bcm43xx_main.c 119 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353
  1. /*
  2. Broadcom BCM43xx wireless driver
  3. Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
  4. Stefano Brivio <st3@riseup.net>
  5. Michael Buesch <mbuesch@freenet.de>
  6. Danny van Dyk <kugelfang@gentoo.org>
  7. Andreas Jaggi <andreas.jaggi@waterwave.ch>
  8. Some parts of the code in this file are derived from the ipw2200
  9. driver Copyright(c) 2003 - 2004 Intel Corporation.
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; see the file COPYING. If not, write to
  20. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  21. Boston, MA 02110-1301, USA.
  22. */
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/version.h>
  29. #include <linux/firmware.h>
  30. #include <linux/wireless.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/dma-mapping.h>
  34. #include <net/iw_handler.h>
  35. #include "bcm43xx.h"
  36. #include "bcm43xx_main.h"
  37. #include "bcm43xx_debugfs.h"
  38. #include "bcm43xx_radio.h"
  39. #include "bcm43xx_phy.h"
  40. #include "bcm43xx_dma.h"
  41. #include "bcm43xx_pio.h"
  42. #include "bcm43xx_power.h"
  43. #include "bcm43xx_wx.h"
  44. #include "bcm43xx_ethtool.h"
  45. #include "bcm43xx_xmit.h"
  46. #include "bcm43xx_sysfs.h"
  47. MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver");
  48. MODULE_AUTHOR("Martin Langer");
  49. MODULE_AUTHOR("Stefano Brivio");
  50. MODULE_AUTHOR("Michael Buesch");
  51. MODULE_LICENSE("GPL");
  52. #ifdef CONFIG_BCM947XX
  53. extern char *nvram_get(char *name);
  54. #endif
  55. #if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO)
  56. static int modparam_pio;
  57. module_param_named(pio, modparam_pio, int, 0444);
  58. MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode");
  59. #elif defined(CONFIG_BCM43XX_DMA)
  60. # define modparam_pio 0
  61. #elif defined(CONFIG_BCM43XX_PIO)
  62. # define modparam_pio 1
  63. #endif
  64. static int modparam_bad_frames_preempt;
  65. module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444);
  66. MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption");
  67. static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT;
  68. module_param_named(short_retry, modparam_short_retry, int, 0444);
  69. MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)");
  70. static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT;
  71. module_param_named(long_retry, modparam_long_retry, int, 0444);
  72. MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)");
  73. static int modparam_locale = -1;
  74. module_param_named(locale, modparam_locale, int, 0444);
  75. MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)");
  76. static int modparam_noleds;
  77. module_param_named(noleds, modparam_noleds, int, 0444);
  78. MODULE_PARM_DESC(noleds, "Turn off all LED activity");
  79. static char modparam_fwpostfix[64];
  80. module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444);
  81. MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for using multiple firmware image versions.");
  82. /* If you want to debug with just a single device, enable this,
  83. * where the string is the pci device ID (as given by the kernel's
  84. * pci_name function) of the device to be used.
  85. */
  86. //#define DEBUG_SINGLE_DEVICE_ONLY "0001:11:00.0"
  87. /* If you want to enable printing of each MMIO access, enable this. */
  88. //#define DEBUG_ENABLE_MMIO_PRINT
  89. /* If you want to enable printing of MMIO access within
  90. * ucode/pcm upload, initvals write, enable this.
  91. */
  92. //#define DEBUG_ENABLE_UCODE_MMIO_PRINT
  93. /* If you want to enable printing of PCI Config Space access, enable this */
  94. //#define DEBUG_ENABLE_PCILOG
  95. /* Detailed list maintained at:
  96. * http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices
  97. */
  98. static struct pci_device_id bcm43xx_pci_tbl[] = {
  99. /* Broadcom 4303 802.11b */
  100. { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  101. /* Broadcom 4307 802.11b */
  102. { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  103. /* Broadcom 4311 802.11(a)/b/g */
  104. { PCI_VENDOR_ID_BROADCOM, 0x4311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  105. /* Broadcom 4312 802.11a/b/g */
  106. { PCI_VENDOR_ID_BROADCOM, 0x4312, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  107. /* Broadcom 4318 802.11b/g */
  108. { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  109. /* Broadcom 4319 802.11a/b/g */
  110. { PCI_VENDOR_ID_BROADCOM, 0x4319, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  111. /* Broadcom 4306 802.11b/g */
  112. { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  113. /* Broadcom 4306 802.11a */
  114. // { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  115. /* Broadcom 4309 802.11a/b/g */
  116. { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  117. /* Broadcom 43XG 802.11b/g */
  118. { PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  119. #ifdef CONFIG_BCM947XX
  120. /* SB bus on BCM947xx */
  121. { PCI_VENDOR_ID_BROADCOM, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  122. #endif
  123. { 0 },
  124. };
  125. MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl);
  126. static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val)
  127. {
  128. u32 status;
  129. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  130. if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP))
  131. val = swab32(val);
  132. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset);
  133. mmiowb();
  134. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val);
  135. }
  136. static inline
  137. void bcm43xx_shm_control_word(struct bcm43xx_private *bcm,
  138. u16 routing, u16 offset)
  139. {
  140. u32 control;
  141. /* "offset" is the WORD offset. */
  142. control = routing;
  143. control <<= 16;
  144. control |= offset;
  145. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control);
  146. }
  147. u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm,
  148. u16 routing, u16 offset)
  149. {
  150. u32 ret;
  151. if (routing == BCM43xx_SHM_SHARED) {
  152. if (offset & 0x0003) {
  153. /* Unaligned access */
  154. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  155. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  156. ret <<= 16;
  157. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  158. ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  159. return ret;
  160. }
  161. offset >>= 2;
  162. }
  163. bcm43xx_shm_control_word(bcm, routing, offset);
  164. ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA);
  165. return ret;
  166. }
  167. u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm,
  168. u16 routing, u16 offset)
  169. {
  170. u16 ret;
  171. if (routing == BCM43xx_SHM_SHARED) {
  172. if (offset & 0x0003) {
  173. /* Unaligned access */
  174. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  175. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  176. return ret;
  177. }
  178. offset >>= 2;
  179. }
  180. bcm43xx_shm_control_word(bcm, routing, offset);
  181. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  182. return ret;
  183. }
  184. void bcm43xx_shm_write32(struct bcm43xx_private *bcm,
  185. u16 routing, u16 offset,
  186. u32 value)
  187. {
  188. if (routing == BCM43xx_SHM_SHARED) {
  189. if (offset & 0x0003) {
  190. /* Unaligned access */
  191. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  192. mmiowb();
  193. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  194. (value >> 16) & 0xffff);
  195. mmiowb();
  196. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  197. mmiowb();
  198. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA,
  199. value & 0xffff);
  200. return;
  201. }
  202. offset >>= 2;
  203. }
  204. bcm43xx_shm_control_word(bcm, routing, offset);
  205. mmiowb();
  206. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value);
  207. }
  208. void bcm43xx_shm_write16(struct bcm43xx_private *bcm,
  209. u16 routing, u16 offset,
  210. u16 value)
  211. {
  212. if (routing == BCM43xx_SHM_SHARED) {
  213. if (offset & 0x0003) {
  214. /* Unaligned access */
  215. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  216. mmiowb();
  217. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  218. value);
  219. return;
  220. }
  221. offset >>= 2;
  222. }
  223. bcm43xx_shm_control_word(bcm, routing, offset);
  224. mmiowb();
  225. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value);
  226. }
  227. void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf)
  228. {
  229. /* We need to be careful. As we read the TSF from multiple
  230. * registers, we should take care of register overflows.
  231. * In theory, the whole tsf read process should be atomic.
  232. * We try to be atomic here, by restaring the read process,
  233. * if any of the high registers changed (overflew).
  234. */
  235. if (bcm->current_core->rev >= 3) {
  236. u32 low, high, high2;
  237. do {
  238. high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  239. low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW);
  240. high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  241. } while (unlikely(high != high2));
  242. *tsf = high;
  243. *tsf <<= 32;
  244. *tsf |= low;
  245. } else {
  246. u64 tmp;
  247. u16 v0, v1, v2, v3;
  248. u16 test1, test2, test3;
  249. do {
  250. v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  251. v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  252. v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  253. v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0);
  254. test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  255. test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  256. test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  257. } while (v3 != test3 || v2 != test2 || v1 != test1);
  258. *tsf = v3;
  259. *tsf <<= 48;
  260. tmp = v2;
  261. tmp <<= 32;
  262. *tsf |= tmp;
  263. tmp = v1;
  264. tmp <<= 16;
  265. *tsf |= tmp;
  266. *tsf |= v0;
  267. }
  268. }
  269. void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf)
  270. {
  271. u32 status;
  272. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  273. status |= BCM43xx_SBF_TIME_UPDATE;
  274. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  275. mmiowb();
  276. /* Be careful with the in-progress timer.
  277. * First zero out the low register, so we have a full
  278. * register-overflow duration to complete the operation.
  279. */
  280. if (bcm->current_core->rev >= 3) {
  281. u32 lo = (tsf & 0x00000000FFFFFFFFULL);
  282. u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32;
  283. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0);
  284. mmiowb();
  285. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi);
  286. mmiowb();
  287. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo);
  288. } else {
  289. u16 v0 = (tsf & 0x000000000000FFFFULL);
  290. u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16;
  291. u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32;
  292. u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48;
  293. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0);
  294. mmiowb();
  295. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3);
  296. mmiowb();
  297. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2);
  298. mmiowb();
  299. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1);
  300. mmiowb();
  301. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0);
  302. }
  303. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  304. status &= ~BCM43xx_SBF_TIME_UPDATE;
  305. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  306. }
  307. static
  308. void bcm43xx_macfilter_set(struct bcm43xx_private *bcm,
  309. u16 offset,
  310. const u8 *mac)
  311. {
  312. u16 data;
  313. offset |= 0x0020;
  314. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset);
  315. data = mac[0];
  316. data |= mac[1] << 8;
  317. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  318. data = mac[2];
  319. data |= mac[3] << 8;
  320. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  321. data = mac[4];
  322. data |= mac[5] << 8;
  323. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  324. }
  325. static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm,
  326. u16 offset)
  327. {
  328. const u8 zero_addr[ETH_ALEN] = { 0 };
  329. bcm43xx_macfilter_set(bcm, offset, zero_addr);
  330. }
  331. static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm)
  332. {
  333. const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr);
  334. const u8 *bssid = (const u8 *)(bcm->ieee->bssid);
  335. u8 mac_bssid[ETH_ALEN * 2];
  336. int i;
  337. memcpy(mac_bssid, mac, ETH_ALEN);
  338. memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN);
  339. /* Write our MAC address and BSSID to template ram */
  340. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  341. bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i)));
  342. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  343. bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i)));
  344. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  345. bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i)));
  346. }
  347. //FIXME: Well, we should probably call them from somewhere.
  348. #if 0
  349. static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time)
  350. {
  351. /* slot_time is in usec. */
  352. if (bcm43xx_current_phy(bcm)->type != BCM43xx_PHYTYPE_G)
  353. return;
  354. bcm43xx_write16(bcm, 0x684, 510 + slot_time);
  355. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time);
  356. }
  357. static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm)
  358. {
  359. bcm43xx_set_slot_time(bcm, 9);
  360. }
  361. static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm)
  362. {
  363. bcm43xx_set_slot_time(bcm, 20);
  364. }
  365. #endif
  366. /* FIXME: To get the MAC-filter working, we need to implement the
  367. * following functions (and rename them :)
  368. */
  369. #if 0
  370. static void bcm43xx_disassociate(struct bcm43xx_private *bcm)
  371. {
  372. bcm43xx_mac_suspend(bcm);
  373. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  374. bcm43xx_ram_write(bcm, 0x0026, 0x0000);
  375. bcm43xx_ram_write(bcm, 0x0028, 0x0000);
  376. bcm43xx_ram_write(bcm, 0x007E, 0x0000);
  377. bcm43xx_ram_write(bcm, 0x0080, 0x0000);
  378. bcm43xx_ram_write(bcm, 0x047E, 0x0000);
  379. bcm43xx_ram_write(bcm, 0x0480, 0x0000);
  380. if (bcm->current_core->rev < 3) {
  381. bcm43xx_write16(bcm, 0x0610, 0x8000);
  382. bcm43xx_write16(bcm, 0x060E, 0x0000);
  383. } else
  384. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  385. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  386. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G &&
  387. ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate))
  388. bcm43xx_short_slot_timing_enable(bcm);
  389. bcm43xx_mac_enable(bcm);
  390. }
  391. static void bcm43xx_associate(struct bcm43xx_private *bcm,
  392. const u8 *mac)
  393. {
  394. memcpy(bcm->ieee->bssid, mac, ETH_ALEN);
  395. bcm43xx_mac_suspend(bcm);
  396. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac);
  397. bcm43xx_write_mac_bssid_templates(bcm);
  398. bcm43xx_mac_enable(bcm);
  399. }
  400. #endif
  401. /* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable.
  402. * Returns the _previously_ enabled IRQ mask.
  403. */
  404. static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask)
  405. {
  406. u32 old_mask;
  407. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  408. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask);
  409. return old_mask;
  410. }
  411. /* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable.
  412. * Returns the _previously_ enabled IRQ mask.
  413. */
  414. static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask)
  415. {
  416. u32 old_mask;
  417. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  418. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask);
  419. return old_mask;
  420. }
  421. /* Synchronize IRQ top- and bottom-half.
  422. * IRQs must be masked before calling this.
  423. * This must not be called with the irq_lock held.
  424. */
  425. static void bcm43xx_synchronize_irq(struct bcm43xx_private *bcm)
  426. {
  427. synchronize_irq(bcm->irq);
  428. tasklet_disable(&bcm->isr_tasklet);
  429. }
  430. /* Make sure we don't receive more data from the device. */
  431. static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm)
  432. {
  433. unsigned long flags;
  434. spin_lock_irqsave(&bcm->irq_lock, flags);
  435. if (unlikely(bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)) {
  436. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  437. return -EBUSY;
  438. }
  439. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  440. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK); /* flush */
  441. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  442. bcm43xx_synchronize_irq(bcm);
  443. return 0;
  444. }
  445. static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm)
  446. {
  447. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  448. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  449. u32 radio_id;
  450. u16 manufact;
  451. u16 version;
  452. u8 revision;
  453. if (bcm->chip_id == 0x4317) {
  454. if (bcm->chip_rev == 0x00)
  455. radio_id = 0x3205017F;
  456. else if (bcm->chip_rev == 0x01)
  457. radio_id = 0x4205017F;
  458. else
  459. radio_id = 0x5205017F;
  460. } else {
  461. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  462. radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH);
  463. radio_id <<= 16;
  464. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  465. radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW);
  466. }
  467. manufact = (radio_id & 0x00000FFF);
  468. version = (radio_id & 0x0FFFF000) >> 12;
  469. revision = (radio_id & 0xF0000000) >> 28;
  470. dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n",
  471. radio_id, manufact, version, revision);
  472. switch (phy->type) {
  473. case BCM43xx_PHYTYPE_A:
  474. if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f))
  475. goto err_unsupported_radio;
  476. break;
  477. case BCM43xx_PHYTYPE_B:
  478. if ((version & 0xFFF0) != 0x2050)
  479. goto err_unsupported_radio;
  480. break;
  481. case BCM43xx_PHYTYPE_G:
  482. if (version != 0x2050)
  483. goto err_unsupported_radio;
  484. break;
  485. }
  486. radio->manufact = manufact;
  487. radio->version = version;
  488. radio->revision = revision;
  489. if (phy->type == BCM43xx_PHYTYPE_A)
  490. radio->txpower_desired = bcm->sprom.maxpower_aphy;
  491. else
  492. radio->txpower_desired = bcm->sprom.maxpower_bgphy;
  493. return 0;
  494. err_unsupported_radio:
  495. printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n");
  496. return -ENODEV;
  497. }
  498. static const char * bcm43xx_locale_iso(u8 locale)
  499. {
  500. /* ISO 3166-1 country codes.
  501. * Note that there aren't ISO 3166-1 codes for
  502. * all or locales. (Not all locales are countries)
  503. */
  504. switch (locale) {
  505. case BCM43xx_LOCALE_WORLD:
  506. case BCM43xx_LOCALE_ALL:
  507. return "XX";
  508. case BCM43xx_LOCALE_THAILAND:
  509. return "TH";
  510. case BCM43xx_LOCALE_ISRAEL:
  511. return "IL";
  512. case BCM43xx_LOCALE_JORDAN:
  513. return "JO";
  514. case BCM43xx_LOCALE_CHINA:
  515. return "CN";
  516. case BCM43xx_LOCALE_JAPAN:
  517. case BCM43xx_LOCALE_JAPAN_HIGH:
  518. return "JP";
  519. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  520. case BCM43xx_LOCALE_USA_LOW:
  521. return "US";
  522. case BCM43xx_LOCALE_EUROPE:
  523. return "EU";
  524. case BCM43xx_LOCALE_NONE:
  525. return " ";
  526. }
  527. assert(0);
  528. return " ";
  529. }
  530. static const char * bcm43xx_locale_string(u8 locale)
  531. {
  532. switch (locale) {
  533. case BCM43xx_LOCALE_WORLD:
  534. return "World";
  535. case BCM43xx_LOCALE_THAILAND:
  536. return "Thailand";
  537. case BCM43xx_LOCALE_ISRAEL:
  538. return "Israel";
  539. case BCM43xx_LOCALE_JORDAN:
  540. return "Jordan";
  541. case BCM43xx_LOCALE_CHINA:
  542. return "China";
  543. case BCM43xx_LOCALE_JAPAN:
  544. return "Japan";
  545. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  546. return "USA/Canada/ANZ";
  547. case BCM43xx_LOCALE_EUROPE:
  548. return "Europe";
  549. case BCM43xx_LOCALE_USA_LOW:
  550. return "USAlow";
  551. case BCM43xx_LOCALE_JAPAN_HIGH:
  552. return "JapanHigh";
  553. case BCM43xx_LOCALE_ALL:
  554. return "All";
  555. case BCM43xx_LOCALE_NONE:
  556. return "None";
  557. }
  558. assert(0);
  559. return "";
  560. }
  561. static inline u8 bcm43xx_crc8(u8 crc, u8 data)
  562. {
  563. static const u8 t[] = {
  564. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  565. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  566. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  567. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  568. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  569. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  570. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  571. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  572. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  573. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  574. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  575. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  576. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  577. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  578. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  579. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  580. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  581. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  582. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  583. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  584. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  585. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  586. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  587. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  588. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  589. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  590. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  591. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  592. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  593. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  594. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  595. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  596. };
  597. return t[crc ^ data];
  598. }
  599. static u8 bcm43xx_sprom_crc(const u16 *sprom)
  600. {
  601. int word;
  602. u8 crc = 0xFF;
  603. for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) {
  604. crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF);
  605. crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  606. }
  607. crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF);
  608. crc ^= 0xFF;
  609. return crc;
  610. }
  611. int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom)
  612. {
  613. int i;
  614. u8 crc, expected_crc;
  615. for (i = 0; i < BCM43xx_SPROM_SIZE; i++)
  616. sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2));
  617. /* CRC-8 check. */
  618. crc = bcm43xx_sprom_crc(sprom);
  619. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  620. if (crc != expected_crc) {
  621. printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum "
  622. "(0x%02X, expected: 0x%02X)\n",
  623. crc, expected_crc);
  624. return -EINVAL;
  625. }
  626. return 0;
  627. }
  628. int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom)
  629. {
  630. int i, err;
  631. u8 crc, expected_crc;
  632. u32 spromctl;
  633. /* CRC-8 validation of the input data. */
  634. crc = bcm43xx_sprom_crc(sprom);
  635. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  636. if (crc != expected_crc) {
  637. printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n");
  638. return -EINVAL;
  639. }
  640. printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  641. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl);
  642. if (err)
  643. goto err_ctlreg;
  644. spromctl |= 0x10; /* SPROM WRITE enable. */
  645. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  646. if (err)
  647. goto err_ctlreg;
  648. /* We must burn lots of CPU cycles here, but that does not
  649. * really matter as one does not write the SPROM every other minute...
  650. */
  651. printk(KERN_INFO PFX "[ 0%%");
  652. mdelay(500);
  653. for (i = 0; i < BCM43xx_SPROM_SIZE; i++) {
  654. if (i == 16)
  655. printk("25%%");
  656. else if (i == 32)
  657. printk("50%%");
  658. else if (i == 48)
  659. printk("75%%");
  660. else if (i % 2)
  661. printk(".");
  662. bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]);
  663. mmiowb();
  664. mdelay(20);
  665. }
  666. spromctl &= ~0x10; /* SPROM WRITE enable. */
  667. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  668. if (err)
  669. goto err_ctlreg;
  670. mdelay(500);
  671. printk("100%% ]\n");
  672. printk(KERN_INFO PFX "SPROM written.\n");
  673. bcm43xx_controller_restart(bcm, "SPROM update");
  674. return 0;
  675. err_ctlreg:
  676. printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  677. return -ENODEV;
  678. }
  679. static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm)
  680. {
  681. u16 value;
  682. u16 *sprom;
  683. #ifdef CONFIG_BCM947XX
  684. char *c;
  685. #endif
  686. sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16),
  687. GFP_KERNEL);
  688. if (!sprom) {
  689. printk(KERN_ERR PFX "sprom_extract OOM\n");
  690. return -ENOMEM;
  691. }
  692. #ifdef CONFIG_BCM947XX
  693. sprom[BCM43xx_SPROM_BOARDFLAGS2] = atoi(nvram_get("boardflags2"));
  694. sprom[BCM43xx_SPROM_BOARDFLAGS] = atoi(nvram_get("boardflags"));
  695. if ((c = nvram_get("il0macaddr")) != NULL)
  696. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_IL0MACADDR]));
  697. if ((c = nvram_get("et1macaddr")) != NULL)
  698. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_ET1MACADDR]));
  699. sprom[BCM43xx_SPROM_PA0B0] = atoi(nvram_get("pa0b0"));
  700. sprom[BCM43xx_SPROM_PA0B1] = atoi(nvram_get("pa0b1"));
  701. sprom[BCM43xx_SPROM_PA0B2] = atoi(nvram_get("pa0b2"));
  702. sprom[BCM43xx_SPROM_PA1B0] = atoi(nvram_get("pa1b0"));
  703. sprom[BCM43xx_SPROM_PA1B1] = atoi(nvram_get("pa1b1"));
  704. sprom[BCM43xx_SPROM_PA1B2] = atoi(nvram_get("pa1b2"));
  705. sprom[BCM43xx_SPROM_BOARDREV] = atoi(nvram_get("boardrev"));
  706. #else
  707. bcm43xx_sprom_read(bcm, sprom);
  708. #endif
  709. /* boardflags2 */
  710. value = sprom[BCM43xx_SPROM_BOARDFLAGS2];
  711. bcm->sprom.boardflags2 = value;
  712. /* il0macaddr */
  713. value = sprom[BCM43xx_SPROM_IL0MACADDR + 0];
  714. *(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value);
  715. value = sprom[BCM43xx_SPROM_IL0MACADDR + 1];
  716. *(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value);
  717. value = sprom[BCM43xx_SPROM_IL0MACADDR + 2];
  718. *(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value);
  719. /* et0macaddr */
  720. value = sprom[BCM43xx_SPROM_ET0MACADDR + 0];
  721. *(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value);
  722. value = sprom[BCM43xx_SPROM_ET0MACADDR + 1];
  723. *(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value);
  724. value = sprom[BCM43xx_SPROM_ET0MACADDR + 2];
  725. *(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value);
  726. /* et1macaddr */
  727. value = sprom[BCM43xx_SPROM_ET1MACADDR + 0];
  728. *(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value);
  729. value = sprom[BCM43xx_SPROM_ET1MACADDR + 1];
  730. *(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value);
  731. value = sprom[BCM43xx_SPROM_ET1MACADDR + 2];
  732. *(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value);
  733. /* ethernet phy settings */
  734. value = sprom[BCM43xx_SPROM_ETHPHY];
  735. bcm->sprom.et0phyaddr = (value & 0x001F);
  736. bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5;
  737. /* boardrev, antennas, locale */
  738. value = sprom[BCM43xx_SPROM_BOARDREV];
  739. bcm->sprom.boardrev = (value & 0x00FF);
  740. bcm->sprom.locale = (value & 0x0F00) >> 8;
  741. bcm->sprom.antennas_aphy = (value & 0x3000) >> 12;
  742. bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14;
  743. if (modparam_locale != -1) {
  744. if (modparam_locale >= 0 && modparam_locale <= 11) {
  745. bcm->sprom.locale = modparam_locale;
  746. printk(KERN_WARNING PFX "Operating with modified "
  747. "LocaleCode %u (%s)\n",
  748. bcm->sprom.locale,
  749. bcm43xx_locale_string(bcm->sprom.locale));
  750. } else {
  751. printk(KERN_WARNING PFX "Module parameter \"locale\" "
  752. "invalid value. (0 - 11)\n");
  753. }
  754. }
  755. /* pa0b* */
  756. value = sprom[BCM43xx_SPROM_PA0B0];
  757. bcm->sprom.pa0b0 = value;
  758. value = sprom[BCM43xx_SPROM_PA0B1];
  759. bcm->sprom.pa0b1 = value;
  760. value = sprom[BCM43xx_SPROM_PA0B2];
  761. bcm->sprom.pa0b2 = value;
  762. /* wl0gpio* */
  763. value = sprom[BCM43xx_SPROM_WL0GPIO0];
  764. if (value == 0x0000)
  765. value = 0xFFFF;
  766. bcm->sprom.wl0gpio0 = value & 0x00FF;
  767. bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8;
  768. value = sprom[BCM43xx_SPROM_WL0GPIO2];
  769. if (value == 0x0000)
  770. value = 0xFFFF;
  771. bcm->sprom.wl0gpio2 = value & 0x00FF;
  772. bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8;
  773. /* maxpower */
  774. value = sprom[BCM43xx_SPROM_MAXPWR];
  775. bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8;
  776. bcm->sprom.maxpower_bgphy = value & 0x00FF;
  777. /* pa1b* */
  778. value = sprom[BCM43xx_SPROM_PA1B0];
  779. bcm->sprom.pa1b0 = value;
  780. value = sprom[BCM43xx_SPROM_PA1B1];
  781. bcm->sprom.pa1b1 = value;
  782. value = sprom[BCM43xx_SPROM_PA1B2];
  783. bcm->sprom.pa1b2 = value;
  784. /* idle tssi target */
  785. value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT];
  786. bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF;
  787. bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8;
  788. /* boardflags */
  789. value = sprom[BCM43xx_SPROM_BOARDFLAGS];
  790. if (value == 0xFFFF)
  791. value = 0x0000;
  792. bcm->sprom.boardflags = value;
  793. /* boardflags workarounds */
  794. if (bcm->board_vendor == PCI_VENDOR_ID_DELL &&
  795. bcm->chip_id == 0x4301 &&
  796. bcm->board_revision == 0x74)
  797. bcm->sprom.boardflags |= BCM43xx_BFL_BTCOEXIST;
  798. if (bcm->board_vendor == PCI_VENDOR_ID_APPLE &&
  799. bcm->board_type == 0x4E &&
  800. bcm->board_revision > 0x40)
  801. bcm->sprom.boardflags |= BCM43xx_BFL_PACTRL;
  802. /* antenna gain */
  803. value = sprom[BCM43xx_SPROM_ANTENNA_GAIN];
  804. if (value == 0x0000 || value == 0xFFFF)
  805. value = 0x0202;
  806. /* convert values to Q5.2 */
  807. bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4;
  808. bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4;
  809. kfree(sprom);
  810. return 0;
  811. }
  812. static int bcm43xx_geo_init(struct bcm43xx_private *bcm)
  813. {
  814. struct ieee80211_geo *geo;
  815. struct ieee80211_channel *chan;
  816. int have_a = 0, have_bg = 0;
  817. int i;
  818. u8 channel;
  819. struct bcm43xx_phyinfo *phy;
  820. const char *iso_country;
  821. u8 max_bg_channel;
  822. geo = kzalloc(sizeof(*geo), GFP_KERNEL);
  823. if (!geo)
  824. return -ENOMEM;
  825. for (i = 0; i < bcm->nr_80211_available; i++) {
  826. phy = &(bcm->core_80211_ext[i].phy);
  827. switch (phy->type) {
  828. case BCM43xx_PHYTYPE_B:
  829. case BCM43xx_PHYTYPE_G:
  830. have_bg = 1;
  831. break;
  832. case BCM43xx_PHYTYPE_A:
  833. have_a = 1;
  834. break;
  835. default:
  836. assert(0);
  837. }
  838. }
  839. iso_country = bcm43xx_locale_iso(bcm->sprom.locale);
  840. /* set the maximum channel based on locale set in sprom or witle locale option */
  841. switch (bcm->sprom.locale) {
  842. case BCM43xx_LOCALE_THAILAND:
  843. case BCM43xx_LOCALE_ISRAEL:
  844. case BCM43xx_LOCALE_JORDAN:
  845. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  846. case BCM43xx_LOCALE_USA_LOW:
  847. max_bg_channel = 11;
  848. break;
  849. case BCM43xx_LOCALE_JAPAN:
  850. case BCM43xx_LOCALE_JAPAN_HIGH:
  851. max_bg_channel = 14;
  852. break;
  853. default:
  854. max_bg_channel = 13;
  855. }
  856. if (have_a) {
  857. for (i = 0, channel = IEEE80211_52GHZ_MIN_CHANNEL;
  858. channel <= IEEE80211_52GHZ_MAX_CHANNEL; channel++) {
  859. chan = &geo->a[i++];
  860. chan->freq = bcm43xx_channel_to_freq_a(channel);
  861. chan->channel = channel;
  862. }
  863. geo->a_channels = i;
  864. }
  865. if (have_bg) {
  866. for (i = 0, channel = IEEE80211_24GHZ_MIN_CHANNEL;
  867. channel <= max_bg_channel; channel++) {
  868. chan = &geo->bg[i++];
  869. chan->freq = bcm43xx_channel_to_freq_bg(channel);
  870. chan->channel = channel;
  871. }
  872. geo->bg_channels = i;
  873. }
  874. memcpy(geo->name, iso_country, 2);
  875. if (0 /*TODO: Outdoor use only */)
  876. geo->name[2] = 'O';
  877. else if (0 /*TODO: Indoor use only */)
  878. geo->name[2] = 'I';
  879. else
  880. geo->name[2] = ' ';
  881. geo->name[3] = '\0';
  882. ieee80211_set_geo(bcm->ieee, geo);
  883. kfree(geo);
  884. return 0;
  885. }
  886. /* DummyTransmission function, as documented on
  887. * http://bcm-specs.sipsolutions.net/DummyTransmission
  888. */
  889. void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm)
  890. {
  891. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  892. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  893. unsigned int i, max_loop;
  894. u16 value = 0;
  895. u32 buffer[5] = {
  896. 0x00000000,
  897. 0x0000D400,
  898. 0x00000000,
  899. 0x00000001,
  900. 0x00000000,
  901. };
  902. switch (phy->type) {
  903. case BCM43xx_PHYTYPE_A:
  904. max_loop = 0x1E;
  905. buffer[0] = 0xCC010200;
  906. break;
  907. case BCM43xx_PHYTYPE_B:
  908. case BCM43xx_PHYTYPE_G:
  909. max_loop = 0xFA;
  910. buffer[0] = 0x6E840B00;
  911. break;
  912. default:
  913. assert(0);
  914. return;
  915. }
  916. for (i = 0; i < 5; i++)
  917. bcm43xx_ram_write(bcm, i * 4, buffer[i]);
  918. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  919. bcm43xx_write16(bcm, 0x0568, 0x0000);
  920. bcm43xx_write16(bcm, 0x07C0, 0x0000);
  921. bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0));
  922. bcm43xx_write16(bcm, 0x0508, 0x0000);
  923. bcm43xx_write16(bcm, 0x050A, 0x0000);
  924. bcm43xx_write16(bcm, 0x054C, 0x0000);
  925. bcm43xx_write16(bcm, 0x056A, 0x0014);
  926. bcm43xx_write16(bcm, 0x0568, 0x0826);
  927. bcm43xx_write16(bcm, 0x0500, 0x0000);
  928. bcm43xx_write16(bcm, 0x0502, 0x0030);
  929. if (radio->version == 0x2050 && radio->revision <= 0x5)
  930. bcm43xx_radio_write16(bcm, 0x0051, 0x0017);
  931. for (i = 0x00; i < max_loop; i++) {
  932. value = bcm43xx_read16(bcm, 0x050E);
  933. if (value & 0x0080)
  934. break;
  935. udelay(10);
  936. }
  937. for (i = 0x00; i < 0x0A; i++) {
  938. value = bcm43xx_read16(bcm, 0x050E);
  939. if (value & 0x0400)
  940. break;
  941. udelay(10);
  942. }
  943. for (i = 0x00; i < 0x0A; i++) {
  944. value = bcm43xx_read16(bcm, 0x0690);
  945. if (!(value & 0x0100))
  946. break;
  947. udelay(10);
  948. }
  949. if (radio->version == 0x2050 && radio->revision <= 0x5)
  950. bcm43xx_radio_write16(bcm, 0x0051, 0x0037);
  951. }
  952. static void key_write(struct bcm43xx_private *bcm,
  953. u8 index, u8 algorithm, const u16 *key)
  954. {
  955. unsigned int i, basic_wep = 0;
  956. u32 offset;
  957. u16 value;
  958. /* Write associated key information */
  959. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2),
  960. ((index << 4) | (algorithm & 0x0F)));
  961. /* The first 4 WEP keys need extra love */
  962. if (((algorithm == BCM43xx_SEC_ALGO_WEP) ||
  963. (algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4))
  964. basic_wep = 1;
  965. /* Write key payload, 8 little endian words */
  966. offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE);
  967. for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) {
  968. value = cpu_to_le16(key[i]);
  969. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  970. offset + (i * 2), value);
  971. if (!basic_wep)
  972. continue;
  973. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  974. offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE,
  975. value);
  976. }
  977. }
  978. static void keymac_write(struct bcm43xx_private *bcm,
  979. u8 index, const u32 *addr)
  980. {
  981. /* for keys 0-3 there is no associated mac address */
  982. if (index < 4)
  983. return;
  984. index -= 4;
  985. if (bcm->current_core->rev >= 5) {
  986. bcm43xx_shm_write32(bcm,
  987. BCM43xx_SHM_HWMAC,
  988. index * 2,
  989. cpu_to_be32(*addr));
  990. bcm43xx_shm_write16(bcm,
  991. BCM43xx_SHM_HWMAC,
  992. (index * 2) + 1,
  993. cpu_to_be16(*((u16 *)(addr + 1))));
  994. } else {
  995. if (index < 8) {
  996. TODO(); /* Put them in the macaddress filter */
  997. } else {
  998. TODO();
  999. /* Put them BCM43xx_SHM_SHARED, stating index 0x0120.
  1000. Keep in mind to update the count of keymacs in 0x003E as well! */
  1001. }
  1002. }
  1003. }
  1004. static int bcm43xx_key_write(struct bcm43xx_private *bcm,
  1005. u8 index, u8 algorithm,
  1006. const u8 *_key, int key_len,
  1007. const u8 *mac_addr)
  1008. {
  1009. u8 key[BCM43xx_SEC_KEYSIZE] = { 0 };
  1010. if (index >= ARRAY_SIZE(bcm->key))
  1011. return -EINVAL;
  1012. if (key_len > ARRAY_SIZE(key))
  1013. return -EINVAL;
  1014. if (algorithm < 1 || algorithm > 5)
  1015. return -EINVAL;
  1016. memcpy(key, _key, key_len);
  1017. key_write(bcm, index, algorithm, (const u16 *)key);
  1018. keymac_write(bcm, index, (const u32 *)mac_addr);
  1019. bcm->key[index].algorithm = algorithm;
  1020. return 0;
  1021. }
  1022. static void bcm43xx_clear_keys(struct bcm43xx_private *bcm)
  1023. {
  1024. static const u32 zero_mac[2] = { 0 };
  1025. unsigned int i,j, nr_keys = 54;
  1026. u16 offset;
  1027. if (bcm->current_core->rev < 5)
  1028. nr_keys = 16;
  1029. assert(nr_keys <= ARRAY_SIZE(bcm->key));
  1030. for (i = 0; i < nr_keys; i++) {
  1031. bcm->key[i].enabled = 0;
  1032. /* returns for i < 4 immediately */
  1033. keymac_write(bcm, i, zero_mac);
  1034. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1035. 0x100 + (i * 2), 0x0000);
  1036. for (j = 0; j < 8; j++) {
  1037. offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE);
  1038. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1039. offset, 0x0000);
  1040. }
  1041. }
  1042. dprintk(KERN_INFO PFX "Keys cleared\n");
  1043. }
  1044. /* Lowlevel core-switch function. This is only to be used in
  1045. * bcm43xx_switch_core() and bcm43xx_probe_cores()
  1046. */
  1047. static int _switch_core(struct bcm43xx_private *bcm, int core)
  1048. {
  1049. int err;
  1050. int attempts = 0;
  1051. u32 current_core;
  1052. assert(core >= 0);
  1053. while (1) {
  1054. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1055. (core * 0x1000) + 0x18000000);
  1056. if (unlikely(err))
  1057. goto error;
  1058. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1059. &current_core);
  1060. if (unlikely(err))
  1061. goto error;
  1062. current_core = (current_core - 0x18000000) / 0x1000;
  1063. if (current_core == core)
  1064. break;
  1065. if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES))
  1066. goto error;
  1067. udelay(10);
  1068. }
  1069. #ifdef CONFIG_BCM947XX
  1070. if (bcm->pci_dev->bus->number == 0)
  1071. bcm->current_core_offset = 0x1000 * core;
  1072. else
  1073. bcm->current_core_offset = 0;
  1074. #endif
  1075. return 0;
  1076. error:
  1077. printk(KERN_ERR PFX "Failed to switch to core %d\n", core);
  1078. return -ENODEV;
  1079. }
  1080. int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core)
  1081. {
  1082. int err;
  1083. if (unlikely(!new_core))
  1084. return 0;
  1085. if (!new_core->available)
  1086. return -ENODEV;
  1087. if (bcm->current_core == new_core)
  1088. return 0;
  1089. err = _switch_core(bcm, new_core->index);
  1090. if (unlikely(err))
  1091. goto out;
  1092. bcm->current_core = new_core;
  1093. out:
  1094. return err;
  1095. }
  1096. static int bcm43xx_core_enabled(struct bcm43xx_private *bcm)
  1097. {
  1098. u32 value;
  1099. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1100. value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET
  1101. | BCM43xx_SBTMSTATELOW_REJECT;
  1102. return (value == BCM43xx_SBTMSTATELOW_CLOCK);
  1103. }
  1104. /* disable current core */
  1105. static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags)
  1106. {
  1107. u32 sbtmstatelow;
  1108. u32 sbtmstatehigh;
  1109. int i;
  1110. /* fetch sbtmstatelow from core information registers */
  1111. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1112. /* core is already in reset */
  1113. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET)
  1114. goto out;
  1115. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) {
  1116. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1117. BCM43xx_SBTMSTATELOW_REJECT;
  1118. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1119. for (i = 0; i < 1000; i++) {
  1120. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1121. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) {
  1122. i = -1;
  1123. break;
  1124. }
  1125. udelay(10);
  1126. }
  1127. if (i != -1) {
  1128. printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n");
  1129. return -EBUSY;
  1130. }
  1131. for (i = 0; i < 1000; i++) {
  1132. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1133. if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) {
  1134. i = -1;
  1135. break;
  1136. }
  1137. udelay(10);
  1138. }
  1139. if (i != -1) {
  1140. printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n");
  1141. return -EBUSY;
  1142. }
  1143. sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1144. BCM43xx_SBTMSTATELOW_REJECT |
  1145. BCM43xx_SBTMSTATELOW_RESET |
  1146. BCM43xx_SBTMSTATELOW_CLOCK |
  1147. core_flags;
  1148. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1149. udelay(10);
  1150. }
  1151. sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET |
  1152. BCM43xx_SBTMSTATELOW_REJECT |
  1153. core_flags;
  1154. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1155. out:
  1156. bcm->current_core->enabled = 0;
  1157. return 0;
  1158. }
  1159. /* enable (reset) current core */
  1160. static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags)
  1161. {
  1162. u32 sbtmstatelow;
  1163. u32 sbtmstatehigh;
  1164. u32 sbimstate;
  1165. int err;
  1166. err = bcm43xx_core_disable(bcm, core_flags);
  1167. if (err)
  1168. goto out;
  1169. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1170. BCM43xx_SBTMSTATELOW_RESET |
  1171. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1172. core_flags;
  1173. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1174. udelay(1);
  1175. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1176. if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) {
  1177. sbtmstatehigh = 0x00000000;
  1178. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh);
  1179. }
  1180. sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE);
  1181. if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) {
  1182. sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT);
  1183. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate);
  1184. }
  1185. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1186. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1187. core_flags;
  1188. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1189. udelay(1);
  1190. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags;
  1191. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1192. udelay(1);
  1193. bcm->current_core->enabled = 1;
  1194. assert(err == 0);
  1195. out:
  1196. return err;
  1197. }
  1198. /* http://bcm-specs.sipsolutions.net/80211CoreReset */
  1199. void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy)
  1200. {
  1201. u32 flags = 0x00040000;
  1202. if ((bcm43xx_core_enabled(bcm)) &&
  1203. !bcm43xx_using_pio(bcm)) {
  1204. //FIXME: Do we _really_ want #ifndef CONFIG_BCM947XX here?
  1205. #if 0
  1206. #ifndef CONFIG_BCM947XX
  1207. /* reset all used DMA controllers. */
  1208. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1209. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA2_BASE);
  1210. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA3_BASE);
  1211. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1212. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1213. if (bcm->current_core->rev < 5)
  1214. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1215. #endif
  1216. #endif
  1217. }
  1218. if (bcm43xx_status(bcm) == BCM43xx_STAT_SHUTTINGDOWN) {
  1219. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1220. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1221. & ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002));
  1222. } else {
  1223. if (connect_phy)
  1224. flags |= BCM43xx_SBTMSTATELOW_G_MODE_ENABLE;
  1225. bcm43xx_phy_connect(bcm, connect_phy);
  1226. bcm43xx_core_enable(bcm, flags);
  1227. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  1228. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1229. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1230. | BCM43xx_SBF_400);
  1231. }
  1232. }
  1233. static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm)
  1234. {
  1235. bcm43xx_radio_turn_off(bcm);
  1236. bcm43xx_write16(bcm, 0x03E6, 0x00F4);
  1237. bcm43xx_core_disable(bcm, 0);
  1238. }
  1239. /* Mark the current 80211 core inactive. */
  1240. static void bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm)
  1241. {
  1242. u32 sbtmstatelow;
  1243. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1244. bcm43xx_radio_turn_off(bcm);
  1245. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1246. sbtmstatelow &= 0xDFF5FFFF;
  1247. sbtmstatelow |= 0x000A0000;
  1248. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1249. udelay(1);
  1250. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1251. sbtmstatelow &= 0xFFF5FFFF;
  1252. sbtmstatelow |= 0x00080000;
  1253. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1254. udelay(1);
  1255. }
  1256. static void handle_irq_transmit_status(struct bcm43xx_private *bcm)
  1257. {
  1258. u32 v0, v1;
  1259. u16 tmp;
  1260. struct bcm43xx_xmitstatus stat;
  1261. while (1) {
  1262. v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1263. if (!v0)
  1264. break;
  1265. v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1266. stat.cookie = (v0 >> 16) & 0x0000FFFF;
  1267. tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1));
  1268. stat.flags = tmp & 0xFF;
  1269. stat.cnt1 = (tmp & 0x0F00) >> 8;
  1270. stat.cnt2 = (tmp & 0xF000) >> 12;
  1271. stat.seq = (u16)(v1 & 0xFFFF);
  1272. stat.unknown = (u16)((v1 >> 16) & 0xFF);
  1273. bcm43xx_debugfs_log_txstat(bcm, &stat);
  1274. if (stat.flags & BCM43xx_TXSTAT_FLAG_AMPDU)
  1275. continue;
  1276. if (stat.flags & BCM43xx_TXSTAT_FLAG_INTER)
  1277. continue;
  1278. if (bcm43xx_using_pio(bcm))
  1279. bcm43xx_pio_handle_xmitstatus(bcm, &stat);
  1280. else
  1281. bcm43xx_dma_handle_xmitstatus(bcm, &stat);
  1282. }
  1283. }
  1284. static void drain_txstatus_queue(struct bcm43xx_private *bcm)
  1285. {
  1286. u32 dummy;
  1287. if (bcm->current_core->rev < 5)
  1288. return;
  1289. /* Read all entries from the microcode TXstatus FIFO
  1290. * and throw them away.
  1291. */
  1292. while (1) {
  1293. dummy = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1294. if (!dummy)
  1295. break;
  1296. dummy = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1297. }
  1298. }
  1299. static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm)
  1300. {
  1301. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F);
  1302. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F);
  1303. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1304. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4));
  1305. assert(bcm->noisecalc.core_at_start == bcm->current_core);
  1306. assert(bcm->noisecalc.channel_at_start == bcm43xx_current_radio(bcm)->channel);
  1307. }
  1308. static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm)
  1309. {
  1310. /* Top half of Link Quality calculation. */
  1311. if (bcm->noisecalc.calculation_running)
  1312. return;
  1313. bcm->noisecalc.core_at_start = bcm->current_core;
  1314. bcm->noisecalc.channel_at_start = bcm43xx_current_radio(bcm)->channel;
  1315. bcm->noisecalc.calculation_running = 1;
  1316. bcm->noisecalc.nr_samples = 0;
  1317. bcm43xx_generate_noise_sample(bcm);
  1318. }
  1319. static void handle_irq_noise(struct bcm43xx_private *bcm)
  1320. {
  1321. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  1322. u16 tmp;
  1323. u8 noise[4];
  1324. u8 i, j;
  1325. s32 average;
  1326. /* Bottom half of Link Quality calculation. */
  1327. assert(bcm->noisecalc.calculation_running);
  1328. if (bcm->noisecalc.core_at_start != bcm->current_core ||
  1329. bcm->noisecalc.channel_at_start != radio->channel)
  1330. goto drop_calculation;
  1331. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408);
  1332. noise[0] = (tmp & 0x00FF);
  1333. noise[1] = (tmp & 0xFF00) >> 8;
  1334. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A);
  1335. noise[2] = (tmp & 0x00FF);
  1336. noise[3] = (tmp & 0xFF00) >> 8;
  1337. if (noise[0] == 0x7F || noise[1] == 0x7F ||
  1338. noise[2] == 0x7F || noise[3] == 0x7F)
  1339. goto generate_new;
  1340. /* Get the noise samples. */
  1341. assert(bcm->noisecalc.nr_samples < 8);
  1342. i = bcm->noisecalc.nr_samples;
  1343. noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1344. noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1345. noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1346. noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1347. bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]];
  1348. bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]];
  1349. bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]];
  1350. bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]];
  1351. bcm->noisecalc.nr_samples++;
  1352. if (bcm->noisecalc.nr_samples == 8) {
  1353. /* Calculate the Link Quality by the noise samples. */
  1354. average = 0;
  1355. for (i = 0; i < 8; i++) {
  1356. for (j = 0; j < 4; j++)
  1357. average += bcm->noisecalc.samples[i][j];
  1358. }
  1359. average /= (8 * 4);
  1360. average *= 125;
  1361. average += 64;
  1362. average /= 128;
  1363. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C);
  1364. tmp = (tmp / 128) & 0x1F;
  1365. if (tmp >= 8)
  1366. average += 2;
  1367. else
  1368. average -= 25;
  1369. if (tmp == 8)
  1370. average -= 72;
  1371. else
  1372. average -= 48;
  1373. bcm->stats.noise = average;
  1374. drop_calculation:
  1375. bcm->noisecalc.calculation_running = 0;
  1376. return;
  1377. }
  1378. generate_new:
  1379. bcm43xx_generate_noise_sample(bcm);
  1380. }
  1381. static void handle_irq_ps(struct bcm43xx_private *bcm)
  1382. {
  1383. if (bcm->ieee->iw_mode == IW_MODE_MASTER) {
  1384. ///TODO: PS TBTT
  1385. } else {
  1386. if (1/*FIXME: the last PSpoll frame was sent successfully */)
  1387. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1388. }
  1389. if (bcm->ieee->iw_mode == IW_MODE_ADHOC)
  1390. bcm->reg124_set_0x4 = 1;
  1391. //FIXME else set to false?
  1392. }
  1393. static void handle_irq_reg124(struct bcm43xx_private *bcm)
  1394. {
  1395. if (!bcm->reg124_set_0x4)
  1396. return;
  1397. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1398. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD)
  1399. | 0x4);
  1400. //FIXME: reset reg124_set_0x4 to false?
  1401. }
  1402. static void handle_irq_pmq(struct bcm43xx_private *bcm)
  1403. {
  1404. u32 tmp;
  1405. //TODO: AP mode.
  1406. while (1) {
  1407. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS);
  1408. if (!(tmp & 0x00000008))
  1409. break;
  1410. }
  1411. /* 16bit write is odd, but correct. */
  1412. bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002);
  1413. }
  1414. static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm,
  1415. u16 ram_offset, u16 shm_size_offset)
  1416. {
  1417. u32 value;
  1418. u16 size = 0;
  1419. /* Timestamp. */
  1420. //FIXME: assumption: The chip sets the timestamp
  1421. value = 0;
  1422. bcm43xx_ram_write(bcm, ram_offset++, value);
  1423. bcm43xx_ram_write(bcm, ram_offset++, value);
  1424. size += 8;
  1425. /* Beacon Interval / Capability Information */
  1426. value = 0x0000;//FIXME: Which interval?
  1427. value |= (1 << 0) << 16; /* ESS */
  1428. value |= (1 << 2) << 16; /* CF Pollable */ //FIXME?
  1429. value |= (1 << 3) << 16; /* CF Poll Request */ //FIXME?
  1430. if (!bcm->ieee->open_wep)
  1431. value |= (1 << 4) << 16; /* Privacy */
  1432. bcm43xx_ram_write(bcm, ram_offset++, value);
  1433. size += 4;
  1434. /* SSID */
  1435. //TODO
  1436. /* FH Parameter Set */
  1437. //TODO
  1438. /* DS Parameter Set */
  1439. //TODO
  1440. /* CF Parameter Set */
  1441. //TODO
  1442. /* TIM */
  1443. //TODO
  1444. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size);
  1445. }
  1446. static void handle_irq_beacon(struct bcm43xx_private *bcm)
  1447. {
  1448. u32 status;
  1449. bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON;
  1450. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD);
  1451. if ((status & 0x1) && (status & 0x2)) {
  1452. /* ACK beacon IRQ. */
  1453. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
  1454. BCM43xx_IRQ_BEACON);
  1455. bcm->irq_savedstate |= BCM43xx_IRQ_BEACON;
  1456. return;
  1457. }
  1458. if (!(status & 0x1)) {
  1459. bcm43xx_generate_beacon_template(bcm, 0x68, 0x18);
  1460. status |= 0x1;
  1461. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1462. }
  1463. if (!(status & 0x2)) {
  1464. bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A);
  1465. status |= 0x2;
  1466. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1467. }
  1468. }
  1469. /* Interrupt handler bottom-half */
  1470. static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm)
  1471. {
  1472. u32 reason;
  1473. u32 dma_reason[6];
  1474. u32 merged_dma_reason = 0;
  1475. int i, activity = 0;
  1476. unsigned long flags;
  1477. #ifdef CONFIG_BCM43XX_DEBUG
  1478. u32 _handled = 0x00000000;
  1479. # define bcmirq_handled(irq) do { _handled |= (irq); } while (0)
  1480. #else
  1481. # define bcmirq_handled(irq) do { /* nothing */ } while (0)
  1482. #endif /* CONFIG_BCM43XX_DEBUG*/
  1483. spin_lock_irqsave(&bcm->irq_lock, flags);
  1484. reason = bcm->irq_reason;
  1485. for (i = 5; i >= 0; i--) {
  1486. dma_reason[i] = bcm->dma_reason[i];
  1487. merged_dma_reason |= dma_reason[i];
  1488. }
  1489. if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) {
  1490. /* TX error. We get this when Template Ram is written in wrong endianess
  1491. * in dummy_tx(). We also get this if something is wrong with the TX header
  1492. * on DMA or PIO queues.
  1493. * Maybe we get this in other error conditions, too.
  1494. */
  1495. printkl(KERN_ERR PFX "FATAL ERROR: BCM43xx_IRQ_XMIT_ERROR\n");
  1496. bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR);
  1497. }
  1498. if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_FATALMASK)) {
  1499. printkl(KERN_ERR PFX "FATAL ERROR: Fatal DMA error: "
  1500. "0x%08X, 0x%08X, 0x%08X, "
  1501. "0x%08X, 0x%08X, 0x%08X\n",
  1502. dma_reason[0], dma_reason[1],
  1503. dma_reason[2], dma_reason[3],
  1504. dma_reason[4], dma_reason[5]);
  1505. bcm43xx_controller_restart(bcm, "DMA error");
  1506. mmiowb();
  1507. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  1508. return;
  1509. }
  1510. if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_NONFATALMASK)) {
  1511. printkl(KERN_ERR PFX "DMA error: "
  1512. "0x%08X, 0x%08X, 0x%08X, "
  1513. "0x%08X, 0x%08X, 0x%08X\n",
  1514. dma_reason[0], dma_reason[1],
  1515. dma_reason[2], dma_reason[3],
  1516. dma_reason[4], dma_reason[5]);
  1517. }
  1518. if (reason & BCM43xx_IRQ_PS) {
  1519. handle_irq_ps(bcm);
  1520. bcmirq_handled(BCM43xx_IRQ_PS);
  1521. }
  1522. if (reason & BCM43xx_IRQ_REG124) {
  1523. handle_irq_reg124(bcm);
  1524. bcmirq_handled(BCM43xx_IRQ_REG124);
  1525. }
  1526. if (reason & BCM43xx_IRQ_BEACON) {
  1527. if (bcm->ieee->iw_mode == IW_MODE_MASTER)
  1528. handle_irq_beacon(bcm);
  1529. bcmirq_handled(BCM43xx_IRQ_BEACON);
  1530. }
  1531. if (reason & BCM43xx_IRQ_PMQ) {
  1532. handle_irq_pmq(bcm);
  1533. bcmirq_handled(BCM43xx_IRQ_PMQ);
  1534. }
  1535. if (reason & BCM43xx_IRQ_SCAN) {
  1536. /*TODO*/
  1537. //bcmirq_handled(BCM43xx_IRQ_SCAN);
  1538. }
  1539. if (reason & BCM43xx_IRQ_NOISE) {
  1540. handle_irq_noise(bcm);
  1541. bcmirq_handled(BCM43xx_IRQ_NOISE);
  1542. }
  1543. /* Check the DMA reason registers for received data. */
  1544. if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) {
  1545. if (bcm43xx_using_pio(bcm))
  1546. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue0);
  1547. else
  1548. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring0);
  1549. /* We intentionally don't set "activity" to 1, here. */
  1550. }
  1551. assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE));
  1552. assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE));
  1553. if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) {
  1554. if (bcm43xx_using_pio(bcm))
  1555. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue3);
  1556. else
  1557. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring3);
  1558. activity = 1;
  1559. }
  1560. assert(!(dma_reason[4] & BCM43xx_DMAIRQ_RX_DONE));
  1561. assert(!(dma_reason[5] & BCM43xx_DMAIRQ_RX_DONE));
  1562. bcmirq_handled(BCM43xx_IRQ_RX);
  1563. if (reason & BCM43xx_IRQ_XMIT_STATUS) {
  1564. handle_irq_transmit_status(bcm);
  1565. activity = 1;
  1566. //TODO: In AP mode, this also causes sending of powersave responses.
  1567. bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS);
  1568. }
  1569. /* IRQ_PIO_WORKAROUND is handled in the top-half. */
  1570. bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND);
  1571. #ifdef CONFIG_BCM43XX_DEBUG
  1572. if (unlikely(reason & ~_handled)) {
  1573. printkl(KERN_WARNING PFX
  1574. "Unhandled IRQ! Reason: 0x%08x, Unhandled: 0x%08x, "
  1575. "DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
  1576. reason, (reason & ~_handled),
  1577. dma_reason[0], dma_reason[1],
  1578. dma_reason[2], dma_reason[3]);
  1579. }
  1580. #endif
  1581. #undef bcmirq_handled
  1582. if (!modparam_noleds)
  1583. bcm43xx_leds_update(bcm, activity);
  1584. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  1585. mmiowb();
  1586. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  1587. }
  1588. static void pio_irq_workaround(struct bcm43xx_private *bcm,
  1589. u16 base, int queueidx)
  1590. {
  1591. u16 rxctl;
  1592. rxctl = bcm43xx_read16(bcm, base + BCM43xx_PIO_RXCTL);
  1593. if (rxctl & BCM43xx_PIO_RXCTL_DATAAVAILABLE)
  1594. bcm->dma_reason[queueidx] |= BCM43xx_DMAIRQ_RX_DONE;
  1595. else
  1596. bcm->dma_reason[queueidx] &= ~BCM43xx_DMAIRQ_RX_DONE;
  1597. }
  1598. static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm, u32 reason)
  1599. {
  1600. if (bcm43xx_using_pio(bcm) &&
  1601. (bcm->current_core->rev < 3) &&
  1602. (!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) {
  1603. /* Apply a PIO specific workaround to the dma_reasons */
  1604. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO1_BASE, 0);
  1605. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO2_BASE, 1);
  1606. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO3_BASE, 2);
  1607. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO4_BASE, 3);
  1608. }
  1609. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, reason);
  1610. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_REASON,
  1611. bcm->dma_reason[0]);
  1612. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON,
  1613. bcm->dma_reason[1]);
  1614. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON,
  1615. bcm->dma_reason[2]);
  1616. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON,
  1617. bcm->dma_reason[3]);
  1618. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON,
  1619. bcm->dma_reason[4]);
  1620. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_REASON,
  1621. bcm->dma_reason[5]);
  1622. }
  1623. /* Interrupt handler top-half */
  1624. static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id)
  1625. {
  1626. irqreturn_t ret = IRQ_HANDLED;
  1627. struct bcm43xx_private *bcm = dev_id;
  1628. u32 reason;
  1629. if (!bcm)
  1630. return IRQ_NONE;
  1631. spin_lock(&bcm->irq_lock);
  1632. reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1633. if (reason == 0xffffffff) {
  1634. /* irq not for us (shared irq) */
  1635. ret = IRQ_NONE;
  1636. goto out;
  1637. }
  1638. reason &= bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  1639. if (!reason)
  1640. goto out;
  1641. assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
  1642. assert(bcm->current_core->id == BCM43xx_COREID_80211);
  1643. bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA0_REASON)
  1644. & 0x0001DC00;
  1645. bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON)
  1646. & 0x0000DC00;
  1647. bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON)
  1648. & 0x0000DC00;
  1649. bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON)
  1650. & 0x0001DC00;
  1651. bcm->dma_reason[4] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON)
  1652. & 0x0000DC00;
  1653. bcm->dma_reason[5] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA5_REASON)
  1654. & 0x0000DC00;
  1655. bcm43xx_interrupt_ack(bcm, reason);
  1656. /* disable all IRQs. They are enabled again in the bottom half. */
  1657. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1658. /* save the reason code and call our bottom half. */
  1659. bcm->irq_reason = reason;
  1660. tasklet_schedule(&bcm->isr_tasklet);
  1661. out:
  1662. mmiowb();
  1663. spin_unlock(&bcm->irq_lock);
  1664. return ret;
  1665. }
  1666. static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force)
  1667. {
  1668. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1669. if (bcm->firmware_norelease && !force)
  1670. return; /* Suspending or controller reset. */
  1671. release_firmware(phy->ucode);
  1672. phy->ucode = NULL;
  1673. release_firmware(phy->pcm);
  1674. phy->pcm = NULL;
  1675. release_firmware(phy->initvals0);
  1676. phy->initvals0 = NULL;
  1677. release_firmware(phy->initvals1);
  1678. phy->initvals1 = NULL;
  1679. }
  1680. static int bcm43xx_request_firmware(struct bcm43xx_private *bcm)
  1681. {
  1682. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1683. u8 rev = bcm->current_core->rev;
  1684. int err = 0;
  1685. int nr;
  1686. char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 };
  1687. if (!phy->ucode) {
  1688. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw",
  1689. (rev >= 5 ? 5 : rev),
  1690. modparam_fwpostfix);
  1691. err = request_firmware(&phy->ucode, buf, &bcm->pci_dev->dev);
  1692. if (err) {
  1693. printk(KERN_ERR PFX
  1694. "Error: Microcode \"%s\" not available or load failed.\n",
  1695. buf);
  1696. goto error;
  1697. }
  1698. }
  1699. if (!phy->pcm) {
  1700. snprintf(buf, ARRAY_SIZE(buf),
  1701. "bcm43xx_pcm%d%s.fw",
  1702. (rev < 5 ? 4 : 5),
  1703. modparam_fwpostfix);
  1704. err = request_firmware(&phy->pcm, buf, &bcm->pci_dev->dev);
  1705. if (err) {
  1706. printk(KERN_ERR PFX
  1707. "Error: PCM \"%s\" not available or load failed.\n",
  1708. buf);
  1709. goto error;
  1710. }
  1711. }
  1712. if (!phy->initvals0) {
  1713. if (rev == 2 || rev == 4) {
  1714. switch (phy->type) {
  1715. case BCM43xx_PHYTYPE_A:
  1716. nr = 3;
  1717. break;
  1718. case BCM43xx_PHYTYPE_B:
  1719. case BCM43xx_PHYTYPE_G:
  1720. nr = 1;
  1721. break;
  1722. default:
  1723. goto err_noinitval;
  1724. }
  1725. } else if (rev >= 5) {
  1726. switch (phy->type) {
  1727. case BCM43xx_PHYTYPE_A:
  1728. nr = 7;
  1729. break;
  1730. case BCM43xx_PHYTYPE_B:
  1731. case BCM43xx_PHYTYPE_G:
  1732. nr = 5;
  1733. break;
  1734. default:
  1735. goto err_noinitval;
  1736. }
  1737. } else
  1738. goto err_noinitval;
  1739. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1740. nr, modparam_fwpostfix);
  1741. err = request_firmware(&phy->initvals0, buf, &bcm->pci_dev->dev);
  1742. if (err) {
  1743. printk(KERN_ERR PFX
  1744. "Error: InitVals \"%s\" not available or load failed.\n",
  1745. buf);
  1746. goto error;
  1747. }
  1748. if (phy->initvals0->size % sizeof(struct bcm43xx_initval)) {
  1749. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1750. goto error;
  1751. }
  1752. }
  1753. if (!phy->initvals1) {
  1754. if (rev >= 5) {
  1755. u32 sbtmstatehigh;
  1756. switch (phy->type) {
  1757. case BCM43xx_PHYTYPE_A:
  1758. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1759. if (sbtmstatehigh & 0x00010000)
  1760. nr = 9;
  1761. else
  1762. nr = 10;
  1763. break;
  1764. case BCM43xx_PHYTYPE_B:
  1765. case BCM43xx_PHYTYPE_G:
  1766. nr = 6;
  1767. break;
  1768. default:
  1769. goto err_noinitval;
  1770. }
  1771. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1772. nr, modparam_fwpostfix);
  1773. err = request_firmware(&phy->initvals1, buf, &bcm->pci_dev->dev);
  1774. if (err) {
  1775. printk(KERN_ERR PFX
  1776. "Error: InitVals \"%s\" not available or load failed.\n",
  1777. buf);
  1778. goto error;
  1779. }
  1780. if (phy->initvals1->size % sizeof(struct bcm43xx_initval)) {
  1781. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1782. goto error;
  1783. }
  1784. }
  1785. }
  1786. out:
  1787. return err;
  1788. error:
  1789. bcm43xx_release_firmware(bcm, 1);
  1790. goto out;
  1791. err_noinitval:
  1792. printk(KERN_ERR PFX "Error: No InitVals available!\n");
  1793. err = -ENOENT;
  1794. goto error;
  1795. }
  1796. static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm)
  1797. {
  1798. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1799. const u32 *data;
  1800. unsigned int i, len;
  1801. /* Upload Microcode. */
  1802. data = (u32 *)(phy->ucode->data);
  1803. len = phy->ucode->size / sizeof(u32);
  1804. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000);
  1805. for (i = 0; i < len; i++) {
  1806. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1807. be32_to_cpu(data[i]));
  1808. udelay(10);
  1809. }
  1810. /* Upload PCM data. */
  1811. data = (u32 *)(phy->pcm->data);
  1812. len = phy->pcm->size / sizeof(u32);
  1813. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea);
  1814. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000);
  1815. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb);
  1816. for (i = 0; i < len; i++) {
  1817. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1818. be32_to_cpu(data[i]));
  1819. udelay(10);
  1820. }
  1821. }
  1822. static int bcm43xx_write_initvals(struct bcm43xx_private *bcm,
  1823. const struct bcm43xx_initval *data,
  1824. const unsigned int len)
  1825. {
  1826. u16 offset, size;
  1827. u32 value;
  1828. unsigned int i;
  1829. for (i = 0; i < len; i++) {
  1830. offset = be16_to_cpu(data[i].offset);
  1831. size = be16_to_cpu(data[i].size);
  1832. value = be32_to_cpu(data[i].value);
  1833. if (unlikely(offset >= 0x1000))
  1834. goto err_format;
  1835. if (size == 2) {
  1836. if (unlikely(value & 0xFFFF0000))
  1837. goto err_format;
  1838. bcm43xx_write16(bcm, offset, (u16)value);
  1839. } else if (size == 4) {
  1840. bcm43xx_write32(bcm, offset, value);
  1841. } else
  1842. goto err_format;
  1843. }
  1844. return 0;
  1845. err_format:
  1846. printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. "
  1847. "Please fix your bcm43xx firmware files.\n");
  1848. return -EPROTO;
  1849. }
  1850. static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm)
  1851. {
  1852. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1853. int err;
  1854. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals0->data,
  1855. phy->initvals0->size / sizeof(struct bcm43xx_initval));
  1856. if (err)
  1857. goto out;
  1858. if (phy->initvals1) {
  1859. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals1->data,
  1860. phy->initvals1->size / sizeof(struct bcm43xx_initval));
  1861. if (err)
  1862. goto out;
  1863. }
  1864. out:
  1865. return err;
  1866. }
  1867. #ifdef CONFIG_BCM947XX
  1868. static struct pci_device_id bcm43xx_47xx_ids[] = {
  1869. { PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4324) },
  1870. { 0 }
  1871. };
  1872. #endif
  1873. static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm)
  1874. {
  1875. int err;
  1876. bcm->irq = bcm->pci_dev->irq;
  1877. #ifdef CONFIG_BCM947XX
  1878. if (bcm->pci_dev->bus->number == 0) {
  1879. struct pci_dev *d;
  1880. struct pci_device_id *id;
  1881. for (id = bcm43xx_47xx_ids; id->vendor; id++) {
  1882. d = pci_get_device(id->vendor, id->device, NULL);
  1883. if (d != NULL) {
  1884. bcm->irq = d->irq;
  1885. pci_dev_put(d);
  1886. break;
  1887. }
  1888. }
  1889. }
  1890. #endif
  1891. err = request_irq(bcm->irq, bcm43xx_interrupt_handler,
  1892. IRQF_SHARED, KBUILD_MODNAME, bcm);
  1893. if (err)
  1894. printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq);
  1895. return err;
  1896. }
  1897. /* Switch to the core used to write the GPIO register.
  1898. * This is either the ChipCommon, or the PCI core.
  1899. */
  1900. static int switch_to_gpio_core(struct bcm43xx_private *bcm)
  1901. {
  1902. int err;
  1903. /* Where to find the GPIO register depends on the chipset.
  1904. * If it has a ChipCommon, its register at offset 0x6c is the GPIO
  1905. * control register. Otherwise the register at offset 0x6c in the
  1906. * PCI core is the GPIO control register.
  1907. */
  1908. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  1909. if (err == -ENODEV) {
  1910. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  1911. if (unlikely(err == -ENODEV)) {
  1912. printk(KERN_ERR PFX "gpio error: "
  1913. "Neither ChipCommon nor PCI core available!\n");
  1914. }
  1915. }
  1916. return err;
  1917. }
  1918. /* Initialize the GPIOs
  1919. * http://bcm-specs.sipsolutions.net/GPIO
  1920. */
  1921. static int bcm43xx_gpio_init(struct bcm43xx_private *bcm)
  1922. {
  1923. struct bcm43xx_coreinfo *old_core;
  1924. int err;
  1925. u32 mask, set;
  1926. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1927. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1928. & 0xFFFF3FFF);
  1929. bcm43xx_leds_switch_all(bcm, 0);
  1930. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1931. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F);
  1932. mask = 0x0000001F;
  1933. set = 0x0000000F;
  1934. if (bcm->chip_id == 0x4301) {
  1935. mask |= 0x0060;
  1936. set |= 0x0060;
  1937. }
  1938. if (0 /* FIXME: conditional unknown */) {
  1939. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1940. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1941. | 0x0100);
  1942. mask |= 0x0180;
  1943. set |= 0x0180;
  1944. }
  1945. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
  1946. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1947. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1948. | 0x0200);
  1949. mask |= 0x0200;
  1950. set |= 0x0200;
  1951. }
  1952. if (bcm->current_core->rev >= 2)
  1953. mask |= 0x0010; /* FIXME: This is redundant. */
  1954. old_core = bcm->current_core;
  1955. err = switch_to_gpio_core(bcm);
  1956. if (err)
  1957. goto out;
  1958. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL,
  1959. (bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | set);
  1960. err = bcm43xx_switch_core(bcm, old_core);
  1961. out:
  1962. return err;
  1963. }
  1964. /* Turn off all GPIO stuff. Call this on module unload, for example. */
  1965. static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm)
  1966. {
  1967. struct bcm43xx_coreinfo *old_core;
  1968. int err;
  1969. old_core = bcm->current_core;
  1970. err = switch_to_gpio_core(bcm);
  1971. if (err)
  1972. return err;
  1973. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000);
  1974. err = bcm43xx_switch_core(bcm, old_core);
  1975. assert(err == 0);
  1976. return 0;
  1977. }
  1978. /* http://bcm-specs.sipsolutions.net/EnableMac */
  1979. void bcm43xx_mac_enable(struct bcm43xx_private *bcm)
  1980. {
  1981. bcm->mac_suspended--;
  1982. assert(bcm->mac_suspended >= 0);
  1983. if (bcm->mac_suspended == 0) {
  1984. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1985. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1986. | BCM43xx_SBF_MAC_ENABLED);
  1987. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY);
  1988. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  1989. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1990. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1991. }
  1992. }
  1993. /* http://bcm-specs.sipsolutions.net/SuspendMAC */
  1994. void bcm43xx_mac_suspend(struct bcm43xx_private *bcm)
  1995. {
  1996. int i;
  1997. u32 tmp;
  1998. assert(bcm->mac_suspended >= 0);
  1999. if (bcm->mac_suspended == 0) {
  2000. bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
  2001. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2002. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  2003. & ~BCM43xx_SBF_MAC_ENABLED);
  2004. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2005. for (i = 10000; i; i--) {
  2006. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2007. if (tmp & BCM43xx_IRQ_READY)
  2008. goto out;
  2009. udelay(1);
  2010. }
  2011. printkl(KERN_ERR PFX "MAC suspend failed\n");
  2012. }
  2013. out:
  2014. bcm->mac_suspended++;
  2015. }
  2016. void bcm43xx_set_iwmode(struct bcm43xx_private *bcm,
  2017. int iw_mode)
  2018. {
  2019. unsigned long flags;
  2020. struct net_device *net_dev = bcm->net_dev;
  2021. u32 status;
  2022. u16 value;
  2023. spin_lock_irqsave(&bcm->ieee->lock, flags);
  2024. bcm->ieee->iw_mode = iw_mode;
  2025. spin_unlock_irqrestore(&bcm->ieee->lock, flags);
  2026. if (iw_mode == IW_MODE_MONITOR)
  2027. net_dev->type = ARPHRD_IEEE80211;
  2028. else
  2029. net_dev->type = ARPHRD_ETHER;
  2030. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2031. /* Reset status to infrastructured mode */
  2032. status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR);
  2033. status &= ~BCM43xx_SBF_MODE_PROMISC;
  2034. status |= BCM43xx_SBF_MODE_NOTADHOC;
  2035. /* FIXME: Always enable promisc mode, until we get the MAC filters working correctly. */
  2036. status |= BCM43xx_SBF_MODE_PROMISC;
  2037. switch (iw_mode) {
  2038. case IW_MODE_MONITOR:
  2039. status |= BCM43xx_SBF_MODE_MONITOR;
  2040. status |= BCM43xx_SBF_MODE_PROMISC;
  2041. break;
  2042. case IW_MODE_ADHOC:
  2043. status &= ~BCM43xx_SBF_MODE_NOTADHOC;
  2044. break;
  2045. case IW_MODE_MASTER:
  2046. status |= BCM43xx_SBF_MODE_AP;
  2047. break;
  2048. case IW_MODE_SECOND:
  2049. case IW_MODE_REPEAT:
  2050. TODO(); /* TODO */
  2051. break;
  2052. case IW_MODE_INFRA:
  2053. /* nothing to be done here... */
  2054. break;
  2055. default:
  2056. dprintk(KERN_ERR PFX "Unknown mode in set_iwmode: %d\n", iw_mode);
  2057. }
  2058. if (net_dev->flags & IFF_PROMISC)
  2059. status |= BCM43xx_SBF_MODE_PROMISC;
  2060. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  2061. value = 0x0002;
  2062. if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) {
  2063. if (bcm->chip_id == 0x4306 && bcm->chip_rev == 3)
  2064. value = 0x0064;
  2065. else
  2066. value = 0x0032;
  2067. }
  2068. bcm43xx_write16(bcm, 0x0612, value);
  2069. }
  2070. /* This is the opposite of bcm43xx_chip_init() */
  2071. static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm)
  2072. {
  2073. bcm43xx_radio_turn_off(bcm);
  2074. if (!modparam_noleds)
  2075. bcm43xx_leds_exit(bcm);
  2076. bcm43xx_gpio_cleanup(bcm);
  2077. bcm43xx_release_firmware(bcm, 0);
  2078. }
  2079. /* Initialize the chip
  2080. * http://bcm-specs.sipsolutions.net/ChipInit
  2081. */
  2082. static int bcm43xx_chip_init(struct bcm43xx_private *bcm)
  2083. {
  2084. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2085. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2086. int err;
  2087. int i, tmp;
  2088. u32 value32;
  2089. u16 value16;
  2090. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2091. BCM43xx_SBF_CORE_READY
  2092. | BCM43xx_SBF_400);
  2093. err = bcm43xx_request_firmware(bcm);
  2094. if (err)
  2095. goto out;
  2096. bcm43xx_upload_microcode(bcm);
  2097. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xFFFFFFFF);
  2098. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402);
  2099. i = 0;
  2100. while (1) {
  2101. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2102. if (value32 == BCM43xx_IRQ_READY)
  2103. break;
  2104. i++;
  2105. if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) {
  2106. printk(KERN_ERR PFX "IRQ_READY timeout\n");
  2107. err = -ENODEV;
  2108. goto err_release_fw;
  2109. }
  2110. udelay(10);
  2111. }
  2112. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2113. value16 = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2114. BCM43xx_UCODE_REVISION);
  2115. dprintk(KERN_INFO PFX "Microcode rev 0x%x, pl 0x%x "
  2116. "(20%.2i-%.2i-%.2i %.2i:%.2i:%.2i)\n", value16,
  2117. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2118. BCM43xx_UCODE_PATCHLEVEL),
  2119. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2120. BCM43xx_UCODE_DATE) >> 12) & 0xf,
  2121. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2122. BCM43xx_UCODE_DATE) >> 8) & 0xf,
  2123. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2124. BCM43xx_UCODE_DATE) & 0xff,
  2125. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2126. BCM43xx_UCODE_TIME) >> 11) & 0x1f,
  2127. (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2128. BCM43xx_UCODE_TIME) >> 5) & 0x3f,
  2129. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2130. BCM43xx_UCODE_TIME) & 0x1f);
  2131. if ( value16 > 0x128 ) {
  2132. printk(KERN_ERR PFX
  2133. "Firmware: no support for microcode extracted "
  2134. "from version 4.x binary drivers.\n");
  2135. err = -EOPNOTSUPP;
  2136. goto err_release_fw;
  2137. }
  2138. err = bcm43xx_gpio_init(bcm);
  2139. if (err)
  2140. goto err_release_fw;
  2141. err = bcm43xx_upload_initvals(bcm);
  2142. if (err)
  2143. goto err_gpio_cleanup;
  2144. bcm43xx_radio_turn_on(bcm);
  2145. bcm->radio_hw_enable = bcm43xx_is_hw_radio_enabled(bcm);
  2146. dprintk(KERN_INFO PFX "Radio %s by hardware\n",
  2147. (bcm->radio_hw_enable == 0) ? "disabled" : "enabled");
  2148. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  2149. err = bcm43xx_phy_init(bcm);
  2150. if (err)
  2151. goto err_radio_off;
  2152. /* Select initial Interference Mitigation. */
  2153. tmp = radio->interfmode;
  2154. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2155. bcm43xx_radio_set_interference_mitigation(bcm, tmp);
  2156. bcm43xx_phy_set_antenna_diversity(bcm);
  2157. bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT);
  2158. if (phy->type == BCM43xx_PHYTYPE_B) {
  2159. value16 = bcm43xx_read16(bcm, 0x005E);
  2160. value16 |= 0x0004;
  2161. bcm43xx_write16(bcm, 0x005E, value16);
  2162. }
  2163. bcm43xx_write32(bcm, 0x0100, 0x01000000);
  2164. if (bcm->current_core->rev < 5)
  2165. bcm43xx_write32(bcm, 0x010C, 0x01000000);
  2166. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2167. value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC;
  2168. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2169. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2170. value32 |= BCM43xx_SBF_MODE_NOTADHOC;
  2171. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2172. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2173. value32 |= 0x100000;
  2174. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2175. if (bcm43xx_using_pio(bcm)) {
  2176. bcm43xx_write32(bcm, 0x0210, 0x00000100);
  2177. bcm43xx_write32(bcm, 0x0230, 0x00000100);
  2178. bcm43xx_write32(bcm, 0x0250, 0x00000100);
  2179. bcm43xx_write32(bcm, 0x0270, 0x00000100);
  2180. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000);
  2181. }
  2182. /* Probe Response Timeout value */
  2183. /* FIXME: Default to 0, has to be set by ioctl probably... :-/ */
  2184. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000);
  2185. /* Initially set the wireless operation mode. */
  2186. bcm43xx_set_iwmode(bcm, bcm->ieee->iw_mode);
  2187. if (bcm->current_core->rev < 3) {
  2188. bcm43xx_write16(bcm, 0x060E, 0x0000);
  2189. bcm43xx_write16(bcm, 0x0610, 0x8000);
  2190. bcm43xx_write16(bcm, 0x0604, 0x0000);
  2191. bcm43xx_write16(bcm, 0x0606, 0x0200);
  2192. } else {
  2193. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  2194. bcm43xx_write32(bcm, 0x018C, 0x02000000);
  2195. }
  2196. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000);
  2197. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_IRQ_MASK, 0x0001DC00);
  2198. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0000DC00);
  2199. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00);
  2200. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0001DC00);
  2201. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0000DC00);
  2202. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_IRQ_MASK, 0x0000DC00);
  2203. value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  2204. value32 |= 0x00100000;
  2205. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32);
  2206. bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm));
  2207. assert(err == 0);
  2208. dprintk(KERN_INFO PFX "Chip initialized\n");
  2209. out:
  2210. return err;
  2211. err_radio_off:
  2212. bcm43xx_radio_turn_off(bcm);
  2213. err_gpio_cleanup:
  2214. bcm43xx_gpio_cleanup(bcm);
  2215. err_release_fw:
  2216. bcm43xx_release_firmware(bcm, 1);
  2217. goto out;
  2218. }
  2219. /* Validate chip access
  2220. * http://bcm-specs.sipsolutions.net/ValidateChipAccess */
  2221. static int bcm43xx_validate_chip(struct bcm43xx_private *bcm)
  2222. {
  2223. u32 value;
  2224. u32 shm_backup;
  2225. shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000);
  2226. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA);
  2227. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA)
  2228. goto error;
  2229. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55);
  2230. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55)
  2231. goto error;
  2232. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup);
  2233. value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2234. if ((value | 0x80000000) != 0x80000400)
  2235. goto error;
  2236. value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2237. if (value != 0x00000000)
  2238. goto error;
  2239. return 0;
  2240. error:
  2241. printk(KERN_ERR PFX "Failed to validate the chipaccess\n");
  2242. return -ENODEV;
  2243. }
  2244. static void bcm43xx_init_struct_phyinfo(struct bcm43xx_phyinfo *phy)
  2245. {
  2246. /* Initialize a "phyinfo" structure. The structure is already
  2247. * zeroed out.
  2248. * This is called on insmod time to initialize members.
  2249. */
  2250. phy->savedpctlreg = 0xFFFF;
  2251. spin_lock_init(&phy->lock);
  2252. }
  2253. static void bcm43xx_init_struct_radioinfo(struct bcm43xx_radioinfo *radio)
  2254. {
  2255. /* Initialize a "radioinfo" structure. The structure is already
  2256. * zeroed out.
  2257. * This is called on insmod time to initialize members.
  2258. */
  2259. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2260. radio->channel = 0xFF;
  2261. radio->initial_channel = 0xFF;
  2262. }
  2263. static int bcm43xx_probe_cores(struct bcm43xx_private *bcm)
  2264. {
  2265. int err, i;
  2266. int current_core;
  2267. u32 core_vendor, core_id, core_rev;
  2268. u32 sb_id_hi, chip_id_32 = 0;
  2269. u16 pci_device, chip_id_16;
  2270. u8 core_count;
  2271. memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo));
  2272. memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo));
  2273. memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo)
  2274. * BCM43xx_MAX_80211_CORES);
  2275. memset(&bcm->core_80211_ext, 0, sizeof(struct bcm43xx_coreinfo_80211)
  2276. * BCM43xx_MAX_80211_CORES);
  2277. bcm->nr_80211_available = 0;
  2278. bcm->current_core = NULL;
  2279. bcm->active_80211_core = NULL;
  2280. /* map core 0 */
  2281. err = _switch_core(bcm, 0);
  2282. if (err)
  2283. goto out;
  2284. /* fetch sb_id_hi from core information registers */
  2285. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2286. core_id = (sb_id_hi & 0x8FF0) >> 4;
  2287. core_rev = (sb_id_hi & 0x7000) >> 8;
  2288. core_rev |= (sb_id_hi & 0xF);
  2289. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2290. /* if present, chipcommon is always core 0; read the chipid from it */
  2291. if (core_id == BCM43xx_COREID_CHIPCOMMON) {
  2292. chip_id_32 = bcm43xx_read32(bcm, 0);
  2293. chip_id_16 = chip_id_32 & 0xFFFF;
  2294. bcm->core_chipcommon.available = 1;
  2295. bcm->core_chipcommon.id = core_id;
  2296. bcm->core_chipcommon.rev = core_rev;
  2297. bcm->core_chipcommon.index = 0;
  2298. /* While we are at it, also read the capabilities. */
  2299. bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES);
  2300. } else {
  2301. /* without a chipCommon, use a hard coded table. */
  2302. pci_device = bcm->pci_dev->device;
  2303. if (pci_device == 0x4301)
  2304. chip_id_16 = 0x4301;
  2305. else if ((pci_device >= 0x4305) && (pci_device <= 0x4307))
  2306. chip_id_16 = 0x4307;
  2307. else if ((pci_device >= 0x4402) && (pci_device <= 0x4403))
  2308. chip_id_16 = 0x4402;
  2309. else if ((pci_device >= 0x4610) && (pci_device <= 0x4615))
  2310. chip_id_16 = 0x4610;
  2311. else if ((pci_device >= 0x4710) && (pci_device <= 0x4715))
  2312. chip_id_16 = 0x4710;
  2313. #ifdef CONFIG_BCM947XX
  2314. else if ((pci_device >= 0x4320) && (pci_device <= 0x4325))
  2315. chip_id_16 = 0x4309;
  2316. #endif
  2317. else {
  2318. printk(KERN_ERR PFX "Could not determine Chip ID\n");
  2319. return -ENODEV;
  2320. }
  2321. }
  2322. /* ChipCommon with Core Rev >=4 encodes number of cores,
  2323. * otherwise consult hardcoded table */
  2324. if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) {
  2325. core_count = (chip_id_32 & 0x0F000000) >> 24;
  2326. } else {
  2327. switch (chip_id_16) {
  2328. case 0x4610:
  2329. case 0x4704:
  2330. case 0x4710:
  2331. core_count = 9;
  2332. break;
  2333. case 0x4310:
  2334. core_count = 8;
  2335. break;
  2336. case 0x5365:
  2337. core_count = 7;
  2338. break;
  2339. case 0x4306:
  2340. core_count = 6;
  2341. break;
  2342. case 0x4301:
  2343. case 0x4307:
  2344. core_count = 5;
  2345. break;
  2346. case 0x4402:
  2347. core_count = 3;
  2348. break;
  2349. default:
  2350. /* SOL if we get here */
  2351. assert(0);
  2352. core_count = 1;
  2353. }
  2354. }
  2355. bcm->chip_id = chip_id_16;
  2356. bcm->chip_rev = (chip_id_32 & 0x000F0000) >> 16;
  2357. bcm->chip_package = (chip_id_32 & 0x00F00000) >> 20;
  2358. dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n",
  2359. bcm->chip_id, bcm->chip_rev);
  2360. dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count);
  2361. if (bcm->core_chipcommon.available) {
  2362. dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x\n",
  2363. core_id, core_rev, core_vendor);
  2364. current_core = 1;
  2365. } else
  2366. current_core = 0;
  2367. for ( ; current_core < core_count; current_core++) {
  2368. struct bcm43xx_coreinfo *core;
  2369. struct bcm43xx_coreinfo_80211 *ext_80211;
  2370. err = _switch_core(bcm, current_core);
  2371. if (err)
  2372. goto out;
  2373. /* Gather information */
  2374. /* fetch sb_id_hi from core information registers */
  2375. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2376. /* extract core_id, core_rev, core_vendor */
  2377. core_id = (sb_id_hi & 0x8FF0) >> 4;
  2378. core_rev = ((sb_id_hi & 0xF) | ((sb_id_hi & 0x7000) >> 8));
  2379. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2380. dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x\n",
  2381. current_core, core_id, core_rev, core_vendor);
  2382. core = NULL;
  2383. switch (core_id) {
  2384. case BCM43xx_COREID_PCI:
  2385. case BCM43xx_COREID_PCIE:
  2386. core = &bcm->core_pci;
  2387. if (core->available) {
  2388. printk(KERN_WARNING PFX "Multiple PCI cores found.\n");
  2389. continue;
  2390. }
  2391. break;
  2392. case BCM43xx_COREID_80211:
  2393. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2394. core = &(bcm->core_80211[i]);
  2395. ext_80211 = &(bcm->core_80211_ext[i]);
  2396. if (!core->available)
  2397. break;
  2398. core = NULL;
  2399. }
  2400. if (!core) {
  2401. printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n",
  2402. BCM43xx_MAX_80211_CORES);
  2403. continue;
  2404. }
  2405. if (i != 0) {
  2406. /* More than one 80211 core is only supported
  2407. * by special chips.
  2408. * There are chips with two 80211 cores, but with
  2409. * dangling pins on the second core. Be careful
  2410. * and ignore these cores here.
  2411. */
  2412. if (1 /*bcm->pci_dev->device != 0x4324*/ ) {
  2413. /* TODO: A PHY */
  2414. dprintk(KERN_INFO PFX "Ignoring additional 802.11a core.\n");
  2415. continue;
  2416. }
  2417. }
  2418. switch (core_rev) {
  2419. case 2:
  2420. case 4:
  2421. case 5:
  2422. case 6:
  2423. case 7:
  2424. case 9:
  2425. case 10:
  2426. break;
  2427. default:
  2428. printk(KERN_WARNING PFX
  2429. "Unsupported 80211 core revision %u\n",
  2430. core_rev);
  2431. }
  2432. bcm->nr_80211_available++;
  2433. core->priv = ext_80211;
  2434. bcm43xx_init_struct_phyinfo(&ext_80211->phy);
  2435. bcm43xx_init_struct_radioinfo(&ext_80211->radio);
  2436. break;
  2437. case BCM43xx_COREID_CHIPCOMMON:
  2438. printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n");
  2439. break;
  2440. }
  2441. if (core) {
  2442. core->available = 1;
  2443. core->id = core_id;
  2444. core->rev = core_rev;
  2445. core->index = current_core;
  2446. }
  2447. }
  2448. if (!bcm->core_80211[0].available) {
  2449. printk(KERN_ERR PFX "Error: No 80211 core found!\n");
  2450. err = -ENODEV;
  2451. goto out;
  2452. }
  2453. err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  2454. assert(err == 0);
  2455. out:
  2456. return err;
  2457. }
  2458. static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm)
  2459. {
  2460. const u8 *mac = (const u8*)(bcm->net_dev->dev_addr);
  2461. u8 *bssid = bcm->ieee->bssid;
  2462. switch (bcm->ieee->iw_mode) {
  2463. case IW_MODE_ADHOC:
  2464. random_ether_addr(bssid);
  2465. break;
  2466. case IW_MODE_MASTER:
  2467. case IW_MODE_INFRA:
  2468. case IW_MODE_REPEAT:
  2469. case IW_MODE_SECOND:
  2470. case IW_MODE_MONITOR:
  2471. memcpy(bssid, mac, ETH_ALEN);
  2472. break;
  2473. default:
  2474. assert(0);
  2475. }
  2476. }
  2477. static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm,
  2478. u16 rate,
  2479. int is_ofdm)
  2480. {
  2481. u16 offset;
  2482. if (is_ofdm) {
  2483. offset = 0x480;
  2484. offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2;
  2485. }
  2486. else {
  2487. offset = 0x4C0;
  2488. offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2;
  2489. }
  2490. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20,
  2491. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset));
  2492. }
  2493. static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm)
  2494. {
  2495. switch (bcm43xx_current_phy(bcm)->type) {
  2496. case BCM43xx_PHYTYPE_A:
  2497. case BCM43xx_PHYTYPE_G:
  2498. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1);
  2499. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1);
  2500. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1);
  2501. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1);
  2502. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1);
  2503. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1);
  2504. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1);
  2505. case BCM43xx_PHYTYPE_B:
  2506. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0);
  2507. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0);
  2508. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0);
  2509. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0);
  2510. break;
  2511. default:
  2512. assert(0);
  2513. }
  2514. }
  2515. static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm)
  2516. {
  2517. bcm43xx_chip_cleanup(bcm);
  2518. bcm43xx_pio_free(bcm);
  2519. bcm43xx_dma_free(bcm);
  2520. bcm->current_core->initialized = 0;
  2521. }
  2522. /* http://bcm-specs.sipsolutions.net/80211Init */
  2523. static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm,
  2524. int active_wlcore)
  2525. {
  2526. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2527. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2528. u32 ucodeflags;
  2529. int err;
  2530. u32 sbimconfiglow;
  2531. u8 limit;
  2532. if (bcm->core_pci.rev <= 5 && bcm->core_pci.id != BCM43xx_COREID_PCIE) {
  2533. sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2534. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2535. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2536. if (bcm->bustype == BCM43xx_BUSTYPE_PCI)
  2537. sbimconfiglow |= 0x32;
  2538. else
  2539. sbimconfiglow |= 0x53;
  2540. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow);
  2541. }
  2542. bcm43xx_phy_calibrate(bcm);
  2543. err = bcm43xx_chip_init(bcm);
  2544. if (err)
  2545. goto out;
  2546. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev);
  2547. ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET);
  2548. if (0 /*FIXME: which condition has to be used here? */)
  2549. ucodeflags |= 0x00000010;
  2550. /* HW decryption needs to be set now */
  2551. ucodeflags |= 0x40000000;
  2552. if (phy->type == BCM43xx_PHYTYPE_G) {
  2553. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2554. if (phy->rev == 1)
  2555. ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY;
  2556. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
  2557. ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL;
  2558. } else if (phy->type == BCM43xx_PHYTYPE_B) {
  2559. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2560. if (phy->rev >= 2 && radio->version == 0x2050)
  2561. ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY;
  2562. }
  2563. if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
  2564. BCM43xx_UCODEFLAGS_OFFSET)) {
  2565. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
  2566. BCM43xx_UCODEFLAGS_OFFSET, ucodeflags);
  2567. }
  2568. /* Short/Long Retry Limit.
  2569. * The retry-limit is a 4-bit counter. Enforce this to avoid overflowing
  2570. * the chip-internal counter.
  2571. */
  2572. limit = limit_value(modparam_short_retry, 0, 0xF);
  2573. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit);
  2574. limit = limit_value(modparam_long_retry, 0, 0xF);
  2575. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit);
  2576. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3);
  2577. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2);
  2578. bcm43xx_rate_memory_init(bcm);
  2579. /* Minimum Contention Window */
  2580. if (phy->type == BCM43xx_PHYTYPE_B)
  2581. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f);
  2582. else
  2583. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f);
  2584. /* Maximum Contention Window */
  2585. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  2586. bcm43xx_gen_bssid(bcm);
  2587. bcm43xx_write_mac_bssid_templates(bcm);
  2588. if (bcm->current_core->rev >= 5)
  2589. bcm43xx_write16(bcm, 0x043C, 0x000C);
  2590. if (active_wlcore) {
  2591. if (bcm43xx_using_pio(bcm)) {
  2592. err = bcm43xx_pio_init(bcm);
  2593. } else {
  2594. err = bcm43xx_dma_init(bcm);
  2595. if (err == -ENOSYS)
  2596. err = bcm43xx_pio_init(bcm);
  2597. }
  2598. if (err)
  2599. goto err_chip_cleanup;
  2600. }
  2601. bcm43xx_write16(bcm, 0x0612, 0x0050);
  2602. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050);
  2603. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4);
  2604. if (active_wlcore) {
  2605. if (radio->initial_channel != 0xFF)
  2606. bcm43xx_radio_selectchannel(bcm, radio->initial_channel, 0);
  2607. }
  2608. /* Don't enable MAC/IRQ here, as it will race with the IRQ handler.
  2609. * We enable it later.
  2610. */
  2611. bcm->current_core->initialized = 1;
  2612. out:
  2613. return err;
  2614. err_chip_cleanup:
  2615. bcm43xx_chip_cleanup(bcm);
  2616. goto out;
  2617. }
  2618. static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm)
  2619. {
  2620. int err;
  2621. u16 pci_status;
  2622. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2623. if (err)
  2624. goto out;
  2625. err = bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status);
  2626. if (err)
  2627. goto out;
  2628. err = bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT);
  2629. out:
  2630. return err;
  2631. }
  2632. static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm)
  2633. {
  2634. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  2635. bcm43xx_pctl_set_crystal(bcm, 0);
  2636. }
  2637. static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm,
  2638. u32 address,
  2639. u32 data)
  2640. {
  2641. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address);
  2642. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data);
  2643. }
  2644. static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm)
  2645. {
  2646. int err = 0;
  2647. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2648. if (bcm->core_chipcommon.available) {
  2649. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  2650. if (err)
  2651. goto out;
  2652. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2653. /* this function is always called when a PCI core is mapped */
  2654. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2655. if (err)
  2656. goto out;
  2657. } else
  2658. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2659. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  2660. out:
  2661. return err;
  2662. }
  2663. static u32 bcm43xx_pcie_reg_read(struct bcm43xx_private *bcm, u32 address)
  2664. {
  2665. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_ADDR, address);
  2666. return bcm43xx_read32(bcm, BCM43xx_PCIECORE_REG_DATA);
  2667. }
  2668. static void bcm43xx_pcie_reg_write(struct bcm43xx_private *bcm, u32 address,
  2669. u32 data)
  2670. {
  2671. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_ADDR, address);
  2672. bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_DATA, data);
  2673. }
  2674. static void bcm43xx_pcie_mdio_write(struct bcm43xx_private *bcm, u8 dev, u8 reg,
  2675. u16 data)
  2676. {
  2677. int i;
  2678. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_CTL, 0x0082);
  2679. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_DATA, BCM43xx_PCIE_MDIO_ST |
  2680. BCM43xx_PCIE_MDIO_WT | (dev << BCM43xx_PCIE_MDIO_DEV) |
  2681. (reg << BCM43xx_PCIE_MDIO_REG) | BCM43xx_PCIE_MDIO_TA |
  2682. data);
  2683. udelay(10);
  2684. for (i = 0; i < 10; i++) {
  2685. if (bcm43xx_read32(bcm, BCM43xx_PCIECORE_MDIO_CTL) &
  2686. BCM43xx_PCIE_MDIO_TC)
  2687. break;
  2688. msleep(1);
  2689. }
  2690. bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_CTL, 0);
  2691. }
  2692. /* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable.
  2693. * To enable core 0, pass a core_mask of 1<<0
  2694. */
  2695. static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm,
  2696. u32 core_mask)
  2697. {
  2698. u32 backplane_flag_nr;
  2699. u32 value;
  2700. struct bcm43xx_coreinfo *old_core;
  2701. int err = 0;
  2702. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG);
  2703. backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK;
  2704. old_core = bcm->current_core;
  2705. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2706. if (err)
  2707. goto out;
  2708. if (bcm->current_core->rev < 6 &&
  2709. bcm->current_core->id == BCM43xx_COREID_PCI) {
  2710. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC);
  2711. value |= (1 << backplane_flag_nr);
  2712. bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value);
  2713. } else {
  2714. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value);
  2715. if (err) {
  2716. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2717. goto out_switch_back;
  2718. }
  2719. value |= core_mask << 8;
  2720. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value);
  2721. if (err) {
  2722. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2723. goto out_switch_back;
  2724. }
  2725. }
  2726. if (bcm->current_core->id == BCM43xx_COREID_PCI) {
  2727. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2728. value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST;
  2729. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2730. if (bcm->current_core->rev < 5) {
  2731. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2732. value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT)
  2733. & BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2734. value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT)
  2735. & BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2736. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value);
  2737. err = bcm43xx_pcicore_commit_settings(bcm);
  2738. assert(err == 0);
  2739. } else if (bcm->current_core->rev >= 11) {
  2740. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2741. value |= BCM43xx_SBTOPCI2_MEMREAD_MULTI;
  2742. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2743. }
  2744. } else {
  2745. if (bcm->current_core->rev == 0 || bcm->current_core->rev == 1) {
  2746. value = bcm43xx_pcie_reg_read(bcm, BCM43xx_PCIE_TLP_WORKAROUND);
  2747. value |= 0x8;
  2748. bcm43xx_pcie_reg_write(bcm, BCM43xx_PCIE_TLP_WORKAROUND,
  2749. value);
  2750. }
  2751. if (bcm->current_core->rev == 0) {
  2752. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2753. BCM43xx_SERDES_RXTIMER, 0x8128);
  2754. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2755. BCM43xx_SERDES_CDR, 0x0100);
  2756. bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
  2757. BCM43xx_SERDES_CDR_BW, 0x1466);
  2758. } else if (bcm->current_core->rev == 1) {
  2759. value = bcm43xx_pcie_reg_read(bcm, BCM43xx_PCIE_DLLP_LINKCTL);
  2760. value |= 0x40;
  2761. bcm43xx_pcie_reg_write(bcm, BCM43xx_PCIE_DLLP_LINKCTL,
  2762. value);
  2763. }
  2764. }
  2765. out_switch_back:
  2766. err = bcm43xx_switch_core(bcm, old_core);
  2767. out:
  2768. return err;
  2769. }
  2770. static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm)
  2771. {
  2772. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2773. if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2)
  2774. return;
  2775. bcm43xx_mac_suspend(bcm);
  2776. bcm43xx_phy_lo_g_measure(bcm);
  2777. bcm43xx_mac_enable(bcm);
  2778. }
  2779. static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm)
  2780. {
  2781. bcm43xx_phy_lo_mark_all_unused(bcm);
  2782. if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
  2783. bcm43xx_mac_suspend(bcm);
  2784. bcm43xx_calc_nrssi_slope(bcm);
  2785. bcm43xx_mac_enable(bcm);
  2786. }
  2787. }
  2788. static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm)
  2789. {
  2790. /* Update device statistics. */
  2791. bcm43xx_calculate_link_quality(bcm);
  2792. }
  2793. static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm)
  2794. {
  2795. bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning?
  2796. //TODO for APHY (temperature?)
  2797. }
  2798. static void bcm43xx_periodic_every1sec(struct bcm43xx_private *bcm)
  2799. {
  2800. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2801. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2802. int radio_hw_enable;
  2803. /* check if radio hardware enabled status changed */
  2804. radio_hw_enable = bcm43xx_is_hw_radio_enabled(bcm);
  2805. if (unlikely(bcm->radio_hw_enable != radio_hw_enable)) {
  2806. bcm->radio_hw_enable = radio_hw_enable;
  2807. dprintk(KERN_INFO PFX "Radio hardware status changed to %s\n",
  2808. (radio_hw_enable == 0) ? "disabled" : "enabled");
  2809. bcm43xx_leds_update(bcm, 0);
  2810. }
  2811. if (phy->type == BCM43xx_PHYTYPE_G) {
  2812. //TODO: update_aci_moving_average
  2813. if (radio->aci_enable && radio->aci_wlan_automatic) {
  2814. bcm43xx_mac_suspend(bcm);
  2815. if (!radio->aci_enable && 1 /*TODO: not scanning? */) {
  2816. if (0 /*TODO: bunch of conditions*/) {
  2817. bcm43xx_radio_set_interference_mitigation(bcm,
  2818. BCM43xx_RADIO_INTERFMODE_MANUALWLAN);
  2819. }
  2820. } else if (1/*TODO*/) {
  2821. /*
  2822. if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) {
  2823. bcm43xx_radio_set_interference_mitigation(bcm,
  2824. BCM43xx_RADIO_INTERFMODE_NONE);
  2825. }
  2826. */
  2827. }
  2828. bcm43xx_mac_enable(bcm);
  2829. } else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN &&
  2830. phy->rev == 1) {
  2831. //TODO: implement rev1 workaround
  2832. }
  2833. }
  2834. }
  2835. static void do_periodic_work(struct bcm43xx_private *bcm)
  2836. {
  2837. if (bcm->periodic_state % 120 == 0)
  2838. bcm43xx_periodic_every120sec(bcm);
  2839. if (bcm->periodic_state % 60 == 0)
  2840. bcm43xx_periodic_every60sec(bcm);
  2841. if (bcm->periodic_state % 30 == 0)
  2842. bcm43xx_periodic_every30sec(bcm);
  2843. if (bcm->periodic_state % 15 == 0)
  2844. bcm43xx_periodic_every15sec(bcm);
  2845. bcm43xx_periodic_every1sec(bcm);
  2846. schedule_delayed_work(&bcm->periodic_work, HZ);
  2847. }
  2848. static void bcm43xx_periodic_work_handler(struct work_struct *work)
  2849. {
  2850. struct bcm43xx_private *bcm =
  2851. container_of(work, struct bcm43xx_private, periodic_work.work);
  2852. struct net_device *net_dev = bcm->net_dev;
  2853. unsigned long flags;
  2854. u32 savedirqs = 0;
  2855. unsigned long orig_trans_start = 0;
  2856. mutex_lock(&bcm->mutex);
  2857. if (unlikely(bcm->periodic_state % 60 == 0)) {
  2858. /* Periodic work will take a long time, so we want it to
  2859. * be preemtible.
  2860. */
  2861. netif_tx_lock_bh(net_dev);
  2862. /* We must fake a started transmission here, as we are going to
  2863. * disable TX. If we wouldn't fake a TX, it would be possible to
  2864. * trigger the netdev watchdog, if the last real TX is already
  2865. * some time on the past (slightly less than 5secs)
  2866. */
  2867. orig_trans_start = net_dev->trans_start;
  2868. net_dev->trans_start = jiffies;
  2869. netif_stop_queue(net_dev);
  2870. netif_tx_unlock_bh(net_dev);
  2871. spin_lock_irqsave(&bcm->irq_lock, flags);
  2872. bcm43xx_mac_suspend(bcm);
  2873. if (bcm43xx_using_pio(bcm))
  2874. bcm43xx_pio_freeze_txqueues(bcm);
  2875. savedirqs = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2876. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  2877. bcm43xx_synchronize_irq(bcm);
  2878. } else {
  2879. /* Periodic work should take short time, so we want low
  2880. * locking overhead.
  2881. */
  2882. spin_lock_irqsave(&bcm->irq_lock, flags);
  2883. }
  2884. do_periodic_work(bcm);
  2885. if (unlikely(bcm->periodic_state % 60 == 0)) {
  2886. spin_lock_irqsave(&bcm->irq_lock, flags);
  2887. tasklet_enable(&bcm->isr_tasklet);
  2888. bcm43xx_interrupt_enable(bcm, savedirqs);
  2889. if (bcm43xx_using_pio(bcm))
  2890. bcm43xx_pio_thaw_txqueues(bcm);
  2891. bcm43xx_mac_enable(bcm);
  2892. netif_wake_queue(bcm->net_dev);
  2893. net_dev->trans_start = orig_trans_start;
  2894. }
  2895. mmiowb();
  2896. bcm->periodic_state++;
  2897. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  2898. mutex_unlock(&bcm->mutex);
  2899. }
  2900. void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm)
  2901. {
  2902. cancel_rearming_delayed_work(&bcm->periodic_work);
  2903. }
  2904. void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm)
  2905. {
  2906. struct delayed_work *work = &bcm->periodic_work;
  2907. assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
  2908. INIT_DELAYED_WORK(work, bcm43xx_periodic_work_handler);
  2909. schedule_delayed_work(work, 0);
  2910. }
  2911. static void bcm43xx_security_init(struct bcm43xx_private *bcm)
  2912. {
  2913. bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2914. 0x0056) * 2;
  2915. bcm43xx_clear_keys(bcm);
  2916. }
  2917. static int bcm43xx_rng_read(struct hwrng *rng, u32 *data)
  2918. {
  2919. struct bcm43xx_private *bcm = (struct bcm43xx_private *)rng->priv;
  2920. unsigned long flags;
  2921. spin_lock_irqsave(&(bcm)->irq_lock, flags);
  2922. *data = bcm43xx_read16(bcm, BCM43xx_MMIO_RNG);
  2923. spin_unlock_irqrestore(&(bcm)->irq_lock, flags);
  2924. return (sizeof(u16));
  2925. }
  2926. static void bcm43xx_rng_exit(struct bcm43xx_private *bcm)
  2927. {
  2928. hwrng_unregister(&bcm->rng);
  2929. }
  2930. static int bcm43xx_rng_init(struct bcm43xx_private *bcm)
  2931. {
  2932. int err;
  2933. snprintf(bcm->rng_name, ARRAY_SIZE(bcm->rng_name),
  2934. "%s_%s", KBUILD_MODNAME, bcm->net_dev->name);
  2935. bcm->rng.name = bcm->rng_name;
  2936. bcm->rng.data_read = bcm43xx_rng_read;
  2937. bcm->rng.priv = (unsigned long)bcm;
  2938. err = hwrng_register(&bcm->rng);
  2939. if (err)
  2940. printk(KERN_ERR PFX "RNG init failed (%d)\n", err);
  2941. return err;
  2942. }
  2943. static int bcm43xx_shutdown_all_wireless_cores(struct bcm43xx_private *bcm)
  2944. {
  2945. int ret = 0;
  2946. int i, err;
  2947. struct bcm43xx_coreinfo *core;
  2948. bcm43xx_set_status(bcm, BCM43xx_STAT_SHUTTINGDOWN);
  2949. for (i = 0; i < bcm->nr_80211_available; i++) {
  2950. core = &(bcm->core_80211[i]);
  2951. assert(core->available);
  2952. if (!core->initialized)
  2953. continue;
  2954. err = bcm43xx_switch_core(bcm, core);
  2955. if (err) {
  2956. dprintk(KERN_ERR PFX "shutdown_all_wireless_cores "
  2957. "switch_core failed (%d)\n", err);
  2958. ret = err;
  2959. continue;
  2960. }
  2961. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2962. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2963. bcm43xx_wireless_core_cleanup(bcm);
  2964. if (core == bcm->active_80211_core)
  2965. bcm->active_80211_core = NULL;
  2966. }
  2967. free_irq(bcm->irq, bcm);
  2968. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  2969. return ret;
  2970. }
  2971. /* This is the opposite of bcm43xx_init_board() */
  2972. static void bcm43xx_free_board(struct bcm43xx_private *bcm)
  2973. {
  2974. bcm43xx_rng_exit(bcm);
  2975. bcm43xx_sysfs_unregister(bcm);
  2976. bcm43xx_periodic_tasks_delete(bcm);
  2977. mutex_lock(&(bcm)->mutex);
  2978. bcm43xx_shutdown_all_wireless_cores(bcm);
  2979. bcm43xx_pctl_set_crystal(bcm, 0);
  2980. mutex_unlock(&(bcm)->mutex);
  2981. }
  2982. static void prepare_phydata_for_init(struct bcm43xx_phyinfo *phy)
  2983. {
  2984. phy->antenna_diversity = 0xFFFF;
  2985. memset(phy->minlowsig, 0xFF, sizeof(phy->minlowsig));
  2986. memset(phy->minlowsigpos, 0, sizeof(phy->minlowsigpos));
  2987. /* Flags */
  2988. phy->calibrated = 0;
  2989. phy->is_locked = 0;
  2990. if (phy->_lo_pairs) {
  2991. memset(phy->_lo_pairs, 0,
  2992. sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT);
  2993. }
  2994. memset(phy->loopback_gain, 0, sizeof(phy->loopback_gain));
  2995. }
  2996. static void prepare_radiodata_for_init(struct bcm43xx_private *bcm,
  2997. struct bcm43xx_radioinfo *radio)
  2998. {
  2999. int i;
  3000. /* Set default attenuation values. */
  3001. radio->baseband_atten = bcm43xx_default_baseband_attenuation(bcm);
  3002. radio->radio_atten = bcm43xx_default_radio_attenuation(bcm);
  3003. radio->txctl1 = bcm43xx_default_txctl1(bcm);
  3004. radio->txctl2 = 0xFFFF;
  3005. radio->txpwr_offset = 0;
  3006. /* NRSSI */
  3007. radio->nrssislope = 0;
  3008. for (i = 0; i < ARRAY_SIZE(radio->nrssi); i++)
  3009. radio->nrssi[i] = -1000;
  3010. for (i = 0; i < ARRAY_SIZE(radio->nrssi_lt); i++)
  3011. radio->nrssi_lt[i] = i;
  3012. radio->lofcal = 0xFFFF;
  3013. radio->initval = 0xFFFF;
  3014. radio->aci_enable = 0;
  3015. radio->aci_wlan_automatic = 0;
  3016. radio->aci_hw_rssi = 0;
  3017. }
  3018. static void prepare_priv_for_init(struct bcm43xx_private *bcm)
  3019. {
  3020. int i;
  3021. struct bcm43xx_coreinfo *core;
  3022. struct bcm43xx_coreinfo_80211 *wlext;
  3023. assert(!bcm->active_80211_core);
  3024. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
  3025. /* Flags */
  3026. bcm->was_initialized = 0;
  3027. bcm->reg124_set_0x4 = 0;
  3028. /* Stats */
  3029. memset(&bcm->stats, 0, sizeof(bcm->stats));
  3030. /* Wireless core data */
  3031. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3032. core = &(bcm->core_80211[i]);
  3033. wlext = core->priv;
  3034. if (!core->available)
  3035. continue;
  3036. assert(wlext == &(bcm->core_80211_ext[i]));
  3037. prepare_phydata_for_init(&wlext->phy);
  3038. prepare_radiodata_for_init(bcm, &wlext->radio);
  3039. }
  3040. /* IRQ related flags */
  3041. bcm->irq_reason = 0;
  3042. memset(bcm->dma_reason, 0, sizeof(bcm->dma_reason));
  3043. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3044. bcm->mac_suspended = 1;
  3045. /* Noise calculation context */
  3046. memset(&bcm->noisecalc, 0, sizeof(bcm->noisecalc));
  3047. /* Periodic work context */
  3048. bcm->periodic_state = 0;
  3049. }
  3050. static int wireless_core_up(struct bcm43xx_private *bcm,
  3051. int active_wlcore)
  3052. {
  3053. int err;
  3054. if (!bcm43xx_core_enabled(bcm))
  3055. bcm43xx_wireless_core_reset(bcm, 1);
  3056. if (!active_wlcore)
  3057. bcm43xx_wireless_core_mark_inactive(bcm);
  3058. err = bcm43xx_wireless_core_init(bcm, active_wlcore);
  3059. if (err)
  3060. goto out;
  3061. if (!active_wlcore)
  3062. bcm43xx_radio_turn_off(bcm);
  3063. out:
  3064. return err;
  3065. }
  3066. /* Select and enable the "to be used" wireless core.
  3067. * Locking: bcm->mutex must be aquired before calling this.
  3068. * bcm->irq_lock must not be aquired.
  3069. */
  3070. int bcm43xx_select_wireless_core(struct bcm43xx_private *bcm,
  3071. int phytype)
  3072. {
  3073. int i, err;
  3074. struct bcm43xx_coreinfo *active_core = NULL;
  3075. struct bcm43xx_coreinfo_80211 *active_wlext = NULL;
  3076. struct bcm43xx_coreinfo *core;
  3077. struct bcm43xx_coreinfo_80211 *wlext;
  3078. int adjust_active_sbtmstatelow = 0;
  3079. might_sleep();
  3080. if (phytype < 0) {
  3081. /* If no phytype is requested, select the first core. */
  3082. assert(bcm->core_80211[0].available);
  3083. wlext = bcm->core_80211[0].priv;
  3084. phytype = wlext->phy.type;
  3085. }
  3086. /* Find the requested core. */
  3087. for (i = 0; i < bcm->nr_80211_available; i++) {
  3088. core = &(bcm->core_80211[i]);
  3089. wlext = core->priv;
  3090. if (wlext->phy.type == phytype) {
  3091. active_core = core;
  3092. active_wlext = wlext;
  3093. break;
  3094. }
  3095. }
  3096. if (!active_core)
  3097. return -ESRCH; /* No such PHYTYPE on this board. */
  3098. if (bcm->active_80211_core) {
  3099. /* We already selected a wl core in the past.
  3100. * So first clean up everything.
  3101. */
  3102. dprintk(KERN_INFO PFX "select_wireless_core: cleanup\n");
  3103. ieee80211softmac_stop(bcm->net_dev);
  3104. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
  3105. err = bcm43xx_disable_interrupts_sync(bcm);
  3106. assert(!err);
  3107. tasklet_enable(&bcm->isr_tasklet);
  3108. err = bcm43xx_shutdown_all_wireless_cores(bcm);
  3109. if (err)
  3110. goto error;
  3111. /* Ok, everything down, continue to re-initialize. */
  3112. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
  3113. }
  3114. /* Reset all data structures. */
  3115. prepare_priv_for_init(bcm);
  3116. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST);
  3117. if (err)
  3118. goto error;
  3119. /* Mark all unused cores "inactive". */
  3120. for (i = 0; i < bcm->nr_80211_available; i++) {
  3121. core = &(bcm->core_80211[i]);
  3122. wlext = core->priv;
  3123. if (core == active_core)
  3124. continue;
  3125. err = bcm43xx_switch_core(bcm, core);
  3126. if (err) {
  3127. dprintk(KERN_ERR PFX "Could not switch to inactive "
  3128. "802.11 core (%d)\n", err);
  3129. goto error;
  3130. }
  3131. err = wireless_core_up(bcm, 0);
  3132. if (err) {
  3133. dprintk(KERN_ERR PFX "core_up for inactive 802.11 core "
  3134. "failed (%d)\n", err);
  3135. goto error;
  3136. }
  3137. adjust_active_sbtmstatelow = 1;
  3138. }
  3139. /* Now initialize the active 802.11 core. */
  3140. err = bcm43xx_switch_core(bcm, active_core);
  3141. if (err) {
  3142. dprintk(KERN_ERR PFX "Could not switch to active "
  3143. "802.11 core (%d)\n", err);
  3144. goto error;
  3145. }
  3146. if (adjust_active_sbtmstatelow &&
  3147. active_wlext->phy.type == BCM43xx_PHYTYPE_G) {
  3148. u32 sbtmstatelow;
  3149. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  3150. sbtmstatelow |= BCM43xx_SBTMSTATELOW_G_MODE_ENABLE;
  3151. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  3152. }
  3153. err = wireless_core_up(bcm, 1);
  3154. if (err) {
  3155. dprintk(KERN_ERR PFX "core_up for active 802.11 core "
  3156. "failed (%d)\n", err);
  3157. goto error;
  3158. }
  3159. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC);
  3160. if (err)
  3161. goto error;
  3162. bcm->active_80211_core = active_core;
  3163. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  3164. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr));
  3165. bcm43xx_security_init(bcm);
  3166. drain_txstatus_queue(bcm);
  3167. ieee80211softmac_start(bcm->net_dev);
  3168. /* Let's go! Be careful after enabling the IRQs.
  3169. * Don't switch cores, for example.
  3170. */
  3171. bcm43xx_mac_enable(bcm);
  3172. bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
  3173. err = bcm43xx_initialize_irq(bcm);
  3174. if (err)
  3175. goto error;
  3176. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  3177. dprintk(KERN_INFO PFX "Selected 802.11 core (phytype %d)\n",
  3178. active_wlext->phy.type);
  3179. return 0;
  3180. error:
  3181. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  3182. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  3183. return err;
  3184. }
  3185. static int bcm43xx_init_board(struct bcm43xx_private *bcm)
  3186. {
  3187. int err;
  3188. mutex_lock(&(bcm)->mutex);
  3189. tasklet_enable(&bcm->isr_tasklet);
  3190. err = bcm43xx_pctl_set_crystal(bcm, 1);
  3191. if (err)
  3192. goto err_tasklet;
  3193. err = bcm43xx_pctl_init(bcm);
  3194. if (err)
  3195. goto err_crystal_off;
  3196. err = bcm43xx_select_wireless_core(bcm, -1);
  3197. if (err)
  3198. goto err_crystal_off;
  3199. err = bcm43xx_sysfs_register(bcm);
  3200. if (err)
  3201. goto err_wlshutdown;
  3202. err = bcm43xx_rng_init(bcm);
  3203. if (err)
  3204. goto err_sysfs_unreg;
  3205. bcm43xx_periodic_tasks_setup(bcm);
  3206. /*FIXME: This should be handled by softmac instead. */
  3207. schedule_delayed_work(&bcm->softmac->associnfo.work, 0);
  3208. out:
  3209. mutex_unlock(&(bcm)->mutex);
  3210. return err;
  3211. err_sysfs_unreg:
  3212. bcm43xx_sysfs_unregister(bcm);
  3213. err_wlshutdown:
  3214. bcm43xx_shutdown_all_wireless_cores(bcm);
  3215. err_crystal_off:
  3216. bcm43xx_pctl_set_crystal(bcm, 0);
  3217. err_tasklet:
  3218. tasklet_disable(&bcm->isr_tasklet);
  3219. goto out;
  3220. }
  3221. static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
  3222. {
  3223. struct pci_dev *pci_dev = bcm->pci_dev;
  3224. int i;
  3225. bcm43xx_chipset_detach(bcm);
  3226. /* Do _not_ access the chip, after it is detached. */
  3227. pci_iounmap(pci_dev, bcm->mmio_addr);
  3228. pci_release_regions(pci_dev);
  3229. pci_disable_device(pci_dev);
  3230. /* Free allocated structures/fields */
  3231. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3232. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  3233. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  3234. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  3235. }
  3236. }
  3237. static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm)
  3238. {
  3239. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  3240. u16 value;
  3241. u8 phy_analog;
  3242. u8 phy_type;
  3243. u8 phy_rev;
  3244. int phy_rev_ok = 1;
  3245. void *p;
  3246. value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER);
  3247. phy_analog = (value & 0xF000) >> 12;
  3248. phy_type = (value & 0x0F00) >> 8;
  3249. phy_rev = (value & 0x000F);
  3250. dprintk(KERN_INFO PFX "Detected PHY: Analog: %x, Type %x, Revision %x\n",
  3251. phy_analog, phy_type, phy_rev);
  3252. switch (phy_type) {
  3253. case BCM43xx_PHYTYPE_A:
  3254. if (phy_rev >= 4)
  3255. phy_rev_ok = 0;
  3256. /*FIXME: We need to switch the ieee->modulation, etc.. flags,
  3257. * if we switch 80211 cores after init is done.
  3258. * As we do not implement on the fly switching between
  3259. * wireless cores, I will leave this as a future task.
  3260. */
  3261. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION;
  3262. bcm->ieee->mode = IEEE_A;
  3263. bcm->ieee->freq_band = IEEE80211_52GHZ_BAND |
  3264. IEEE80211_24GHZ_BAND;
  3265. break;
  3266. case BCM43xx_PHYTYPE_B:
  3267. if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7)
  3268. phy_rev_ok = 0;
  3269. bcm->ieee->modulation = IEEE80211_CCK_MODULATION;
  3270. bcm->ieee->mode = IEEE_B;
  3271. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  3272. break;
  3273. case BCM43xx_PHYTYPE_G:
  3274. if (phy_rev > 8)
  3275. phy_rev_ok = 0;
  3276. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION |
  3277. IEEE80211_CCK_MODULATION;
  3278. bcm->ieee->mode = IEEE_G;
  3279. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  3280. break;
  3281. default:
  3282. printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n",
  3283. phy_type);
  3284. return -ENODEV;
  3285. };
  3286. bcm->ieee->perfect_rssi = RX_RSSI_MAX;
  3287. bcm->ieee->worst_rssi = 0;
  3288. if (!phy_rev_ok) {
  3289. printk(KERN_WARNING PFX "Invalid PHY Revision %x\n",
  3290. phy_rev);
  3291. }
  3292. phy->analog = phy_analog;
  3293. phy->type = phy_type;
  3294. phy->rev = phy_rev;
  3295. if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) {
  3296. p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT,
  3297. GFP_KERNEL);
  3298. if (!p)
  3299. return -ENOMEM;
  3300. phy->_lo_pairs = p;
  3301. }
  3302. return 0;
  3303. }
  3304. static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
  3305. {
  3306. struct pci_dev *pci_dev = bcm->pci_dev;
  3307. struct net_device *net_dev = bcm->net_dev;
  3308. int err;
  3309. int i;
  3310. u32 coremask;
  3311. err = pci_enable_device(pci_dev);
  3312. if (err) {
  3313. printk(KERN_ERR PFX "pci_enable_device() failed\n");
  3314. goto out;
  3315. }
  3316. err = pci_request_regions(pci_dev, KBUILD_MODNAME);
  3317. if (err) {
  3318. printk(KERN_ERR PFX "pci_request_regions() failed\n");
  3319. goto err_pci_disable;
  3320. }
  3321. /* enable PCI bus-mastering */
  3322. pci_set_master(pci_dev);
  3323. bcm->mmio_addr = pci_iomap(pci_dev, 0, ~0UL);
  3324. if (!bcm->mmio_addr) {
  3325. printk(KERN_ERR PFX "pci_iomap() failed\n");
  3326. err = -EIO;
  3327. goto err_pci_release;
  3328. }
  3329. net_dev->base_addr = (unsigned long)bcm->mmio_addr;
  3330. err = bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
  3331. &bcm->board_vendor);
  3332. if (err)
  3333. goto err_iounmap;
  3334. err = bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID,
  3335. &bcm->board_type);
  3336. if (err)
  3337. goto err_iounmap;
  3338. err = bcm43xx_pci_read_config16(bcm, PCI_REVISION_ID,
  3339. &bcm->board_revision);
  3340. if (err)
  3341. goto err_iounmap;
  3342. err = bcm43xx_chipset_attach(bcm);
  3343. if (err)
  3344. goto err_iounmap;
  3345. err = bcm43xx_pctl_init(bcm);
  3346. if (err)
  3347. goto err_chipset_detach;
  3348. err = bcm43xx_probe_cores(bcm);
  3349. if (err)
  3350. goto err_chipset_detach;
  3351. /* Attach all IO cores to the backplane. */
  3352. coremask = 0;
  3353. for (i = 0; i < bcm->nr_80211_available; i++)
  3354. coremask |= (1 << bcm->core_80211[i].index);
  3355. //FIXME: Also attach some non80211 cores?
  3356. err = bcm43xx_setup_backplane_pci_connection(bcm, coremask);
  3357. if (err) {
  3358. printk(KERN_ERR PFX "Backplane->PCI connection failed!\n");
  3359. goto err_chipset_detach;
  3360. }
  3361. err = bcm43xx_sprom_extract(bcm);
  3362. if (err)
  3363. goto err_chipset_detach;
  3364. err = bcm43xx_leds_init(bcm);
  3365. if (err)
  3366. goto err_chipset_detach;
  3367. for (i = 0; i < bcm->nr_80211_available; i++) {
  3368. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  3369. assert(err != -ENODEV);
  3370. if (err)
  3371. goto err_80211_unwind;
  3372. /* Enable the selected wireless core.
  3373. * Connect PHY only on the first core.
  3374. */
  3375. bcm43xx_wireless_core_reset(bcm, (i == 0));
  3376. err = bcm43xx_read_phyinfo(bcm);
  3377. if (err && (i == 0))
  3378. goto err_80211_unwind;
  3379. err = bcm43xx_read_radioinfo(bcm);
  3380. if (err && (i == 0))
  3381. goto err_80211_unwind;
  3382. err = bcm43xx_validate_chip(bcm);
  3383. if (err && (i == 0))
  3384. goto err_80211_unwind;
  3385. bcm43xx_radio_turn_off(bcm);
  3386. err = bcm43xx_phy_init_tssi2dbm_table(bcm);
  3387. if (err)
  3388. goto err_80211_unwind;
  3389. bcm43xx_wireless_core_disable(bcm);
  3390. }
  3391. err = bcm43xx_geo_init(bcm);
  3392. if (err)
  3393. goto err_80211_unwind;
  3394. bcm43xx_pctl_set_crystal(bcm, 0);
  3395. /* Set the MAC address in the networking subsystem */
  3396. if (is_valid_ether_addr(bcm->sprom.et1macaddr))
  3397. memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6);
  3398. else
  3399. memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6);
  3400. snprintf(bcm->nick, IW_ESSID_MAX_SIZE,
  3401. "Broadcom %04X", bcm->chip_id);
  3402. assert(err == 0);
  3403. out:
  3404. return err;
  3405. err_80211_unwind:
  3406. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3407. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  3408. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  3409. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  3410. }
  3411. err_chipset_detach:
  3412. bcm43xx_chipset_detach(bcm);
  3413. err_iounmap:
  3414. pci_iounmap(pci_dev, bcm->mmio_addr);
  3415. err_pci_release:
  3416. pci_release_regions(pci_dev);
  3417. err_pci_disable:
  3418. pci_disable_device(pci_dev);
  3419. printk(KERN_ERR PFX "Unable to attach board\n");
  3420. goto out;
  3421. }
  3422. /* Do the Hardware IO operations to send the txb */
  3423. static inline int bcm43xx_tx(struct bcm43xx_private *bcm,
  3424. struct ieee80211_txb *txb)
  3425. {
  3426. int err = -ENODEV;
  3427. if (bcm43xx_using_pio(bcm))
  3428. err = bcm43xx_pio_tx(bcm, txb);
  3429. else
  3430. err = bcm43xx_dma_tx(bcm, txb);
  3431. bcm->net_dev->trans_start = jiffies;
  3432. return err;
  3433. }
  3434. static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev,
  3435. u8 channel)
  3436. {
  3437. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3438. struct bcm43xx_radioinfo *radio;
  3439. unsigned long flags;
  3440. mutex_lock(&bcm->mutex);
  3441. spin_lock_irqsave(&bcm->irq_lock, flags);
  3442. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3443. bcm43xx_mac_suspend(bcm);
  3444. bcm43xx_radio_selectchannel(bcm, channel, 0);
  3445. bcm43xx_mac_enable(bcm);
  3446. } else {
  3447. radio = bcm43xx_current_radio(bcm);
  3448. radio->initial_channel = channel;
  3449. }
  3450. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3451. mutex_unlock(&bcm->mutex);
  3452. }
  3453. /* set_security() callback in struct ieee80211_device */
  3454. static void bcm43xx_ieee80211_set_security(struct net_device *net_dev,
  3455. struct ieee80211_security *sec)
  3456. {
  3457. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3458. struct ieee80211_security *secinfo = &bcm->ieee->sec;
  3459. unsigned long flags;
  3460. int keyidx;
  3461. dprintk(KERN_INFO PFX "set security called");
  3462. mutex_lock(&bcm->mutex);
  3463. spin_lock_irqsave(&bcm->irq_lock, flags);
  3464. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
  3465. if (sec->flags & (1<<keyidx)) {
  3466. secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
  3467. secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
  3468. memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN);
  3469. }
  3470. if (sec->flags & SEC_ACTIVE_KEY) {
  3471. secinfo->active_key = sec->active_key;
  3472. dprintk(", .active_key = %d", sec->active_key);
  3473. }
  3474. if (sec->flags & SEC_UNICAST_GROUP) {
  3475. secinfo->unicast_uses_group = sec->unicast_uses_group;
  3476. dprintk(", .unicast_uses_group = %d", sec->unicast_uses_group);
  3477. }
  3478. if (sec->flags & SEC_LEVEL) {
  3479. secinfo->level = sec->level;
  3480. dprintk(", .level = %d", sec->level);
  3481. }
  3482. if (sec->flags & SEC_ENABLED) {
  3483. secinfo->enabled = sec->enabled;
  3484. dprintk(", .enabled = %d", sec->enabled);
  3485. }
  3486. if (sec->flags & SEC_ENCRYPT) {
  3487. secinfo->encrypt = sec->encrypt;
  3488. dprintk(", .encrypt = %d", sec->encrypt);
  3489. }
  3490. if (sec->flags & SEC_AUTH_MODE) {
  3491. secinfo->auth_mode = sec->auth_mode;
  3492. dprintk(", .auth_mode = %d", sec->auth_mode);
  3493. }
  3494. dprintk("\n");
  3495. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED &&
  3496. !bcm->ieee->host_encrypt) {
  3497. if (secinfo->enabled) {
  3498. /* upload WEP keys to hardware */
  3499. char null_address[6] = { 0 };
  3500. u8 algorithm = 0;
  3501. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) {
  3502. if (!(sec->flags & (1<<keyidx)))
  3503. continue;
  3504. switch (sec->encode_alg[keyidx]) {
  3505. case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break;
  3506. case SEC_ALG_WEP:
  3507. algorithm = BCM43xx_SEC_ALGO_WEP;
  3508. if (secinfo->key_sizes[keyidx] == 13)
  3509. algorithm = BCM43xx_SEC_ALGO_WEP104;
  3510. break;
  3511. case SEC_ALG_TKIP:
  3512. FIXME();
  3513. algorithm = BCM43xx_SEC_ALGO_TKIP;
  3514. break;
  3515. case SEC_ALG_CCMP:
  3516. FIXME();
  3517. algorithm = BCM43xx_SEC_ALGO_AES;
  3518. break;
  3519. default:
  3520. assert(0);
  3521. break;
  3522. }
  3523. bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]);
  3524. bcm->key[keyidx].enabled = 1;
  3525. bcm->key[keyidx].algorithm = algorithm;
  3526. }
  3527. } else
  3528. bcm43xx_clear_keys(bcm);
  3529. }
  3530. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3531. mutex_unlock(&bcm->mutex);
  3532. }
  3533. /* hard_start_xmit() callback in struct ieee80211_device */
  3534. static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb,
  3535. struct net_device *net_dev,
  3536. int pri)
  3537. {
  3538. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3539. int err = -ENODEV;
  3540. unsigned long flags;
  3541. spin_lock_irqsave(&bcm->irq_lock, flags);
  3542. if (likely(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED))
  3543. err = bcm43xx_tx(bcm, txb);
  3544. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3545. if (unlikely(err))
  3546. return NETDEV_TX_BUSY;
  3547. return NETDEV_TX_OK;
  3548. }
  3549. static void bcm43xx_net_tx_timeout(struct net_device *net_dev)
  3550. {
  3551. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3552. unsigned long flags;
  3553. spin_lock_irqsave(&bcm->irq_lock, flags);
  3554. bcm43xx_controller_restart(bcm, "TX timeout");
  3555. spin_unlock_irqrestore(&bcm->irq_lock, flags);
  3556. }
  3557. #ifdef CONFIG_NET_POLL_CONTROLLER
  3558. static void bcm43xx_net_poll_controller(struct net_device *net_dev)
  3559. {
  3560. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3561. unsigned long flags;
  3562. local_irq_save(flags);
  3563. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED)
  3564. bcm43xx_interrupt_handler(bcm->irq, bcm);
  3565. local_irq_restore(flags);
  3566. }
  3567. #endif /* CONFIG_NET_POLL_CONTROLLER */
  3568. static int bcm43xx_net_open(struct net_device *net_dev)
  3569. {
  3570. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3571. return bcm43xx_init_board(bcm);
  3572. }
  3573. static int bcm43xx_net_stop(struct net_device *net_dev)
  3574. {
  3575. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3576. int err;
  3577. ieee80211softmac_stop(net_dev);
  3578. err = bcm43xx_disable_interrupts_sync(bcm);
  3579. assert(!err);
  3580. bcm43xx_free_board(bcm);
  3581. flush_scheduled_work();
  3582. return 0;
  3583. }
  3584. static int bcm43xx_init_private(struct bcm43xx_private *bcm,
  3585. struct net_device *net_dev,
  3586. struct pci_dev *pci_dev)
  3587. {
  3588. bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
  3589. bcm->ieee = netdev_priv(net_dev);
  3590. bcm->softmac = ieee80211_priv(net_dev);
  3591. bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan;
  3592. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3593. bcm->mac_suspended = 1;
  3594. bcm->pci_dev = pci_dev;
  3595. bcm->net_dev = net_dev;
  3596. bcm->bad_frames_preempt = modparam_bad_frames_preempt;
  3597. spin_lock_init(&bcm->irq_lock);
  3598. spin_lock_init(&bcm->leds_lock);
  3599. mutex_init(&bcm->mutex);
  3600. tasklet_init(&bcm->isr_tasklet,
  3601. (void (*)(unsigned long))bcm43xx_interrupt_tasklet,
  3602. (unsigned long)bcm);
  3603. tasklet_disable_nosync(&bcm->isr_tasklet);
  3604. if (modparam_pio)
  3605. bcm->__using_pio = 1;
  3606. bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD;
  3607. /* default to sw encryption for now */
  3608. bcm->ieee->host_build_iv = 0;
  3609. bcm->ieee->host_encrypt = 1;
  3610. bcm->ieee->host_decrypt = 1;
  3611. bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE;
  3612. bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr);
  3613. bcm->ieee->set_security = bcm43xx_ieee80211_set_security;
  3614. bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit;
  3615. return 0;
  3616. }
  3617. static int __devinit bcm43xx_init_one(struct pci_dev *pdev,
  3618. const struct pci_device_id *ent)
  3619. {
  3620. struct net_device *net_dev;
  3621. struct bcm43xx_private *bcm;
  3622. int err;
  3623. #ifdef CONFIG_BCM947XX
  3624. if ((pdev->bus->number == 0) && (pdev->device != 0x0800))
  3625. return -ENODEV;
  3626. #endif
  3627. #ifdef DEBUG_SINGLE_DEVICE_ONLY
  3628. if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY))
  3629. return -ENODEV;
  3630. #endif
  3631. net_dev = alloc_ieee80211softmac(sizeof(*bcm));
  3632. if (!net_dev) {
  3633. printk(KERN_ERR PFX
  3634. "could not allocate ieee80211 device %s\n",
  3635. pci_name(pdev));
  3636. err = -ENOMEM;
  3637. goto out;
  3638. }
  3639. /* initialize the net_device struct */
  3640. SET_MODULE_OWNER(net_dev);
  3641. SET_NETDEV_DEV(net_dev, &pdev->dev);
  3642. net_dev->open = bcm43xx_net_open;
  3643. net_dev->stop = bcm43xx_net_stop;
  3644. net_dev->tx_timeout = bcm43xx_net_tx_timeout;
  3645. #ifdef CONFIG_NET_POLL_CONTROLLER
  3646. net_dev->poll_controller = bcm43xx_net_poll_controller;
  3647. #endif
  3648. net_dev->wireless_handlers = &bcm43xx_wx_handlers_def;
  3649. net_dev->irq = pdev->irq;
  3650. SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops);
  3651. /* initialize the bcm43xx_private struct */
  3652. bcm = bcm43xx_priv(net_dev);
  3653. memset(bcm, 0, sizeof(*bcm));
  3654. err = bcm43xx_init_private(bcm, net_dev, pdev);
  3655. if (err)
  3656. goto err_free_netdev;
  3657. pci_set_drvdata(pdev, net_dev);
  3658. err = bcm43xx_attach_board(bcm);
  3659. if (err)
  3660. goto err_free_netdev;
  3661. err = register_netdev(net_dev);
  3662. if (err) {
  3663. printk(KERN_ERR PFX "Cannot register net device, "
  3664. "aborting.\n");
  3665. err = -ENOMEM;
  3666. goto err_detach_board;
  3667. }
  3668. bcm43xx_debugfs_add_device(bcm);
  3669. assert(err == 0);
  3670. out:
  3671. return err;
  3672. err_detach_board:
  3673. bcm43xx_detach_board(bcm);
  3674. err_free_netdev:
  3675. free_ieee80211softmac(net_dev);
  3676. goto out;
  3677. }
  3678. static void __devexit bcm43xx_remove_one(struct pci_dev *pdev)
  3679. {
  3680. struct net_device *net_dev = pci_get_drvdata(pdev);
  3681. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3682. bcm43xx_debugfs_remove_device(bcm);
  3683. unregister_netdev(net_dev);
  3684. bcm43xx_detach_board(bcm);
  3685. free_ieee80211softmac(net_dev);
  3686. }
  3687. /* Hard-reset the chip. Do not call this directly.
  3688. * Use bcm43xx_controller_restart()
  3689. */
  3690. static void bcm43xx_chip_reset(struct work_struct *work)
  3691. {
  3692. struct bcm43xx_private *bcm =
  3693. container_of(work, struct bcm43xx_private, restart_work);
  3694. struct bcm43xx_phyinfo *phy;
  3695. int err = -ENODEV;
  3696. mutex_lock(&(bcm)->mutex);
  3697. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3698. bcm43xx_periodic_tasks_delete(bcm);
  3699. phy = bcm43xx_current_phy(bcm);
  3700. err = bcm43xx_select_wireless_core(bcm, phy->type);
  3701. if (!err)
  3702. bcm43xx_periodic_tasks_setup(bcm);
  3703. }
  3704. mutex_unlock(&(bcm)->mutex);
  3705. printk(KERN_ERR PFX "Controller restart%s\n",
  3706. (err == 0) ? "ed" : " failed");
  3707. }
  3708. /* Hard-reset the chip.
  3709. * This can be called from interrupt or process context.
  3710. * bcm->irq_lock must be locked.
  3711. */
  3712. void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason)
  3713. {
  3714. if (bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)
  3715. return;
  3716. printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason);
  3717. INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset);
  3718. schedule_work(&bcm->restart_work);
  3719. }
  3720. #ifdef CONFIG_PM
  3721. static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state)
  3722. {
  3723. struct net_device *net_dev = pci_get_drvdata(pdev);
  3724. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3725. int err;
  3726. dprintk(KERN_INFO PFX "Suspending...\n");
  3727. netif_device_detach(net_dev);
  3728. bcm->was_initialized = 0;
  3729. if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
  3730. bcm->was_initialized = 1;
  3731. ieee80211softmac_stop(net_dev);
  3732. err = bcm43xx_disable_interrupts_sync(bcm);
  3733. if (unlikely(err)) {
  3734. dprintk(KERN_ERR PFX "Suspend failed.\n");
  3735. return -EAGAIN;
  3736. }
  3737. bcm->firmware_norelease = 1;
  3738. bcm43xx_free_board(bcm);
  3739. bcm->firmware_norelease = 0;
  3740. }
  3741. bcm43xx_chipset_detach(bcm);
  3742. pci_save_state(pdev);
  3743. pci_disable_device(pdev);
  3744. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3745. dprintk(KERN_INFO PFX "Device suspended.\n");
  3746. return 0;
  3747. }
  3748. static int bcm43xx_resume(struct pci_dev *pdev)
  3749. {
  3750. struct net_device *net_dev = pci_get_drvdata(pdev);
  3751. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3752. int err = 0;
  3753. dprintk(KERN_INFO PFX "Resuming...\n");
  3754. pci_set_power_state(pdev, 0);
  3755. err = pci_enable_device(pdev);
  3756. if (err) {
  3757. printk(KERN_ERR PFX "Failure with pci_enable_device!\n");
  3758. return err;
  3759. }
  3760. pci_restore_state(pdev);
  3761. bcm43xx_chipset_attach(bcm);
  3762. if (bcm->was_initialized)
  3763. err = bcm43xx_init_board(bcm);
  3764. if (err) {
  3765. printk(KERN_ERR PFX "Resume failed!\n");
  3766. return err;
  3767. }
  3768. netif_device_attach(net_dev);
  3769. dprintk(KERN_INFO PFX "Device resumed.\n");
  3770. return 0;
  3771. }
  3772. #endif /* CONFIG_PM */
  3773. static struct pci_driver bcm43xx_pci_driver = {
  3774. .name = KBUILD_MODNAME,
  3775. .id_table = bcm43xx_pci_tbl,
  3776. .probe = bcm43xx_init_one,
  3777. .remove = __devexit_p(bcm43xx_remove_one),
  3778. #ifdef CONFIG_PM
  3779. .suspend = bcm43xx_suspend,
  3780. .resume = bcm43xx_resume,
  3781. #endif /* CONFIG_PM */
  3782. };
  3783. static int __init bcm43xx_init(void)
  3784. {
  3785. printk(KERN_INFO KBUILD_MODNAME " driver\n");
  3786. bcm43xx_debugfs_init();
  3787. return pci_register_driver(&bcm43xx_pci_driver);
  3788. }
  3789. static void __exit bcm43xx_exit(void)
  3790. {
  3791. pci_unregister_driver(&bcm43xx_pci_driver);
  3792. bcm43xx_debugfs_exit();
  3793. }
  3794. module_init(bcm43xx_init)
  3795. module_exit(bcm43xx_exit)