efi.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. *
  12. * All EFI Runtime Services are not implemented yet as EFI only
  13. * supports physical mode addressing on SoftSDV. This is to be fixed
  14. * in a future version. --drummond 1999-07-20
  15. *
  16. * Implemented EFI runtime services and virtual mode calls. --davidm
  17. *
  18. * Goutham Rao: <goutham.rao@intel.com>
  19. * Skip non-WB memory and ignore empty memory ranges.
  20. */
  21. #include <linux/config.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/types.h>
  26. #include <linux/time.h>
  27. #include <linux/efi.h>
  28. #include <asm/io.h>
  29. #include <asm/kregs.h>
  30. #include <asm/meminit.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/processor.h>
  33. #include <asm/mca.h>
  34. #define EFI_DEBUG 0
  35. extern efi_status_t efi_call_phys (void *, ...);
  36. struct efi efi;
  37. EXPORT_SYMBOL(efi);
  38. static efi_runtime_services_t *runtime;
  39. static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
  40. #define efi_call_virt(f, args...) (*(f))(args)
  41. #define STUB_GET_TIME(prefix, adjust_arg) \
  42. static efi_status_t \
  43. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  44. { \
  45. struct ia64_fpreg fr[6]; \
  46. efi_time_cap_t *atc = NULL; \
  47. efi_status_t ret; \
  48. \
  49. if (tc) \
  50. atc = adjust_arg(tc); \
  51. ia64_save_scratch_fpregs(fr); \
  52. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
  53. ia64_load_scratch_fpregs(fr); \
  54. return ret; \
  55. }
  56. #define STUB_SET_TIME(prefix, adjust_arg) \
  57. static efi_status_t \
  58. prefix##_set_time (efi_time_t *tm) \
  59. { \
  60. struct ia64_fpreg fr[6]; \
  61. efi_status_t ret; \
  62. \
  63. ia64_save_scratch_fpregs(fr); \
  64. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
  65. ia64_load_scratch_fpregs(fr); \
  66. return ret; \
  67. }
  68. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  69. static efi_status_t \
  70. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
  71. { \
  72. struct ia64_fpreg fr[6]; \
  73. efi_status_t ret; \
  74. \
  75. ia64_save_scratch_fpregs(fr); \
  76. ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  77. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  78. ia64_load_scratch_fpregs(fr); \
  79. return ret; \
  80. }
  81. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  82. static efi_status_t \
  83. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  84. { \
  85. struct ia64_fpreg fr[6]; \
  86. efi_time_t *atm = NULL; \
  87. efi_status_t ret; \
  88. \
  89. if (tm) \
  90. atm = adjust_arg(tm); \
  91. ia64_save_scratch_fpregs(fr); \
  92. ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  93. enabled, atm); \
  94. ia64_load_scratch_fpregs(fr); \
  95. return ret; \
  96. }
  97. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  98. static efi_status_t \
  99. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  100. unsigned long *data_size, void *data) \
  101. { \
  102. struct ia64_fpreg fr[6]; \
  103. u32 *aattr = NULL; \
  104. efi_status_t ret; \
  105. \
  106. if (attr) \
  107. aattr = adjust_arg(attr); \
  108. ia64_save_scratch_fpregs(fr); \
  109. ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
  110. adjust_arg(name), adjust_arg(vendor), aattr, \
  111. adjust_arg(data_size), adjust_arg(data)); \
  112. ia64_load_scratch_fpregs(fr); \
  113. return ret; \
  114. }
  115. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  116. static efi_status_t \
  117. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
  118. { \
  119. struct ia64_fpreg fr[6]; \
  120. efi_status_t ret; \
  121. \
  122. ia64_save_scratch_fpregs(fr); \
  123. ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  124. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  125. ia64_load_scratch_fpregs(fr); \
  126. return ret; \
  127. }
  128. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  129. static efi_status_t \
  130. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
  131. unsigned long data_size, void *data) \
  132. { \
  133. struct ia64_fpreg fr[6]; \
  134. efi_status_t ret; \
  135. \
  136. ia64_save_scratch_fpregs(fr); \
  137. ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
  138. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  139. adjust_arg(data)); \
  140. ia64_load_scratch_fpregs(fr); \
  141. return ret; \
  142. }
  143. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  144. static efi_status_t \
  145. prefix##_get_next_high_mono_count (u32 *count) \
  146. { \
  147. struct ia64_fpreg fr[6]; \
  148. efi_status_t ret; \
  149. \
  150. ia64_save_scratch_fpregs(fr); \
  151. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  152. __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
  153. ia64_load_scratch_fpregs(fr); \
  154. return ret; \
  155. }
  156. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  157. static void \
  158. prefix##_reset_system (int reset_type, efi_status_t status, \
  159. unsigned long data_size, efi_char16_t *data) \
  160. { \
  161. struct ia64_fpreg fr[6]; \
  162. efi_char16_t *adata = NULL; \
  163. \
  164. if (data) \
  165. adata = adjust_arg(data); \
  166. \
  167. ia64_save_scratch_fpregs(fr); \
  168. efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
  169. reset_type, status, data_size, adata); \
  170. /* should not return, but just in case... */ \
  171. ia64_load_scratch_fpregs(fr); \
  172. }
  173. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  174. STUB_GET_TIME(phys, phys_ptr)
  175. STUB_SET_TIME(phys, phys_ptr)
  176. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  177. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  178. STUB_GET_VARIABLE(phys, phys_ptr)
  179. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  180. STUB_SET_VARIABLE(phys, phys_ptr)
  181. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  182. STUB_RESET_SYSTEM(phys, phys_ptr)
  183. #define id(arg) arg
  184. STUB_GET_TIME(virt, id)
  185. STUB_SET_TIME(virt, id)
  186. STUB_GET_WAKEUP_TIME(virt, id)
  187. STUB_SET_WAKEUP_TIME(virt, id)
  188. STUB_GET_VARIABLE(virt, id)
  189. STUB_GET_NEXT_VARIABLE(virt, id)
  190. STUB_SET_VARIABLE(virt, id)
  191. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  192. STUB_RESET_SYSTEM(virt, id)
  193. void
  194. efi_gettimeofday (struct timespec *ts)
  195. {
  196. efi_time_t tm;
  197. memset(ts, 0, sizeof(ts));
  198. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
  199. return;
  200. ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
  201. ts->tv_nsec = tm.nanosecond;
  202. }
  203. static int
  204. is_available_memory (efi_memory_desc_t *md)
  205. {
  206. if (!(md->attribute & EFI_MEMORY_WB))
  207. return 0;
  208. switch (md->type) {
  209. case EFI_LOADER_CODE:
  210. case EFI_LOADER_DATA:
  211. case EFI_BOOT_SERVICES_CODE:
  212. case EFI_BOOT_SERVICES_DATA:
  213. case EFI_CONVENTIONAL_MEMORY:
  214. return 1;
  215. }
  216. return 0;
  217. }
  218. typedef struct kern_memdesc {
  219. u64 attribute;
  220. u64 start;
  221. u64 num_pages;
  222. } kern_memdesc_t;
  223. static kern_memdesc_t *kern_memmap;
  224. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  225. static inline u64
  226. kmd_end(kern_memdesc_t *kmd)
  227. {
  228. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  229. }
  230. static inline u64
  231. efi_md_end(efi_memory_desc_t *md)
  232. {
  233. return (md->phys_addr + efi_md_size(md));
  234. }
  235. static inline int
  236. efi_wb(efi_memory_desc_t *md)
  237. {
  238. return (md->attribute & EFI_MEMORY_WB);
  239. }
  240. static inline int
  241. efi_uc(efi_memory_desc_t *md)
  242. {
  243. return (md->attribute & EFI_MEMORY_UC);
  244. }
  245. static void
  246. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  247. {
  248. kern_memdesc_t *k;
  249. u64 start, end, voff;
  250. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  251. for (k = kern_memmap; k->start != ~0UL; k++) {
  252. if (k->attribute != attr)
  253. continue;
  254. start = PAGE_ALIGN(k->start);
  255. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  256. if (start < end)
  257. if ((*callback)(start + voff, end + voff, arg) < 0)
  258. return;
  259. }
  260. }
  261. /*
  262. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  263. * has memory that is available for OS use.
  264. */
  265. void
  266. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  267. {
  268. walk(callback, arg, EFI_MEMORY_WB);
  269. }
  270. /*
  271. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  272. * has memory that is available for uncached allocator.
  273. */
  274. void
  275. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  276. {
  277. walk(callback, arg, EFI_MEMORY_UC);
  278. }
  279. /*
  280. * Look for the PAL_CODE region reported by EFI and maps it using an
  281. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  282. * Abstraction Layer chapter 11 in ADAG
  283. */
  284. void *
  285. efi_get_pal_addr (void)
  286. {
  287. void *efi_map_start, *efi_map_end, *p;
  288. efi_memory_desc_t *md;
  289. u64 efi_desc_size;
  290. int pal_code_count = 0;
  291. u64 vaddr, mask;
  292. efi_map_start = __va(ia64_boot_param->efi_memmap);
  293. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  294. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  295. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  296. md = p;
  297. if (md->type != EFI_PAL_CODE)
  298. continue;
  299. if (++pal_code_count > 1) {
  300. printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
  301. md->phys_addr);
  302. continue;
  303. }
  304. /*
  305. * The only ITLB entry in region 7 that is used is the one installed by
  306. * __start(). That entry covers a 64MB range.
  307. */
  308. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  309. vaddr = PAGE_OFFSET + md->phys_addr;
  310. /*
  311. * We must check that the PAL mapping won't overlap with the kernel
  312. * mapping.
  313. *
  314. * PAL code is guaranteed to be aligned on a power of 2 between 4k and
  315. * 256KB and that only one ITR is needed to map it. This implies that the
  316. * PAL code is always aligned on its size, i.e., the closest matching page
  317. * size supported by the TLB. Therefore PAL code is guaranteed never to
  318. * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
  319. * now the following test is enough to determine whether or not we need a
  320. * dedicated ITR for the PAL code.
  321. */
  322. if ((vaddr & mask) == (KERNEL_START & mask)) {
  323. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  324. __FUNCTION__);
  325. continue;
  326. }
  327. if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
  328. panic("Woah! PAL code size bigger than a granule!");
  329. #if EFI_DEBUG
  330. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  331. printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  332. smp_processor_id(), md->phys_addr,
  333. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  334. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  335. #endif
  336. return __va(md->phys_addr);
  337. }
  338. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
  339. __FUNCTION__);
  340. return NULL;
  341. }
  342. void
  343. efi_map_pal_code (void)
  344. {
  345. void *pal_vaddr = efi_get_pal_addr ();
  346. u64 psr;
  347. if (!pal_vaddr)
  348. return;
  349. /*
  350. * Cannot write to CRx with PSR.ic=1
  351. */
  352. psr = ia64_clear_ic();
  353. ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  354. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  355. IA64_GRANULE_SHIFT);
  356. ia64_set_psr(psr); /* restore psr */
  357. ia64_srlz_i();
  358. }
  359. void __init
  360. efi_init (void)
  361. {
  362. void *efi_map_start, *efi_map_end;
  363. efi_config_table_t *config_tables;
  364. efi_char16_t *c16;
  365. u64 efi_desc_size;
  366. char *cp, vendor[100] = "unknown";
  367. extern char saved_command_line[];
  368. int i;
  369. /* it's too early to be able to use the standard kernel command line support... */
  370. for (cp = saved_command_line; *cp; ) {
  371. if (memcmp(cp, "mem=", 4) == 0) {
  372. mem_limit = memparse(cp + 4, &cp);
  373. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  374. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  375. } else {
  376. while (*cp != ' ' && *cp)
  377. ++cp;
  378. while (*cp == ' ')
  379. ++cp;
  380. }
  381. }
  382. if (max_addr != ~0UL)
  383. printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
  384. efi.systab = __va(ia64_boot_param->efi_systab);
  385. /*
  386. * Verify the EFI Table
  387. */
  388. if (efi.systab == NULL)
  389. panic("Woah! Can't find EFI system table.\n");
  390. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  391. panic("Woah! EFI system table signature incorrect\n");
  392. if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
  393. printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
  394. "got %d.%02d, expected %d.%02d\n",
  395. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
  396. EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
  397. config_tables = __va(efi.systab->tables);
  398. /* Show what we know for posterity */
  399. c16 = __va(efi.systab->fw_vendor);
  400. if (c16) {
  401. for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
  402. vendor[i] = *c16++;
  403. vendor[i] = '\0';
  404. }
  405. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  406. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
  407. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  408. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  409. efi.mps = __va(config_tables[i].table);
  410. printk(" MPS=0x%lx", config_tables[i].table);
  411. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  412. efi.acpi20 = __va(config_tables[i].table);
  413. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  414. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  415. efi.acpi = __va(config_tables[i].table);
  416. printk(" ACPI=0x%lx", config_tables[i].table);
  417. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  418. efi.smbios = __va(config_tables[i].table);
  419. printk(" SMBIOS=0x%lx", config_tables[i].table);
  420. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  421. efi.sal_systab = __va(config_tables[i].table);
  422. printk(" SALsystab=0x%lx", config_tables[i].table);
  423. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  424. efi.hcdp = __va(config_tables[i].table);
  425. printk(" HCDP=0x%lx", config_tables[i].table);
  426. }
  427. }
  428. printk("\n");
  429. runtime = __va(efi.systab->runtime);
  430. efi.get_time = phys_get_time;
  431. efi.set_time = phys_set_time;
  432. efi.get_wakeup_time = phys_get_wakeup_time;
  433. efi.set_wakeup_time = phys_set_wakeup_time;
  434. efi.get_variable = phys_get_variable;
  435. efi.get_next_variable = phys_get_next_variable;
  436. efi.set_variable = phys_set_variable;
  437. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  438. efi.reset_system = phys_reset_system;
  439. efi_map_start = __va(ia64_boot_param->efi_memmap);
  440. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  441. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  442. #if EFI_DEBUG
  443. /* print EFI memory map: */
  444. {
  445. efi_memory_desc_t *md;
  446. void *p;
  447. for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
  448. md = p;
  449. printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
  450. i, md->type, md->attribute, md->phys_addr,
  451. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  452. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  453. }
  454. }
  455. #endif
  456. efi_map_pal_code();
  457. efi_enter_virtual_mode();
  458. }
  459. void
  460. efi_enter_virtual_mode (void)
  461. {
  462. void *efi_map_start, *efi_map_end, *p;
  463. efi_memory_desc_t *md;
  464. efi_status_t status;
  465. u64 efi_desc_size;
  466. efi_map_start = __va(ia64_boot_param->efi_memmap);
  467. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  468. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  469. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  470. md = p;
  471. if (md->attribute & EFI_MEMORY_RUNTIME) {
  472. /*
  473. * Some descriptors have multiple bits set, so the order of
  474. * the tests is relevant.
  475. */
  476. if (md->attribute & EFI_MEMORY_WB) {
  477. md->virt_addr = (u64) __va(md->phys_addr);
  478. } else if (md->attribute & EFI_MEMORY_UC) {
  479. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  480. } else if (md->attribute & EFI_MEMORY_WC) {
  481. #if 0
  482. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  483. | _PAGE_D
  484. | _PAGE_MA_WC
  485. | _PAGE_PL_0
  486. | _PAGE_AR_RW));
  487. #else
  488. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  489. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  490. #endif
  491. } else if (md->attribute & EFI_MEMORY_WT) {
  492. #if 0
  493. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  494. | _PAGE_D | _PAGE_MA_WT
  495. | _PAGE_PL_0
  496. | _PAGE_AR_RW));
  497. #else
  498. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  499. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  500. #endif
  501. }
  502. }
  503. }
  504. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  505. ia64_boot_param->efi_memmap_size,
  506. efi_desc_size, ia64_boot_param->efi_memdesc_version,
  507. ia64_boot_param->efi_memmap);
  508. if (status != EFI_SUCCESS) {
  509. printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
  510. "(status=%lu)\n", status);
  511. return;
  512. }
  513. /*
  514. * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
  515. */
  516. efi.get_time = virt_get_time;
  517. efi.set_time = virt_set_time;
  518. efi.get_wakeup_time = virt_get_wakeup_time;
  519. efi.set_wakeup_time = virt_set_wakeup_time;
  520. efi.get_variable = virt_get_variable;
  521. efi.get_next_variable = virt_get_next_variable;
  522. efi.set_variable = virt_set_variable;
  523. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  524. efi.reset_system = virt_reset_system;
  525. }
  526. /*
  527. * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
  528. * this type, other I/O port ranges should be described via ACPI.
  529. */
  530. u64
  531. efi_get_iobase (void)
  532. {
  533. void *efi_map_start, *efi_map_end, *p;
  534. efi_memory_desc_t *md;
  535. u64 efi_desc_size;
  536. efi_map_start = __va(ia64_boot_param->efi_memmap);
  537. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  538. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  539. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  540. md = p;
  541. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  542. if (md->attribute & EFI_MEMORY_UC)
  543. return md->phys_addr;
  544. }
  545. }
  546. return 0;
  547. }
  548. static efi_memory_desc_t *
  549. efi_memory_descriptor (unsigned long phys_addr)
  550. {
  551. void *efi_map_start, *efi_map_end, *p;
  552. efi_memory_desc_t *md;
  553. u64 efi_desc_size;
  554. efi_map_start = __va(ia64_boot_param->efi_memmap);
  555. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  556. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  557. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  558. md = p;
  559. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
  560. return md;
  561. }
  562. return 0;
  563. }
  564. static int
  565. efi_memmap_has_mmio (void)
  566. {
  567. void *efi_map_start, *efi_map_end, *p;
  568. efi_memory_desc_t *md;
  569. u64 efi_desc_size;
  570. efi_map_start = __va(ia64_boot_param->efi_memmap);
  571. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  572. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  573. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  574. md = p;
  575. if (md->type == EFI_MEMORY_MAPPED_IO)
  576. return 1;
  577. }
  578. return 0;
  579. }
  580. u32
  581. efi_mem_type (unsigned long phys_addr)
  582. {
  583. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  584. if (md)
  585. return md->type;
  586. return 0;
  587. }
  588. u64
  589. efi_mem_attributes (unsigned long phys_addr)
  590. {
  591. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  592. if (md)
  593. return md->attribute;
  594. return 0;
  595. }
  596. EXPORT_SYMBOL(efi_mem_attributes);
  597. /*
  598. * Determines whether the memory at phys_addr supports the desired
  599. * attribute (WB, UC, etc). If this returns 1, the caller can safely
  600. * access *size bytes at phys_addr with the specified attribute.
  601. */
  602. static int
  603. efi_mem_attribute_range (unsigned long phys_addr, unsigned long *size, u64 attr)
  604. {
  605. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  606. unsigned long md_end;
  607. if (!md || (md->attribute & attr) != attr)
  608. return 0;
  609. do {
  610. md_end = efi_md_end(md);
  611. if (phys_addr + *size <= md_end)
  612. return 1;
  613. md = efi_memory_descriptor(md_end);
  614. if (!md || (md->attribute & attr) != attr) {
  615. *size = md_end - phys_addr;
  616. return 1;
  617. }
  618. } while (md);
  619. return 0;
  620. }
  621. /*
  622. * For /dev/mem, we only allow read & write system calls to access
  623. * write-back memory, because read & write don't allow the user to
  624. * control access size.
  625. */
  626. int
  627. valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
  628. {
  629. return efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB);
  630. }
  631. /*
  632. * We allow mmap of anything in the EFI memory map that supports
  633. * either write-back or uncacheable access. For uncacheable regions,
  634. * the supported access sizes are system-dependent, and the user is
  635. * responsible for using the correct size.
  636. *
  637. * Note that this doesn't currently allow access to hot-added memory,
  638. * because that doesn't appear in the boot-time EFI memory map.
  639. */
  640. int
  641. valid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long *size)
  642. {
  643. if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB))
  644. return 1;
  645. if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_UC))
  646. return 1;
  647. /*
  648. * Some firmware doesn't report MMIO regions in the EFI memory map.
  649. * The Intel BigSur (a.k.a. HP i2000) has this problem. In this
  650. * case, we can't use the EFI memory map to validate mmap requests.
  651. */
  652. if (!efi_memmap_has_mmio())
  653. return 1;
  654. return 0;
  655. }
  656. int __init
  657. efi_uart_console_only(void)
  658. {
  659. efi_status_t status;
  660. char *s, name[] = "ConOut";
  661. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  662. efi_char16_t *utf16, name_utf16[32];
  663. unsigned char data[1024];
  664. unsigned long size = sizeof(data);
  665. struct efi_generic_dev_path *hdr, *end_addr;
  666. int uart = 0;
  667. /* Convert to UTF-16 */
  668. utf16 = name_utf16;
  669. s = name;
  670. while (*s)
  671. *utf16++ = *s++ & 0x7f;
  672. *utf16 = 0;
  673. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  674. if (status != EFI_SUCCESS) {
  675. printk(KERN_ERR "No EFI %s variable?\n", name);
  676. return 0;
  677. }
  678. hdr = (struct efi_generic_dev_path *) data;
  679. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  680. while (hdr < end_addr) {
  681. if (hdr->type == EFI_DEV_MSG &&
  682. hdr->sub_type == EFI_DEV_MSG_UART)
  683. uart = 1;
  684. else if (hdr->type == EFI_DEV_END_PATH ||
  685. hdr->type == EFI_DEV_END_PATH2) {
  686. if (!uart)
  687. return 0;
  688. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  689. return 1;
  690. uart = 0;
  691. }
  692. hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
  693. }
  694. printk(KERN_ERR "Malformed %s value\n", name);
  695. return 0;
  696. }
  697. /*
  698. * Look for the first granule aligned memory descriptor memory
  699. * that is big enough to hold EFI memory map. Make sure this
  700. * descriptor is atleast granule sized so it does not get trimmed
  701. */
  702. struct kern_memdesc *
  703. find_memmap_space (void)
  704. {
  705. u64 contig_low=0, contig_high=0;
  706. u64 as = 0, ae;
  707. void *efi_map_start, *efi_map_end, *p, *q;
  708. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  709. u64 space_needed, efi_desc_size;
  710. unsigned long total_mem = 0;
  711. efi_map_start = __va(ia64_boot_param->efi_memmap);
  712. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  713. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  714. /*
  715. * Worst case: we need 3 kernel descriptors for each efi descriptor
  716. * (if every entry has a WB part in the middle, and UC head and tail),
  717. * plus one for the end marker.
  718. */
  719. space_needed = sizeof(kern_memdesc_t) *
  720. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  721. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  722. md = p;
  723. if (!efi_wb(md)) {
  724. continue;
  725. }
  726. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  727. contig_low = GRANULEROUNDUP(md->phys_addr);
  728. contig_high = efi_md_end(md);
  729. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  730. check_md = q;
  731. if (!efi_wb(check_md))
  732. break;
  733. if (contig_high != check_md->phys_addr)
  734. break;
  735. contig_high = efi_md_end(check_md);
  736. }
  737. contig_high = GRANULEROUNDDOWN(contig_high);
  738. }
  739. if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
  740. continue;
  741. /* Round ends inward to granule boundaries */
  742. as = max(contig_low, md->phys_addr);
  743. ae = min(contig_high, efi_md_end(md));
  744. /* keep within max_addr= command line arg */
  745. ae = min(ae, max_addr);
  746. if (ae <= as)
  747. continue;
  748. /* avoid going over mem= command line arg */
  749. if (total_mem + (ae - as) > mem_limit)
  750. ae -= total_mem + (ae - as) - mem_limit;
  751. if (ae <= as)
  752. continue;
  753. if (ae - as > space_needed)
  754. break;
  755. }
  756. if (p >= efi_map_end)
  757. panic("Can't allocate space for kernel memory descriptors");
  758. return __va(as);
  759. }
  760. /*
  761. * Walk the EFI memory map and gather all memory available for kernel
  762. * to use. We can allocate partial granules only if the unavailable
  763. * parts exist, and are WB.
  764. */
  765. void
  766. efi_memmap_init(unsigned long *s, unsigned long *e)
  767. {
  768. struct kern_memdesc *k, *prev = 0;
  769. u64 contig_low=0, contig_high=0;
  770. u64 as, ae, lim;
  771. void *efi_map_start, *efi_map_end, *p, *q;
  772. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  773. u64 efi_desc_size;
  774. unsigned long total_mem = 0;
  775. k = kern_memmap = find_memmap_space();
  776. efi_map_start = __va(ia64_boot_param->efi_memmap);
  777. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  778. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  779. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  780. md = p;
  781. if (!efi_wb(md)) {
  782. if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
  783. md->type == EFI_BOOT_SERVICES_DATA)) {
  784. k->attribute = EFI_MEMORY_UC;
  785. k->start = md->phys_addr;
  786. k->num_pages = md->num_pages;
  787. k++;
  788. }
  789. continue;
  790. }
  791. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  792. contig_low = GRANULEROUNDUP(md->phys_addr);
  793. contig_high = efi_md_end(md);
  794. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  795. check_md = q;
  796. if (!efi_wb(check_md))
  797. break;
  798. if (contig_high != check_md->phys_addr)
  799. break;
  800. contig_high = efi_md_end(check_md);
  801. }
  802. contig_high = GRANULEROUNDDOWN(contig_high);
  803. }
  804. if (!is_available_memory(md))
  805. continue;
  806. /*
  807. * Round ends inward to granule boundaries
  808. * Give trimmings to uncached allocator
  809. */
  810. if (md->phys_addr < contig_low) {
  811. lim = min(efi_md_end(md), contig_low);
  812. if (efi_uc(md)) {
  813. if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
  814. kmd_end(k-1) == md->phys_addr) {
  815. (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  816. } else {
  817. k->attribute = EFI_MEMORY_UC;
  818. k->start = md->phys_addr;
  819. k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  820. k++;
  821. }
  822. }
  823. as = contig_low;
  824. } else
  825. as = md->phys_addr;
  826. if (efi_md_end(md) > contig_high) {
  827. lim = max(md->phys_addr, contig_high);
  828. if (efi_uc(md)) {
  829. if (lim == md->phys_addr && k > kern_memmap &&
  830. (k-1)->attribute == EFI_MEMORY_UC &&
  831. kmd_end(k-1) == md->phys_addr) {
  832. (k-1)->num_pages += md->num_pages;
  833. } else {
  834. k->attribute = EFI_MEMORY_UC;
  835. k->start = lim;
  836. k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
  837. k++;
  838. }
  839. }
  840. ae = contig_high;
  841. } else
  842. ae = efi_md_end(md);
  843. /* keep within max_addr= command line arg */
  844. ae = min(ae, max_addr);
  845. if (ae <= as)
  846. continue;
  847. /* avoid going over mem= command line arg */
  848. if (total_mem + (ae - as) > mem_limit)
  849. ae -= total_mem + (ae - as) - mem_limit;
  850. if (ae <= as)
  851. continue;
  852. if (prev && kmd_end(prev) == md->phys_addr) {
  853. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  854. total_mem += ae - as;
  855. continue;
  856. }
  857. k->attribute = EFI_MEMORY_WB;
  858. k->start = as;
  859. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  860. total_mem += ae - as;
  861. prev = k++;
  862. }
  863. k->start = ~0L; /* end-marker */
  864. /* reserve the memory we are using for kern_memmap */
  865. *s = (u64)kern_memmap;
  866. *e = (u64)++k;
  867. }
  868. void
  869. efi_initialize_iomem_resources(struct resource *code_resource,
  870. struct resource *data_resource)
  871. {
  872. struct resource *res;
  873. void *efi_map_start, *efi_map_end, *p;
  874. efi_memory_desc_t *md;
  875. u64 efi_desc_size;
  876. char *name;
  877. unsigned long flags;
  878. efi_map_start = __va(ia64_boot_param->efi_memmap);
  879. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  880. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  881. res = NULL;
  882. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  883. md = p;
  884. if (md->num_pages == 0) /* should not happen */
  885. continue;
  886. flags = IORESOURCE_MEM;
  887. switch (md->type) {
  888. case EFI_MEMORY_MAPPED_IO:
  889. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  890. continue;
  891. case EFI_LOADER_CODE:
  892. case EFI_LOADER_DATA:
  893. case EFI_BOOT_SERVICES_DATA:
  894. case EFI_BOOT_SERVICES_CODE:
  895. case EFI_CONVENTIONAL_MEMORY:
  896. if (md->attribute & EFI_MEMORY_WP) {
  897. name = "System ROM";
  898. flags |= IORESOURCE_READONLY;
  899. } else {
  900. name = "System RAM";
  901. }
  902. break;
  903. case EFI_ACPI_MEMORY_NVS:
  904. name = "ACPI Non-volatile Storage";
  905. flags |= IORESOURCE_BUSY;
  906. break;
  907. case EFI_UNUSABLE_MEMORY:
  908. name = "reserved";
  909. flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
  910. break;
  911. case EFI_RESERVED_TYPE:
  912. case EFI_RUNTIME_SERVICES_CODE:
  913. case EFI_RUNTIME_SERVICES_DATA:
  914. case EFI_ACPI_RECLAIM_MEMORY:
  915. default:
  916. name = "reserved";
  917. flags |= IORESOURCE_BUSY;
  918. break;
  919. }
  920. if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
  921. printk(KERN_ERR "failed to alocate resource for iomem\n");
  922. return;
  923. }
  924. res->name = name;
  925. res->start = md->phys_addr;
  926. res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
  927. res->flags = flags;
  928. if (insert_resource(&iomem_resource, res) < 0)
  929. kfree(res);
  930. else {
  931. /*
  932. * We don't know which region contains
  933. * kernel data so we try it repeatedly and
  934. * let the resource manager test it.
  935. */
  936. insert_resource(res, code_resource);
  937. insert_resource(res, data_resource);
  938. }
  939. }
  940. }