process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. /*
  2. * arch/s390/kernel/process.c
  3. *
  4. * S390 version
  5. * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  7. * Hartmut Penner (hp@de.ibm.com),
  8. * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
  9. *
  10. * Derived from "arch/i386/kernel/process.c"
  11. * Copyright (C) 1995, Linus Torvalds
  12. */
  13. /*
  14. * This file handles the architecture-dependent parts of process handling..
  15. */
  16. #include <linux/config.h>
  17. #include <linux/compiler.h>
  18. #include <linux/cpu.h>
  19. #include <linux/errno.h>
  20. #include <linux/sched.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/smp.h>
  24. #include <linux/smp_lock.h>
  25. #include <linux/stddef.h>
  26. #include <linux/unistd.h>
  27. #include <linux/ptrace.h>
  28. #include <linux/slab.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/user.h>
  31. #include <linux/a.out.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/delay.h>
  34. #include <linux/reboot.h>
  35. #include <linux/init.h>
  36. #include <linux/module.h>
  37. #include <linux/notifier.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/system.h>
  41. #include <asm/io.h>
  42. #include <asm/processor.h>
  43. #include <asm/irq.h>
  44. #include <asm/timer.h>
  45. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  46. /*
  47. * Return saved PC of a blocked thread. used in kernel/sched.
  48. * resume in entry.S does not create a new stack frame, it
  49. * just stores the registers %r6-%r15 to the frame given by
  50. * schedule. We want to return the address of the caller of
  51. * schedule, so we have to walk the backchain one time to
  52. * find the frame schedule() store its return address.
  53. */
  54. unsigned long thread_saved_pc(struct task_struct *tsk)
  55. {
  56. struct stack_frame *sf, *low, *high;
  57. if (!tsk || !task_stack_page(tsk))
  58. return 0;
  59. low = task_stack_page(tsk);
  60. high = (struct stack_frame *) task_pt_regs(tsk);
  61. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  62. if (sf <= low || sf > high)
  63. return 0;
  64. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  65. if (sf <= low || sf > high)
  66. return 0;
  67. return sf->gprs[8];
  68. }
  69. /*
  70. * Need to know about CPUs going idle?
  71. */
  72. static struct notifier_block *idle_chain;
  73. int register_idle_notifier(struct notifier_block *nb)
  74. {
  75. return notifier_chain_register(&idle_chain, nb);
  76. }
  77. EXPORT_SYMBOL(register_idle_notifier);
  78. int unregister_idle_notifier(struct notifier_block *nb)
  79. {
  80. return notifier_chain_unregister(&idle_chain, nb);
  81. }
  82. EXPORT_SYMBOL(unregister_idle_notifier);
  83. void do_monitor_call(struct pt_regs *regs, long interruption_code)
  84. {
  85. /* disable monitor call class 0 */
  86. __ctl_clear_bit(8, 15);
  87. notifier_call_chain(&idle_chain, CPU_NOT_IDLE,
  88. (void *)(long) smp_processor_id());
  89. }
  90. extern void s390_handle_mcck(void);
  91. /*
  92. * The idle loop on a S390...
  93. */
  94. static void default_idle(void)
  95. {
  96. int cpu, rc;
  97. /* CPU is going idle. */
  98. cpu = smp_processor_id();
  99. local_irq_disable();
  100. if (need_resched()) {
  101. local_irq_enable();
  102. return;
  103. }
  104. rc = notifier_call_chain(&idle_chain, CPU_IDLE, (void *)(long) cpu);
  105. if (rc != NOTIFY_OK && rc != NOTIFY_DONE)
  106. BUG();
  107. if (rc != NOTIFY_OK) {
  108. local_irq_enable();
  109. return;
  110. }
  111. /* enable monitor call class 0 */
  112. __ctl_set_bit(8, 15);
  113. #ifdef CONFIG_HOTPLUG_CPU
  114. if (cpu_is_offline(cpu)) {
  115. preempt_enable_no_resched();
  116. cpu_die();
  117. }
  118. #endif
  119. local_mcck_disable();
  120. if (test_thread_flag(TIF_MCCK_PENDING)) {
  121. local_mcck_enable();
  122. local_irq_enable();
  123. s390_handle_mcck();
  124. return;
  125. }
  126. /* Wait for external, I/O or machine check interrupt. */
  127. __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_WAIT |
  128. PSW_MASK_IO | PSW_MASK_EXT);
  129. }
  130. void cpu_idle(void)
  131. {
  132. for (;;) {
  133. while (!need_resched())
  134. default_idle();
  135. preempt_enable_no_resched();
  136. schedule();
  137. preempt_disable();
  138. }
  139. }
  140. void show_regs(struct pt_regs *regs)
  141. {
  142. struct task_struct *tsk = current;
  143. printk("CPU: %d %s\n", task_thread_info(tsk)->cpu, print_tainted());
  144. printk("Process %s (pid: %d, task: %p, ksp: %p)\n",
  145. current->comm, current->pid, (void *) tsk,
  146. (void *) tsk->thread.ksp);
  147. show_registers(regs);
  148. /* Show stack backtrace if pt_regs is from kernel mode */
  149. if (!(regs->psw.mask & PSW_MASK_PSTATE))
  150. show_trace(0,(unsigned long *) regs->gprs[15]);
  151. }
  152. extern void kernel_thread_starter(void);
  153. __asm__(".align 4\n"
  154. "kernel_thread_starter:\n"
  155. " la 2,0(10)\n"
  156. " basr 14,9\n"
  157. " la 2,0\n"
  158. " br 11\n");
  159. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  160. {
  161. struct pt_regs regs;
  162. memset(&regs, 0, sizeof(regs));
  163. regs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO | PSW_MASK_EXT;
  164. regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
  165. regs.gprs[9] = (unsigned long) fn;
  166. regs.gprs[10] = (unsigned long) arg;
  167. regs.gprs[11] = (unsigned long) do_exit;
  168. regs.orig_gpr2 = -1;
  169. /* Ok, create the new process.. */
  170. return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
  171. 0, &regs, 0, NULL, NULL);
  172. }
  173. /*
  174. * Free current thread data structures etc..
  175. */
  176. void exit_thread(void)
  177. {
  178. }
  179. void flush_thread(void)
  180. {
  181. clear_used_math();
  182. clear_tsk_thread_flag(current, TIF_USEDFPU);
  183. }
  184. void release_thread(struct task_struct *dead_task)
  185. {
  186. }
  187. int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
  188. unsigned long unused,
  189. struct task_struct * p, struct pt_regs * regs)
  190. {
  191. struct fake_frame
  192. {
  193. struct stack_frame sf;
  194. struct pt_regs childregs;
  195. } *frame;
  196. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  197. p->thread.ksp = (unsigned long) frame;
  198. /* Store access registers to kernel stack of new process. */
  199. frame->childregs = *regs;
  200. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  201. frame->childregs.gprs[15] = new_stackp;
  202. frame->sf.back_chain = 0;
  203. /* new return point is ret_from_fork */
  204. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  205. /* fake return stack for resume(), don't go back to schedule */
  206. frame->sf.gprs[9] = (unsigned long) frame;
  207. /* Save access registers to new thread structure. */
  208. save_access_regs(&p->thread.acrs[0]);
  209. #ifndef CONFIG_64BIT
  210. /*
  211. * save fprs to current->thread.fp_regs to merge them with
  212. * the emulated registers and then copy the result to the child.
  213. */
  214. save_fp_regs(&current->thread.fp_regs);
  215. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  216. sizeof(s390_fp_regs));
  217. p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE;
  218. /* Set a new TLS ? */
  219. if (clone_flags & CLONE_SETTLS)
  220. p->thread.acrs[0] = regs->gprs[6];
  221. #else /* CONFIG_64BIT */
  222. /* Save the fpu registers to new thread structure. */
  223. save_fp_regs(&p->thread.fp_regs);
  224. p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE;
  225. /* Set a new TLS ? */
  226. if (clone_flags & CLONE_SETTLS) {
  227. if (test_thread_flag(TIF_31BIT)) {
  228. p->thread.acrs[0] = (unsigned int) regs->gprs[6];
  229. } else {
  230. p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
  231. p->thread.acrs[1] = (unsigned int) regs->gprs[6];
  232. }
  233. }
  234. #endif /* CONFIG_64BIT */
  235. /* start new process with ar4 pointing to the correct address space */
  236. p->thread.mm_segment = get_fs();
  237. /* Don't copy debug registers */
  238. memset(&p->thread.per_info,0,sizeof(p->thread.per_info));
  239. return 0;
  240. }
  241. asmlinkage long sys_fork(struct pt_regs regs)
  242. {
  243. return do_fork(SIGCHLD, regs.gprs[15], &regs, 0, NULL, NULL);
  244. }
  245. asmlinkage long sys_clone(struct pt_regs regs)
  246. {
  247. unsigned long clone_flags;
  248. unsigned long newsp;
  249. int __user *parent_tidptr, *child_tidptr;
  250. clone_flags = regs.gprs[3];
  251. newsp = regs.orig_gpr2;
  252. parent_tidptr = (int __user *) regs.gprs[4];
  253. child_tidptr = (int __user *) regs.gprs[5];
  254. if (!newsp)
  255. newsp = regs.gprs[15];
  256. return do_fork(clone_flags, newsp, &regs, 0,
  257. parent_tidptr, child_tidptr);
  258. }
  259. /*
  260. * This is trivial, and on the face of it looks like it
  261. * could equally well be done in user mode.
  262. *
  263. * Not so, for quite unobvious reasons - register pressure.
  264. * In user mode vfork() cannot have a stack frame, and if
  265. * done by calling the "clone()" system call directly, you
  266. * do not have enough call-clobbered registers to hold all
  267. * the information you need.
  268. */
  269. asmlinkage long sys_vfork(struct pt_regs regs)
  270. {
  271. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
  272. regs.gprs[15], &regs, 0, NULL, NULL);
  273. }
  274. /*
  275. * sys_execve() executes a new program.
  276. */
  277. asmlinkage long sys_execve(struct pt_regs regs)
  278. {
  279. int error;
  280. char * filename;
  281. filename = getname((char __user *) regs.orig_gpr2);
  282. error = PTR_ERR(filename);
  283. if (IS_ERR(filename))
  284. goto out;
  285. error = do_execve(filename, (char __user * __user *) regs.gprs[3],
  286. (char __user * __user *) regs.gprs[4], &regs);
  287. if (error == 0) {
  288. task_lock(current);
  289. current->ptrace &= ~PT_DTRACE;
  290. task_unlock(current);
  291. current->thread.fp_regs.fpc = 0;
  292. if (MACHINE_HAS_IEEE)
  293. asm volatile("sfpc %0,%0" : : "d" (0));
  294. }
  295. putname(filename);
  296. out:
  297. return error;
  298. }
  299. /*
  300. * fill in the FPU structure for a core dump.
  301. */
  302. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  303. {
  304. #ifndef CONFIG_64BIT
  305. /*
  306. * save fprs to current->thread.fp_regs to merge them with
  307. * the emulated registers and then copy the result to the dump.
  308. */
  309. save_fp_regs(&current->thread.fp_regs);
  310. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  311. #else /* CONFIG_64BIT */
  312. save_fp_regs(fpregs);
  313. #endif /* CONFIG_64BIT */
  314. return 1;
  315. }
  316. unsigned long get_wchan(struct task_struct *p)
  317. {
  318. struct stack_frame *sf, *low, *high;
  319. unsigned long return_address;
  320. int count;
  321. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  322. return 0;
  323. low = task_stack_page(p);
  324. high = (struct stack_frame *) task_pt_regs(p);
  325. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  326. if (sf <= low || sf > high)
  327. return 0;
  328. for (count = 0; count < 16; count++) {
  329. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  330. if (sf <= low || sf > high)
  331. return 0;
  332. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  333. if (!in_sched_functions(return_address))
  334. return return_address;
  335. }
  336. return 0;
  337. }