slub_def.h 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. #include <linux/kmemleak.h>
  13. enum stat_item {
  14. ALLOC_FASTPATH, /* Allocation from cpu slab */
  15. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  16. FREE_FASTPATH, /* Free to cpu slub */
  17. FREE_SLOWPATH, /* Freeing not to cpu slab */
  18. FREE_FROZEN, /* Freeing to frozen slab */
  19. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  20. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  21. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  22. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  23. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  24. ALLOC_NODE_MISMATCH, /* Switching cpu slab */
  25. FREE_SLAB, /* Slab freed to the page allocator */
  26. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  27. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  28. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  29. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  30. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  31. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  32. ORDER_FALLBACK, /* Number of times fallback was necessary */
  33. CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
  34. CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
  35. NR_SLUB_STAT_ITEMS };
  36. struct kmem_cache_cpu {
  37. void **freelist; /* Pointer to next available object */
  38. unsigned long tid; /* Globally unique transaction id */
  39. struct page *page; /* The slab from which we are allocating */
  40. int node; /* The node of the page (or -1 for debug) */
  41. #ifdef CONFIG_SLUB_STATS
  42. unsigned stat[NR_SLUB_STAT_ITEMS];
  43. #endif
  44. };
  45. struct kmem_cache_node {
  46. spinlock_t list_lock; /* Protect partial list and nr_partial */
  47. unsigned long nr_partial;
  48. struct list_head partial;
  49. #ifdef CONFIG_SLUB_DEBUG
  50. atomic_long_t nr_slabs;
  51. atomic_long_t total_objects;
  52. struct list_head full;
  53. #endif
  54. };
  55. /*
  56. * Word size structure that can be atomically updated or read and that
  57. * contains both the order and the number of objects that a slab of the
  58. * given order would contain.
  59. */
  60. struct kmem_cache_order_objects {
  61. unsigned long x;
  62. };
  63. /*
  64. * Slab cache management.
  65. */
  66. struct kmem_cache {
  67. struct kmem_cache_cpu __percpu *cpu_slab;
  68. /* Used for retriving partial slabs etc */
  69. unsigned long flags;
  70. unsigned long min_partial;
  71. int size; /* The size of an object including meta data */
  72. int objsize; /* The size of an object without meta data */
  73. int offset; /* Free pointer offset. */
  74. struct kmem_cache_order_objects oo;
  75. /* Allocation and freeing of slabs */
  76. struct kmem_cache_order_objects max;
  77. struct kmem_cache_order_objects min;
  78. gfp_t allocflags; /* gfp flags to use on each alloc */
  79. int refcount; /* Refcount for slab cache destroy */
  80. void (*ctor)(void *);
  81. int inuse; /* Offset to metadata */
  82. int align; /* Alignment */
  83. int reserved; /* Reserved bytes at the end of slabs */
  84. const char *name; /* Name (only for display!) */
  85. struct list_head list; /* List of slab caches */
  86. #ifdef CONFIG_SYSFS
  87. struct kobject kobj; /* For sysfs */
  88. #endif
  89. #ifdef CONFIG_NUMA
  90. /*
  91. * Defragmentation by allocating from a remote node.
  92. */
  93. int remote_node_defrag_ratio;
  94. #endif
  95. struct kmem_cache_node *node[MAX_NUMNODES];
  96. };
  97. /*
  98. * Kmalloc subsystem.
  99. */
  100. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  101. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  102. #else
  103. #define KMALLOC_MIN_SIZE 8
  104. #endif
  105. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  106. #ifdef ARCH_DMA_MINALIGN
  107. #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  108. #else
  109. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  110. #endif
  111. #ifndef ARCH_SLAB_MINALIGN
  112. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  113. #endif
  114. /*
  115. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  116. * are passed through to the page allocator. The page allocator "fastpath"
  117. * is relatively slow so we need this value sufficiently high so that
  118. * performance critical objects are allocated through the SLUB fastpath.
  119. *
  120. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  121. * "fastpath" becomes competitive with the slab allocator fastpaths.
  122. */
  123. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  124. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  125. #ifdef CONFIG_ZONE_DMA
  126. #define SLUB_DMA __GFP_DMA
  127. #else
  128. /* Disable DMA functionality */
  129. #define SLUB_DMA (__force gfp_t)0
  130. #endif
  131. /*
  132. * We keep the general caches in an array of slab caches that are used for
  133. * 2^x bytes of allocations.
  134. */
  135. extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  136. /*
  137. * Sorry that the following has to be that ugly but some versions of GCC
  138. * have trouble with constant propagation and loops.
  139. */
  140. static __always_inline int kmalloc_index(size_t size)
  141. {
  142. if (!size)
  143. return 0;
  144. if (size <= KMALLOC_MIN_SIZE)
  145. return KMALLOC_SHIFT_LOW;
  146. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  147. return 1;
  148. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  149. return 2;
  150. if (size <= 8) return 3;
  151. if (size <= 16) return 4;
  152. if (size <= 32) return 5;
  153. if (size <= 64) return 6;
  154. if (size <= 128) return 7;
  155. if (size <= 256) return 8;
  156. if (size <= 512) return 9;
  157. if (size <= 1024) return 10;
  158. if (size <= 2 * 1024) return 11;
  159. if (size <= 4 * 1024) return 12;
  160. /*
  161. * The following is only needed to support architectures with a larger page
  162. * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
  163. * size we would have to go up to 128k.
  164. */
  165. if (size <= 8 * 1024) return 13;
  166. if (size <= 16 * 1024) return 14;
  167. if (size <= 32 * 1024) return 15;
  168. if (size <= 64 * 1024) return 16;
  169. if (size <= 128 * 1024) return 17;
  170. if (size <= 256 * 1024) return 18;
  171. if (size <= 512 * 1024) return 19;
  172. if (size <= 1024 * 1024) return 20;
  173. if (size <= 2 * 1024 * 1024) return 21;
  174. BUG();
  175. return -1; /* Will never be reached */
  176. /*
  177. * What we really wanted to do and cannot do because of compiler issues is:
  178. * int i;
  179. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  180. * if (size <= (1 << i))
  181. * return i;
  182. */
  183. }
  184. /*
  185. * Find the slab cache for a given combination of allocation flags and size.
  186. *
  187. * This ought to end up with a global pointer to the right cache
  188. * in kmalloc_caches.
  189. */
  190. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  191. {
  192. int index = kmalloc_index(size);
  193. if (index == 0)
  194. return NULL;
  195. return kmalloc_caches[index];
  196. }
  197. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  198. void *__kmalloc(size_t size, gfp_t flags);
  199. static __always_inline void *
  200. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  201. {
  202. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  203. kmemleak_alloc(ret, size, 1, flags);
  204. return ret;
  205. }
  206. #ifdef CONFIG_TRACING
  207. extern void *
  208. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  209. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  210. #else
  211. static __always_inline void *
  212. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  213. {
  214. return kmem_cache_alloc(s, gfpflags);
  215. }
  216. static __always_inline void *
  217. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  218. {
  219. return kmalloc_order(size, flags, order);
  220. }
  221. #endif
  222. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  223. {
  224. unsigned int order = get_order(size);
  225. return kmalloc_order_trace(size, flags, order);
  226. }
  227. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  228. {
  229. if (__builtin_constant_p(size)) {
  230. if (size > SLUB_MAX_SIZE)
  231. return kmalloc_large(size, flags);
  232. if (!(flags & SLUB_DMA)) {
  233. struct kmem_cache *s = kmalloc_slab(size);
  234. if (!s)
  235. return ZERO_SIZE_PTR;
  236. return kmem_cache_alloc_trace(s, flags, size);
  237. }
  238. }
  239. return __kmalloc(size, flags);
  240. }
  241. #ifdef CONFIG_NUMA
  242. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  243. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  244. #ifdef CONFIG_TRACING
  245. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  246. gfp_t gfpflags,
  247. int node, size_t size);
  248. #else
  249. static __always_inline void *
  250. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  251. gfp_t gfpflags,
  252. int node, size_t size)
  253. {
  254. return kmem_cache_alloc_node(s, gfpflags, node);
  255. }
  256. #endif
  257. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  258. {
  259. if (__builtin_constant_p(size) &&
  260. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  261. struct kmem_cache *s = kmalloc_slab(size);
  262. if (!s)
  263. return ZERO_SIZE_PTR;
  264. return kmem_cache_alloc_node_trace(s, flags, node, size);
  265. }
  266. return __kmalloc_node(size, flags, node);
  267. }
  268. #endif
  269. #endif /* _LINUX_SLUB_DEF_H */