xfs_log_recover.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_log_priv.h"
  42. #include "xfs_buf_item.h"
  43. #include "xfs_log_recover.h"
  44. #include "xfs_extfree_item.h"
  45. #include "xfs_trans_priv.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_trace.h"
  50. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  51. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  52. #if defined(DEBUG)
  53. STATIC void xlog_recover_check_summary(xlog_t *);
  54. #else
  55. #define xlog_recover_check_summary(log)
  56. #endif
  57. /*
  58. * Sector aligned buffer routines for buffer create/read/write/access
  59. */
  60. /* Number of basic blocks in a log sector */
  61. #define xlog_sectbb(log) (1 << (log)->l_sectbb_log)
  62. /*
  63. * Verify the given count of basic blocks is valid number of blocks
  64. * to specify for an operation involving the given XFS log buffer.
  65. * Returns nonzero if the count is valid, 0 otherwise.
  66. */
  67. static inline int
  68. xlog_buf_bbcount_valid(
  69. xlog_t *log,
  70. int bbcount)
  71. {
  72. return bbcount > 0 && bbcount <= log->l_logBBsize;
  73. }
  74. /*
  75. * Allocate a buffer to hold log data. The buffer needs to be able
  76. * to map to a range of nbblks basic blocks at any valid (basic
  77. * block) offset within the log.
  78. */
  79. STATIC xfs_buf_t *
  80. xlog_get_bp(
  81. xlog_t *log,
  82. int nbblks)
  83. {
  84. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  85. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  86. nbblks);
  87. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  88. return NULL;
  89. }
  90. /*
  91. * We do log I/O in units of log sectors (a power-of-2
  92. * multiple of the basic block size), so we round up the
  93. * requested size to acommodate the basic blocks required
  94. * for complete log sectors.
  95. *
  96. * In addition, the buffer may be used for a non-sector-
  97. * aligned block offset, in which case an I/O of the
  98. * requested size could extend beyond the end of the
  99. * buffer. If the requested size is only 1 basic block it
  100. * will never straddle a sector boundary, so this won't be
  101. * an issue. Nor will this be a problem if the log I/O is
  102. * done in basic blocks (sector size 1). But otherwise we
  103. * extend the buffer by one extra log sector to ensure
  104. * there's space to accomodate this possiblility.
  105. */
  106. if (nbblks > 1 && log->l_sectbb_log)
  107. nbblks += xlog_sectbb(log);
  108. nbblks = round_up(nbblks, xlog_sectbb(log));
  109. return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
  110. }
  111. STATIC void
  112. xlog_put_bp(
  113. xfs_buf_t *bp)
  114. {
  115. xfs_buf_free(bp);
  116. }
  117. STATIC xfs_caddr_t
  118. xlog_align(
  119. xlog_t *log,
  120. xfs_daddr_t blk_no,
  121. int nbblks,
  122. xfs_buf_t *bp)
  123. {
  124. xfs_caddr_t ptr;
  125. if (!log->l_sectbb_log)
  126. return XFS_BUF_PTR(bp);
  127. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  128. ASSERT(XFS_BUF_SIZE(bp) >=
  129. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  130. return ptr;
  131. }
  132. /*
  133. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  134. */
  135. STATIC int
  136. xlog_bread_noalign(
  137. xlog_t *log,
  138. xfs_daddr_t blk_no,
  139. int nbblks,
  140. xfs_buf_t *bp)
  141. {
  142. int error;
  143. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  144. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  145. nbblks);
  146. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  147. return EFSCORRUPTED;
  148. }
  149. blk_no = round_down(blk_no, xlog_sectbb(log));
  150. nbblks = round_up(nbblks, xlog_sectbb(log));
  151. ASSERT(nbblks > 0);
  152. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  153. ASSERT(bp);
  154. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  155. XFS_BUF_READ(bp);
  156. XFS_BUF_BUSY(bp);
  157. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  158. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  159. xfsbdstrat(log->l_mp, bp);
  160. error = xfs_iowait(bp);
  161. if (error)
  162. xfs_ioerror_alert("xlog_bread", log->l_mp,
  163. bp, XFS_BUF_ADDR(bp));
  164. return error;
  165. }
  166. STATIC int
  167. xlog_bread(
  168. xlog_t *log,
  169. xfs_daddr_t blk_no,
  170. int nbblks,
  171. xfs_buf_t *bp,
  172. xfs_caddr_t *offset)
  173. {
  174. int error;
  175. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  176. if (error)
  177. return error;
  178. *offset = xlog_align(log, blk_no, nbblks, bp);
  179. return 0;
  180. }
  181. /*
  182. * Write out the buffer at the given block for the given number of blocks.
  183. * The buffer is kept locked across the write and is returned locked.
  184. * This can only be used for synchronous log writes.
  185. */
  186. STATIC int
  187. xlog_bwrite(
  188. xlog_t *log,
  189. xfs_daddr_t blk_no,
  190. int nbblks,
  191. xfs_buf_t *bp)
  192. {
  193. int error;
  194. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  195. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  196. nbblks);
  197. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  198. return EFSCORRUPTED;
  199. }
  200. blk_no = round_down(blk_no, xlog_sectbb(log));
  201. nbblks = round_up(nbblks, xlog_sectbb(log));
  202. ASSERT(nbblks > 0);
  203. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  204. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  205. XFS_BUF_ZEROFLAGS(bp);
  206. XFS_BUF_BUSY(bp);
  207. XFS_BUF_HOLD(bp);
  208. XFS_BUF_PSEMA(bp, PRIBIO);
  209. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  210. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  211. if ((error = xfs_bwrite(log->l_mp, bp)))
  212. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  213. bp, XFS_BUF_ADDR(bp));
  214. return error;
  215. }
  216. #ifdef DEBUG
  217. /*
  218. * dump debug superblock and log record information
  219. */
  220. STATIC void
  221. xlog_header_check_dump(
  222. xfs_mount_t *mp,
  223. xlog_rec_header_t *head)
  224. {
  225. cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
  226. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  227. cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
  228. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  229. }
  230. #else
  231. #define xlog_header_check_dump(mp, head)
  232. #endif
  233. /*
  234. * check log record header for recovery
  235. */
  236. STATIC int
  237. xlog_header_check_recover(
  238. xfs_mount_t *mp,
  239. xlog_rec_header_t *head)
  240. {
  241. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  242. /*
  243. * IRIX doesn't write the h_fmt field and leaves it zeroed
  244. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  245. * a dirty log created in IRIX.
  246. */
  247. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  248. xlog_warn(
  249. "XFS: dirty log written in incompatible format - can't recover");
  250. xlog_header_check_dump(mp, head);
  251. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  252. XFS_ERRLEVEL_HIGH, mp);
  253. return XFS_ERROR(EFSCORRUPTED);
  254. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  255. xlog_warn(
  256. "XFS: dirty log entry has mismatched uuid - can't recover");
  257. xlog_header_check_dump(mp, head);
  258. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  259. XFS_ERRLEVEL_HIGH, mp);
  260. return XFS_ERROR(EFSCORRUPTED);
  261. }
  262. return 0;
  263. }
  264. /*
  265. * read the head block of the log and check the header
  266. */
  267. STATIC int
  268. xlog_header_check_mount(
  269. xfs_mount_t *mp,
  270. xlog_rec_header_t *head)
  271. {
  272. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  273. if (uuid_is_nil(&head->h_fs_uuid)) {
  274. /*
  275. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  276. * h_fs_uuid is nil, we assume this log was last mounted
  277. * by IRIX and continue.
  278. */
  279. xlog_warn("XFS: nil uuid in log - IRIX style log");
  280. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  281. xlog_warn("XFS: log has mismatched uuid - can't recover");
  282. xlog_header_check_dump(mp, head);
  283. XFS_ERROR_REPORT("xlog_header_check_mount",
  284. XFS_ERRLEVEL_HIGH, mp);
  285. return XFS_ERROR(EFSCORRUPTED);
  286. }
  287. return 0;
  288. }
  289. STATIC void
  290. xlog_recover_iodone(
  291. struct xfs_buf *bp)
  292. {
  293. if (XFS_BUF_GETERROR(bp)) {
  294. /*
  295. * We're not going to bother about retrying
  296. * this during recovery. One strike!
  297. */
  298. xfs_ioerror_alert("xlog_recover_iodone",
  299. bp->b_mount, bp, XFS_BUF_ADDR(bp));
  300. xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
  301. }
  302. bp->b_mount = NULL;
  303. XFS_BUF_CLR_IODONE_FUNC(bp);
  304. xfs_biodone(bp);
  305. }
  306. /*
  307. * This routine finds (to an approximation) the first block in the physical
  308. * log which contains the given cycle. It uses a binary search algorithm.
  309. * Note that the algorithm can not be perfect because the disk will not
  310. * necessarily be perfect.
  311. */
  312. STATIC int
  313. xlog_find_cycle_start(
  314. xlog_t *log,
  315. xfs_buf_t *bp,
  316. xfs_daddr_t first_blk,
  317. xfs_daddr_t *last_blk,
  318. uint cycle)
  319. {
  320. xfs_caddr_t offset;
  321. xfs_daddr_t mid_blk;
  322. xfs_daddr_t end_blk;
  323. uint mid_cycle;
  324. int error;
  325. end_blk = *last_blk;
  326. mid_blk = BLK_AVG(first_blk, end_blk);
  327. while (mid_blk != first_blk && mid_blk != end_blk) {
  328. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  329. if (error)
  330. return error;
  331. mid_cycle = xlog_get_cycle(offset);
  332. if (mid_cycle == cycle)
  333. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  334. else
  335. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  336. mid_blk = BLK_AVG(first_blk, end_blk);
  337. }
  338. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  339. (mid_blk == end_blk && mid_blk-1 == first_blk));
  340. *last_blk = end_blk;
  341. return 0;
  342. }
  343. /*
  344. * Check that the range of blocks does not contain the cycle number
  345. * given. The scan needs to occur from front to back and the ptr into the
  346. * region must be updated since a later routine will need to perform another
  347. * test. If the region is completely good, we end up returning the same
  348. * last block number.
  349. *
  350. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  351. * since we don't ever expect logs to get this large.
  352. */
  353. STATIC int
  354. xlog_find_verify_cycle(
  355. xlog_t *log,
  356. xfs_daddr_t start_blk,
  357. int nbblks,
  358. uint stop_on_cycle_no,
  359. xfs_daddr_t *new_blk)
  360. {
  361. xfs_daddr_t i, j;
  362. uint cycle;
  363. xfs_buf_t *bp;
  364. xfs_daddr_t bufblks;
  365. xfs_caddr_t buf = NULL;
  366. int error = 0;
  367. /*
  368. * Greedily allocate a buffer big enough to handle the full
  369. * range of basic blocks we'll be examining. If that fails,
  370. * try a smaller size. We need to be able to read at least
  371. * a log sector, or we're out of luck.
  372. */
  373. bufblks = 1 << ffs(nbblks);
  374. while (!(bp = xlog_get_bp(log, bufblks))) {
  375. bufblks >>= 1;
  376. if (bufblks < xlog_sectbb(log))
  377. return ENOMEM;
  378. }
  379. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  380. int bcount;
  381. bcount = min(bufblks, (start_blk + nbblks - i));
  382. error = xlog_bread(log, i, bcount, bp, &buf);
  383. if (error)
  384. goto out;
  385. for (j = 0; j < bcount; j++) {
  386. cycle = xlog_get_cycle(buf);
  387. if (cycle == stop_on_cycle_no) {
  388. *new_blk = i+j;
  389. goto out;
  390. }
  391. buf += BBSIZE;
  392. }
  393. }
  394. *new_blk = -1;
  395. out:
  396. xlog_put_bp(bp);
  397. return error;
  398. }
  399. /*
  400. * Potentially backup over partial log record write.
  401. *
  402. * In the typical case, last_blk is the number of the block directly after
  403. * a good log record. Therefore, we subtract one to get the block number
  404. * of the last block in the given buffer. extra_bblks contains the number
  405. * of blocks we would have read on a previous read. This happens when the
  406. * last log record is split over the end of the physical log.
  407. *
  408. * extra_bblks is the number of blocks potentially verified on a previous
  409. * call to this routine.
  410. */
  411. STATIC int
  412. xlog_find_verify_log_record(
  413. xlog_t *log,
  414. xfs_daddr_t start_blk,
  415. xfs_daddr_t *last_blk,
  416. int extra_bblks)
  417. {
  418. xfs_daddr_t i;
  419. xfs_buf_t *bp;
  420. xfs_caddr_t offset = NULL;
  421. xlog_rec_header_t *head = NULL;
  422. int error = 0;
  423. int smallmem = 0;
  424. int num_blks = *last_blk - start_blk;
  425. int xhdrs;
  426. ASSERT(start_blk != 0 || *last_blk != start_blk);
  427. if (!(bp = xlog_get_bp(log, num_blks))) {
  428. if (!(bp = xlog_get_bp(log, 1)))
  429. return ENOMEM;
  430. smallmem = 1;
  431. } else {
  432. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  433. if (error)
  434. goto out;
  435. offset += ((num_blks - 1) << BBSHIFT);
  436. }
  437. for (i = (*last_blk) - 1; i >= 0; i--) {
  438. if (i < start_blk) {
  439. /* valid log record not found */
  440. xlog_warn(
  441. "XFS: Log inconsistent (didn't find previous header)");
  442. ASSERT(0);
  443. error = XFS_ERROR(EIO);
  444. goto out;
  445. }
  446. if (smallmem) {
  447. error = xlog_bread(log, i, 1, bp, &offset);
  448. if (error)
  449. goto out;
  450. }
  451. head = (xlog_rec_header_t *)offset;
  452. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  453. break;
  454. if (!smallmem)
  455. offset -= BBSIZE;
  456. }
  457. /*
  458. * We hit the beginning of the physical log & still no header. Return
  459. * to caller. If caller can handle a return of -1, then this routine
  460. * will be called again for the end of the physical log.
  461. */
  462. if (i == -1) {
  463. error = -1;
  464. goto out;
  465. }
  466. /*
  467. * We have the final block of the good log (the first block
  468. * of the log record _before_ the head. So we check the uuid.
  469. */
  470. if ((error = xlog_header_check_mount(log->l_mp, head)))
  471. goto out;
  472. /*
  473. * We may have found a log record header before we expected one.
  474. * last_blk will be the 1st block # with a given cycle #. We may end
  475. * up reading an entire log record. In this case, we don't want to
  476. * reset last_blk. Only when last_blk points in the middle of a log
  477. * record do we update last_blk.
  478. */
  479. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  480. uint h_size = be32_to_cpu(head->h_size);
  481. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  482. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  483. xhdrs++;
  484. } else {
  485. xhdrs = 1;
  486. }
  487. if (*last_blk - i + extra_bblks !=
  488. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  489. *last_blk = i;
  490. out:
  491. xlog_put_bp(bp);
  492. return error;
  493. }
  494. /*
  495. * Head is defined to be the point of the log where the next log write
  496. * write could go. This means that incomplete LR writes at the end are
  497. * eliminated when calculating the head. We aren't guaranteed that previous
  498. * LR have complete transactions. We only know that a cycle number of
  499. * current cycle number -1 won't be present in the log if we start writing
  500. * from our current block number.
  501. *
  502. * last_blk contains the block number of the first block with a given
  503. * cycle number.
  504. *
  505. * Return: zero if normal, non-zero if error.
  506. */
  507. STATIC int
  508. xlog_find_head(
  509. xlog_t *log,
  510. xfs_daddr_t *return_head_blk)
  511. {
  512. xfs_buf_t *bp;
  513. xfs_caddr_t offset;
  514. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  515. int num_scan_bblks;
  516. uint first_half_cycle, last_half_cycle;
  517. uint stop_on_cycle;
  518. int error, log_bbnum = log->l_logBBsize;
  519. /* Is the end of the log device zeroed? */
  520. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  521. *return_head_blk = first_blk;
  522. /* Is the whole lot zeroed? */
  523. if (!first_blk) {
  524. /* Linux XFS shouldn't generate totally zeroed logs -
  525. * mkfs etc write a dummy unmount record to a fresh
  526. * log so we can store the uuid in there
  527. */
  528. xlog_warn("XFS: totally zeroed log");
  529. }
  530. return 0;
  531. } else if (error) {
  532. xlog_warn("XFS: empty log check failed");
  533. return error;
  534. }
  535. first_blk = 0; /* get cycle # of 1st block */
  536. bp = xlog_get_bp(log, 1);
  537. if (!bp)
  538. return ENOMEM;
  539. error = xlog_bread(log, 0, 1, bp, &offset);
  540. if (error)
  541. goto bp_err;
  542. first_half_cycle = xlog_get_cycle(offset);
  543. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  544. error = xlog_bread(log, last_blk, 1, bp, &offset);
  545. if (error)
  546. goto bp_err;
  547. last_half_cycle = xlog_get_cycle(offset);
  548. ASSERT(last_half_cycle != 0);
  549. /*
  550. * If the 1st half cycle number is equal to the last half cycle number,
  551. * then the entire log is stamped with the same cycle number. In this
  552. * case, head_blk can't be set to zero (which makes sense). The below
  553. * math doesn't work out properly with head_blk equal to zero. Instead,
  554. * we set it to log_bbnum which is an invalid block number, but this
  555. * value makes the math correct. If head_blk doesn't changed through
  556. * all the tests below, *head_blk is set to zero at the very end rather
  557. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  558. * in a circular file.
  559. */
  560. if (first_half_cycle == last_half_cycle) {
  561. /*
  562. * In this case we believe that the entire log should have
  563. * cycle number last_half_cycle. We need to scan backwards
  564. * from the end verifying that there are no holes still
  565. * containing last_half_cycle - 1. If we find such a hole,
  566. * then the start of that hole will be the new head. The
  567. * simple case looks like
  568. * x | x ... | x - 1 | x
  569. * Another case that fits this picture would be
  570. * x | x + 1 | x ... | x
  571. * In this case the head really is somewhere at the end of the
  572. * log, as one of the latest writes at the beginning was
  573. * incomplete.
  574. * One more case is
  575. * x | x + 1 | x ... | x - 1 | x
  576. * This is really the combination of the above two cases, and
  577. * the head has to end up at the start of the x-1 hole at the
  578. * end of the log.
  579. *
  580. * In the 256k log case, we will read from the beginning to the
  581. * end of the log and search for cycle numbers equal to x-1.
  582. * We don't worry about the x+1 blocks that we encounter,
  583. * because we know that they cannot be the head since the log
  584. * started with x.
  585. */
  586. head_blk = log_bbnum;
  587. stop_on_cycle = last_half_cycle - 1;
  588. } else {
  589. /*
  590. * In this case we want to find the first block with cycle
  591. * number matching last_half_cycle. We expect the log to be
  592. * some variation on
  593. * x + 1 ... | x ...
  594. * The first block with cycle number x (last_half_cycle) will
  595. * be where the new head belongs. First we do a binary search
  596. * for the first occurrence of last_half_cycle. The binary
  597. * search may not be totally accurate, so then we scan back
  598. * from there looking for occurrences of last_half_cycle before
  599. * us. If that backwards scan wraps around the beginning of
  600. * the log, then we look for occurrences of last_half_cycle - 1
  601. * at the end of the log. The cases we're looking for look
  602. * like
  603. * x + 1 ... | x | x + 1 | x ...
  604. * ^ binary search stopped here
  605. * or
  606. * x + 1 ... | x ... | x - 1 | x
  607. * <---------> less than scan distance
  608. */
  609. stop_on_cycle = last_half_cycle;
  610. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  611. &head_blk, last_half_cycle)))
  612. goto bp_err;
  613. }
  614. /*
  615. * Now validate the answer. Scan back some number of maximum possible
  616. * blocks and make sure each one has the expected cycle number. The
  617. * maximum is determined by the total possible amount of buffering
  618. * in the in-core log. The following number can be made tighter if
  619. * we actually look at the block size of the filesystem.
  620. */
  621. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  622. if (head_blk >= num_scan_bblks) {
  623. /*
  624. * We are guaranteed that the entire check can be performed
  625. * in one buffer.
  626. */
  627. start_blk = head_blk - num_scan_bblks;
  628. if ((error = xlog_find_verify_cycle(log,
  629. start_blk, num_scan_bblks,
  630. stop_on_cycle, &new_blk)))
  631. goto bp_err;
  632. if (new_blk != -1)
  633. head_blk = new_blk;
  634. } else { /* need to read 2 parts of log */
  635. /*
  636. * We are going to scan backwards in the log in two parts.
  637. * First we scan the physical end of the log. In this part
  638. * of the log, we are looking for blocks with cycle number
  639. * last_half_cycle - 1.
  640. * If we find one, then we know that the log starts there, as
  641. * we've found a hole that didn't get written in going around
  642. * the end of the physical log. The simple case for this is
  643. * x + 1 ... | x ... | x - 1 | x
  644. * <---------> less than scan distance
  645. * If all of the blocks at the end of the log have cycle number
  646. * last_half_cycle, then we check the blocks at the start of
  647. * the log looking for occurrences of last_half_cycle. If we
  648. * find one, then our current estimate for the location of the
  649. * first occurrence of last_half_cycle is wrong and we move
  650. * back to the hole we've found. This case looks like
  651. * x + 1 ... | x | x + 1 | x ...
  652. * ^ binary search stopped here
  653. * Another case we need to handle that only occurs in 256k
  654. * logs is
  655. * x + 1 ... | x ... | x+1 | x ...
  656. * ^ binary search stops here
  657. * In a 256k log, the scan at the end of the log will see the
  658. * x + 1 blocks. We need to skip past those since that is
  659. * certainly not the head of the log. By searching for
  660. * last_half_cycle-1 we accomplish that.
  661. */
  662. start_blk = log_bbnum - num_scan_bblks + head_blk;
  663. ASSERT(head_blk <= INT_MAX &&
  664. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  665. if ((error = xlog_find_verify_cycle(log, start_blk,
  666. num_scan_bblks - (int)head_blk,
  667. (stop_on_cycle - 1), &new_blk)))
  668. goto bp_err;
  669. if (new_blk != -1) {
  670. head_blk = new_blk;
  671. goto validate_head;
  672. }
  673. /*
  674. * Scan beginning of log now. The last part of the physical
  675. * log is good. This scan needs to verify that it doesn't find
  676. * the last_half_cycle.
  677. */
  678. start_blk = 0;
  679. ASSERT(head_blk <= INT_MAX);
  680. if ((error = xlog_find_verify_cycle(log,
  681. start_blk, (int)head_blk,
  682. stop_on_cycle, &new_blk)))
  683. goto bp_err;
  684. if (new_blk != -1)
  685. head_blk = new_blk;
  686. }
  687. validate_head:
  688. /*
  689. * Now we need to make sure head_blk is not pointing to a block in
  690. * the middle of a log record.
  691. */
  692. num_scan_bblks = XLOG_REC_SHIFT(log);
  693. if (head_blk >= num_scan_bblks) {
  694. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  695. /* start ptr at last block ptr before head_blk */
  696. if ((error = xlog_find_verify_log_record(log, start_blk,
  697. &head_blk, 0)) == -1) {
  698. error = XFS_ERROR(EIO);
  699. goto bp_err;
  700. } else if (error)
  701. goto bp_err;
  702. } else {
  703. start_blk = 0;
  704. ASSERT(head_blk <= INT_MAX);
  705. if ((error = xlog_find_verify_log_record(log, start_blk,
  706. &head_blk, 0)) == -1) {
  707. /* We hit the beginning of the log during our search */
  708. start_blk = log_bbnum - num_scan_bblks + head_blk;
  709. new_blk = log_bbnum;
  710. ASSERT(start_blk <= INT_MAX &&
  711. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  712. ASSERT(head_blk <= INT_MAX);
  713. if ((error = xlog_find_verify_log_record(log,
  714. start_blk, &new_blk,
  715. (int)head_blk)) == -1) {
  716. error = XFS_ERROR(EIO);
  717. goto bp_err;
  718. } else if (error)
  719. goto bp_err;
  720. if (new_blk != log_bbnum)
  721. head_blk = new_blk;
  722. } else if (error)
  723. goto bp_err;
  724. }
  725. xlog_put_bp(bp);
  726. if (head_blk == log_bbnum)
  727. *return_head_blk = 0;
  728. else
  729. *return_head_blk = head_blk;
  730. /*
  731. * When returning here, we have a good block number. Bad block
  732. * means that during a previous crash, we didn't have a clean break
  733. * from cycle number N to cycle number N-1. In this case, we need
  734. * to find the first block with cycle number N-1.
  735. */
  736. return 0;
  737. bp_err:
  738. xlog_put_bp(bp);
  739. if (error)
  740. xlog_warn("XFS: failed to find log head");
  741. return error;
  742. }
  743. /*
  744. * Find the sync block number or the tail of the log.
  745. *
  746. * This will be the block number of the last record to have its
  747. * associated buffers synced to disk. Every log record header has
  748. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  749. * to get a sync block number. The only concern is to figure out which
  750. * log record header to believe.
  751. *
  752. * The following algorithm uses the log record header with the largest
  753. * lsn. The entire log record does not need to be valid. We only care
  754. * that the header is valid.
  755. *
  756. * We could speed up search by using current head_blk buffer, but it is not
  757. * available.
  758. */
  759. STATIC int
  760. xlog_find_tail(
  761. xlog_t *log,
  762. xfs_daddr_t *head_blk,
  763. xfs_daddr_t *tail_blk)
  764. {
  765. xlog_rec_header_t *rhead;
  766. xlog_op_header_t *op_head;
  767. xfs_caddr_t offset = NULL;
  768. xfs_buf_t *bp;
  769. int error, i, found;
  770. xfs_daddr_t umount_data_blk;
  771. xfs_daddr_t after_umount_blk;
  772. xfs_lsn_t tail_lsn;
  773. int hblks;
  774. found = 0;
  775. /*
  776. * Find previous log record
  777. */
  778. if ((error = xlog_find_head(log, head_blk)))
  779. return error;
  780. bp = xlog_get_bp(log, 1);
  781. if (!bp)
  782. return ENOMEM;
  783. if (*head_blk == 0) { /* special case */
  784. error = xlog_bread(log, 0, 1, bp, &offset);
  785. if (error)
  786. goto done;
  787. if (xlog_get_cycle(offset) == 0) {
  788. *tail_blk = 0;
  789. /* leave all other log inited values alone */
  790. goto done;
  791. }
  792. }
  793. /*
  794. * Search backwards looking for log record header block
  795. */
  796. ASSERT(*head_blk < INT_MAX);
  797. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  798. error = xlog_bread(log, i, 1, bp, &offset);
  799. if (error)
  800. goto done;
  801. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  802. found = 1;
  803. break;
  804. }
  805. }
  806. /*
  807. * If we haven't found the log record header block, start looking
  808. * again from the end of the physical log. XXXmiken: There should be
  809. * a check here to make sure we didn't search more than N blocks in
  810. * the previous code.
  811. */
  812. if (!found) {
  813. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  814. error = xlog_bread(log, i, 1, bp, &offset);
  815. if (error)
  816. goto done;
  817. if (XLOG_HEADER_MAGIC_NUM ==
  818. be32_to_cpu(*(__be32 *)offset)) {
  819. found = 2;
  820. break;
  821. }
  822. }
  823. }
  824. if (!found) {
  825. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  826. ASSERT(0);
  827. return XFS_ERROR(EIO);
  828. }
  829. /* find blk_no of tail of log */
  830. rhead = (xlog_rec_header_t *)offset;
  831. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  832. /*
  833. * Reset log values according to the state of the log when we
  834. * crashed. In the case where head_blk == 0, we bump curr_cycle
  835. * one because the next write starts a new cycle rather than
  836. * continuing the cycle of the last good log record. At this
  837. * point we have guaranteed that all partial log records have been
  838. * accounted for. Therefore, we know that the last good log record
  839. * written was complete and ended exactly on the end boundary
  840. * of the physical log.
  841. */
  842. log->l_prev_block = i;
  843. log->l_curr_block = (int)*head_blk;
  844. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  845. if (found == 2)
  846. log->l_curr_cycle++;
  847. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  848. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  849. log->l_grant_reserve_cycle = log->l_curr_cycle;
  850. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  851. log->l_grant_write_cycle = log->l_curr_cycle;
  852. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  853. /*
  854. * Look for unmount record. If we find it, then we know there
  855. * was a clean unmount. Since 'i' could be the last block in
  856. * the physical log, we convert to a log block before comparing
  857. * to the head_blk.
  858. *
  859. * Save the current tail lsn to use to pass to
  860. * xlog_clear_stale_blocks() below. We won't want to clear the
  861. * unmount record if there is one, so we pass the lsn of the
  862. * unmount record rather than the block after it.
  863. */
  864. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  865. int h_size = be32_to_cpu(rhead->h_size);
  866. int h_version = be32_to_cpu(rhead->h_version);
  867. if ((h_version & XLOG_VERSION_2) &&
  868. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  869. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  870. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  871. hblks++;
  872. } else {
  873. hblks = 1;
  874. }
  875. } else {
  876. hblks = 1;
  877. }
  878. after_umount_blk = (i + hblks + (int)
  879. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  880. tail_lsn = log->l_tail_lsn;
  881. if (*head_blk == after_umount_blk &&
  882. be32_to_cpu(rhead->h_num_logops) == 1) {
  883. umount_data_blk = (i + hblks) % log->l_logBBsize;
  884. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  885. if (error)
  886. goto done;
  887. op_head = (xlog_op_header_t *)offset;
  888. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  889. /*
  890. * Set tail and last sync so that newly written
  891. * log records will point recovery to after the
  892. * current unmount record.
  893. */
  894. log->l_tail_lsn =
  895. xlog_assign_lsn(log->l_curr_cycle,
  896. after_umount_blk);
  897. log->l_last_sync_lsn =
  898. xlog_assign_lsn(log->l_curr_cycle,
  899. after_umount_blk);
  900. *tail_blk = after_umount_blk;
  901. /*
  902. * Note that the unmount was clean. If the unmount
  903. * was not clean, we need to know this to rebuild the
  904. * superblock counters from the perag headers if we
  905. * have a filesystem using non-persistent counters.
  906. */
  907. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  908. }
  909. }
  910. /*
  911. * Make sure that there are no blocks in front of the head
  912. * with the same cycle number as the head. This can happen
  913. * because we allow multiple outstanding log writes concurrently,
  914. * and the later writes might make it out before earlier ones.
  915. *
  916. * We use the lsn from before modifying it so that we'll never
  917. * overwrite the unmount record after a clean unmount.
  918. *
  919. * Do this only if we are going to recover the filesystem
  920. *
  921. * NOTE: This used to say "if (!readonly)"
  922. * However on Linux, we can & do recover a read-only filesystem.
  923. * We only skip recovery if NORECOVERY is specified on mount,
  924. * in which case we would not be here.
  925. *
  926. * But... if the -device- itself is readonly, just skip this.
  927. * We can't recover this device anyway, so it won't matter.
  928. */
  929. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  930. error = xlog_clear_stale_blocks(log, tail_lsn);
  931. done:
  932. xlog_put_bp(bp);
  933. if (error)
  934. xlog_warn("XFS: failed to locate log tail");
  935. return error;
  936. }
  937. /*
  938. * Is the log zeroed at all?
  939. *
  940. * The last binary search should be changed to perform an X block read
  941. * once X becomes small enough. You can then search linearly through
  942. * the X blocks. This will cut down on the number of reads we need to do.
  943. *
  944. * If the log is partially zeroed, this routine will pass back the blkno
  945. * of the first block with cycle number 0. It won't have a complete LR
  946. * preceding it.
  947. *
  948. * Return:
  949. * 0 => the log is completely written to
  950. * -1 => use *blk_no as the first block of the log
  951. * >0 => error has occurred
  952. */
  953. STATIC int
  954. xlog_find_zeroed(
  955. xlog_t *log,
  956. xfs_daddr_t *blk_no)
  957. {
  958. xfs_buf_t *bp;
  959. xfs_caddr_t offset;
  960. uint first_cycle, last_cycle;
  961. xfs_daddr_t new_blk, last_blk, start_blk;
  962. xfs_daddr_t num_scan_bblks;
  963. int error, log_bbnum = log->l_logBBsize;
  964. *blk_no = 0;
  965. /* check totally zeroed log */
  966. bp = xlog_get_bp(log, 1);
  967. if (!bp)
  968. return ENOMEM;
  969. error = xlog_bread(log, 0, 1, bp, &offset);
  970. if (error)
  971. goto bp_err;
  972. first_cycle = xlog_get_cycle(offset);
  973. if (first_cycle == 0) { /* completely zeroed log */
  974. *blk_no = 0;
  975. xlog_put_bp(bp);
  976. return -1;
  977. }
  978. /* check partially zeroed log */
  979. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  980. if (error)
  981. goto bp_err;
  982. last_cycle = xlog_get_cycle(offset);
  983. if (last_cycle != 0) { /* log completely written to */
  984. xlog_put_bp(bp);
  985. return 0;
  986. } else if (first_cycle != 1) {
  987. /*
  988. * If the cycle of the last block is zero, the cycle of
  989. * the first block must be 1. If it's not, maybe we're
  990. * not looking at a log... Bail out.
  991. */
  992. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  993. return XFS_ERROR(EINVAL);
  994. }
  995. /* we have a partially zeroed log */
  996. last_blk = log_bbnum-1;
  997. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  998. goto bp_err;
  999. /*
  1000. * Validate the answer. Because there is no way to guarantee that
  1001. * the entire log is made up of log records which are the same size,
  1002. * we scan over the defined maximum blocks. At this point, the maximum
  1003. * is not chosen to mean anything special. XXXmiken
  1004. */
  1005. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1006. ASSERT(num_scan_bblks <= INT_MAX);
  1007. if (last_blk < num_scan_bblks)
  1008. num_scan_bblks = last_blk;
  1009. start_blk = last_blk - num_scan_bblks;
  1010. /*
  1011. * We search for any instances of cycle number 0 that occur before
  1012. * our current estimate of the head. What we're trying to detect is
  1013. * 1 ... | 0 | 1 | 0...
  1014. * ^ binary search ends here
  1015. */
  1016. if ((error = xlog_find_verify_cycle(log, start_blk,
  1017. (int)num_scan_bblks, 0, &new_blk)))
  1018. goto bp_err;
  1019. if (new_blk != -1)
  1020. last_blk = new_blk;
  1021. /*
  1022. * Potentially backup over partial log record write. We don't need
  1023. * to search the end of the log because we know it is zero.
  1024. */
  1025. if ((error = xlog_find_verify_log_record(log, start_blk,
  1026. &last_blk, 0)) == -1) {
  1027. error = XFS_ERROR(EIO);
  1028. goto bp_err;
  1029. } else if (error)
  1030. goto bp_err;
  1031. *blk_no = last_blk;
  1032. bp_err:
  1033. xlog_put_bp(bp);
  1034. if (error)
  1035. return error;
  1036. return -1;
  1037. }
  1038. /*
  1039. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1040. * to initialize a buffer full of empty log record headers and write
  1041. * them into the log.
  1042. */
  1043. STATIC void
  1044. xlog_add_record(
  1045. xlog_t *log,
  1046. xfs_caddr_t buf,
  1047. int cycle,
  1048. int block,
  1049. int tail_cycle,
  1050. int tail_block)
  1051. {
  1052. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1053. memset(buf, 0, BBSIZE);
  1054. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1055. recp->h_cycle = cpu_to_be32(cycle);
  1056. recp->h_version = cpu_to_be32(
  1057. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1058. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1059. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1060. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1061. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1062. }
  1063. STATIC int
  1064. xlog_write_log_records(
  1065. xlog_t *log,
  1066. int cycle,
  1067. int start_block,
  1068. int blocks,
  1069. int tail_cycle,
  1070. int tail_block)
  1071. {
  1072. xfs_caddr_t offset;
  1073. xfs_buf_t *bp;
  1074. int balign, ealign;
  1075. int sectbb = xlog_sectbb(log);
  1076. int end_block = start_block + blocks;
  1077. int bufblks;
  1078. int error = 0;
  1079. int i, j = 0;
  1080. /*
  1081. * Greedily allocate a buffer big enough to handle the full
  1082. * range of basic blocks to be written. If that fails, try
  1083. * a smaller size. We need to be able to write at least a
  1084. * log sector, or we're out of luck.
  1085. */
  1086. bufblks = 1 << ffs(blocks);
  1087. while (!(bp = xlog_get_bp(log, bufblks))) {
  1088. bufblks >>= 1;
  1089. if (bufblks < xlog_sectbb(log))
  1090. return ENOMEM;
  1091. }
  1092. /* We may need to do a read at the start to fill in part of
  1093. * the buffer in the starting sector not covered by the first
  1094. * write below.
  1095. */
  1096. balign = round_down(start_block, sectbb);
  1097. if (balign != start_block) {
  1098. error = xlog_bread_noalign(log, start_block, 1, bp);
  1099. if (error)
  1100. goto out_put_bp;
  1101. j = start_block - balign;
  1102. }
  1103. for (i = start_block; i < end_block; i += bufblks) {
  1104. int bcount, endcount;
  1105. bcount = min(bufblks, end_block - start_block);
  1106. endcount = bcount - j;
  1107. /* We may need to do a read at the end to fill in part of
  1108. * the buffer in the final sector not covered by the write.
  1109. * If this is the same sector as the above read, skip it.
  1110. */
  1111. ealign = round_down(end_block, sectbb);
  1112. if (j == 0 && (start_block + endcount > ealign)) {
  1113. offset = XFS_BUF_PTR(bp);
  1114. balign = BBTOB(ealign - start_block);
  1115. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1116. BBTOB(sectbb));
  1117. if (error)
  1118. break;
  1119. error = xlog_bread_noalign(log, ealign, sectbb, bp);
  1120. if (error)
  1121. break;
  1122. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1123. if (error)
  1124. break;
  1125. }
  1126. offset = xlog_align(log, start_block, endcount, bp);
  1127. for (; j < endcount; j++) {
  1128. xlog_add_record(log, offset, cycle, i+j,
  1129. tail_cycle, tail_block);
  1130. offset += BBSIZE;
  1131. }
  1132. error = xlog_bwrite(log, start_block, endcount, bp);
  1133. if (error)
  1134. break;
  1135. start_block += endcount;
  1136. j = 0;
  1137. }
  1138. out_put_bp:
  1139. xlog_put_bp(bp);
  1140. return error;
  1141. }
  1142. /*
  1143. * This routine is called to blow away any incomplete log writes out
  1144. * in front of the log head. We do this so that we won't become confused
  1145. * if we come up, write only a little bit more, and then crash again.
  1146. * If we leave the partial log records out there, this situation could
  1147. * cause us to think those partial writes are valid blocks since they
  1148. * have the current cycle number. We get rid of them by overwriting them
  1149. * with empty log records with the old cycle number rather than the
  1150. * current one.
  1151. *
  1152. * The tail lsn is passed in rather than taken from
  1153. * the log so that we will not write over the unmount record after a
  1154. * clean unmount in a 512 block log. Doing so would leave the log without
  1155. * any valid log records in it until a new one was written. If we crashed
  1156. * during that time we would not be able to recover.
  1157. */
  1158. STATIC int
  1159. xlog_clear_stale_blocks(
  1160. xlog_t *log,
  1161. xfs_lsn_t tail_lsn)
  1162. {
  1163. int tail_cycle, head_cycle;
  1164. int tail_block, head_block;
  1165. int tail_distance, max_distance;
  1166. int distance;
  1167. int error;
  1168. tail_cycle = CYCLE_LSN(tail_lsn);
  1169. tail_block = BLOCK_LSN(tail_lsn);
  1170. head_cycle = log->l_curr_cycle;
  1171. head_block = log->l_curr_block;
  1172. /*
  1173. * Figure out the distance between the new head of the log
  1174. * and the tail. We want to write over any blocks beyond the
  1175. * head that we may have written just before the crash, but
  1176. * we don't want to overwrite the tail of the log.
  1177. */
  1178. if (head_cycle == tail_cycle) {
  1179. /*
  1180. * The tail is behind the head in the physical log,
  1181. * so the distance from the head to the tail is the
  1182. * distance from the head to the end of the log plus
  1183. * the distance from the beginning of the log to the
  1184. * tail.
  1185. */
  1186. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1187. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1188. XFS_ERRLEVEL_LOW, log->l_mp);
  1189. return XFS_ERROR(EFSCORRUPTED);
  1190. }
  1191. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1192. } else {
  1193. /*
  1194. * The head is behind the tail in the physical log,
  1195. * so the distance from the head to the tail is just
  1196. * the tail block minus the head block.
  1197. */
  1198. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1199. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1200. XFS_ERRLEVEL_LOW, log->l_mp);
  1201. return XFS_ERROR(EFSCORRUPTED);
  1202. }
  1203. tail_distance = tail_block - head_block;
  1204. }
  1205. /*
  1206. * If the head is right up against the tail, we can't clear
  1207. * anything.
  1208. */
  1209. if (tail_distance <= 0) {
  1210. ASSERT(tail_distance == 0);
  1211. return 0;
  1212. }
  1213. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1214. /*
  1215. * Take the smaller of the maximum amount of outstanding I/O
  1216. * we could have and the distance to the tail to clear out.
  1217. * We take the smaller so that we don't overwrite the tail and
  1218. * we don't waste all day writing from the head to the tail
  1219. * for no reason.
  1220. */
  1221. max_distance = MIN(max_distance, tail_distance);
  1222. if ((head_block + max_distance) <= log->l_logBBsize) {
  1223. /*
  1224. * We can stomp all the blocks we need to without
  1225. * wrapping around the end of the log. Just do it
  1226. * in a single write. Use the cycle number of the
  1227. * current cycle minus one so that the log will look like:
  1228. * n ... | n - 1 ...
  1229. */
  1230. error = xlog_write_log_records(log, (head_cycle - 1),
  1231. head_block, max_distance, tail_cycle,
  1232. tail_block);
  1233. if (error)
  1234. return error;
  1235. } else {
  1236. /*
  1237. * We need to wrap around the end of the physical log in
  1238. * order to clear all the blocks. Do it in two separate
  1239. * I/Os. The first write should be from the head to the
  1240. * end of the physical log, and it should use the current
  1241. * cycle number minus one just like above.
  1242. */
  1243. distance = log->l_logBBsize - head_block;
  1244. error = xlog_write_log_records(log, (head_cycle - 1),
  1245. head_block, distance, tail_cycle,
  1246. tail_block);
  1247. if (error)
  1248. return error;
  1249. /*
  1250. * Now write the blocks at the start of the physical log.
  1251. * This writes the remainder of the blocks we want to clear.
  1252. * It uses the current cycle number since we're now on the
  1253. * same cycle as the head so that we get:
  1254. * n ... n ... | n - 1 ...
  1255. * ^^^^^ blocks we're writing
  1256. */
  1257. distance = max_distance - (log->l_logBBsize - head_block);
  1258. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1259. tail_cycle, tail_block);
  1260. if (error)
  1261. return error;
  1262. }
  1263. return 0;
  1264. }
  1265. /******************************************************************************
  1266. *
  1267. * Log recover routines
  1268. *
  1269. ******************************************************************************
  1270. */
  1271. STATIC xlog_recover_t *
  1272. xlog_recover_find_tid(
  1273. struct hlist_head *head,
  1274. xlog_tid_t tid)
  1275. {
  1276. xlog_recover_t *trans;
  1277. struct hlist_node *n;
  1278. hlist_for_each_entry(trans, n, head, r_list) {
  1279. if (trans->r_log_tid == tid)
  1280. return trans;
  1281. }
  1282. return NULL;
  1283. }
  1284. STATIC void
  1285. xlog_recover_new_tid(
  1286. struct hlist_head *head,
  1287. xlog_tid_t tid,
  1288. xfs_lsn_t lsn)
  1289. {
  1290. xlog_recover_t *trans;
  1291. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1292. trans->r_log_tid = tid;
  1293. trans->r_lsn = lsn;
  1294. INIT_LIST_HEAD(&trans->r_itemq);
  1295. INIT_HLIST_NODE(&trans->r_list);
  1296. hlist_add_head(&trans->r_list, head);
  1297. }
  1298. STATIC void
  1299. xlog_recover_add_item(
  1300. struct list_head *head)
  1301. {
  1302. xlog_recover_item_t *item;
  1303. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1304. INIT_LIST_HEAD(&item->ri_list);
  1305. list_add_tail(&item->ri_list, head);
  1306. }
  1307. STATIC int
  1308. xlog_recover_add_to_cont_trans(
  1309. struct log *log,
  1310. xlog_recover_t *trans,
  1311. xfs_caddr_t dp,
  1312. int len)
  1313. {
  1314. xlog_recover_item_t *item;
  1315. xfs_caddr_t ptr, old_ptr;
  1316. int old_len;
  1317. if (list_empty(&trans->r_itemq)) {
  1318. /* finish copying rest of trans header */
  1319. xlog_recover_add_item(&trans->r_itemq);
  1320. ptr = (xfs_caddr_t) &trans->r_theader +
  1321. sizeof(xfs_trans_header_t) - len;
  1322. memcpy(ptr, dp, len); /* d, s, l */
  1323. return 0;
  1324. }
  1325. /* take the tail entry */
  1326. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1327. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1328. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1329. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1330. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1331. item->ri_buf[item->ri_cnt-1].i_len += len;
  1332. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1333. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1334. return 0;
  1335. }
  1336. /*
  1337. * The next region to add is the start of a new region. It could be
  1338. * a whole region or it could be the first part of a new region. Because
  1339. * of this, the assumption here is that the type and size fields of all
  1340. * format structures fit into the first 32 bits of the structure.
  1341. *
  1342. * This works because all regions must be 32 bit aligned. Therefore, we
  1343. * either have both fields or we have neither field. In the case we have
  1344. * neither field, the data part of the region is zero length. We only have
  1345. * a log_op_header and can throw away the header since a new one will appear
  1346. * later. If we have at least 4 bytes, then we can determine how many regions
  1347. * will appear in the current log item.
  1348. */
  1349. STATIC int
  1350. xlog_recover_add_to_trans(
  1351. struct log *log,
  1352. xlog_recover_t *trans,
  1353. xfs_caddr_t dp,
  1354. int len)
  1355. {
  1356. xfs_inode_log_format_t *in_f; /* any will do */
  1357. xlog_recover_item_t *item;
  1358. xfs_caddr_t ptr;
  1359. if (!len)
  1360. return 0;
  1361. if (list_empty(&trans->r_itemq)) {
  1362. /* we need to catch log corruptions here */
  1363. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1364. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1365. "bad header magic number");
  1366. ASSERT(0);
  1367. return XFS_ERROR(EIO);
  1368. }
  1369. if (len == sizeof(xfs_trans_header_t))
  1370. xlog_recover_add_item(&trans->r_itemq);
  1371. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1372. return 0;
  1373. }
  1374. ptr = kmem_alloc(len, KM_SLEEP);
  1375. memcpy(ptr, dp, len);
  1376. in_f = (xfs_inode_log_format_t *)ptr;
  1377. /* take the tail entry */
  1378. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1379. if (item->ri_total != 0 &&
  1380. item->ri_total == item->ri_cnt) {
  1381. /* tail item is in use, get a new one */
  1382. xlog_recover_add_item(&trans->r_itemq);
  1383. item = list_entry(trans->r_itemq.prev,
  1384. xlog_recover_item_t, ri_list);
  1385. }
  1386. if (item->ri_total == 0) { /* first region to be added */
  1387. if (in_f->ilf_size == 0 ||
  1388. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1389. xlog_warn(
  1390. "XFS: bad number of regions (%d) in inode log format",
  1391. in_f->ilf_size);
  1392. ASSERT(0);
  1393. return XFS_ERROR(EIO);
  1394. }
  1395. item->ri_total = in_f->ilf_size;
  1396. item->ri_buf =
  1397. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1398. KM_SLEEP);
  1399. }
  1400. ASSERT(item->ri_total > item->ri_cnt);
  1401. /* Description region is ri_buf[0] */
  1402. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1403. item->ri_buf[item->ri_cnt].i_len = len;
  1404. item->ri_cnt++;
  1405. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1406. return 0;
  1407. }
  1408. /*
  1409. * Sort the log items in the transaction. Cancelled buffers need
  1410. * to be put first so they are processed before any items that might
  1411. * modify the buffers. If they are cancelled, then the modifications
  1412. * don't need to be replayed.
  1413. */
  1414. STATIC int
  1415. xlog_recover_reorder_trans(
  1416. struct log *log,
  1417. xlog_recover_t *trans,
  1418. int pass)
  1419. {
  1420. xlog_recover_item_t *item, *n;
  1421. LIST_HEAD(sort_list);
  1422. list_splice_init(&trans->r_itemq, &sort_list);
  1423. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1424. xfs_buf_log_format_t *buf_f;
  1425. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1426. switch (ITEM_TYPE(item)) {
  1427. case XFS_LI_BUF:
  1428. if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
  1429. trace_xfs_log_recover_item_reorder_head(log,
  1430. trans, item, pass);
  1431. list_move(&item->ri_list, &trans->r_itemq);
  1432. break;
  1433. }
  1434. case XFS_LI_INODE:
  1435. case XFS_LI_DQUOT:
  1436. case XFS_LI_QUOTAOFF:
  1437. case XFS_LI_EFD:
  1438. case XFS_LI_EFI:
  1439. trace_xfs_log_recover_item_reorder_tail(log,
  1440. trans, item, pass);
  1441. list_move_tail(&item->ri_list, &trans->r_itemq);
  1442. break;
  1443. default:
  1444. xlog_warn(
  1445. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1446. ASSERT(0);
  1447. return XFS_ERROR(EIO);
  1448. }
  1449. }
  1450. ASSERT(list_empty(&sort_list));
  1451. return 0;
  1452. }
  1453. /*
  1454. * Build up the table of buf cancel records so that we don't replay
  1455. * cancelled data in the second pass. For buffer records that are
  1456. * not cancel records, there is nothing to do here so we just return.
  1457. *
  1458. * If we get a cancel record which is already in the table, this indicates
  1459. * that the buffer was cancelled multiple times. In order to ensure
  1460. * that during pass 2 we keep the record in the table until we reach its
  1461. * last occurrence in the log, we keep a reference count in the cancel
  1462. * record in the table to tell us how many times we expect to see this
  1463. * record during the second pass.
  1464. */
  1465. STATIC void
  1466. xlog_recover_do_buffer_pass1(
  1467. xlog_t *log,
  1468. xfs_buf_log_format_t *buf_f)
  1469. {
  1470. xfs_buf_cancel_t *bcp;
  1471. xfs_buf_cancel_t *nextp;
  1472. xfs_buf_cancel_t *prevp;
  1473. xfs_buf_cancel_t **bucket;
  1474. xfs_daddr_t blkno = 0;
  1475. uint len = 0;
  1476. ushort flags = 0;
  1477. switch (buf_f->blf_type) {
  1478. case XFS_LI_BUF:
  1479. blkno = buf_f->blf_blkno;
  1480. len = buf_f->blf_len;
  1481. flags = buf_f->blf_flags;
  1482. break;
  1483. }
  1484. /*
  1485. * If this isn't a cancel buffer item, then just return.
  1486. */
  1487. if (!(flags & XFS_BLI_CANCEL)) {
  1488. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1489. return;
  1490. }
  1491. /*
  1492. * Insert an xfs_buf_cancel record into the hash table of
  1493. * them. If there is already an identical record, bump
  1494. * its reference count.
  1495. */
  1496. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1497. XLOG_BC_TABLE_SIZE];
  1498. /*
  1499. * If the hash bucket is empty then just insert a new record into
  1500. * the bucket.
  1501. */
  1502. if (*bucket == NULL) {
  1503. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1504. KM_SLEEP);
  1505. bcp->bc_blkno = blkno;
  1506. bcp->bc_len = len;
  1507. bcp->bc_refcount = 1;
  1508. bcp->bc_next = NULL;
  1509. *bucket = bcp;
  1510. return;
  1511. }
  1512. /*
  1513. * The hash bucket is not empty, so search for duplicates of our
  1514. * record. If we find one them just bump its refcount. If not
  1515. * then add us at the end of the list.
  1516. */
  1517. prevp = NULL;
  1518. nextp = *bucket;
  1519. while (nextp != NULL) {
  1520. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1521. nextp->bc_refcount++;
  1522. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1523. return;
  1524. }
  1525. prevp = nextp;
  1526. nextp = nextp->bc_next;
  1527. }
  1528. ASSERT(prevp != NULL);
  1529. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1530. KM_SLEEP);
  1531. bcp->bc_blkno = blkno;
  1532. bcp->bc_len = len;
  1533. bcp->bc_refcount = 1;
  1534. bcp->bc_next = NULL;
  1535. prevp->bc_next = bcp;
  1536. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1537. }
  1538. /*
  1539. * Check to see whether the buffer being recovered has a corresponding
  1540. * entry in the buffer cancel record table. If it does then return 1
  1541. * so that it will be cancelled, otherwise return 0. If the buffer is
  1542. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1543. * the refcount on the entry in the table and remove it from the table
  1544. * if this is the last reference.
  1545. *
  1546. * We remove the cancel record from the table when we encounter its
  1547. * last occurrence in the log so that if the same buffer is re-used
  1548. * again after its last cancellation we actually replay the changes
  1549. * made at that point.
  1550. */
  1551. STATIC int
  1552. xlog_check_buffer_cancelled(
  1553. xlog_t *log,
  1554. xfs_daddr_t blkno,
  1555. uint len,
  1556. ushort flags)
  1557. {
  1558. xfs_buf_cancel_t *bcp;
  1559. xfs_buf_cancel_t *prevp;
  1560. xfs_buf_cancel_t **bucket;
  1561. if (log->l_buf_cancel_table == NULL) {
  1562. /*
  1563. * There is nothing in the table built in pass one,
  1564. * so this buffer must not be cancelled.
  1565. */
  1566. ASSERT(!(flags & XFS_BLI_CANCEL));
  1567. return 0;
  1568. }
  1569. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1570. XLOG_BC_TABLE_SIZE];
  1571. bcp = *bucket;
  1572. if (bcp == NULL) {
  1573. /*
  1574. * There is no corresponding entry in the table built
  1575. * in pass one, so this buffer has not been cancelled.
  1576. */
  1577. ASSERT(!(flags & XFS_BLI_CANCEL));
  1578. return 0;
  1579. }
  1580. /*
  1581. * Search for an entry in the buffer cancel table that
  1582. * matches our buffer.
  1583. */
  1584. prevp = NULL;
  1585. while (bcp != NULL) {
  1586. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1587. /*
  1588. * We've go a match, so return 1 so that the
  1589. * recovery of this buffer is cancelled.
  1590. * If this buffer is actually a buffer cancel
  1591. * log item, then decrement the refcount on the
  1592. * one in the table and remove it if this is the
  1593. * last reference.
  1594. */
  1595. if (flags & XFS_BLI_CANCEL) {
  1596. bcp->bc_refcount--;
  1597. if (bcp->bc_refcount == 0) {
  1598. if (prevp == NULL) {
  1599. *bucket = bcp->bc_next;
  1600. } else {
  1601. prevp->bc_next = bcp->bc_next;
  1602. }
  1603. kmem_free(bcp);
  1604. }
  1605. }
  1606. return 1;
  1607. }
  1608. prevp = bcp;
  1609. bcp = bcp->bc_next;
  1610. }
  1611. /*
  1612. * We didn't find a corresponding entry in the table, so
  1613. * return 0 so that the buffer is NOT cancelled.
  1614. */
  1615. ASSERT(!(flags & XFS_BLI_CANCEL));
  1616. return 0;
  1617. }
  1618. STATIC int
  1619. xlog_recover_do_buffer_pass2(
  1620. xlog_t *log,
  1621. xfs_buf_log_format_t *buf_f)
  1622. {
  1623. xfs_daddr_t blkno = 0;
  1624. ushort flags = 0;
  1625. uint len = 0;
  1626. switch (buf_f->blf_type) {
  1627. case XFS_LI_BUF:
  1628. blkno = buf_f->blf_blkno;
  1629. flags = buf_f->blf_flags;
  1630. len = buf_f->blf_len;
  1631. break;
  1632. }
  1633. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1634. }
  1635. /*
  1636. * Perform recovery for a buffer full of inodes. In these buffers,
  1637. * the only data which should be recovered is that which corresponds
  1638. * to the di_next_unlinked pointers in the on disk inode structures.
  1639. * The rest of the data for the inodes is always logged through the
  1640. * inodes themselves rather than the inode buffer and is recovered
  1641. * in xlog_recover_do_inode_trans().
  1642. *
  1643. * The only time when buffers full of inodes are fully recovered is
  1644. * when the buffer is full of newly allocated inodes. In this case
  1645. * the buffer will not be marked as an inode buffer and so will be
  1646. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1647. */
  1648. STATIC int
  1649. xlog_recover_do_inode_buffer(
  1650. xfs_mount_t *mp,
  1651. xlog_recover_item_t *item,
  1652. xfs_buf_t *bp,
  1653. xfs_buf_log_format_t *buf_f)
  1654. {
  1655. int i;
  1656. int item_index;
  1657. int bit;
  1658. int nbits;
  1659. int reg_buf_offset;
  1660. int reg_buf_bytes;
  1661. int next_unlinked_offset;
  1662. int inodes_per_buf;
  1663. xfs_agino_t *logged_nextp;
  1664. xfs_agino_t *buffer_nextp;
  1665. unsigned int *data_map = NULL;
  1666. unsigned int map_size = 0;
  1667. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1668. switch (buf_f->blf_type) {
  1669. case XFS_LI_BUF:
  1670. data_map = buf_f->blf_data_map;
  1671. map_size = buf_f->blf_map_size;
  1672. break;
  1673. }
  1674. /*
  1675. * Set the variables corresponding to the current region to
  1676. * 0 so that we'll initialize them on the first pass through
  1677. * the loop.
  1678. */
  1679. reg_buf_offset = 0;
  1680. reg_buf_bytes = 0;
  1681. bit = 0;
  1682. nbits = 0;
  1683. item_index = 0;
  1684. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1685. for (i = 0; i < inodes_per_buf; i++) {
  1686. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1687. offsetof(xfs_dinode_t, di_next_unlinked);
  1688. while (next_unlinked_offset >=
  1689. (reg_buf_offset + reg_buf_bytes)) {
  1690. /*
  1691. * The next di_next_unlinked field is beyond
  1692. * the current logged region. Find the next
  1693. * logged region that contains or is beyond
  1694. * the current di_next_unlinked field.
  1695. */
  1696. bit += nbits;
  1697. bit = xfs_next_bit(data_map, map_size, bit);
  1698. /*
  1699. * If there are no more logged regions in the
  1700. * buffer, then we're done.
  1701. */
  1702. if (bit == -1) {
  1703. return 0;
  1704. }
  1705. nbits = xfs_contig_bits(data_map, map_size,
  1706. bit);
  1707. ASSERT(nbits > 0);
  1708. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1709. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1710. item_index++;
  1711. }
  1712. /*
  1713. * If the current logged region starts after the current
  1714. * di_next_unlinked field, then move on to the next
  1715. * di_next_unlinked field.
  1716. */
  1717. if (next_unlinked_offset < reg_buf_offset) {
  1718. continue;
  1719. }
  1720. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1721. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1722. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1723. /*
  1724. * The current logged region contains a copy of the
  1725. * current di_next_unlinked field. Extract its value
  1726. * and copy it to the buffer copy.
  1727. */
  1728. logged_nextp = (xfs_agino_t *)
  1729. ((char *)(item->ri_buf[item_index].i_addr) +
  1730. (next_unlinked_offset - reg_buf_offset));
  1731. if (unlikely(*logged_nextp == 0)) {
  1732. xfs_fs_cmn_err(CE_ALERT, mp,
  1733. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1734. item, bp);
  1735. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1736. XFS_ERRLEVEL_LOW, mp);
  1737. return XFS_ERROR(EFSCORRUPTED);
  1738. }
  1739. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1740. next_unlinked_offset);
  1741. *buffer_nextp = *logged_nextp;
  1742. }
  1743. return 0;
  1744. }
  1745. /*
  1746. * Perform a 'normal' buffer recovery. Each logged region of the
  1747. * buffer should be copied over the corresponding region in the
  1748. * given buffer. The bitmap in the buf log format structure indicates
  1749. * where to place the logged data.
  1750. */
  1751. /*ARGSUSED*/
  1752. STATIC void
  1753. xlog_recover_do_reg_buffer(
  1754. struct xfs_mount *mp,
  1755. xlog_recover_item_t *item,
  1756. xfs_buf_t *bp,
  1757. xfs_buf_log_format_t *buf_f)
  1758. {
  1759. int i;
  1760. int bit;
  1761. int nbits;
  1762. unsigned int *data_map = NULL;
  1763. unsigned int map_size = 0;
  1764. int error;
  1765. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1766. switch (buf_f->blf_type) {
  1767. case XFS_LI_BUF:
  1768. data_map = buf_f->blf_data_map;
  1769. map_size = buf_f->blf_map_size;
  1770. break;
  1771. }
  1772. bit = 0;
  1773. i = 1; /* 0 is the buf format structure */
  1774. while (1) {
  1775. bit = xfs_next_bit(data_map, map_size, bit);
  1776. if (bit == -1)
  1777. break;
  1778. nbits = xfs_contig_bits(data_map, map_size, bit);
  1779. ASSERT(nbits > 0);
  1780. ASSERT(item->ri_buf[i].i_addr != NULL);
  1781. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1782. ASSERT(XFS_BUF_COUNT(bp) >=
  1783. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1784. /*
  1785. * Do a sanity check if this is a dquot buffer. Just checking
  1786. * the first dquot in the buffer should do. XXXThis is
  1787. * probably a good thing to do for other buf types also.
  1788. */
  1789. error = 0;
  1790. if (buf_f->blf_flags &
  1791. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1792. if (item->ri_buf[i].i_addr == NULL) {
  1793. cmn_err(CE_ALERT,
  1794. "XFS: NULL dquot in %s.", __func__);
  1795. goto next;
  1796. }
  1797. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1798. cmn_err(CE_ALERT,
  1799. "XFS: dquot too small (%d) in %s.",
  1800. item->ri_buf[i].i_len, __func__);
  1801. goto next;
  1802. }
  1803. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1804. item->ri_buf[i].i_addr,
  1805. -1, 0, XFS_QMOPT_DOWARN,
  1806. "dquot_buf_recover");
  1807. if (error)
  1808. goto next;
  1809. }
  1810. memcpy(xfs_buf_offset(bp,
  1811. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1812. item->ri_buf[i].i_addr, /* source */
  1813. nbits<<XFS_BLI_SHIFT); /* length */
  1814. next:
  1815. i++;
  1816. bit += nbits;
  1817. }
  1818. /* Shouldn't be any more regions */
  1819. ASSERT(i == item->ri_total);
  1820. }
  1821. /*
  1822. * Do some primitive error checking on ondisk dquot data structures.
  1823. */
  1824. int
  1825. xfs_qm_dqcheck(
  1826. xfs_disk_dquot_t *ddq,
  1827. xfs_dqid_t id,
  1828. uint type, /* used only when IO_dorepair is true */
  1829. uint flags,
  1830. char *str)
  1831. {
  1832. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1833. int errs = 0;
  1834. /*
  1835. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1836. * 1. If we crash while deleting the quotainode(s), and those blks got
  1837. * used for user data. This is because we take the path of regular
  1838. * file deletion; however, the size field of quotainodes is never
  1839. * updated, so all the tricks that we play in itruncate_finish
  1840. * don't quite matter.
  1841. *
  1842. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1843. * But the allocation will be replayed so we'll end up with an
  1844. * uninitialized quota block.
  1845. *
  1846. * This is all fine; things are still consistent, and we haven't lost
  1847. * any quota information. Just don't complain about bad dquot blks.
  1848. */
  1849. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1850. if (flags & XFS_QMOPT_DOWARN)
  1851. cmn_err(CE_ALERT,
  1852. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1853. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1854. errs++;
  1855. }
  1856. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1857. if (flags & XFS_QMOPT_DOWARN)
  1858. cmn_err(CE_ALERT,
  1859. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1860. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1861. errs++;
  1862. }
  1863. if (ddq->d_flags != XFS_DQ_USER &&
  1864. ddq->d_flags != XFS_DQ_PROJ &&
  1865. ddq->d_flags != XFS_DQ_GROUP) {
  1866. if (flags & XFS_QMOPT_DOWARN)
  1867. cmn_err(CE_ALERT,
  1868. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1869. str, id, ddq->d_flags);
  1870. errs++;
  1871. }
  1872. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1873. if (flags & XFS_QMOPT_DOWARN)
  1874. cmn_err(CE_ALERT,
  1875. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1876. "0x%x expected, found id 0x%x",
  1877. str, ddq, id, be32_to_cpu(ddq->d_id));
  1878. errs++;
  1879. }
  1880. if (!errs && ddq->d_id) {
  1881. if (ddq->d_blk_softlimit &&
  1882. be64_to_cpu(ddq->d_bcount) >=
  1883. be64_to_cpu(ddq->d_blk_softlimit)) {
  1884. if (!ddq->d_btimer) {
  1885. if (flags & XFS_QMOPT_DOWARN)
  1886. cmn_err(CE_ALERT,
  1887. "%s : Dquot ID 0x%x (0x%p) "
  1888. "BLK TIMER NOT STARTED",
  1889. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1890. errs++;
  1891. }
  1892. }
  1893. if (ddq->d_ino_softlimit &&
  1894. be64_to_cpu(ddq->d_icount) >=
  1895. be64_to_cpu(ddq->d_ino_softlimit)) {
  1896. if (!ddq->d_itimer) {
  1897. if (flags & XFS_QMOPT_DOWARN)
  1898. cmn_err(CE_ALERT,
  1899. "%s : Dquot ID 0x%x (0x%p) "
  1900. "INODE TIMER NOT STARTED",
  1901. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1902. errs++;
  1903. }
  1904. }
  1905. if (ddq->d_rtb_softlimit &&
  1906. be64_to_cpu(ddq->d_rtbcount) >=
  1907. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1908. if (!ddq->d_rtbtimer) {
  1909. if (flags & XFS_QMOPT_DOWARN)
  1910. cmn_err(CE_ALERT,
  1911. "%s : Dquot ID 0x%x (0x%p) "
  1912. "RTBLK TIMER NOT STARTED",
  1913. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1914. errs++;
  1915. }
  1916. }
  1917. }
  1918. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1919. return errs;
  1920. if (flags & XFS_QMOPT_DOWARN)
  1921. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1922. /*
  1923. * Typically, a repair is only requested by quotacheck.
  1924. */
  1925. ASSERT(id != -1);
  1926. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1927. memset(d, 0, sizeof(xfs_dqblk_t));
  1928. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1929. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1930. d->dd_diskdq.d_flags = type;
  1931. d->dd_diskdq.d_id = cpu_to_be32(id);
  1932. return errs;
  1933. }
  1934. /*
  1935. * Perform a dquot buffer recovery.
  1936. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1937. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1938. * Else, treat it as a regular buffer and do recovery.
  1939. */
  1940. STATIC void
  1941. xlog_recover_do_dquot_buffer(
  1942. xfs_mount_t *mp,
  1943. xlog_t *log,
  1944. xlog_recover_item_t *item,
  1945. xfs_buf_t *bp,
  1946. xfs_buf_log_format_t *buf_f)
  1947. {
  1948. uint type;
  1949. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1950. /*
  1951. * Filesystems are required to send in quota flags at mount time.
  1952. */
  1953. if (mp->m_qflags == 0) {
  1954. return;
  1955. }
  1956. type = 0;
  1957. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1958. type |= XFS_DQ_USER;
  1959. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1960. type |= XFS_DQ_PROJ;
  1961. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1962. type |= XFS_DQ_GROUP;
  1963. /*
  1964. * This type of quotas was turned off, so ignore this buffer
  1965. */
  1966. if (log->l_quotaoffs_flag & type)
  1967. return;
  1968. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1969. }
  1970. /*
  1971. * This routine replays a modification made to a buffer at runtime.
  1972. * There are actually two types of buffer, regular and inode, which
  1973. * are handled differently. Inode buffers are handled differently
  1974. * in that we only recover a specific set of data from them, namely
  1975. * the inode di_next_unlinked fields. This is because all other inode
  1976. * data is actually logged via inode records and any data we replay
  1977. * here which overlaps that may be stale.
  1978. *
  1979. * When meta-data buffers are freed at run time we log a buffer item
  1980. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1981. * of the buffer in the log should not be replayed at recovery time.
  1982. * This is so that if the blocks covered by the buffer are reused for
  1983. * file data before we crash we don't end up replaying old, freed
  1984. * meta-data into a user's file.
  1985. *
  1986. * To handle the cancellation of buffer log items, we make two passes
  1987. * over the log during recovery. During the first we build a table of
  1988. * those buffers which have been cancelled, and during the second we
  1989. * only replay those buffers which do not have corresponding cancel
  1990. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1991. * for more details on the implementation of the table of cancel records.
  1992. */
  1993. STATIC int
  1994. xlog_recover_do_buffer_trans(
  1995. xlog_t *log,
  1996. xlog_recover_item_t *item,
  1997. int pass)
  1998. {
  1999. xfs_buf_log_format_t *buf_f;
  2000. xfs_mount_t *mp;
  2001. xfs_buf_t *bp;
  2002. int error;
  2003. int cancel;
  2004. xfs_daddr_t blkno;
  2005. int len;
  2006. ushort flags;
  2007. uint buf_flags;
  2008. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  2009. if (pass == XLOG_RECOVER_PASS1) {
  2010. /*
  2011. * In this pass we're only looking for buf items
  2012. * with the XFS_BLI_CANCEL bit set.
  2013. */
  2014. xlog_recover_do_buffer_pass1(log, buf_f);
  2015. return 0;
  2016. } else {
  2017. /*
  2018. * In this pass we want to recover all the buffers
  2019. * which have not been cancelled and are not
  2020. * cancellation buffers themselves. The routine
  2021. * we call here will tell us whether or not to
  2022. * continue with the replay of this buffer.
  2023. */
  2024. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  2025. if (cancel) {
  2026. trace_xfs_log_recover_buf_cancel(log, buf_f);
  2027. return 0;
  2028. }
  2029. }
  2030. trace_xfs_log_recover_buf_recover(log, buf_f);
  2031. switch (buf_f->blf_type) {
  2032. case XFS_LI_BUF:
  2033. blkno = buf_f->blf_blkno;
  2034. len = buf_f->blf_len;
  2035. flags = buf_f->blf_flags;
  2036. break;
  2037. default:
  2038. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  2039. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  2040. buf_f->blf_type, log->l_mp->m_logname ?
  2041. log->l_mp->m_logname : "internal");
  2042. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  2043. XFS_ERRLEVEL_LOW, log->l_mp);
  2044. return XFS_ERROR(EFSCORRUPTED);
  2045. }
  2046. mp = log->l_mp;
  2047. buf_flags = XBF_LOCK;
  2048. if (!(flags & XFS_BLI_INODE_BUF))
  2049. buf_flags |= XBF_MAPPED;
  2050. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
  2051. if (XFS_BUF_ISERROR(bp)) {
  2052. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2053. bp, blkno);
  2054. error = XFS_BUF_GETERROR(bp);
  2055. xfs_buf_relse(bp);
  2056. return error;
  2057. }
  2058. error = 0;
  2059. if (flags & XFS_BLI_INODE_BUF) {
  2060. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2061. } else if (flags &
  2062. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2063. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2064. } else {
  2065. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2066. }
  2067. if (error)
  2068. return XFS_ERROR(error);
  2069. /*
  2070. * Perform delayed write on the buffer. Asynchronous writes will be
  2071. * slower when taking into account all the buffers to be flushed.
  2072. *
  2073. * Also make sure that only inode buffers with good sizes stay in
  2074. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2075. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2076. * buffers in the log can be a different size if the log was generated
  2077. * by an older kernel using unclustered inode buffers or a newer kernel
  2078. * running with a different inode cluster size. Regardless, if the
  2079. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2080. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2081. * the buffer out of the buffer cache so that the buffer won't
  2082. * overlap with future reads of those inodes.
  2083. */
  2084. if (XFS_DINODE_MAGIC ==
  2085. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2086. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2087. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2088. XFS_BUF_STALE(bp);
  2089. error = xfs_bwrite(mp, bp);
  2090. } else {
  2091. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2092. bp->b_mount = mp;
  2093. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2094. xfs_bdwrite(mp, bp);
  2095. }
  2096. return (error);
  2097. }
  2098. STATIC int
  2099. xlog_recover_do_inode_trans(
  2100. xlog_t *log,
  2101. xlog_recover_item_t *item,
  2102. int pass)
  2103. {
  2104. xfs_inode_log_format_t *in_f;
  2105. xfs_mount_t *mp;
  2106. xfs_buf_t *bp;
  2107. xfs_dinode_t *dip;
  2108. xfs_ino_t ino;
  2109. int len;
  2110. xfs_caddr_t src;
  2111. xfs_caddr_t dest;
  2112. int error;
  2113. int attr_index;
  2114. uint fields;
  2115. xfs_icdinode_t *dicp;
  2116. int need_free = 0;
  2117. if (pass == XLOG_RECOVER_PASS1) {
  2118. return 0;
  2119. }
  2120. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2121. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2122. } else {
  2123. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2124. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2125. need_free = 1;
  2126. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2127. if (error)
  2128. goto error;
  2129. }
  2130. ino = in_f->ilf_ino;
  2131. mp = log->l_mp;
  2132. /*
  2133. * Inode buffers can be freed, look out for it,
  2134. * and do not replay the inode.
  2135. */
  2136. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2137. in_f->ilf_len, 0)) {
  2138. error = 0;
  2139. trace_xfs_log_recover_inode_cancel(log, in_f);
  2140. goto error;
  2141. }
  2142. trace_xfs_log_recover_inode_recover(log, in_f);
  2143. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2144. XBF_LOCK);
  2145. if (XFS_BUF_ISERROR(bp)) {
  2146. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2147. bp, in_f->ilf_blkno);
  2148. error = XFS_BUF_GETERROR(bp);
  2149. xfs_buf_relse(bp);
  2150. goto error;
  2151. }
  2152. error = 0;
  2153. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2154. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2155. /*
  2156. * Make sure the place we're flushing out to really looks
  2157. * like an inode!
  2158. */
  2159. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2160. xfs_buf_relse(bp);
  2161. xfs_fs_cmn_err(CE_ALERT, mp,
  2162. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2163. dip, bp, ino);
  2164. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2165. XFS_ERRLEVEL_LOW, mp);
  2166. error = EFSCORRUPTED;
  2167. goto error;
  2168. }
  2169. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2170. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2171. xfs_buf_relse(bp);
  2172. xfs_fs_cmn_err(CE_ALERT, mp,
  2173. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2174. item, ino);
  2175. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2176. XFS_ERRLEVEL_LOW, mp);
  2177. error = EFSCORRUPTED;
  2178. goto error;
  2179. }
  2180. /* Skip replay when the on disk inode is newer than the log one */
  2181. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2182. /*
  2183. * Deal with the wrap case, DI_MAX_FLUSH is less
  2184. * than smaller numbers
  2185. */
  2186. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2187. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2188. /* do nothing */
  2189. } else {
  2190. xfs_buf_relse(bp);
  2191. trace_xfs_log_recover_inode_skip(log, in_f);
  2192. error = 0;
  2193. goto error;
  2194. }
  2195. }
  2196. /* Take the opportunity to reset the flush iteration count */
  2197. dicp->di_flushiter = 0;
  2198. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2199. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2200. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2201. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2202. XFS_ERRLEVEL_LOW, mp, dicp);
  2203. xfs_buf_relse(bp);
  2204. xfs_fs_cmn_err(CE_ALERT, mp,
  2205. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2206. item, dip, bp, ino);
  2207. error = EFSCORRUPTED;
  2208. goto error;
  2209. }
  2210. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2211. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2212. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2213. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2214. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2215. XFS_ERRLEVEL_LOW, mp, dicp);
  2216. xfs_buf_relse(bp);
  2217. xfs_fs_cmn_err(CE_ALERT, mp,
  2218. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2219. item, dip, bp, ino);
  2220. error = EFSCORRUPTED;
  2221. goto error;
  2222. }
  2223. }
  2224. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2225. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2226. XFS_ERRLEVEL_LOW, mp, dicp);
  2227. xfs_buf_relse(bp);
  2228. xfs_fs_cmn_err(CE_ALERT, mp,
  2229. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2230. item, dip, bp, ino,
  2231. dicp->di_nextents + dicp->di_anextents,
  2232. dicp->di_nblocks);
  2233. error = EFSCORRUPTED;
  2234. goto error;
  2235. }
  2236. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2237. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2238. XFS_ERRLEVEL_LOW, mp, dicp);
  2239. xfs_buf_relse(bp);
  2240. xfs_fs_cmn_err(CE_ALERT, mp,
  2241. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2242. item, dip, bp, ino, dicp->di_forkoff);
  2243. error = EFSCORRUPTED;
  2244. goto error;
  2245. }
  2246. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2247. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2248. XFS_ERRLEVEL_LOW, mp, dicp);
  2249. xfs_buf_relse(bp);
  2250. xfs_fs_cmn_err(CE_ALERT, mp,
  2251. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2252. item->ri_buf[1].i_len, item);
  2253. error = EFSCORRUPTED;
  2254. goto error;
  2255. }
  2256. /* The core is in in-core format */
  2257. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2258. /* the rest is in on-disk format */
  2259. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2260. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2261. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2262. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2263. }
  2264. fields = in_f->ilf_fields;
  2265. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2266. case XFS_ILOG_DEV:
  2267. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2268. break;
  2269. case XFS_ILOG_UUID:
  2270. memcpy(XFS_DFORK_DPTR(dip),
  2271. &in_f->ilf_u.ilfu_uuid,
  2272. sizeof(uuid_t));
  2273. break;
  2274. }
  2275. if (in_f->ilf_size == 2)
  2276. goto write_inode_buffer;
  2277. len = item->ri_buf[2].i_len;
  2278. src = item->ri_buf[2].i_addr;
  2279. ASSERT(in_f->ilf_size <= 4);
  2280. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2281. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2282. (len == in_f->ilf_dsize));
  2283. switch (fields & XFS_ILOG_DFORK) {
  2284. case XFS_ILOG_DDATA:
  2285. case XFS_ILOG_DEXT:
  2286. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2287. break;
  2288. case XFS_ILOG_DBROOT:
  2289. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2290. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2291. XFS_DFORK_DSIZE(dip, mp));
  2292. break;
  2293. default:
  2294. /*
  2295. * There are no data fork flags set.
  2296. */
  2297. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2298. break;
  2299. }
  2300. /*
  2301. * If we logged any attribute data, recover it. There may or
  2302. * may not have been any other non-core data logged in this
  2303. * transaction.
  2304. */
  2305. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2306. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2307. attr_index = 3;
  2308. } else {
  2309. attr_index = 2;
  2310. }
  2311. len = item->ri_buf[attr_index].i_len;
  2312. src = item->ri_buf[attr_index].i_addr;
  2313. ASSERT(len == in_f->ilf_asize);
  2314. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2315. case XFS_ILOG_ADATA:
  2316. case XFS_ILOG_AEXT:
  2317. dest = XFS_DFORK_APTR(dip);
  2318. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2319. memcpy(dest, src, len);
  2320. break;
  2321. case XFS_ILOG_ABROOT:
  2322. dest = XFS_DFORK_APTR(dip);
  2323. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2324. len, (xfs_bmdr_block_t*)dest,
  2325. XFS_DFORK_ASIZE(dip, mp));
  2326. break;
  2327. default:
  2328. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2329. ASSERT(0);
  2330. xfs_buf_relse(bp);
  2331. error = EIO;
  2332. goto error;
  2333. }
  2334. }
  2335. write_inode_buffer:
  2336. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2337. bp->b_mount = mp;
  2338. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2339. xfs_bdwrite(mp, bp);
  2340. error:
  2341. if (need_free)
  2342. kmem_free(in_f);
  2343. return XFS_ERROR(error);
  2344. }
  2345. /*
  2346. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2347. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2348. * of that type.
  2349. */
  2350. STATIC int
  2351. xlog_recover_do_quotaoff_trans(
  2352. xlog_t *log,
  2353. xlog_recover_item_t *item,
  2354. int pass)
  2355. {
  2356. xfs_qoff_logformat_t *qoff_f;
  2357. if (pass == XLOG_RECOVER_PASS2) {
  2358. return (0);
  2359. }
  2360. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2361. ASSERT(qoff_f);
  2362. /*
  2363. * The logitem format's flag tells us if this was user quotaoff,
  2364. * group/project quotaoff or both.
  2365. */
  2366. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2367. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2368. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2369. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2370. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2371. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2372. return (0);
  2373. }
  2374. /*
  2375. * Recover a dquot record
  2376. */
  2377. STATIC int
  2378. xlog_recover_do_dquot_trans(
  2379. xlog_t *log,
  2380. xlog_recover_item_t *item,
  2381. int pass)
  2382. {
  2383. xfs_mount_t *mp;
  2384. xfs_buf_t *bp;
  2385. struct xfs_disk_dquot *ddq, *recddq;
  2386. int error;
  2387. xfs_dq_logformat_t *dq_f;
  2388. uint type;
  2389. if (pass == XLOG_RECOVER_PASS1) {
  2390. return 0;
  2391. }
  2392. mp = log->l_mp;
  2393. /*
  2394. * Filesystems are required to send in quota flags at mount time.
  2395. */
  2396. if (mp->m_qflags == 0)
  2397. return (0);
  2398. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2399. if (item->ri_buf[1].i_addr == NULL) {
  2400. cmn_err(CE_ALERT,
  2401. "XFS: NULL dquot in %s.", __func__);
  2402. return XFS_ERROR(EIO);
  2403. }
  2404. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2405. cmn_err(CE_ALERT,
  2406. "XFS: dquot too small (%d) in %s.",
  2407. item->ri_buf[1].i_len, __func__);
  2408. return XFS_ERROR(EIO);
  2409. }
  2410. /*
  2411. * This type of quotas was turned off, so ignore this record.
  2412. */
  2413. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2414. ASSERT(type);
  2415. if (log->l_quotaoffs_flag & type)
  2416. return (0);
  2417. /*
  2418. * At this point we know that quota was _not_ turned off.
  2419. * Since the mount flags are not indicating to us otherwise, this
  2420. * must mean that quota is on, and the dquot needs to be replayed.
  2421. * Remember that we may not have fully recovered the superblock yet,
  2422. * so we can't do the usual trick of looking at the SB quota bits.
  2423. *
  2424. * The other possibility, of course, is that the quota subsystem was
  2425. * removed since the last mount - ENOSYS.
  2426. */
  2427. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2428. ASSERT(dq_f);
  2429. if ((error = xfs_qm_dqcheck(recddq,
  2430. dq_f->qlf_id,
  2431. 0, XFS_QMOPT_DOWARN,
  2432. "xlog_recover_do_dquot_trans (log copy)"))) {
  2433. return XFS_ERROR(EIO);
  2434. }
  2435. ASSERT(dq_f->qlf_len == 1);
  2436. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2437. dq_f->qlf_blkno,
  2438. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2439. 0, &bp);
  2440. if (error) {
  2441. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2442. bp, dq_f->qlf_blkno);
  2443. return error;
  2444. }
  2445. ASSERT(bp);
  2446. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2447. /*
  2448. * At least the magic num portion should be on disk because this
  2449. * was among a chunk of dquots created earlier, and we did some
  2450. * minimal initialization then.
  2451. */
  2452. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2453. "xlog_recover_do_dquot_trans")) {
  2454. xfs_buf_relse(bp);
  2455. return XFS_ERROR(EIO);
  2456. }
  2457. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2458. ASSERT(dq_f->qlf_size == 2);
  2459. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2460. bp->b_mount = mp;
  2461. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2462. xfs_bdwrite(mp, bp);
  2463. return (0);
  2464. }
  2465. /*
  2466. * This routine is called to create an in-core extent free intent
  2467. * item from the efi format structure which was logged on disk.
  2468. * It allocates an in-core efi, copies the extents from the format
  2469. * structure into it, and adds the efi to the AIL with the given
  2470. * LSN.
  2471. */
  2472. STATIC int
  2473. xlog_recover_do_efi_trans(
  2474. xlog_t *log,
  2475. xlog_recover_item_t *item,
  2476. xfs_lsn_t lsn,
  2477. int pass)
  2478. {
  2479. int error;
  2480. xfs_mount_t *mp;
  2481. xfs_efi_log_item_t *efip;
  2482. xfs_efi_log_format_t *efi_formatp;
  2483. if (pass == XLOG_RECOVER_PASS1) {
  2484. return 0;
  2485. }
  2486. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2487. mp = log->l_mp;
  2488. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2489. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2490. &(efip->efi_format)))) {
  2491. xfs_efi_item_free(efip);
  2492. return error;
  2493. }
  2494. efip->efi_next_extent = efi_formatp->efi_nextents;
  2495. efip->efi_flags |= XFS_EFI_COMMITTED;
  2496. spin_lock(&log->l_ailp->xa_lock);
  2497. /*
  2498. * xfs_trans_ail_update() drops the AIL lock.
  2499. */
  2500. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2501. return 0;
  2502. }
  2503. /*
  2504. * This routine is called when an efd format structure is found in
  2505. * a committed transaction in the log. It's purpose is to cancel
  2506. * the corresponding efi if it was still in the log. To do this
  2507. * it searches the AIL for the efi with an id equal to that in the
  2508. * efd format structure. If we find it, we remove the efi from the
  2509. * AIL and free it.
  2510. */
  2511. STATIC void
  2512. xlog_recover_do_efd_trans(
  2513. xlog_t *log,
  2514. xlog_recover_item_t *item,
  2515. int pass)
  2516. {
  2517. xfs_efd_log_format_t *efd_formatp;
  2518. xfs_efi_log_item_t *efip = NULL;
  2519. xfs_log_item_t *lip;
  2520. __uint64_t efi_id;
  2521. struct xfs_ail_cursor cur;
  2522. struct xfs_ail *ailp = log->l_ailp;
  2523. if (pass == XLOG_RECOVER_PASS1) {
  2524. return;
  2525. }
  2526. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2527. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2528. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2529. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2530. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2531. efi_id = efd_formatp->efd_efi_id;
  2532. /*
  2533. * Search for the efi with the id in the efd format structure
  2534. * in the AIL.
  2535. */
  2536. spin_lock(&ailp->xa_lock);
  2537. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2538. while (lip != NULL) {
  2539. if (lip->li_type == XFS_LI_EFI) {
  2540. efip = (xfs_efi_log_item_t *)lip;
  2541. if (efip->efi_format.efi_id == efi_id) {
  2542. /*
  2543. * xfs_trans_ail_delete() drops the
  2544. * AIL lock.
  2545. */
  2546. xfs_trans_ail_delete(ailp, lip);
  2547. xfs_efi_item_free(efip);
  2548. spin_lock(&ailp->xa_lock);
  2549. break;
  2550. }
  2551. }
  2552. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2553. }
  2554. xfs_trans_ail_cursor_done(ailp, &cur);
  2555. spin_unlock(&ailp->xa_lock);
  2556. }
  2557. /*
  2558. * Perform the transaction
  2559. *
  2560. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2561. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2562. */
  2563. STATIC int
  2564. xlog_recover_do_trans(
  2565. xlog_t *log,
  2566. xlog_recover_t *trans,
  2567. int pass)
  2568. {
  2569. int error = 0;
  2570. xlog_recover_item_t *item;
  2571. error = xlog_recover_reorder_trans(log, trans, pass);
  2572. if (error)
  2573. return error;
  2574. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2575. trace_xfs_log_recover_item_recover(log, trans, item, pass);
  2576. switch (ITEM_TYPE(item)) {
  2577. case XFS_LI_BUF:
  2578. error = xlog_recover_do_buffer_trans(log, item, pass);
  2579. break;
  2580. case XFS_LI_INODE:
  2581. error = xlog_recover_do_inode_trans(log, item, pass);
  2582. break;
  2583. case XFS_LI_EFI:
  2584. error = xlog_recover_do_efi_trans(log, item,
  2585. trans->r_lsn, pass);
  2586. break;
  2587. case XFS_LI_EFD:
  2588. xlog_recover_do_efd_trans(log, item, pass);
  2589. error = 0;
  2590. break;
  2591. case XFS_LI_DQUOT:
  2592. error = xlog_recover_do_dquot_trans(log, item, pass);
  2593. break;
  2594. case XFS_LI_QUOTAOFF:
  2595. error = xlog_recover_do_quotaoff_trans(log, item,
  2596. pass);
  2597. break;
  2598. default:
  2599. xlog_warn(
  2600. "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
  2601. ASSERT(0);
  2602. error = XFS_ERROR(EIO);
  2603. break;
  2604. }
  2605. if (error)
  2606. return error;
  2607. }
  2608. return 0;
  2609. }
  2610. /*
  2611. * Free up any resources allocated by the transaction
  2612. *
  2613. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2614. */
  2615. STATIC void
  2616. xlog_recover_free_trans(
  2617. xlog_recover_t *trans)
  2618. {
  2619. xlog_recover_item_t *item, *n;
  2620. int i;
  2621. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2622. /* Free the regions in the item. */
  2623. list_del(&item->ri_list);
  2624. for (i = 0; i < item->ri_cnt; i++)
  2625. kmem_free(item->ri_buf[i].i_addr);
  2626. /* Free the item itself */
  2627. kmem_free(item->ri_buf);
  2628. kmem_free(item);
  2629. }
  2630. /* Free the transaction recover structure */
  2631. kmem_free(trans);
  2632. }
  2633. STATIC int
  2634. xlog_recover_commit_trans(
  2635. xlog_t *log,
  2636. xlog_recover_t *trans,
  2637. int pass)
  2638. {
  2639. int error;
  2640. hlist_del(&trans->r_list);
  2641. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2642. return error;
  2643. xlog_recover_free_trans(trans); /* no error */
  2644. return 0;
  2645. }
  2646. STATIC int
  2647. xlog_recover_unmount_trans(
  2648. xlog_recover_t *trans)
  2649. {
  2650. /* Do nothing now */
  2651. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2652. return 0;
  2653. }
  2654. /*
  2655. * There are two valid states of the r_state field. 0 indicates that the
  2656. * transaction structure is in a normal state. We have either seen the
  2657. * start of the transaction or the last operation we added was not a partial
  2658. * operation. If the last operation we added to the transaction was a
  2659. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2660. *
  2661. * NOTE: skip LRs with 0 data length.
  2662. */
  2663. STATIC int
  2664. xlog_recover_process_data(
  2665. xlog_t *log,
  2666. struct hlist_head rhash[],
  2667. xlog_rec_header_t *rhead,
  2668. xfs_caddr_t dp,
  2669. int pass)
  2670. {
  2671. xfs_caddr_t lp;
  2672. int num_logops;
  2673. xlog_op_header_t *ohead;
  2674. xlog_recover_t *trans;
  2675. xlog_tid_t tid;
  2676. int error;
  2677. unsigned long hash;
  2678. uint flags;
  2679. lp = dp + be32_to_cpu(rhead->h_len);
  2680. num_logops = be32_to_cpu(rhead->h_num_logops);
  2681. /* check the log format matches our own - else we can't recover */
  2682. if (xlog_header_check_recover(log->l_mp, rhead))
  2683. return (XFS_ERROR(EIO));
  2684. while ((dp < lp) && num_logops) {
  2685. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2686. ohead = (xlog_op_header_t *)dp;
  2687. dp += sizeof(xlog_op_header_t);
  2688. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2689. ohead->oh_clientid != XFS_LOG) {
  2690. xlog_warn(
  2691. "XFS: xlog_recover_process_data: bad clientid");
  2692. ASSERT(0);
  2693. return (XFS_ERROR(EIO));
  2694. }
  2695. tid = be32_to_cpu(ohead->oh_tid);
  2696. hash = XLOG_RHASH(tid);
  2697. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2698. if (trans == NULL) { /* not found; add new tid */
  2699. if (ohead->oh_flags & XLOG_START_TRANS)
  2700. xlog_recover_new_tid(&rhash[hash], tid,
  2701. be64_to_cpu(rhead->h_lsn));
  2702. } else {
  2703. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2704. xlog_warn(
  2705. "XFS: xlog_recover_process_data: bad length");
  2706. WARN_ON(1);
  2707. return (XFS_ERROR(EIO));
  2708. }
  2709. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2710. if (flags & XLOG_WAS_CONT_TRANS)
  2711. flags &= ~XLOG_CONTINUE_TRANS;
  2712. switch (flags) {
  2713. case XLOG_COMMIT_TRANS:
  2714. error = xlog_recover_commit_trans(log,
  2715. trans, pass);
  2716. break;
  2717. case XLOG_UNMOUNT_TRANS:
  2718. error = xlog_recover_unmount_trans(trans);
  2719. break;
  2720. case XLOG_WAS_CONT_TRANS:
  2721. error = xlog_recover_add_to_cont_trans(log,
  2722. trans, dp,
  2723. be32_to_cpu(ohead->oh_len));
  2724. break;
  2725. case XLOG_START_TRANS:
  2726. xlog_warn(
  2727. "XFS: xlog_recover_process_data: bad transaction");
  2728. ASSERT(0);
  2729. error = XFS_ERROR(EIO);
  2730. break;
  2731. case 0:
  2732. case XLOG_CONTINUE_TRANS:
  2733. error = xlog_recover_add_to_trans(log, trans,
  2734. dp, be32_to_cpu(ohead->oh_len));
  2735. break;
  2736. default:
  2737. xlog_warn(
  2738. "XFS: xlog_recover_process_data: bad flag");
  2739. ASSERT(0);
  2740. error = XFS_ERROR(EIO);
  2741. break;
  2742. }
  2743. if (error)
  2744. return error;
  2745. }
  2746. dp += be32_to_cpu(ohead->oh_len);
  2747. num_logops--;
  2748. }
  2749. return 0;
  2750. }
  2751. /*
  2752. * Process an extent free intent item that was recovered from
  2753. * the log. We need to free the extents that it describes.
  2754. */
  2755. STATIC int
  2756. xlog_recover_process_efi(
  2757. xfs_mount_t *mp,
  2758. xfs_efi_log_item_t *efip)
  2759. {
  2760. xfs_efd_log_item_t *efdp;
  2761. xfs_trans_t *tp;
  2762. int i;
  2763. int error = 0;
  2764. xfs_extent_t *extp;
  2765. xfs_fsblock_t startblock_fsb;
  2766. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2767. /*
  2768. * First check the validity of the extents described by the
  2769. * EFI. If any are bad, then assume that all are bad and
  2770. * just toss the EFI.
  2771. */
  2772. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2773. extp = &(efip->efi_format.efi_extents[i]);
  2774. startblock_fsb = XFS_BB_TO_FSB(mp,
  2775. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2776. if ((startblock_fsb == 0) ||
  2777. (extp->ext_len == 0) ||
  2778. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2779. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2780. /*
  2781. * This will pull the EFI from the AIL and
  2782. * free the memory associated with it.
  2783. */
  2784. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2785. return XFS_ERROR(EIO);
  2786. }
  2787. }
  2788. tp = xfs_trans_alloc(mp, 0);
  2789. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2790. if (error)
  2791. goto abort_error;
  2792. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2793. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2794. extp = &(efip->efi_format.efi_extents[i]);
  2795. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2796. if (error)
  2797. goto abort_error;
  2798. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2799. extp->ext_len);
  2800. }
  2801. efip->efi_flags |= XFS_EFI_RECOVERED;
  2802. error = xfs_trans_commit(tp, 0);
  2803. return error;
  2804. abort_error:
  2805. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2806. return error;
  2807. }
  2808. /*
  2809. * When this is called, all of the EFIs which did not have
  2810. * corresponding EFDs should be in the AIL. What we do now
  2811. * is free the extents associated with each one.
  2812. *
  2813. * Since we process the EFIs in normal transactions, they
  2814. * will be removed at some point after the commit. This prevents
  2815. * us from just walking down the list processing each one.
  2816. * We'll use a flag in the EFI to skip those that we've already
  2817. * processed and use the AIL iteration mechanism's generation
  2818. * count to try to speed this up at least a bit.
  2819. *
  2820. * When we start, we know that the EFIs are the only things in
  2821. * the AIL. As we process them, however, other items are added
  2822. * to the AIL. Since everything added to the AIL must come after
  2823. * everything already in the AIL, we stop processing as soon as
  2824. * we see something other than an EFI in the AIL.
  2825. */
  2826. STATIC int
  2827. xlog_recover_process_efis(
  2828. xlog_t *log)
  2829. {
  2830. xfs_log_item_t *lip;
  2831. xfs_efi_log_item_t *efip;
  2832. int error = 0;
  2833. struct xfs_ail_cursor cur;
  2834. struct xfs_ail *ailp;
  2835. ailp = log->l_ailp;
  2836. spin_lock(&ailp->xa_lock);
  2837. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2838. while (lip != NULL) {
  2839. /*
  2840. * We're done when we see something other than an EFI.
  2841. * There should be no EFIs left in the AIL now.
  2842. */
  2843. if (lip->li_type != XFS_LI_EFI) {
  2844. #ifdef DEBUG
  2845. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2846. ASSERT(lip->li_type != XFS_LI_EFI);
  2847. #endif
  2848. break;
  2849. }
  2850. /*
  2851. * Skip EFIs that we've already processed.
  2852. */
  2853. efip = (xfs_efi_log_item_t *)lip;
  2854. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2855. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2856. continue;
  2857. }
  2858. spin_unlock(&ailp->xa_lock);
  2859. error = xlog_recover_process_efi(log->l_mp, efip);
  2860. spin_lock(&ailp->xa_lock);
  2861. if (error)
  2862. goto out;
  2863. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2864. }
  2865. out:
  2866. xfs_trans_ail_cursor_done(ailp, &cur);
  2867. spin_unlock(&ailp->xa_lock);
  2868. return error;
  2869. }
  2870. /*
  2871. * This routine performs a transaction to null out a bad inode pointer
  2872. * in an agi unlinked inode hash bucket.
  2873. */
  2874. STATIC void
  2875. xlog_recover_clear_agi_bucket(
  2876. xfs_mount_t *mp,
  2877. xfs_agnumber_t agno,
  2878. int bucket)
  2879. {
  2880. xfs_trans_t *tp;
  2881. xfs_agi_t *agi;
  2882. xfs_buf_t *agibp;
  2883. int offset;
  2884. int error;
  2885. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2886. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2887. 0, 0, 0);
  2888. if (error)
  2889. goto out_abort;
  2890. error = xfs_read_agi(mp, tp, agno, &agibp);
  2891. if (error)
  2892. goto out_abort;
  2893. agi = XFS_BUF_TO_AGI(agibp);
  2894. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2895. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2896. (sizeof(xfs_agino_t) * bucket);
  2897. xfs_trans_log_buf(tp, agibp, offset,
  2898. (offset + sizeof(xfs_agino_t) - 1));
  2899. error = xfs_trans_commit(tp, 0);
  2900. if (error)
  2901. goto out_error;
  2902. return;
  2903. out_abort:
  2904. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2905. out_error:
  2906. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2907. "failed to clear agi %d. Continuing.", agno);
  2908. return;
  2909. }
  2910. STATIC xfs_agino_t
  2911. xlog_recover_process_one_iunlink(
  2912. struct xfs_mount *mp,
  2913. xfs_agnumber_t agno,
  2914. xfs_agino_t agino,
  2915. int bucket)
  2916. {
  2917. struct xfs_buf *ibp;
  2918. struct xfs_dinode *dip;
  2919. struct xfs_inode *ip;
  2920. xfs_ino_t ino;
  2921. int error;
  2922. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2923. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2924. if (error)
  2925. goto fail;
  2926. /*
  2927. * Get the on disk inode to find the next inode in the bucket.
  2928. */
  2929. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
  2930. if (error)
  2931. goto fail_iput;
  2932. ASSERT(ip->i_d.di_nlink == 0);
  2933. ASSERT(ip->i_d.di_mode != 0);
  2934. /* setup for the next pass */
  2935. agino = be32_to_cpu(dip->di_next_unlinked);
  2936. xfs_buf_relse(ibp);
  2937. /*
  2938. * Prevent any DMAPI event from being sent when the reference on
  2939. * the inode is dropped.
  2940. */
  2941. ip->i_d.di_dmevmask = 0;
  2942. IRELE(ip);
  2943. return agino;
  2944. fail_iput:
  2945. IRELE(ip);
  2946. fail:
  2947. /*
  2948. * We can't read in the inode this bucket points to, or this inode
  2949. * is messed up. Just ditch this bucket of inodes. We will lose
  2950. * some inodes and space, but at least we won't hang.
  2951. *
  2952. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2953. * clear the inode pointer in the bucket.
  2954. */
  2955. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2956. return NULLAGINO;
  2957. }
  2958. /*
  2959. * xlog_iunlink_recover
  2960. *
  2961. * This is called during recovery to process any inodes which
  2962. * we unlinked but not freed when the system crashed. These
  2963. * inodes will be on the lists in the AGI blocks. What we do
  2964. * here is scan all the AGIs and fully truncate and free any
  2965. * inodes found on the lists. Each inode is removed from the
  2966. * lists when it has been fully truncated and is freed. The
  2967. * freeing of the inode and its removal from the list must be
  2968. * atomic.
  2969. */
  2970. STATIC void
  2971. xlog_recover_process_iunlinks(
  2972. xlog_t *log)
  2973. {
  2974. xfs_mount_t *mp;
  2975. xfs_agnumber_t agno;
  2976. xfs_agi_t *agi;
  2977. xfs_buf_t *agibp;
  2978. xfs_agino_t agino;
  2979. int bucket;
  2980. int error;
  2981. uint mp_dmevmask;
  2982. mp = log->l_mp;
  2983. /*
  2984. * Prevent any DMAPI event from being sent while in this function.
  2985. */
  2986. mp_dmevmask = mp->m_dmevmask;
  2987. mp->m_dmevmask = 0;
  2988. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2989. /*
  2990. * Find the agi for this ag.
  2991. */
  2992. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2993. if (error) {
  2994. /*
  2995. * AGI is b0rked. Don't process it.
  2996. *
  2997. * We should probably mark the filesystem as corrupt
  2998. * after we've recovered all the ag's we can....
  2999. */
  3000. continue;
  3001. }
  3002. agi = XFS_BUF_TO_AGI(agibp);
  3003. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  3004. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  3005. while (agino != NULLAGINO) {
  3006. /*
  3007. * Release the agi buffer so that it can
  3008. * be acquired in the normal course of the
  3009. * transaction to truncate and free the inode.
  3010. */
  3011. xfs_buf_relse(agibp);
  3012. agino = xlog_recover_process_one_iunlink(mp,
  3013. agno, agino, bucket);
  3014. /*
  3015. * Reacquire the agibuffer and continue around
  3016. * the loop. This should never fail as we know
  3017. * the buffer was good earlier on.
  3018. */
  3019. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3020. ASSERT(error == 0);
  3021. agi = XFS_BUF_TO_AGI(agibp);
  3022. }
  3023. }
  3024. /*
  3025. * Release the buffer for the current agi so we can
  3026. * go on to the next one.
  3027. */
  3028. xfs_buf_relse(agibp);
  3029. }
  3030. mp->m_dmevmask = mp_dmevmask;
  3031. }
  3032. #ifdef DEBUG
  3033. STATIC void
  3034. xlog_pack_data_checksum(
  3035. xlog_t *log,
  3036. xlog_in_core_t *iclog,
  3037. int size)
  3038. {
  3039. int i;
  3040. __be32 *up;
  3041. uint chksum = 0;
  3042. up = (__be32 *)iclog->ic_datap;
  3043. /* divide length by 4 to get # words */
  3044. for (i = 0; i < (size >> 2); i++) {
  3045. chksum ^= be32_to_cpu(*up);
  3046. up++;
  3047. }
  3048. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3049. }
  3050. #else
  3051. #define xlog_pack_data_checksum(log, iclog, size)
  3052. #endif
  3053. /*
  3054. * Stamp cycle number in every block
  3055. */
  3056. void
  3057. xlog_pack_data(
  3058. xlog_t *log,
  3059. xlog_in_core_t *iclog,
  3060. int roundoff)
  3061. {
  3062. int i, j, k;
  3063. int size = iclog->ic_offset + roundoff;
  3064. __be32 cycle_lsn;
  3065. xfs_caddr_t dp;
  3066. xlog_pack_data_checksum(log, iclog, size);
  3067. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3068. dp = iclog->ic_datap;
  3069. for (i = 0; i < BTOBB(size) &&
  3070. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3071. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3072. *(__be32 *)dp = cycle_lsn;
  3073. dp += BBSIZE;
  3074. }
  3075. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3076. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3077. for ( ; i < BTOBB(size); i++) {
  3078. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3079. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3080. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3081. *(__be32 *)dp = cycle_lsn;
  3082. dp += BBSIZE;
  3083. }
  3084. for (i = 1; i < log->l_iclog_heads; i++) {
  3085. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3086. }
  3087. }
  3088. }
  3089. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3090. STATIC void
  3091. xlog_unpack_data_checksum(
  3092. xlog_rec_header_t *rhead,
  3093. xfs_caddr_t dp,
  3094. xlog_t *log)
  3095. {
  3096. __be32 *up = (__be32 *)dp;
  3097. uint chksum = 0;
  3098. int i;
  3099. /* divide length by 4 to get # words */
  3100. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3101. chksum ^= be32_to_cpu(*up);
  3102. up++;
  3103. }
  3104. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3105. if (rhead->h_chksum ||
  3106. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3107. cmn_err(CE_DEBUG,
  3108. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3109. be32_to_cpu(rhead->h_chksum), chksum);
  3110. cmn_err(CE_DEBUG,
  3111. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3112. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3113. cmn_err(CE_DEBUG,
  3114. "XFS: LogR this is a LogV2 filesystem\n");
  3115. }
  3116. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3117. }
  3118. }
  3119. }
  3120. #else
  3121. #define xlog_unpack_data_checksum(rhead, dp, log)
  3122. #endif
  3123. STATIC void
  3124. xlog_unpack_data(
  3125. xlog_rec_header_t *rhead,
  3126. xfs_caddr_t dp,
  3127. xlog_t *log)
  3128. {
  3129. int i, j, k;
  3130. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3131. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3132. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3133. dp += BBSIZE;
  3134. }
  3135. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3136. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3137. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3138. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3139. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3140. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3141. dp += BBSIZE;
  3142. }
  3143. }
  3144. xlog_unpack_data_checksum(rhead, dp, log);
  3145. }
  3146. STATIC int
  3147. xlog_valid_rec_header(
  3148. xlog_t *log,
  3149. xlog_rec_header_t *rhead,
  3150. xfs_daddr_t blkno)
  3151. {
  3152. int hlen;
  3153. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3154. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3155. XFS_ERRLEVEL_LOW, log->l_mp);
  3156. return XFS_ERROR(EFSCORRUPTED);
  3157. }
  3158. if (unlikely(
  3159. (!rhead->h_version ||
  3160. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3161. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3162. __func__, be32_to_cpu(rhead->h_version));
  3163. return XFS_ERROR(EIO);
  3164. }
  3165. /* LR body must have data or it wouldn't have been written */
  3166. hlen = be32_to_cpu(rhead->h_len);
  3167. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3168. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3169. XFS_ERRLEVEL_LOW, log->l_mp);
  3170. return XFS_ERROR(EFSCORRUPTED);
  3171. }
  3172. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3173. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3174. XFS_ERRLEVEL_LOW, log->l_mp);
  3175. return XFS_ERROR(EFSCORRUPTED);
  3176. }
  3177. return 0;
  3178. }
  3179. /*
  3180. * Read the log from tail to head and process the log records found.
  3181. * Handle the two cases where the tail and head are in the same cycle
  3182. * and where the active portion of the log wraps around the end of
  3183. * the physical log separately. The pass parameter is passed through
  3184. * to the routines called to process the data and is not looked at
  3185. * here.
  3186. */
  3187. STATIC int
  3188. xlog_do_recovery_pass(
  3189. xlog_t *log,
  3190. xfs_daddr_t head_blk,
  3191. xfs_daddr_t tail_blk,
  3192. int pass)
  3193. {
  3194. xlog_rec_header_t *rhead;
  3195. xfs_daddr_t blk_no;
  3196. xfs_caddr_t offset;
  3197. xfs_buf_t *hbp, *dbp;
  3198. int error = 0, h_size;
  3199. int bblks, split_bblks;
  3200. int hblks, split_hblks, wrapped_hblks;
  3201. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3202. ASSERT(head_blk != tail_blk);
  3203. /*
  3204. * Read the header of the tail block and get the iclog buffer size from
  3205. * h_size. Use this to tell how many sectors make up the log header.
  3206. */
  3207. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3208. /*
  3209. * When using variable length iclogs, read first sector of
  3210. * iclog header and extract the header size from it. Get a
  3211. * new hbp that is the correct size.
  3212. */
  3213. hbp = xlog_get_bp(log, 1);
  3214. if (!hbp)
  3215. return ENOMEM;
  3216. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3217. if (error)
  3218. goto bread_err1;
  3219. rhead = (xlog_rec_header_t *)offset;
  3220. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3221. if (error)
  3222. goto bread_err1;
  3223. h_size = be32_to_cpu(rhead->h_size);
  3224. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3225. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3226. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3227. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3228. hblks++;
  3229. xlog_put_bp(hbp);
  3230. hbp = xlog_get_bp(log, hblks);
  3231. } else {
  3232. hblks = 1;
  3233. }
  3234. } else {
  3235. ASSERT(log->l_sectbb_log == 0);
  3236. hblks = 1;
  3237. hbp = xlog_get_bp(log, 1);
  3238. h_size = XLOG_BIG_RECORD_BSIZE;
  3239. }
  3240. if (!hbp)
  3241. return ENOMEM;
  3242. dbp = xlog_get_bp(log, BTOBB(h_size));
  3243. if (!dbp) {
  3244. xlog_put_bp(hbp);
  3245. return ENOMEM;
  3246. }
  3247. memset(rhash, 0, sizeof(rhash));
  3248. if (tail_blk <= head_blk) {
  3249. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3250. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3251. if (error)
  3252. goto bread_err2;
  3253. rhead = (xlog_rec_header_t *)offset;
  3254. error = xlog_valid_rec_header(log, rhead, blk_no);
  3255. if (error)
  3256. goto bread_err2;
  3257. /* blocks in data section */
  3258. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3259. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3260. &offset);
  3261. if (error)
  3262. goto bread_err2;
  3263. xlog_unpack_data(rhead, offset, log);
  3264. if ((error = xlog_recover_process_data(log,
  3265. rhash, rhead, offset, pass)))
  3266. goto bread_err2;
  3267. blk_no += bblks + hblks;
  3268. }
  3269. } else {
  3270. /*
  3271. * Perform recovery around the end of the physical log.
  3272. * When the head is not on the same cycle number as the tail,
  3273. * we can't do a sequential recovery as above.
  3274. */
  3275. blk_no = tail_blk;
  3276. while (blk_no < log->l_logBBsize) {
  3277. /*
  3278. * Check for header wrapping around physical end-of-log
  3279. */
  3280. offset = XFS_BUF_PTR(hbp);
  3281. split_hblks = 0;
  3282. wrapped_hblks = 0;
  3283. if (blk_no + hblks <= log->l_logBBsize) {
  3284. /* Read header in one read */
  3285. error = xlog_bread(log, blk_no, hblks, hbp,
  3286. &offset);
  3287. if (error)
  3288. goto bread_err2;
  3289. } else {
  3290. /* This LR is split across physical log end */
  3291. if (blk_no != log->l_logBBsize) {
  3292. /* some data before physical log end */
  3293. ASSERT(blk_no <= INT_MAX);
  3294. split_hblks = log->l_logBBsize - (int)blk_no;
  3295. ASSERT(split_hblks > 0);
  3296. error = xlog_bread(log, blk_no,
  3297. split_hblks, hbp,
  3298. &offset);
  3299. if (error)
  3300. goto bread_err2;
  3301. }
  3302. /*
  3303. * Note: this black magic still works with
  3304. * large sector sizes (non-512) only because:
  3305. * - we increased the buffer size originally
  3306. * by 1 sector giving us enough extra space
  3307. * for the second read;
  3308. * - the log start is guaranteed to be sector
  3309. * aligned;
  3310. * - we read the log end (LR header start)
  3311. * _first_, then the log start (LR header end)
  3312. * - order is important.
  3313. */
  3314. wrapped_hblks = hblks - split_hblks;
  3315. error = XFS_BUF_SET_PTR(hbp,
  3316. offset + BBTOB(split_hblks),
  3317. BBTOB(hblks - split_hblks));
  3318. if (error)
  3319. goto bread_err2;
  3320. error = xlog_bread_noalign(log, 0,
  3321. wrapped_hblks, hbp);
  3322. if (error)
  3323. goto bread_err2;
  3324. error = XFS_BUF_SET_PTR(hbp, offset,
  3325. BBTOB(hblks));
  3326. if (error)
  3327. goto bread_err2;
  3328. }
  3329. rhead = (xlog_rec_header_t *)offset;
  3330. error = xlog_valid_rec_header(log, rhead,
  3331. split_hblks ? blk_no : 0);
  3332. if (error)
  3333. goto bread_err2;
  3334. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3335. blk_no += hblks;
  3336. /* Read in data for log record */
  3337. if (blk_no + bblks <= log->l_logBBsize) {
  3338. error = xlog_bread(log, blk_no, bblks, dbp,
  3339. &offset);
  3340. if (error)
  3341. goto bread_err2;
  3342. } else {
  3343. /* This log record is split across the
  3344. * physical end of log */
  3345. offset = XFS_BUF_PTR(dbp);
  3346. split_bblks = 0;
  3347. if (blk_no != log->l_logBBsize) {
  3348. /* some data is before the physical
  3349. * end of log */
  3350. ASSERT(!wrapped_hblks);
  3351. ASSERT(blk_no <= INT_MAX);
  3352. split_bblks =
  3353. log->l_logBBsize - (int)blk_no;
  3354. ASSERT(split_bblks > 0);
  3355. error = xlog_bread(log, blk_no,
  3356. split_bblks, dbp,
  3357. &offset);
  3358. if (error)
  3359. goto bread_err2;
  3360. }
  3361. /*
  3362. * Note: this black magic still works with
  3363. * large sector sizes (non-512) only because:
  3364. * - we increased the buffer size originally
  3365. * by 1 sector giving us enough extra space
  3366. * for the second read;
  3367. * - the log start is guaranteed to be sector
  3368. * aligned;
  3369. * - we read the log end (LR header start)
  3370. * _first_, then the log start (LR header end)
  3371. * - order is important.
  3372. */
  3373. error = XFS_BUF_SET_PTR(dbp,
  3374. offset + BBTOB(split_bblks),
  3375. BBTOB(bblks - split_bblks));
  3376. if (error)
  3377. goto bread_err2;
  3378. error = xlog_bread_noalign(log, wrapped_hblks,
  3379. bblks - split_bblks,
  3380. dbp);
  3381. if (error)
  3382. goto bread_err2;
  3383. error = XFS_BUF_SET_PTR(dbp, offset, h_size);
  3384. if (error)
  3385. goto bread_err2;
  3386. }
  3387. xlog_unpack_data(rhead, offset, log);
  3388. if ((error = xlog_recover_process_data(log, rhash,
  3389. rhead, offset, pass)))
  3390. goto bread_err2;
  3391. blk_no += bblks;
  3392. }
  3393. ASSERT(blk_no >= log->l_logBBsize);
  3394. blk_no -= log->l_logBBsize;
  3395. /* read first part of physical log */
  3396. while (blk_no < head_blk) {
  3397. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3398. if (error)
  3399. goto bread_err2;
  3400. rhead = (xlog_rec_header_t *)offset;
  3401. error = xlog_valid_rec_header(log, rhead, blk_no);
  3402. if (error)
  3403. goto bread_err2;
  3404. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3405. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3406. &offset);
  3407. if (error)
  3408. goto bread_err2;
  3409. xlog_unpack_data(rhead, offset, log);
  3410. if ((error = xlog_recover_process_data(log, rhash,
  3411. rhead, offset, pass)))
  3412. goto bread_err2;
  3413. blk_no += bblks + hblks;
  3414. }
  3415. }
  3416. bread_err2:
  3417. xlog_put_bp(dbp);
  3418. bread_err1:
  3419. xlog_put_bp(hbp);
  3420. return error;
  3421. }
  3422. /*
  3423. * Do the recovery of the log. We actually do this in two phases.
  3424. * The two passes are necessary in order to implement the function
  3425. * of cancelling a record written into the log. The first pass
  3426. * determines those things which have been cancelled, and the
  3427. * second pass replays log items normally except for those which
  3428. * have been cancelled. The handling of the replay and cancellations
  3429. * takes place in the log item type specific routines.
  3430. *
  3431. * The table of items which have cancel records in the log is allocated
  3432. * and freed at this level, since only here do we know when all of
  3433. * the log recovery has been completed.
  3434. */
  3435. STATIC int
  3436. xlog_do_log_recovery(
  3437. xlog_t *log,
  3438. xfs_daddr_t head_blk,
  3439. xfs_daddr_t tail_blk)
  3440. {
  3441. int error;
  3442. ASSERT(head_blk != tail_blk);
  3443. /*
  3444. * First do a pass to find all of the cancelled buf log items.
  3445. * Store them in the buf_cancel_table for use in the second pass.
  3446. */
  3447. log->l_buf_cancel_table =
  3448. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3449. sizeof(xfs_buf_cancel_t*),
  3450. KM_SLEEP);
  3451. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3452. XLOG_RECOVER_PASS1);
  3453. if (error != 0) {
  3454. kmem_free(log->l_buf_cancel_table);
  3455. log->l_buf_cancel_table = NULL;
  3456. return error;
  3457. }
  3458. /*
  3459. * Then do a second pass to actually recover the items in the log.
  3460. * When it is complete free the table of buf cancel items.
  3461. */
  3462. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3463. XLOG_RECOVER_PASS2);
  3464. #ifdef DEBUG
  3465. if (!error) {
  3466. int i;
  3467. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3468. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3469. }
  3470. #endif /* DEBUG */
  3471. kmem_free(log->l_buf_cancel_table);
  3472. log->l_buf_cancel_table = NULL;
  3473. return error;
  3474. }
  3475. /*
  3476. * Do the actual recovery
  3477. */
  3478. STATIC int
  3479. xlog_do_recover(
  3480. xlog_t *log,
  3481. xfs_daddr_t head_blk,
  3482. xfs_daddr_t tail_blk)
  3483. {
  3484. int error;
  3485. xfs_buf_t *bp;
  3486. xfs_sb_t *sbp;
  3487. /*
  3488. * First replay the images in the log.
  3489. */
  3490. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3491. if (error) {
  3492. return error;
  3493. }
  3494. XFS_bflush(log->l_mp->m_ddev_targp);
  3495. /*
  3496. * If IO errors happened during recovery, bail out.
  3497. */
  3498. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3499. return (EIO);
  3500. }
  3501. /*
  3502. * We now update the tail_lsn since much of the recovery has completed
  3503. * and there may be space available to use. If there were no extent
  3504. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3505. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3506. * lsn of the last known good LR on disk. If there are extent frees
  3507. * or iunlinks they will have some entries in the AIL; so we look at
  3508. * the AIL to determine how to set the tail_lsn.
  3509. */
  3510. xlog_assign_tail_lsn(log->l_mp);
  3511. /*
  3512. * Now that we've finished replaying all buffer and inode
  3513. * updates, re-read in the superblock.
  3514. */
  3515. bp = xfs_getsb(log->l_mp, 0);
  3516. XFS_BUF_UNDONE(bp);
  3517. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3518. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3519. XFS_BUF_READ(bp);
  3520. XFS_BUF_UNASYNC(bp);
  3521. xfsbdstrat(log->l_mp, bp);
  3522. error = xfs_iowait(bp);
  3523. if (error) {
  3524. xfs_ioerror_alert("xlog_do_recover",
  3525. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3526. ASSERT(0);
  3527. xfs_buf_relse(bp);
  3528. return error;
  3529. }
  3530. /* Convert superblock from on-disk format */
  3531. sbp = &log->l_mp->m_sb;
  3532. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3533. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3534. ASSERT(xfs_sb_good_version(sbp));
  3535. xfs_buf_relse(bp);
  3536. /* We've re-read the superblock so re-initialize per-cpu counters */
  3537. xfs_icsb_reinit_counters(log->l_mp);
  3538. xlog_recover_check_summary(log);
  3539. /* Normal transactions can now occur */
  3540. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3541. return 0;
  3542. }
  3543. /*
  3544. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3545. *
  3546. * Return error or zero.
  3547. */
  3548. int
  3549. xlog_recover(
  3550. xlog_t *log)
  3551. {
  3552. xfs_daddr_t head_blk, tail_blk;
  3553. int error;
  3554. /* find the tail of the log */
  3555. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3556. return error;
  3557. if (tail_blk != head_blk) {
  3558. /* There used to be a comment here:
  3559. *
  3560. * disallow recovery on read-only mounts. note -- mount
  3561. * checks for ENOSPC and turns it into an intelligent
  3562. * error message.
  3563. * ...but this is no longer true. Now, unless you specify
  3564. * NORECOVERY (in which case this function would never be
  3565. * called), we just go ahead and recover. We do this all
  3566. * under the vfs layer, so we can get away with it unless
  3567. * the device itself is read-only, in which case we fail.
  3568. */
  3569. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3570. return error;
  3571. }
  3572. cmn_err(CE_NOTE,
  3573. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3574. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3575. log->l_mp->m_logname : "internal");
  3576. error = xlog_do_recover(log, head_blk, tail_blk);
  3577. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3578. }
  3579. return error;
  3580. }
  3581. /*
  3582. * In the first part of recovery we replay inodes and buffers and build
  3583. * up the list of extent free items which need to be processed. Here
  3584. * we process the extent free items and clean up the on disk unlinked
  3585. * inode lists. This is separated from the first part of recovery so
  3586. * that the root and real-time bitmap inodes can be read in from disk in
  3587. * between the two stages. This is necessary so that we can free space
  3588. * in the real-time portion of the file system.
  3589. */
  3590. int
  3591. xlog_recover_finish(
  3592. xlog_t *log)
  3593. {
  3594. /*
  3595. * Now we're ready to do the transactions needed for the
  3596. * rest of recovery. Start with completing all the extent
  3597. * free intent records and then process the unlinked inode
  3598. * lists. At this point, we essentially run in normal mode
  3599. * except that we're still performing recovery actions
  3600. * rather than accepting new requests.
  3601. */
  3602. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3603. int error;
  3604. error = xlog_recover_process_efis(log);
  3605. if (error) {
  3606. cmn_err(CE_ALERT,
  3607. "Failed to recover EFIs on filesystem: %s",
  3608. log->l_mp->m_fsname);
  3609. return error;
  3610. }
  3611. /*
  3612. * Sync the log to get all the EFIs out of the AIL.
  3613. * This isn't absolutely necessary, but it helps in
  3614. * case the unlink transactions would have problems
  3615. * pushing the EFIs out of the way.
  3616. */
  3617. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3618. xlog_recover_process_iunlinks(log);
  3619. xlog_recover_check_summary(log);
  3620. cmn_err(CE_NOTE,
  3621. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3622. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3623. log->l_mp->m_logname : "internal");
  3624. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3625. } else {
  3626. cmn_err(CE_DEBUG,
  3627. "!Ending clean XFS mount for filesystem: %s\n",
  3628. log->l_mp->m_fsname);
  3629. }
  3630. return 0;
  3631. }
  3632. #if defined(DEBUG)
  3633. /*
  3634. * Read all of the agf and agi counters and check that they
  3635. * are consistent with the superblock counters.
  3636. */
  3637. void
  3638. xlog_recover_check_summary(
  3639. xlog_t *log)
  3640. {
  3641. xfs_mount_t *mp;
  3642. xfs_agf_t *agfp;
  3643. xfs_buf_t *agfbp;
  3644. xfs_buf_t *agibp;
  3645. xfs_buf_t *sbbp;
  3646. #ifdef XFS_LOUD_RECOVERY
  3647. xfs_sb_t *sbp;
  3648. #endif
  3649. xfs_agnumber_t agno;
  3650. __uint64_t freeblks;
  3651. __uint64_t itotal;
  3652. __uint64_t ifree;
  3653. int error;
  3654. mp = log->l_mp;
  3655. freeblks = 0LL;
  3656. itotal = 0LL;
  3657. ifree = 0LL;
  3658. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3659. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3660. if (error) {
  3661. xfs_fs_cmn_err(CE_ALERT, mp,
  3662. "xlog_recover_check_summary(agf)"
  3663. "agf read failed agno %d error %d",
  3664. agno, error);
  3665. } else {
  3666. agfp = XFS_BUF_TO_AGF(agfbp);
  3667. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3668. be32_to_cpu(agfp->agf_flcount);
  3669. xfs_buf_relse(agfbp);
  3670. }
  3671. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3672. if (!error) {
  3673. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3674. itotal += be32_to_cpu(agi->agi_count);
  3675. ifree += be32_to_cpu(agi->agi_freecount);
  3676. xfs_buf_relse(agibp);
  3677. }
  3678. }
  3679. sbbp = xfs_getsb(mp, 0);
  3680. #ifdef XFS_LOUD_RECOVERY
  3681. sbp = &mp->m_sb;
  3682. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3683. cmn_err(CE_NOTE,
  3684. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3685. sbp->sb_icount, itotal);
  3686. cmn_err(CE_NOTE,
  3687. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3688. sbp->sb_ifree, ifree);
  3689. cmn_err(CE_NOTE,
  3690. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3691. sbp->sb_fdblocks, freeblks);
  3692. #if 0
  3693. /*
  3694. * This is turned off until I account for the allocation
  3695. * btree blocks which live in free space.
  3696. */
  3697. ASSERT(sbp->sb_icount == itotal);
  3698. ASSERT(sbp->sb_ifree == ifree);
  3699. ASSERT(sbp->sb_fdblocks == freeblks);
  3700. #endif
  3701. #endif
  3702. xfs_buf_relse(sbbp);
  3703. }
  3704. #endif /* DEBUG */