs_extnum_t nex2; /* extents after idx + count */
  3527. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3528. int nlists; /* number of irec's (lists) */
  3529. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3530. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3531. nex2 = erp->er_extcount - idx;
  3532. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3533. /*
  3534. * Save second part of target extent list
  3535. * (all extents past */
  3536. if (nex2) {
  3537. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3538. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3539. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3540. erp->er_extcount -= nex2;
  3541. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3542. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3543. }
  3544. /*
  3545. * Add the new extents to the end of the target
  3546. * list, then allocate new irec record(s) and
  3547. * extent buffer(s) as needed to store the rest
  3548. * of the new extents.
  3549. */
  3550. ext_cnt = count;
  3551. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3552. if (ext_diff) {
  3553. erp->er_extcount += ext_diff;
  3554. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3555. ext_cnt -= ext_diff;
  3556. }
  3557. while (ext_cnt) {
  3558. erp_idx++;
  3559. erp = xfs_iext_irec_new(ifp, erp_idx);
  3560. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3561. erp->er_extcount = ext_diff;
  3562. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3563. ext_cnt -= ext_diff;
  3564. }
  3565. /* Add nex2 extents back to indirection array */
  3566. if (nex2) {
  3567. xfs_extnum_t ext_avail;
  3568. int i;
  3569. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3570. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3571. i = 0;
  3572. /*
  3573. * If nex2 extents fit in the current page, append
  3574. * nex2_ep after the new extents.
  3575. */
  3576. if (nex2 <= ext_avail) {
  3577. i = erp->er_extcount;
  3578. }
  3579. /*
  3580. * Otherwise, check if space is available in the
  3581. * next page.
  3582. */
  3583. else if ((erp_idx < nlists - 1) &&
  3584. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3585. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3586. erp_idx++;
  3587. erp++;
  3588. /* Create a hole for nex2 extents */
  3589. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3590. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3591. }
  3592. /*
  3593. * Final choice, create a new extent page for
  3594. * nex2 extents.
  3595. */
  3596. else {
  3597. erp_idx++;
  3598. erp = xfs_iext_irec_new(ifp, erp_idx);
  3599. }
  3600. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3601. kmem_free(nex2_ep, byte_diff);
  3602. erp->er_extcount += nex2;
  3603. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3604. }
  3605. }
  3606. /*
  3607. * This is called when the amount of space required for incore file
  3608. * extents needs to be decreased. The ext_diff parameter stores the
  3609. * number of extents to be removed and the idx parameter contains
  3610. * the extent index where the extents will be removed from.
  3611. *
  3612. * If the amount of space needed has decreased below the linear
  3613. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3614. * extent array. Otherwise, use kmem_realloc() to adjust the
  3615. * size to what is needed.
  3616. */
  3617. void
  3618. xfs_iext_remove(
  3619. xfs_ifork_t *ifp, /* inode fork pointer */
  3620. xfs_extnum_t idx, /* index to begin removing exts */
  3621. int ext_diff) /* number of extents to remove */
  3622. {
  3623. xfs_extnum_t nextents; /* number of extents in file */
  3624. int new_size; /* size of extents after removal */
  3625. ASSERT(ext_diff > 0);
  3626. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3627. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3628. if (new_size == 0) {
  3629. xfs_iext_destroy(ifp);
  3630. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3631. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3632. } else if (ifp->if_real_bytes) {
  3633. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3634. } else {
  3635. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3636. }
  3637. ifp->if_bytes = new_size;
  3638. }
  3639. /*
  3640. * This removes ext_diff extents from the inline buffer, beginning
  3641. * at extent index idx.
  3642. */
  3643. void
  3644. xfs_iext_remove_inline(
  3645. xfs_ifork_t *ifp, /* inode fork pointer */
  3646. xfs_extnum_t idx, /* index to begin removing exts */
  3647. int ext_diff) /* number of extents to remove */
  3648. {
  3649. int nextents; /* number of extents in file */
  3650. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3651. ASSERT(idx < XFS_INLINE_EXTS);
  3652. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3653. ASSERT(((nextents - ext_diff) > 0) &&
  3654. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3655. if (idx + ext_diff < nextents) {
  3656. memmove(&ifp->if_u2.if_inline_ext[idx],
  3657. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3658. (nextents - (idx + ext_diff)) *
  3659. sizeof(xfs_bmbt_rec_t));
  3660. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3661. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3662. } else {
  3663. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3664. ext_diff * sizeof(xfs_bmbt_rec_t));
  3665. }
  3666. }
  3667. /*
  3668. * This removes ext_diff extents from a linear (direct) extent list,
  3669. * beginning at extent index idx. If the extents are being removed
  3670. * from the end of the list (ie. truncate) then we just need to re-
  3671. * allocate the list to remove the extra space. Otherwise, if the
  3672. * extents are being removed from the middle of the existing extent
  3673. * entries, then we first need to move the extent records beginning
  3674. * at idx + ext_diff up in the list to overwrite the records being
  3675. * removed, then remove the extra space via kmem_realloc.
  3676. */
  3677. void
  3678. xfs_iext_remove_direct(
  3679. xfs_ifork_t *ifp, /* inode fork pointer */
  3680. xfs_extnum_t idx, /* index to begin removing exts */
  3681. int ext_diff) /* number of extents to remove */
  3682. {
  3683. xfs_extnum_t nextents; /* number of extents in file */
  3684. int new_size; /* size of extents after removal */
  3685. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3686. new_size = ifp->if_bytes -
  3687. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3688. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3689. if (new_size == 0) {
  3690. xfs_iext_destroy(ifp);
  3691. return;
  3692. }
  3693. /* Move extents up in the list (if needed) */
  3694. if (idx + ext_diff < nextents) {
  3695. memmove(&ifp->if_u1.if_extents[idx],
  3696. &ifp->if_u1.if_extents[idx + ext_diff],
  3697. (nextents - (idx + ext_diff)) *
  3698. sizeof(xfs_bmbt_rec_t));
  3699. }
  3700. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3701. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3702. /*
  3703. * Reallocate the direct extent list. If the extents
  3704. * will fit inside the inode then xfs_iext_realloc_direct
  3705. * will switch from direct to inline extent allocation
  3706. * mode for us.
  3707. */
  3708. xfs_iext_realloc_direct(ifp, new_size);
  3709. ifp->if_bytes = new_size;
  3710. }
  3711. /*
  3712. * This is called when incore extents are being removed from the
  3713. * indirection array and the extents being removed span multiple extent
  3714. * buffers. The idx parameter contains the file extent index where we
  3715. * want to begin removing extents, and the count parameter contains
  3716. * how many extents need to be removed.
  3717. *
  3718. * |-------| |-------|
  3719. * | nex1 | | | nex1 - number of extents before idx
  3720. * |-------| | count |
  3721. * | | | | count - number of extents being removed at idx
  3722. * | count | |-------|
  3723. * | | | nex2 | nex2 - number of extents after idx + count
  3724. * |-------| |-------|
  3725. */
  3726. void
  3727. xfs_iext_remove_indirect(
  3728. xfs_ifork_t *ifp, /* inode fork pointer */
  3729. xfs_extnum_t idx, /* index to begin removing extents */
  3730. int count) /* number of extents to remove */
  3731. {
  3732. xfs_ext_irec_t *erp; /* indirection array pointer */
  3733. int erp_idx = 0; /* indirection array index */
  3734. xfs_extnum_t ext_cnt; /* extents left to remove */
  3735. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3736. xfs_extnum_t nex1; /* number of extents before idx */
  3737. xfs_extnum_t nex2; /* extents after idx + count */
  3738. int nlists; /* entries in indirecton array */
  3739. int page_idx = idx; /* index in target extent list */
  3740. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3741. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3742. ASSERT(erp != NULL);
  3743. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3744. nex1 = page_idx;
  3745. ext_cnt = count;
  3746. while (ext_cnt) {
  3747. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3748. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3749. /*
  3750. * Check for deletion of entire list;
  3751. * xfs_iext_irec_remove() updates extent offsets.
  3752. */
  3753. if (ext_diff == erp->er_extcount) {
  3754. xfs_iext_irec_remove(ifp, erp_idx);
  3755. ext_cnt -= ext_diff;
  3756. nex1 = 0;
  3757. if (ext_cnt) {
  3758. ASSERT(erp_idx < ifp->if_real_bytes /
  3759. XFS_IEXT_BUFSZ);
  3760. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3761. nex1 = 0;
  3762. continue;
  3763. } else {
  3764. break;
  3765. }
  3766. }
  3767. /* Move extents up (if needed) */
  3768. if (nex2) {
  3769. memmove(&erp->er_extbuf[nex1],
  3770. &erp->er_extbuf[nex1 + ext_diff],
  3771. nex2 * sizeof(xfs_bmbt_rec_t));
  3772. }
  3773. /* Zero out rest of page */
  3774. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3775. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3776. /* Update remaining counters */
  3777. erp->er_extcount -= ext_diff;
  3778. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3779. ext_cnt -= ext_diff;
  3780. nex1 = 0;
  3781. erp_idx++;
  3782. erp++;
  3783. }
  3784. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3785. xfs_iext_irec_compact(ifp);
  3786. }
  3787. /*
  3788. * Create, destroy, or resize a linear (direct) block of extents.
  3789. */
  3790. void
  3791. xfs_iext_realloc_direct(
  3792. xfs_ifork_t *ifp, /* inode fork pointer */
  3793. int new_size) /* new size of extents */
  3794. {
  3795. int rnew_size; /* real new size of extents */
  3796. rnew_size = new_size;
  3797. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3798. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3799. (new_size != ifp->if_real_bytes)));
  3800. /* Free extent records */
  3801. if (new_size == 0) {
  3802. xfs_iext_destroy(ifp);
  3803. }
  3804. /* Resize direct extent list and zero any new bytes */
  3805. else if (ifp->if_real_bytes) {
  3806. /* Check if extents will fit inside the inode */
  3807. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3808. xfs_iext_direct_to_inline(ifp, new_size /
  3809. (uint)sizeof(xfs_bmbt_rec_t));
  3810. ifp->if_bytes = new_size;
  3811. return;
  3812. }
  3813. if ((new_size & (new_size - 1)) != 0) {
  3814. rnew_size = xfs_iroundup(new_size);
  3815. }
  3816. if (rnew_size != ifp->if_real_bytes) {
  3817. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3818. kmem_realloc(ifp->if_u1.if_extents,
  3819. rnew_size,
  3820. ifp->if_real_bytes,
  3821. KM_SLEEP);
  3822. }
  3823. if (rnew_size > ifp->if_real_bytes) {
  3824. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3825. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3826. rnew_size - ifp->if_real_bytes);
  3827. }
  3828. }
  3829. /*
  3830. * Switch from the inline extent buffer to a direct
  3831. * extent list. Be sure to include the inline extent
  3832. * bytes in new_size.
  3833. */
  3834. else {
  3835. new_size += ifp->if_bytes;
  3836. if ((new_size & (new_size - 1)) != 0) {
  3837. rnew_size = xfs_iroundup(new_size);
  3838. }
  3839. xfs_iext_inline_to_direct(ifp, rnew_size);
  3840. }
  3841. ifp->if_real_bytes = rnew_size;
  3842. ifp->if_bytes = new_size;
  3843. }
  3844. /*
  3845. * Switch from linear (direct) extent records to inline buffer.
  3846. */
  3847. void
  3848. xfs_iext_direct_to_inline(
  3849. xfs_ifork_t *ifp, /* inode fork pointer */
  3850. xfs_extnum_t nextents) /* number of extents in file */
  3851. {
  3852. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3853. ASSERT(nextents <= XFS_INLINE_EXTS);
  3854. /*
  3855. * The inline buffer was zeroed when we switched
  3856. * from inline to direct extent allocation mode,
  3857. * so we don't need to clear it here.
  3858. */
  3859. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3860. nextents * sizeof(xfs_bmbt_rec_t));
  3861. kmem_free(ifp->if_u1.if_extents, KM_SLEEP);
  3862. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3863. ifp->if_real_bytes = 0;
  3864. }
  3865. /*
  3866. * Switch from inline buffer to linear (direct) extent records.
  3867. * new_size should already be rounded up to the next power of 2
  3868. * by the caller (when appropriate), so use new_size as it is.
  3869. * However, since new_size may be rounded up, we can't update
  3870. * if_bytes here. It is the caller's responsibility to update
  3871. * if_bytes upon return.
  3872. */
  3873. void
  3874. xfs_iext_inline_to_direct(
  3875. xfs_ifork_t *ifp, /* inode fork pointer */
  3876. int new_size) /* number of extents in file */
  3877. {
  3878. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3879. kmem_alloc(new_size, KM_SLEEP);
  3880. memset(ifp->if_u1.if_extents, 0, new_size);
  3881. if (ifp->if_bytes) {
  3882. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3883. ifp->if_bytes);
  3884. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3885. sizeof(xfs_bmbt_rec_t));
  3886. }
  3887. ifp->if_real_bytes = new_size;
  3888. }
  3889. /*
  3890. * Resize an extent indirection array to new_size bytes.
  3891. */
  3892. void
  3893. xfs_iext_realloc_indirect(
  3894. xfs_ifork_t *ifp, /* inode fork pointer */
  3895. int new_size) /* new indirection array size */
  3896. {
  3897. int nlists; /* number of irec's (ex lists) */
  3898. int size; /* current indirection array size */
  3899. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3900. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3901. size = nlists * sizeof(xfs_ext_irec_t);
  3902. ASSERT(ifp->if_real_bytes);
  3903. ASSERT((new_size >= 0) && (new_size != size));
  3904. if (new_size == 0) {
  3905. xfs_iext_destroy(ifp);
  3906. } else {
  3907. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3908. kmem_realloc(ifp->if_u1.if_ext_irec,
  3909. new_size, size, KM_SLEEP);
  3910. }
  3911. }
  3912. /*
  3913. * Switch from indirection array to linear (direct) extent allocations.
  3914. */
  3915. void
  3916. xfs_iext_indirect_to_direct(
  3917. xfs_ifork_t *ifp) /* inode fork pointer */
  3918. {
  3919. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3920. xfs_extnum_t nextents; /* number of extents in file */
  3921. int size; /* size of file extents */
  3922. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3923. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3924. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3925. size = nextents * sizeof(xfs_bmbt_rec_t);
  3926. xfs_iext_irec_compact_full(ifp);
  3927. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3928. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3929. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3930. ifp->if_flags &= ~XFS_IFEXTIREC;
  3931. ifp->if_u1.if_extents = ep;
  3932. ifp->if_bytes = size;
  3933. if (nextents < XFS_LINEAR_EXTS) {
  3934. xfs_iext_realloc_direct(ifp, size);
  3935. }
  3936. }
  3937. /*
  3938. * Free incore file extents.
  3939. */
  3940. void
  3941. xfs_iext_destroy(
  3942. xfs_ifork_t *ifp) /* inode fork pointer */
  3943. {
  3944. if (ifp->if_flags & XFS_IFEXTIREC) {
  3945. int erp_idx;
  3946. int nlists;
  3947. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3948. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3949. xfs_iext_irec_remove(ifp, erp_idx);
  3950. }
  3951. ifp->if_flags &= ~XFS_IFEXTIREC;
  3952. } else if (ifp->if_real_bytes) {
  3953. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3954. } else if (ifp->if_bytes) {
  3955. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3956. sizeof(xfs_bmbt_rec_t));
  3957. }
  3958. ifp->if_u1.if_extents = NULL;
  3959. ifp->if_real_bytes = 0;
  3960. ifp->if_bytes = 0;
  3961. }
  3962. /*
  3963. * Return a pointer to the extent record for file system block bno.
  3964. */
  3965. xfs_bmbt_rec_t * /* pointer to found extent record */
  3966. xfs_iext_bno_to_ext(
  3967. xfs_ifork_t *ifp, /* inode fork pointer */
  3968. xfs_fileoff_t bno, /* block number to search for */
  3969. xfs_extnum_t *idxp) /* index of target extent */
  3970. {
  3971. xfs_bmbt_rec_t *base; /* pointer to first extent */
  3972. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3973. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  3974. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3975. int high; /* upper boundry in search */
  3976. xfs_extnum_t idx = 0; /* index of target extent */
  3977. int low; /* lower boundry in search */
  3978. xfs_extnum_t nextents; /* number of file extents */
  3979. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3980. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3981. if (nextents == 0) {
  3982. *idxp = 0;
  3983. return NULL;
  3984. }
  3985. low = 0;
  3986. if (ifp->if_flags & XFS_IFEXTIREC) {
  3987. /* Find target extent list */
  3988. int erp_idx = 0;
  3989. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3990. base = erp->er_extbuf;
  3991. high = erp->er_extcount - 1;
  3992. } else {
  3993. base = ifp->if_u1.if_extents;
  3994. high = nextents - 1;
  3995. }
  3996. /* Binary search extent records */
  3997. while (low <= high) {
  3998. idx = (low + high) >> 1;
  3999. ep = base + idx;
  4000. startoff = xfs_bmbt_get_startoff(ep);
  4001. blockcount = xfs_bmbt_get_blockcount(ep);
  4002. if (bno < startoff) {
  4003. high = idx - 1;
  4004. } else if (bno >= startoff + blockcount) {
  4005. low = idx + 1;
  4006. } else {
  4007. /* Convert back to file-based extent index */
  4008. if (ifp->if_flags & XFS_IFEXTIREC) {
  4009. idx += erp->er_extoff;
  4010. }
  4011. *idxp = idx;
  4012. return ep;
  4013. }
  4014. }
  4015. /* Convert back to file-based extent index */
  4016. if (ifp->if_flags & XFS_IFEXTIREC) {
  4017. idx += erp->er_extoff;
  4018. }
  4019. if (bno >= startoff + blockcount) {
  4020. if (++idx == nextents) {
  4021. ep = NULL;
  4022. } else {
  4023. ep = xfs_iext_get_ext(ifp, idx);
  4024. }
  4025. }
  4026. *idxp = idx;
  4027. return ep;
  4028. }
  4029. /*
  4030. * Return a pointer to the indirection array entry containing the
  4031. * extent record for filesystem block bno. Store the index of the
  4032. * target irec in *erp_idxp.
  4033. */
  4034. xfs_ext_irec_t * /* pointer to found extent record */
  4035. xfs_iext_bno_to_irec(
  4036. xfs_ifork_t *ifp, /* inode fork pointer */
  4037. xfs_fileoff_t bno, /* block number to search for */
  4038. int *erp_idxp) /* irec index of target ext list */
  4039. {
  4040. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4041. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4042. int erp_idx; /* indirection array index */
  4043. int nlists; /* number of extent irec's (lists) */
  4044. int high; /* binary search upper limit */
  4045. int low; /* binary search lower limit */
  4046. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4047. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4048. erp_idx = 0;
  4049. low = 0;
  4050. high = nlists - 1;
  4051. while (low <= high) {
  4052. erp_idx = (low + high) >> 1;
  4053. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4054. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4055. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4056. high = erp_idx - 1;
  4057. } else if (erp_next && bno >=
  4058. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4059. low = erp_idx + 1;
  4060. } else {
  4061. break;
  4062. }
  4063. }
  4064. *erp_idxp = erp_idx;
  4065. return erp;
  4066. }
  4067. /*
  4068. * Return a pointer to the indirection array entry containing the
  4069. * extent record at file extent index *idxp. Store the index of the
  4070. * target irec in *erp_idxp and store the page index of the target
  4071. * extent record in *idxp.
  4072. */
  4073. xfs_ext_irec_t *
  4074. xfs_iext_idx_to_irec(
  4075. xfs_ifork_t *ifp, /* inode fork pointer */
  4076. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4077. int *erp_idxp, /* pointer to target irec */
  4078. int realloc) /* new bytes were just added */
  4079. {
  4080. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4081. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4082. int erp_idx; /* indirection array index */
  4083. int nlists; /* number of irec's (ex lists) */
  4084. int high; /* binary search upper limit */
  4085. int low; /* binary search lower limit */
  4086. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4087. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4088. ASSERT(page_idx >= 0 && page_idx <=
  4089. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4090. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4091. erp_idx = 0;
  4092. low = 0;
  4093. high = nlists - 1;
  4094. /* Binary search extent irec's */
  4095. while (low <= high) {
  4096. erp_idx = (low + high) >> 1;
  4097. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4098. prev = erp_idx > 0 ? erp - 1 : NULL;
  4099. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4100. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4101. high = erp_idx - 1;
  4102. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4103. (page_idx == erp->er_extoff + erp->er_extcount &&
  4104. !realloc)) {
  4105. low = erp_idx + 1;
  4106. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4107. erp->er_extcount == XFS_LINEAR_EXTS) {
  4108. ASSERT(realloc);
  4109. page_idx = 0;
  4110. erp_idx++;
  4111. erp = erp_idx < nlists ? erp + 1 : NULL;
  4112. break;
  4113. } else {
  4114. page_idx -= erp->er_extoff;
  4115. break;
  4116. }
  4117. }
  4118. *idxp = page_idx;
  4119. *erp_idxp = erp_idx;
  4120. return(erp);
  4121. }
  4122. /*
  4123. * Allocate and initialize an indirection array once the space needed
  4124. * for incore extents increases above XFS_IEXT_BUFSZ.
  4125. */
  4126. void
  4127. xfs_iext_irec_init(
  4128. xfs_ifork_t *ifp) /* inode fork pointer */
  4129. {
  4130. xfs_ext_irec_t *erp; /* indirection array pointer */
  4131. xfs_extnum_t nextents; /* number of extents in file */
  4132. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4133. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4134. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4135. erp = (xfs_ext_irec_t *)
  4136. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4137. if (nextents == 0) {
  4138. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4139. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4140. } else if (!ifp->if_real_bytes) {
  4141. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4142. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4143. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4144. }
  4145. erp->er_extbuf = ifp->if_u1.if_extents;
  4146. erp->er_extcount = nextents;
  4147. erp->er_extoff = 0;
  4148. ifp->if_flags |= XFS_IFEXTIREC;
  4149. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4150. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4151. ifp->if_u1.if_ext_irec = erp;
  4152. return;
  4153. }
  4154. /*
  4155. * Allocate and initialize a new entry in the indirection array.
  4156. */
  4157. xfs_ext_irec_t *
  4158. xfs_iext_irec_new(
  4159. xfs_ifork_t *ifp, /* inode fork pointer */
  4160. int erp_idx) /* index for new irec */
  4161. {
  4162. xfs_ext_irec_t *erp; /* indirection array pointer */
  4163. int i; /* loop counter */
  4164. int nlists; /* number of irec's (ex lists) */
  4165. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4166. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4167. /* Resize indirection array */
  4168. xfs_iext_realloc_indirect(ifp, ++nlists *
  4169. sizeof(xfs_ext_irec_t));
  4170. /*
  4171. * Move records down in the array so the
  4172. * new page can use erp_idx.
  4173. */
  4174. erp = ifp->if_u1.if_ext_irec;
  4175. for (i = nlists - 1; i > erp_idx; i--) {
  4176. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4177. }
  4178. ASSERT(i == erp_idx);
  4179. /* Initialize new extent record */
  4180. erp = ifp->if_u1.if_ext_irec;
  4181. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4182. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4183. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4184. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4185. erp[erp_idx].er_extcount = 0;
  4186. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4187. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4188. return (&erp[erp_idx]);
  4189. }
  4190. /*
  4191. * Remove a record from the indirection array.
  4192. */
  4193. void
  4194. xfs_iext_irec_remove(
  4195. xfs_ifork_t *ifp, /* inode fork pointer */
  4196. int erp_idx) /* irec index to remove */
  4197. {
  4198. xfs_ext_irec_t *erp; /* indirection array pointer */
  4199. int i; /* loop counter */
  4200. int nlists; /* number of irec's (ex lists) */
  4201. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4202. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4203. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4204. if (erp->er_extbuf) {
  4205. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4206. -erp->er_extcount);
  4207. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4208. }
  4209. /* Compact extent records */
  4210. erp = ifp->if_u1.if_ext_irec;
  4211. for (i = erp_idx; i < nlists - 1; i++) {
  4212. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4213. }
  4214. /*
  4215. * Manually free the last extent record from the indirection
  4216. * array. A call to xfs_iext_realloc_indirect() with a size
  4217. * of zero would result in a call to xfs_iext_destroy() which
  4218. * would in turn call this function again, creating a nasty
  4219. * infinite loop.
  4220. */
  4221. if (--nlists) {
  4222. xfs_iext_realloc_indirect(ifp,
  4223. nlists * sizeof(xfs_ext_irec_t));
  4224. } else {
  4225. kmem_free(ifp->if_u1.if_ext_irec,
  4226. sizeof(xfs_ext_irec_t));
  4227. }
  4228. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4229. }
  4230. /*
  4231. * This is called to clean up large amounts of unused memory allocated
  4232. * by the indirection array. Before compacting anything though, verify
  4233. * that the indirection array is still needed and switch back to the
  4234. * linear extent list (or even the inline buffer) if possible. The
  4235. * compaction policy is as follows:
  4236. *
  4237. * Full Compaction: Extents fit into a single page (or inline buffer)
  4238. * Full Compaction: Extents occupy less than 10% of allocated space
  4239. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4240. * No Compaction: Extents occupy at least 50% of allocated space
  4241. */
  4242. void
  4243. xfs_iext_irec_compact(
  4244. xfs_ifork_t *ifp) /* inode fork pointer */
  4245. {
  4246. xfs_extnum_t nextents; /* number of extents in file */
  4247. int nlists; /* number of irec's (ex lists) */
  4248. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4249. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4250. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4251. if (nextents == 0) {
  4252. xfs_iext_destroy(ifp);
  4253. } else if (nextents <= XFS_INLINE_EXTS) {
  4254. xfs_iext_indirect_to_direct(ifp);
  4255. xfs_iext_direct_to_inline(ifp, nextents);
  4256. } else if (nextents <= XFS_LINEAR_EXTS) {
  4257. xfs_iext_indirect_to_direct(ifp);
  4258. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4259. xfs_iext_irec_compact_full(ifp);
  4260. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4261. xfs_iext_irec_compact_pages(ifp);
  4262. }
  4263. }
  4264. /*
  4265. * Combine extents from neighboring extent pages.
  4266. */
  4267. void
  4268. xfs_iext_irec_compact_pages(
  4269. xfs_ifork_t *ifp) /* inode fork pointer */
  4270. {
  4271. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4272. int erp_idx = 0; /* indirection array index */
  4273. int nlists; /* number of irec's (ex lists) */
  4274. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4275. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4276. while (erp_idx < nlists - 1) {
  4277. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4278. erp_next = erp + 1;
  4279. if (erp_next->er_extcount <=
  4280. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4281. memmove(&erp->er_extbuf[erp->er_extcount],
  4282. erp_next->er_extbuf, erp_next->er_extcount *
  4283. sizeof(xfs_bmbt_rec_t));
  4284. erp->er_extcount += erp_next->er_extcount;
  4285. /*
  4286. * Free page before removing extent record
  4287. * so er_extoffs don't get modified in
  4288. * xfs_iext_irec_remove.
  4289. */
  4290. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4291. erp_next->er_extbuf = NULL;
  4292. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4293. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4294. } else {
  4295. erp_idx++;
  4296. }
  4297. }
  4298. }
  4299. /*
  4300. * Fully compact the extent records managed by the indirection array.
  4301. */
  4302. void
  4303. xfs_iext_irec_compact_full(
  4304. xfs_ifork_t *ifp) /* inode fork pointer */
  4305. {
  4306. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4307. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4308. int erp_idx = 0; /* extent irec index */
  4309. int ext_avail; /* empty entries in ex list */
  4310. int ext_diff; /* number of exts to add */
  4311. int nlists; /* number of irec's (ex lists) */
  4312. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4313. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4314. erp = ifp->if_u1.if_ext_irec;
  4315. ep = &erp->er_extbuf[erp->er_extcount];
  4316. erp_next = erp + 1;
  4317. ep_next = erp_next->er_extbuf;
  4318. while (erp_idx < nlists - 1) {
  4319. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4320. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4321. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4322. erp->er_extcount += ext_diff;
  4323. erp_next->er_extcount -= ext_diff;
  4324. /* Remove next page */
  4325. if (erp_next->er_extcount == 0) {
  4326. /*
  4327. * Free page before removing extent record
  4328. * so er_extoffs don't get modified in
  4329. * xfs_iext_irec_remove.
  4330. */
  4331. kmem_free(erp_next->er_extbuf,
  4332. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4333. erp_next->er_extbuf = NULL;
  4334. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4335. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4336. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4337. /* Update next page */
  4338. } else {
  4339. /* Move rest of page up to become next new page */
  4340. memmove(erp_next->er_extbuf, ep_next,
  4341. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4342. ep_next = erp_next->er_extbuf;
  4343. memset(&ep_next[erp_next->er_extcount], 0,
  4344. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4345. sizeof(xfs_bmbt_rec_t));
  4346. }
  4347. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4348. erp_idx++;
  4349. if (erp_idx < nlists)
  4350. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4351. else
  4352. break;
  4353. }
  4354. ep = &erp->er_extbuf[erp->er_extcount];
  4355. erp_next = erp + 1;
  4356. ep_next = erp_next->er_extbuf;
  4357. }
  4358. }
  4359. /*
  4360. * This is called to update the er_extoff field in the indirection
  4361. * array when extents have been added or removed from one of the
  4362. * extent lists. erp_idx contains the irec index to begin updating
  4363. * at and ext_diff contains the number of extents that were added
  4364. * or removed.
  4365. */
  4366. void
  4367. xfs_iext_irec_update_extoffs(
  4368. xfs_ifork_t *ifp, /* inode fork pointer */
  4369. int erp_idx, /* irec index to update */
  4370. int ext_diff) /* number of new extents */
  4371. {
  4372. int i; /* loop counter */
  4373. int nlists; /* number of irec's (ex lists */
  4374. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4375. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4376. for (i = erp_idx; i < nlists; i++) {
  4377. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4378. }
  4379. }