chipcHw.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779
  1. /*****************************************************************************
  2. * Copyright 2003 - 2008 Broadcom Corporation. All rights reserved.
  3. *
  4. * Unless you and Broadcom execute a separate written software license
  5. * agreement governing use of this software, this software is licensed to you
  6. * under the terms of the GNU General Public License version 2, available at
  7. * http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
  8. *
  9. * Notwithstanding the above, under no circumstances may you combine this
  10. * software in any way with any other Broadcom software provided under a
  11. * license other than the GPL, without Broadcom's express prior written
  12. * consent.
  13. *****************************************************************************/
  14. /****************************************************************************/
  15. /**
  16. * @file chipcHw.c
  17. *
  18. * @brief Low level Various CHIP clock controlling routines
  19. *
  20. * @note
  21. *
  22. * These routines provide basic clock controlling functionality only.
  23. */
  24. /****************************************************************************/
  25. /* ---- Include Files ---------------------------------------------------- */
  26. #include <linux/errno.h>
  27. #include <linux/types.h>
  28. #include <linux/export.h>
  29. #include <mach/csp/chipcHw_def.h>
  30. #include <mach/csp/chipcHw_inline.h>
  31. #include <mach/csp/reg.h>
  32. #include <linux/delay.h>
  33. /* ---- Private Constants and Types --------------------------------------- */
  34. /* VPM alignment algorithm uses this */
  35. #define MAX_PHASE_ADJUST_COUNT 0xFFFF /* Max number of times allowed to adjust the phase */
  36. #define MAX_PHASE_ALIGN_ATTEMPTS 10 /* Max number of attempt to align the phase */
  37. /* Local definition of clock type */
  38. #define PLL_CLOCK 1 /* PLL Clock */
  39. #define NON_PLL_CLOCK 2 /* Divider clock */
  40. static int chipcHw_divide(int num, int denom)
  41. __attribute__ ((section(".aramtext")));
  42. /****************************************************************************/
  43. /**
  44. * @brief Set clock fequency for miscellaneous configurable clocks
  45. *
  46. * This function sets clock frequency
  47. *
  48. * @return Configured clock frequency in hertz
  49. *
  50. */
  51. /****************************************************************************/
  52. chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configurable clock */
  53. ) {
  54. uint32_t __iomem *pPLLReg = NULL;
  55. uint32_t __iomem *pClockCtrl = NULL;
  56. uint32_t __iomem *pDependentClock = NULL;
  57. uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */
  58. uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */
  59. uint32_t dependentClockType = 0;
  60. uint32_t vcoHz = 0;
  61. /* Get VCO frequencies */
  62. if ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
  63. uint64_t adjustFreq = 0;
  64. vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  65. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  66. ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  67. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  68. /* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */
  69. adjustFreq = (uint64_t) chipcHw_XTAL_FREQ_Hz *
  70. (uint64_t) chipcHw_REG_PLL_DIVIDER_NDIV_f_SS *
  71. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, (chipcHw_REG_PLL_PREDIVIDER_P2 * (uint64_t) chipcHw_REG_PLL_DIVIDER_FRAC));
  72. vcoFreqPll1Hz += (uint32_t) adjustFreq;
  73. } else {
  74. vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  75. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  76. ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  77. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  78. }
  79. vcoFreqPll2Hz =
  80. chipcHw_XTAL_FREQ_Hz *
  81. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  82. ((readl(&pChipcHw->PLLPreDivider2) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  83. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  84. switch (clock) {
  85. case chipcHw_CLOCK_DDR:
  86. pPLLReg = &pChipcHw->DDRClock;
  87. vcoHz = vcoFreqPll1Hz;
  88. break;
  89. case chipcHw_CLOCK_ARM:
  90. pPLLReg = &pChipcHw->ARMClock;
  91. vcoHz = vcoFreqPll1Hz;
  92. break;
  93. case chipcHw_CLOCK_ESW:
  94. pPLLReg = &pChipcHw->ESWClock;
  95. vcoHz = vcoFreqPll1Hz;
  96. break;
  97. case chipcHw_CLOCK_VPM:
  98. pPLLReg = &pChipcHw->VPMClock;
  99. vcoHz = vcoFreqPll1Hz;
  100. break;
  101. case chipcHw_CLOCK_ESW125:
  102. pPLLReg = &pChipcHw->ESW125Clock;
  103. vcoHz = vcoFreqPll1Hz;
  104. break;
  105. case chipcHw_CLOCK_UART:
  106. pPLLReg = &pChipcHw->UARTClock;
  107. vcoHz = vcoFreqPll1Hz;
  108. break;
  109. case chipcHw_CLOCK_SDIO0:
  110. pPLLReg = &pChipcHw->SDIO0Clock;
  111. vcoHz = vcoFreqPll1Hz;
  112. break;
  113. case chipcHw_CLOCK_SDIO1:
  114. pPLLReg = &pChipcHw->SDIO1Clock;
  115. vcoHz = vcoFreqPll1Hz;
  116. break;
  117. case chipcHw_CLOCK_SPI:
  118. pPLLReg = &pChipcHw->SPIClock;
  119. vcoHz = vcoFreqPll1Hz;
  120. break;
  121. case chipcHw_CLOCK_ETM:
  122. pPLLReg = &pChipcHw->ETMClock;
  123. vcoHz = vcoFreqPll1Hz;
  124. break;
  125. case chipcHw_CLOCK_USB:
  126. pPLLReg = &pChipcHw->USBClock;
  127. vcoHz = vcoFreqPll2Hz;
  128. break;
  129. case chipcHw_CLOCK_LCD:
  130. pPLLReg = &pChipcHw->LCDClock;
  131. vcoHz = vcoFreqPll2Hz;
  132. break;
  133. case chipcHw_CLOCK_APM:
  134. pPLLReg = &pChipcHw->APMClock;
  135. vcoHz = vcoFreqPll2Hz;
  136. break;
  137. case chipcHw_CLOCK_BUS:
  138. pClockCtrl = &pChipcHw->ACLKClock;
  139. pDependentClock = &pChipcHw->ARMClock;
  140. vcoHz = vcoFreqPll1Hz;
  141. dependentClockType = PLL_CLOCK;
  142. break;
  143. case chipcHw_CLOCK_OTP:
  144. pClockCtrl = &pChipcHw->OTPClock;
  145. break;
  146. case chipcHw_CLOCK_I2C:
  147. pClockCtrl = &pChipcHw->I2CClock;
  148. break;
  149. case chipcHw_CLOCK_I2S0:
  150. pClockCtrl = &pChipcHw->I2S0Clock;
  151. break;
  152. case chipcHw_CLOCK_RTBUS:
  153. pClockCtrl = &pChipcHw->RTBUSClock;
  154. pDependentClock = &pChipcHw->ACLKClock;
  155. dependentClockType = NON_PLL_CLOCK;
  156. break;
  157. case chipcHw_CLOCK_APM100:
  158. pClockCtrl = &pChipcHw->APM100Clock;
  159. pDependentClock = &pChipcHw->APMClock;
  160. vcoHz = vcoFreqPll2Hz;
  161. dependentClockType = PLL_CLOCK;
  162. break;
  163. case chipcHw_CLOCK_TSC:
  164. pClockCtrl = &pChipcHw->TSCClock;
  165. break;
  166. case chipcHw_CLOCK_LED:
  167. pClockCtrl = &pChipcHw->LEDClock;
  168. break;
  169. case chipcHw_CLOCK_I2S1:
  170. pClockCtrl = &pChipcHw->I2S1Clock;
  171. break;
  172. }
  173. if (pPLLReg) {
  174. /* Obtain PLL clock frequency */
  175. if (readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) {
  176. /* Return crystal clock frequency when bypassed */
  177. return chipcHw_XTAL_FREQ_Hz;
  178. } else if (clock == chipcHw_CLOCK_DDR) {
  179. /* DDR frequency is configured in PLLDivider register */
  180. return chipcHw_divide (vcoHz, (((readl(&pChipcHw->PLLDivider) & 0xFF000000) >> 24) ? ((readl(&pChipcHw->PLLDivider) & 0xFF000000) >> 24) : 256));
  181. } else {
  182. /* From chip revision number B0, LCD clock is internally divided by 2 */
  183. if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) {
  184. vcoHz >>= 1;
  185. }
  186. /* Obtain PLL clock frequency using VCO dividers */
  187. return chipcHw_divide(vcoHz, ((readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256));
  188. }
  189. } else if (pClockCtrl) {
  190. /* Obtain divider clock frequency */
  191. uint32_t div;
  192. uint32_t freq = 0;
  193. if (readl(pClockCtrl) & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) {
  194. /* Return crystal clock frequency when bypassed */
  195. return chipcHw_XTAL_FREQ_Hz;
  196. } else if (pDependentClock) {
  197. /* Identify the dependent clock frequency */
  198. switch (dependentClockType) {
  199. case PLL_CLOCK:
  200. if (readl(pDependentClock) & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) {
  201. /* Use crystal clock frequency when dependent PLL clock is bypassed */
  202. freq = chipcHw_XTAL_FREQ_Hz;
  203. } else {
  204. /* Obtain PLL clock frequency using VCO dividers */
  205. div = readl(pDependentClock) & chipcHw_REG_PLL_CLOCK_MDIV_MASK;
  206. freq = div ? chipcHw_divide(vcoHz, div) : 0;
  207. }
  208. break;
  209. case NON_PLL_CLOCK:
  210. if (pDependentClock == &pChipcHw->ACLKClock) {
  211. freq = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS);
  212. } else {
  213. if (readl(pDependentClock) & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) {
  214. /* Use crystal clock frequency when dependent divider clock is bypassed */
  215. freq = chipcHw_XTAL_FREQ_Hz;
  216. } else {
  217. /* Obtain divider clock frequency using XTAL dividers */
  218. div = readl(pDependentClock) & chipcHw_REG_DIV_CLOCK_DIV_MASK;
  219. freq = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, (div ? div : 256));
  220. }
  221. }
  222. break;
  223. }
  224. } else {
  225. /* Dependent on crystal clock */
  226. freq = chipcHw_XTAL_FREQ_Hz;
  227. }
  228. div = readl(pClockCtrl) & chipcHw_REG_DIV_CLOCK_DIV_MASK;
  229. return chipcHw_divide(freq, (div ? div : 256));
  230. }
  231. return 0;
  232. }
  233. /****************************************************************************/
  234. /**
  235. * @brief Set clock fequency for miscellaneous configurable clocks
  236. *
  237. * This function sets clock frequency
  238. *
  239. * @return Configured clock frequency in Hz
  240. *
  241. */
  242. /****************************************************************************/
  243. chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configurable clock */
  244. uint32_t freq /* [ IN ] Clock frequency in Hz */
  245. ) {
  246. uint32_t __iomem *pPLLReg = NULL;
  247. uint32_t __iomem *pClockCtrl = NULL;
  248. uint32_t __iomem *pDependentClock = NULL;
  249. uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */
  250. uint32_t desVcoFreqPll1Hz = 0; /* Desired VCO frequency for PLL1 in Hz */
  251. uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */
  252. uint32_t dependentClockType = 0;
  253. uint32_t vcoHz = 0;
  254. uint32_t desVcoHz = 0;
  255. /* Get VCO frequencies */
  256. if ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
  257. uint64_t adjustFreq = 0;
  258. vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  259. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  260. ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  261. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  262. /* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */
  263. adjustFreq = (uint64_t) chipcHw_XTAL_FREQ_Hz *
  264. (uint64_t) chipcHw_REG_PLL_DIVIDER_NDIV_f_SS *
  265. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, (chipcHw_REG_PLL_PREDIVIDER_P2 * (uint64_t) chipcHw_REG_PLL_DIVIDER_FRAC));
  266. vcoFreqPll1Hz += (uint32_t) adjustFreq;
  267. /* Desired VCO frequency */
  268. desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  269. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  270. (((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  271. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT) + 1);
  272. } else {
  273. vcoFreqPll1Hz = desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  274. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  275. ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  276. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  277. }
  278. vcoFreqPll2Hz = chipcHw_XTAL_FREQ_Hz * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  279. ((readl(&pChipcHw->PLLPreDivider2) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  280. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  281. switch (clock) {
  282. case chipcHw_CLOCK_DDR:
  283. /* Configure the DDR_ctrl:BUS ratio settings */
  284. {
  285. REG_LOCAL_IRQ_SAVE;
  286. /* Dvide DDR_phy by two to obtain DDR_ctrl clock */
  287. writel((readl(&pChipcHw->DDRClock) & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((((freq / 2) / chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1) << chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT), &pChipcHw->DDRClock);
  288. REG_LOCAL_IRQ_RESTORE;
  289. }
  290. pPLLReg = &pChipcHw->DDRClock;
  291. vcoHz = vcoFreqPll1Hz;
  292. desVcoHz = desVcoFreqPll1Hz;
  293. break;
  294. case chipcHw_CLOCK_ARM:
  295. pPLLReg = &pChipcHw->ARMClock;
  296. vcoHz = vcoFreqPll1Hz;
  297. desVcoHz = desVcoFreqPll1Hz;
  298. break;
  299. case chipcHw_CLOCK_ESW:
  300. pPLLReg = &pChipcHw->ESWClock;
  301. vcoHz = vcoFreqPll1Hz;
  302. desVcoHz = desVcoFreqPll1Hz;
  303. break;
  304. case chipcHw_CLOCK_VPM:
  305. /* Configure the VPM:BUS ratio settings */
  306. {
  307. REG_LOCAL_IRQ_SAVE;
  308. writel((readl(&pChipcHw->VPMClock) & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((chipcHw_divide (freq, chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1) << chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT), &pChipcHw->VPMClock);
  309. REG_LOCAL_IRQ_RESTORE;
  310. }
  311. pPLLReg = &pChipcHw->VPMClock;
  312. vcoHz = vcoFreqPll1Hz;
  313. desVcoHz = desVcoFreqPll1Hz;
  314. break;
  315. case chipcHw_CLOCK_ESW125:
  316. pPLLReg = &pChipcHw->ESW125Clock;
  317. vcoHz = vcoFreqPll1Hz;
  318. desVcoHz = desVcoFreqPll1Hz;
  319. break;
  320. case chipcHw_CLOCK_UART:
  321. pPLLReg = &pChipcHw->UARTClock;
  322. vcoHz = vcoFreqPll1Hz;
  323. desVcoHz = desVcoFreqPll1Hz;
  324. break;
  325. case chipcHw_CLOCK_SDIO0:
  326. pPLLReg = &pChipcHw->SDIO0Clock;
  327. vcoHz = vcoFreqPll1Hz;
  328. desVcoHz = desVcoFreqPll1Hz;
  329. break;
  330. case chipcHw_CLOCK_SDIO1:
  331. pPLLReg = &pChipcHw->SDIO1Clock;
  332. vcoHz = vcoFreqPll1Hz;
  333. desVcoHz = desVcoFreqPll1Hz;
  334. break;
  335. case chipcHw_CLOCK_SPI:
  336. pPLLReg = &pChipcHw->SPIClock;
  337. vcoHz = vcoFreqPll1Hz;
  338. desVcoHz = desVcoFreqPll1Hz;
  339. break;
  340. case chipcHw_CLOCK_ETM:
  341. pPLLReg = &pChipcHw->ETMClock;
  342. vcoHz = vcoFreqPll1Hz;
  343. desVcoHz = desVcoFreqPll1Hz;
  344. break;
  345. case chipcHw_CLOCK_USB:
  346. pPLLReg = &pChipcHw->USBClock;
  347. vcoHz = vcoFreqPll2Hz;
  348. desVcoHz = vcoFreqPll2Hz;
  349. break;
  350. case chipcHw_CLOCK_LCD:
  351. pPLLReg = &pChipcHw->LCDClock;
  352. vcoHz = vcoFreqPll2Hz;
  353. desVcoHz = vcoFreqPll2Hz;
  354. break;
  355. case chipcHw_CLOCK_APM:
  356. pPLLReg = &pChipcHw->APMClock;
  357. vcoHz = vcoFreqPll2Hz;
  358. desVcoHz = vcoFreqPll2Hz;
  359. break;
  360. case chipcHw_CLOCK_BUS:
  361. pClockCtrl = &pChipcHw->ACLKClock;
  362. pDependentClock = &pChipcHw->ARMClock;
  363. vcoHz = vcoFreqPll1Hz;
  364. desVcoHz = desVcoFreqPll1Hz;
  365. dependentClockType = PLL_CLOCK;
  366. break;
  367. case chipcHw_CLOCK_OTP:
  368. pClockCtrl = &pChipcHw->OTPClock;
  369. break;
  370. case chipcHw_CLOCK_I2C:
  371. pClockCtrl = &pChipcHw->I2CClock;
  372. break;
  373. case chipcHw_CLOCK_I2S0:
  374. pClockCtrl = &pChipcHw->I2S0Clock;
  375. break;
  376. case chipcHw_CLOCK_RTBUS:
  377. pClockCtrl = &pChipcHw->RTBUSClock;
  378. pDependentClock = &pChipcHw->ACLKClock;
  379. dependentClockType = NON_PLL_CLOCK;
  380. break;
  381. case chipcHw_CLOCK_APM100:
  382. pClockCtrl = &pChipcHw->APM100Clock;
  383. pDependentClock = &pChipcHw->APMClock;
  384. vcoHz = vcoFreqPll2Hz;
  385. desVcoHz = vcoFreqPll2Hz;
  386. dependentClockType = PLL_CLOCK;
  387. break;
  388. case chipcHw_CLOCK_TSC:
  389. pClockCtrl = &pChipcHw->TSCClock;
  390. break;
  391. case chipcHw_CLOCK_LED:
  392. pClockCtrl = &pChipcHw->LEDClock;
  393. break;
  394. case chipcHw_CLOCK_I2S1:
  395. pClockCtrl = &pChipcHw->I2S1Clock;
  396. break;
  397. }
  398. if (pPLLReg) {
  399. /* Select XTAL as bypass source */
  400. reg32_modify_and(pPLLReg, ~chipcHw_REG_PLL_CLOCK_SOURCE_GPIO);
  401. reg32_modify_or(pPLLReg, chipcHw_REG_PLL_CLOCK_BYPASS_SELECT);
  402. /* For DDR settings use only the PLL divider clock */
  403. if (pPLLReg == &pChipcHw->DDRClock) {
  404. /* Set M1DIV for PLL1, which controls the DDR clock */
  405. reg32_write(&pChipcHw->PLLDivider, (readl(&pChipcHw->PLLDivider) & 0x00FFFFFF) | ((chipcHw_REG_PLL_DIVIDER_MDIV (desVcoHz, freq)) << 24));
  406. /* Calculate expected frequency */
  407. freq = chipcHw_divide(vcoHz, (((readl(&pChipcHw->PLLDivider) & 0xFF000000) >> 24) ? ((readl(&pChipcHw->PLLDivider) & 0xFF000000) >> 24) : 256));
  408. } else {
  409. /* From chip revision number B0, LCD clock is internally divided by 2 */
  410. if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) {
  411. desVcoHz >>= 1;
  412. vcoHz >>= 1;
  413. }
  414. /* Set MDIV to change the frequency */
  415. reg32_modify_and(pPLLReg, ~(chipcHw_REG_PLL_CLOCK_MDIV_MASK));
  416. reg32_modify_or(pPLLReg, chipcHw_REG_PLL_DIVIDER_MDIV(desVcoHz, freq));
  417. /* Calculate expected frequency */
  418. freq = chipcHw_divide(vcoHz, ((readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256));
  419. }
  420. /* Wait for for atleast 200ns as per the protocol to change frequency */
  421. udelay(1);
  422. /* Do not bypass */
  423. reg32_modify_and(pPLLReg, ~chipcHw_REG_PLL_CLOCK_BYPASS_SELECT);
  424. /* Return the configured frequency */
  425. return freq;
  426. } else if (pClockCtrl) {
  427. uint32_t divider = 0;
  428. /* Divider clock should not be bypassed */
  429. reg32_modify_and(pClockCtrl,
  430. ~chipcHw_REG_DIV_CLOCK_BYPASS_SELECT);
  431. /* Identify the clock source */
  432. if (pDependentClock) {
  433. switch (dependentClockType) {
  434. case PLL_CLOCK:
  435. divider = chipcHw_divide(chipcHw_divide (desVcoHz, (readl(pDependentClock) & chipcHw_REG_PLL_CLOCK_MDIV_MASK)), freq);
  436. break;
  437. case NON_PLL_CLOCK:
  438. {
  439. uint32_t sourceClock = 0;
  440. if (pDependentClock == &pChipcHw->ACLKClock) {
  441. sourceClock = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS);
  442. } else {
  443. uint32_t div = readl(pDependentClock) & chipcHw_REG_DIV_CLOCK_DIV_MASK;
  444. sourceClock = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, ((div) ? div : 256));
  445. }
  446. divider = chipcHw_divide(sourceClock, freq);
  447. }
  448. break;
  449. }
  450. } else {
  451. divider = chipcHw_divide(chipcHw_XTAL_FREQ_Hz, freq);
  452. }
  453. if (divider) {
  454. REG_LOCAL_IRQ_SAVE;
  455. /* Set the divider to obtain the required frequency */
  456. writel((readl(pClockCtrl) & (~chipcHw_REG_DIV_CLOCK_DIV_MASK)) | (((divider > 256) ? chipcHw_REG_DIV_CLOCK_DIV_256 : divider) & chipcHw_REG_DIV_CLOCK_DIV_MASK), pClockCtrl);
  457. REG_LOCAL_IRQ_RESTORE;
  458. return freq;
  459. }
  460. }
  461. return 0;
  462. }
  463. EXPORT_SYMBOL(chipcHw_setClockFrequency);
  464. /****************************************************************************/
  465. /**
  466. * @brief Set VPM clock in sync with BUS clock for Chip Rev #A0
  467. *
  468. * This function does the phase adjustment between VPM and BUS clock
  469. *
  470. * @return >= 0 : On success (# of adjustment required)
  471. * -1 : On failure
  472. *
  473. */
  474. /****************************************************************************/
  475. static int vpmPhaseAlignA0(void)
  476. {
  477. uint32_t phaseControl;
  478. uint32_t phaseValue;
  479. uint32_t prevPhaseComp;
  480. int iter = 0;
  481. int adjustCount = 0;
  482. int count = 0;
  483. for (iter = 0; (iter < MAX_PHASE_ALIGN_ATTEMPTS) && (adjustCount < MAX_PHASE_ADJUST_COUNT); iter++) {
  484. phaseControl = (readl(&pChipcHw->VPMClock) & chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT;
  485. phaseValue = 0;
  486. prevPhaseComp = 0;
  487. /* Step 1: Look for falling PH_COMP transition */
  488. /* Read the contents of VPM Clock resgister */
  489. phaseValue = readl(&pChipcHw->VPMClock);
  490. do {
  491. /* Store previous value of phase comparator */
  492. prevPhaseComp = phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP;
  493. /* Change the value of PH_CTRL. */
  494. reg32_write(&pChipcHw->VPMClock,
  495. (readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  496. /* Wait atleast 20 ns */
  497. udelay(1);
  498. /* Toggle the LOAD_CH after phase control is written. */
  499. writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
  500. /* Read the contents of VPM Clock resgister. */
  501. phaseValue = readl(&pChipcHw->VPMClock);
  502. if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) {
  503. phaseControl = (0x3F & (phaseControl - 1));
  504. } else {
  505. /* Increment to the Phase count value for next write, if Phase is not stable. */
  506. phaseControl = (0x3F & (phaseControl + 1));
  507. }
  508. /* Count number of adjustment made */
  509. adjustCount++;
  510. } while (((prevPhaseComp == (phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP)) || /* Look for a transition */
  511. ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) != 0x0)) && /* Look for a falling edge */
  512. (adjustCount < MAX_PHASE_ADJUST_COUNT) /* Do not exceed the limit while trying */
  513. );
  514. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  515. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  516. return -1;
  517. }
  518. /* Step 2: Keep moving forward to make sure falling PH_COMP transition was valid */
  519. for (count = 0; (count < 5) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) {
  520. phaseControl = (0x3F & (phaseControl + 1));
  521. reg32_write(&pChipcHw->VPMClock,
  522. (readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  523. /* Wait atleast 20 ns */
  524. udelay(1);
  525. /* Toggle the LOAD_CH after phase control is written. */
  526. writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
  527. phaseValue = readl(&pChipcHw->VPMClock);
  528. /* Count number of adjustment made */
  529. adjustCount++;
  530. }
  531. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  532. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  533. return -1;
  534. }
  535. if (count != 5) {
  536. /* Detected false transition */
  537. continue;
  538. }
  539. /* Step 3: Keep moving backward to make sure falling PH_COMP transition was stable */
  540. for (count = 0; (count < 3) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) {
  541. phaseControl = (0x3F & (phaseControl - 1));
  542. reg32_write(&pChipcHw->VPMClock,
  543. (readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  544. /* Wait atleast 20 ns */
  545. udelay(1);
  546. /* Toggle the LOAD_CH after phase control is written. */
  547. writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
  548. phaseValue = readl(&pChipcHw->VPMClock);
  549. /* Count number of adjustment made */
  550. adjustCount++;
  551. }
  552. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  553. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  554. return -1;
  555. }
  556. if (count != 3) {
  557. /* Detected noisy transition */
  558. continue;
  559. }
  560. /* Step 4: Keep moving backward before the original transition took place. */
  561. for (count = 0; (count < 5); count++) {
  562. phaseControl = (0x3F & (phaseControl - 1));
  563. reg32_write(&pChipcHw->VPMClock,
  564. (readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  565. /* Wait atleast 20 ns */
  566. udelay(1);
  567. /* Toggle the LOAD_CH after phase control is written. */
  568. writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
  569. phaseValue = readl(&pChipcHw->VPMClock);
  570. /* Count number of adjustment made */
  571. adjustCount++;
  572. }
  573. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  574. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  575. return -1;
  576. }
  577. if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0) {
  578. /* Detected false transition */
  579. continue;
  580. }
  581. /* Step 5: Re discover the valid transition */
  582. do {
  583. /* Store previous value of phase comparator */
  584. prevPhaseComp = phaseValue;
  585. /* Change the value of PH_CTRL. */
  586. reg32_write(&pChipcHw->VPMClock,
  587. (readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  588. /* Wait atleast 20 ns */
  589. udelay(1);
  590. /* Toggle the LOAD_CH after phase control is written. */
  591. writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
  592. /* Read the contents of VPM Clock resgister. */
  593. phaseValue = readl(&pChipcHw->VPMClock);
  594. if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) {
  595. phaseControl = (0x3F & (phaseControl - 1));
  596. } else {
  597. /* Increment to the Phase count value for next write, if Phase is not stable. */
  598. phaseControl = (0x3F & (phaseControl + 1));
  599. }
  600. /* Count number of adjustment made */
  601. adjustCount++;
  602. } while (((prevPhaseComp == (phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP)) || ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) != 0x0)) && (adjustCount < MAX_PHASE_ADJUST_COUNT));
  603. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  604. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  605. return -1;
  606. } else {
  607. /* Valid phase must have detected */
  608. break;
  609. }
  610. }
  611. /* For VPM Phase should be perfectly aligned. */
  612. phaseControl = (((readl(&pChipcHw->VPMClock) >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT) - 1) & 0x3F);
  613. {
  614. REG_LOCAL_IRQ_SAVE;
  615. writel((readl(&pChipcHw->VPMClock) & ~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT), &pChipcHw->VPMClock);
  616. /* Load new phase value */
  617. writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
  618. REG_LOCAL_IRQ_RESTORE;
  619. }
  620. /* Return the status */
  621. return (int)adjustCount;
  622. }
  623. /****************************************************************************/
  624. /**
  625. * @brief Set VPM clock in sync with BUS clock
  626. *
  627. * This function does the phase adjustment between VPM and BUS clock
  628. *
  629. * @return >= 0 : On success (# of adjustment required)
  630. * -1 : On failure
  631. *
  632. */
  633. /****************************************************************************/
  634. int chipcHw_vpmPhaseAlign(void)
  635. {
  636. if (chipcHw_getChipRevisionNumber() == chipcHw_REV_NUMBER_A0) {
  637. return vpmPhaseAlignA0();
  638. } else {
  639. uint32_t phaseControl = chipcHw_getVpmPhaseControl();
  640. uint32_t phaseValue = 0;
  641. int adjustCount = 0;
  642. /* Disable VPM access */
  643. writel(readl(&pChipcHw->Spare1) & ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE, &pChipcHw->Spare1);
  644. /* Disable HW VPM phase alignment */
  645. chipcHw_vpmHwPhaseAlignDisable();
  646. /* Enable SW VPM phase alignment */
  647. chipcHw_vpmSwPhaseAlignEnable();
  648. /* Adjust VPM phase */
  649. while (adjustCount < MAX_PHASE_ADJUST_COUNT) {
  650. phaseValue = chipcHw_getVpmHwPhaseAlignStatus();
  651. /* Adjust phase control value */
  652. if (phaseValue > 0xF) {
  653. /* Increment phase control value */
  654. phaseControl++;
  655. } else if (phaseValue < 0xF) {
  656. /* Decrement phase control value */
  657. phaseControl--;
  658. } else {
  659. /* Enable VPM access */
  660. writel(readl(&pChipcHw->Spare1) | chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE, &pChipcHw->Spare1);
  661. /* Return adjust count */
  662. return adjustCount;
  663. }
  664. /* Change the value of PH_CTRL. */
  665. reg32_write(&pChipcHw->VPMClock,
  666. (readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  667. /* Wait atleast 20 ns */
  668. udelay(1);
  669. /* Toggle the LOAD_CH after phase control is written. */
  670. writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
  671. /* Count adjustment */
  672. adjustCount++;
  673. }
  674. }
  675. /* Disable VPM access */
  676. writel(readl(&pChipcHw->Spare1) & ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE, &pChipcHw->Spare1);
  677. return -1;
  678. }
  679. /****************************************************************************/
  680. /**
  681. * @brief Local Divide function
  682. *
  683. * This function does the divide
  684. *
  685. * @return divide value
  686. *
  687. */
  688. /****************************************************************************/
  689. static int chipcHw_divide(int num, int denom)
  690. {
  691. int r;
  692. int t = 1;
  693. /* Shift denom and t up to the largest value to optimize algorithm */
  694. /* t contains the units of each divide */
  695. while ((denom & 0x40000000) == 0) { /* fails if denom=0 */
  696. denom = denom << 1;
  697. t = t << 1;
  698. }
  699. /* Initialize the result */
  700. r = 0;
  701. do {
  702. /* Determine if there exists a positive remainder */
  703. if ((num - denom) >= 0) {
  704. /* Accumlate t to the result and calculate a new remainder */
  705. num = num - denom;
  706. r = r + t;
  707. }
  708. /* Continue to shift denom and shift t down to 0 */
  709. denom = denom >> 1;
  710. t = t >> 1;
  711. } while (t != 0);
  712. return r;
  713. }