bnx2.c 142 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004, 2005 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include "bnx2.h"
  12. #include "bnx2_fw.h"
  13. #define DRV_MODULE_NAME "bnx2"
  14. #define PFX DRV_MODULE_NAME ": "
  15. #define DRV_MODULE_VERSION "1.2.21"
  16. #define DRV_MODULE_RELDATE "September 7, 2005"
  17. #define RUN_AT(x) (jiffies + (x))
  18. /* Time in jiffies before concluding the transmitter is hung. */
  19. #define TX_TIMEOUT (5*HZ)
  20. static char version[] __devinitdata =
  21. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  22. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  23. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706 Driver");
  24. MODULE_LICENSE("GPL");
  25. MODULE_VERSION(DRV_MODULE_VERSION);
  26. static int disable_msi = 0;
  27. module_param(disable_msi, int, 0);
  28. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  29. typedef enum {
  30. BCM5706 = 0,
  31. NC370T,
  32. NC370I,
  33. BCM5706S,
  34. NC370F,
  35. BCM5708,
  36. BCM5708S,
  37. } board_t;
  38. /* indexed by board_t, above */
  39. static struct {
  40. char *name;
  41. } board_info[] __devinitdata = {
  42. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  43. { "HP NC370T Multifunction Gigabit Server Adapter" },
  44. { "HP NC370i Multifunction Gigabit Server Adapter" },
  45. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  46. { "HP NC370F Multifunction Gigabit Server Adapter" },
  47. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  48. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  49. };
  50. static struct pci_device_id bnx2_pci_tbl[] = {
  51. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  52. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  53. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  54. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  55. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  56. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  57. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  58. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  59. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  60. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  61. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  62. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  63. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  64. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  65. { 0, }
  66. };
  67. static struct flash_spec flash_table[] =
  68. {
  69. /* Slow EEPROM */
  70. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  71. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  72. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  73. "EEPROM - slow"},
  74. /* Expansion entry 0001 */
  75. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  76. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  77. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  78. "Entry 0001"},
  79. /* Saifun SA25F010 (non-buffered flash) */
  80. /* strap, cfg1, & write1 need updates */
  81. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  82. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  83. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  84. "Non-buffered flash (128kB)"},
  85. /* Saifun SA25F020 (non-buffered flash) */
  86. /* strap, cfg1, & write1 need updates */
  87. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  88. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  89. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  90. "Non-buffered flash (256kB)"},
  91. /* Expansion entry 0100 */
  92. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  93. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  94. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  95. "Entry 0100"},
  96. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  97. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  98. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  99. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  100. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  101. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  102. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  103. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  104. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  105. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  106. /* Saifun SA25F005 (non-buffered flash) */
  107. /* strap, cfg1, & write1 need updates */
  108. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  109. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  110. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  111. "Non-buffered flash (64kB)"},
  112. /* Fast EEPROM */
  113. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  114. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  115. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  116. "EEPROM - fast"},
  117. /* Expansion entry 1001 */
  118. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  119. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  120. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  121. "Entry 1001"},
  122. /* Expansion entry 1010 */
  123. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  124. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  125. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  126. "Entry 1010"},
  127. /* ATMEL AT45DB011B (buffered flash) */
  128. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  129. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  130. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  131. "Buffered flash (128kB)"},
  132. /* Expansion entry 1100 */
  133. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  134. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  135. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  136. "Entry 1100"},
  137. /* Expansion entry 1101 */
  138. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  139. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  140. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  141. "Entry 1101"},
  142. /* Ateml Expansion entry 1110 */
  143. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  144. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  145. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 1110 (Atmel)"},
  147. /* ATMEL AT45DB021B (buffered flash) */
  148. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  149. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  150. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  151. "Buffered flash (256kB)"},
  152. };
  153. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  154. static inline u32 bnx2_tx_avail(struct bnx2 *bp)
  155. {
  156. u32 diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons);
  157. if (diff > MAX_TX_DESC_CNT)
  158. diff = (diff & MAX_TX_DESC_CNT) - 1;
  159. return (bp->tx_ring_size - diff);
  160. }
  161. static u32
  162. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  163. {
  164. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  165. return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
  166. }
  167. static void
  168. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  169. {
  170. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  171. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  172. }
  173. static void
  174. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  175. {
  176. offset += cid_addr;
  177. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  178. REG_WR(bp, BNX2_CTX_DATA, val);
  179. }
  180. static int
  181. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  182. {
  183. u32 val1;
  184. int i, ret;
  185. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  186. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  187. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  188. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  189. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  190. udelay(40);
  191. }
  192. val1 = (bp->phy_addr << 21) | (reg << 16) |
  193. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  194. BNX2_EMAC_MDIO_COMM_START_BUSY;
  195. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  196. for (i = 0; i < 50; i++) {
  197. udelay(10);
  198. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  199. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  200. udelay(5);
  201. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  202. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  203. break;
  204. }
  205. }
  206. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  207. *val = 0x0;
  208. ret = -EBUSY;
  209. }
  210. else {
  211. *val = val1;
  212. ret = 0;
  213. }
  214. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  215. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  216. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  217. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  218. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  219. udelay(40);
  220. }
  221. return ret;
  222. }
  223. static int
  224. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  225. {
  226. u32 val1;
  227. int i, ret;
  228. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  229. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  230. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  231. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  232. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  233. udelay(40);
  234. }
  235. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  236. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  237. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  238. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  239. for (i = 0; i < 50; i++) {
  240. udelay(10);
  241. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  242. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  243. udelay(5);
  244. break;
  245. }
  246. }
  247. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  248. ret = -EBUSY;
  249. else
  250. ret = 0;
  251. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  252. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  253. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  254. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  255. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  256. udelay(40);
  257. }
  258. return ret;
  259. }
  260. static void
  261. bnx2_disable_int(struct bnx2 *bp)
  262. {
  263. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  264. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  265. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  266. }
  267. static void
  268. bnx2_enable_int(struct bnx2 *bp)
  269. {
  270. u32 val;
  271. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  272. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
  273. val = REG_RD(bp, BNX2_HC_COMMAND);
  274. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW);
  275. }
  276. static void
  277. bnx2_disable_int_sync(struct bnx2 *bp)
  278. {
  279. atomic_inc(&bp->intr_sem);
  280. bnx2_disable_int(bp);
  281. synchronize_irq(bp->pdev->irq);
  282. }
  283. static void
  284. bnx2_netif_stop(struct bnx2 *bp)
  285. {
  286. bnx2_disable_int_sync(bp);
  287. if (netif_running(bp->dev)) {
  288. netif_poll_disable(bp->dev);
  289. netif_tx_disable(bp->dev);
  290. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  291. }
  292. }
  293. static void
  294. bnx2_netif_start(struct bnx2 *bp)
  295. {
  296. if (atomic_dec_and_test(&bp->intr_sem)) {
  297. if (netif_running(bp->dev)) {
  298. netif_wake_queue(bp->dev);
  299. netif_poll_enable(bp->dev);
  300. bnx2_enable_int(bp);
  301. }
  302. }
  303. }
  304. static void
  305. bnx2_free_mem(struct bnx2 *bp)
  306. {
  307. if (bp->stats_blk) {
  308. pci_free_consistent(bp->pdev, sizeof(struct statistics_block),
  309. bp->stats_blk, bp->stats_blk_mapping);
  310. bp->stats_blk = NULL;
  311. }
  312. if (bp->status_blk) {
  313. pci_free_consistent(bp->pdev, sizeof(struct status_block),
  314. bp->status_blk, bp->status_blk_mapping);
  315. bp->status_blk = NULL;
  316. }
  317. if (bp->tx_desc_ring) {
  318. pci_free_consistent(bp->pdev,
  319. sizeof(struct tx_bd) * TX_DESC_CNT,
  320. bp->tx_desc_ring, bp->tx_desc_mapping);
  321. bp->tx_desc_ring = NULL;
  322. }
  323. kfree(bp->tx_buf_ring);
  324. bp->tx_buf_ring = NULL;
  325. if (bp->rx_desc_ring) {
  326. pci_free_consistent(bp->pdev,
  327. sizeof(struct rx_bd) * RX_DESC_CNT,
  328. bp->rx_desc_ring, bp->rx_desc_mapping);
  329. bp->rx_desc_ring = NULL;
  330. }
  331. kfree(bp->rx_buf_ring);
  332. bp->rx_buf_ring = NULL;
  333. }
  334. static int
  335. bnx2_alloc_mem(struct bnx2 *bp)
  336. {
  337. bp->tx_buf_ring = kmalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
  338. GFP_KERNEL);
  339. if (bp->tx_buf_ring == NULL)
  340. return -ENOMEM;
  341. memset(bp->tx_buf_ring, 0, sizeof(struct sw_bd) * TX_DESC_CNT);
  342. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
  343. sizeof(struct tx_bd) *
  344. TX_DESC_CNT,
  345. &bp->tx_desc_mapping);
  346. if (bp->tx_desc_ring == NULL)
  347. goto alloc_mem_err;
  348. bp->rx_buf_ring = kmalloc(sizeof(struct sw_bd) * RX_DESC_CNT,
  349. GFP_KERNEL);
  350. if (bp->rx_buf_ring == NULL)
  351. goto alloc_mem_err;
  352. memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT);
  353. bp->rx_desc_ring = pci_alloc_consistent(bp->pdev,
  354. sizeof(struct rx_bd) *
  355. RX_DESC_CNT,
  356. &bp->rx_desc_mapping);
  357. if (bp->rx_desc_ring == NULL)
  358. goto alloc_mem_err;
  359. bp->status_blk = pci_alloc_consistent(bp->pdev,
  360. sizeof(struct status_block),
  361. &bp->status_blk_mapping);
  362. if (bp->status_blk == NULL)
  363. goto alloc_mem_err;
  364. memset(bp->status_blk, 0, sizeof(struct status_block));
  365. bp->stats_blk = pci_alloc_consistent(bp->pdev,
  366. sizeof(struct statistics_block),
  367. &bp->stats_blk_mapping);
  368. if (bp->stats_blk == NULL)
  369. goto alloc_mem_err;
  370. memset(bp->stats_blk, 0, sizeof(struct statistics_block));
  371. return 0;
  372. alloc_mem_err:
  373. bnx2_free_mem(bp);
  374. return -ENOMEM;
  375. }
  376. static void
  377. bnx2_report_fw_link(struct bnx2 *bp)
  378. {
  379. u32 fw_link_status = 0;
  380. if (bp->link_up) {
  381. u32 bmsr;
  382. switch (bp->line_speed) {
  383. case SPEED_10:
  384. if (bp->duplex == DUPLEX_HALF)
  385. fw_link_status = BNX2_LINK_STATUS_10HALF;
  386. else
  387. fw_link_status = BNX2_LINK_STATUS_10FULL;
  388. break;
  389. case SPEED_100:
  390. if (bp->duplex == DUPLEX_HALF)
  391. fw_link_status = BNX2_LINK_STATUS_100HALF;
  392. else
  393. fw_link_status = BNX2_LINK_STATUS_100FULL;
  394. break;
  395. case SPEED_1000:
  396. if (bp->duplex == DUPLEX_HALF)
  397. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  398. else
  399. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  400. break;
  401. case SPEED_2500:
  402. if (bp->duplex == DUPLEX_HALF)
  403. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  404. else
  405. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  406. break;
  407. }
  408. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  409. if (bp->autoneg) {
  410. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  411. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  412. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  413. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  414. bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
  415. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  416. else
  417. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  418. }
  419. }
  420. else
  421. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  422. REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
  423. }
  424. static void
  425. bnx2_report_link(struct bnx2 *bp)
  426. {
  427. if (bp->link_up) {
  428. netif_carrier_on(bp->dev);
  429. printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
  430. printk("%d Mbps ", bp->line_speed);
  431. if (bp->duplex == DUPLEX_FULL)
  432. printk("full duplex");
  433. else
  434. printk("half duplex");
  435. if (bp->flow_ctrl) {
  436. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  437. printk(", receive ");
  438. if (bp->flow_ctrl & FLOW_CTRL_TX)
  439. printk("& transmit ");
  440. }
  441. else {
  442. printk(", transmit ");
  443. }
  444. printk("flow control ON");
  445. }
  446. printk("\n");
  447. }
  448. else {
  449. netif_carrier_off(bp->dev);
  450. printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
  451. }
  452. bnx2_report_fw_link(bp);
  453. }
  454. static void
  455. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  456. {
  457. u32 local_adv, remote_adv;
  458. bp->flow_ctrl = 0;
  459. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  460. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  461. if (bp->duplex == DUPLEX_FULL) {
  462. bp->flow_ctrl = bp->req_flow_ctrl;
  463. }
  464. return;
  465. }
  466. if (bp->duplex != DUPLEX_FULL) {
  467. return;
  468. }
  469. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  470. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  471. u32 val;
  472. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  473. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  474. bp->flow_ctrl |= FLOW_CTRL_TX;
  475. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  476. bp->flow_ctrl |= FLOW_CTRL_RX;
  477. return;
  478. }
  479. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  480. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  481. if (bp->phy_flags & PHY_SERDES_FLAG) {
  482. u32 new_local_adv = 0;
  483. u32 new_remote_adv = 0;
  484. if (local_adv & ADVERTISE_1000XPAUSE)
  485. new_local_adv |= ADVERTISE_PAUSE_CAP;
  486. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  487. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  488. if (remote_adv & ADVERTISE_1000XPAUSE)
  489. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  490. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  491. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  492. local_adv = new_local_adv;
  493. remote_adv = new_remote_adv;
  494. }
  495. /* See Table 28B-3 of 802.3ab-1999 spec. */
  496. if (local_adv & ADVERTISE_PAUSE_CAP) {
  497. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  498. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  499. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  500. }
  501. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  502. bp->flow_ctrl = FLOW_CTRL_RX;
  503. }
  504. }
  505. else {
  506. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  507. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  508. }
  509. }
  510. }
  511. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  512. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  513. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  514. bp->flow_ctrl = FLOW_CTRL_TX;
  515. }
  516. }
  517. }
  518. static int
  519. bnx2_5708s_linkup(struct bnx2 *bp)
  520. {
  521. u32 val;
  522. bp->link_up = 1;
  523. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  524. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  525. case BCM5708S_1000X_STAT1_SPEED_10:
  526. bp->line_speed = SPEED_10;
  527. break;
  528. case BCM5708S_1000X_STAT1_SPEED_100:
  529. bp->line_speed = SPEED_100;
  530. break;
  531. case BCM5708S_1000X_STAT1_SPEED_1G:
  532. bp->line_speed = SPEED_1000;
  533. break;
  534. case BCM5708S_1000X_STAT1_SPEED_2G5:
  535. bp->line_speed = SPEED_2500;
  536. break;
  537. }
  538. if (val & BCM5708S_1000X_STAT1_FD)
  539. bp->duplex = DUPLEX_FULL;
  540. else
  541. bp->duplex = DUPLEX_HALF;
  542. return 0;
  543. }
  544. static int
  545. bnx2_5706s_linkup(struct bnx2 *bp)
  546. {
  547. u32 bmcr, local_adv, remote_adv, common;
  548. bp->link_up = 1;
  549. bp->line_speed = SPEED_1000;
  550. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  551. if (bmcr & BMCR_FULLDPLX) {
  552. bp->duplex = DUPLEX_FULL;
  553. }
  554. else {
  555. bp->duplex = DUPLEX_HALF;
  556. }
  557. if (!(bmcr & BMCR_ANENABLE)) {
  558. return 0;
  559. }
  560. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  561. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  562. common = local_adv & remote_adv;
  563. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  564. if (common & ADVERTISE_1000XFULL) {
  565. bp->duplex = DUPLEX_FULL;
  566. }
  567. else {
  568. bp->duplex = DUPLEX_HALF;
  569. }
  570. }
  571. return 0;
  572. }
  573. static int
  574. bnx2_copper_linkup(struct bnx2 *bp)
  575. {
  576. u32 bmcr;
  577. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  578. if (bmcr & BMCR_ANENABLE) {
  579. u32 local_adv, remote_adv, common;
  580. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  581. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  582. common = local_adv & (remote_adv >> 2);
  583. if (common & ADVERTISE_1000FULL) {
  584. bp->line_speed = SPEED_1000;
  585. bp->duplex = DUPLEX_FULL;
  586. }
  587. else if (common & ADVERTISE_1000HALF) {
  588. bp->line_speed = SPEED_1000;
  589. bp->duplex = DUPLEX_HALF;
  590. }
  591. else {
  592. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  593. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  594. common = local_adv & remote_adv;
  595. if (common & ADVERTISE_100FULL) {
  596. bp->line_speed = SPEED_100;
  597. bp->duplex = DUPLEX_FULL;
  598. }
  599. else if (common & ADVERTISE_100HALF) {
  600. bp->line_speed = SPEED_100;
  601. bp->duplex = DUPLEX_HALF;
  602. }
  603. else if (common & ADVERTISE_10FULL) {
  604. bp->line_speed = SPEED_10;
  605. bp->duplex = DUPLEX_FULL;
  606. }
  607. else if (common & ADVERTISE_10HALF) {
  608. bp->line_speed = SPEED_10;
  609. bp->duplex = DUPLEX_HALF;
  610. }
  611. else {
  612. bp->line_speed = 0;
  613. bp->link_up = 0;
  614. }
  615. }
  616. }
  617. else {
  618. if (bmcr & BMCR_SPEED100) {
  619. bp->line_speed = SPEED_100;
  620. }
  621. else {
  622. bp->line_speed = SPEED_10;
  623. }
  624. if (bmcr & BMCR_FULLDPLX) {
  625. bp->duplex = DUPLEX_FULL;
  626. }
  627. else {
  628. bp->duplex = DUPLEX_HALF;
  629. }
  630. }
  631. return 0;
  632. }
  633. static int
  634. bnx2_set_mac_link(struct bnx2 *bp)
  635. {
  636. u32 val;
  637. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  638. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  639. (bp->duplex == DUPLEX_HALF)) {
  640. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  641. }
  642. /* Configure the EMAC mode register. */
  643. val = REG_RD(bp, BNX2_EMAC_MODE);
  644. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  645. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  646. BNX2_EMAC_MODE_25G);
  647. if (bp->link_up) {
  648. switch (bp->line_speed) {
  649. case SPEED_10:
  650. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  651. val |= BNX2_EMAC_MODE_PORT_MII_10;
  652. break;
  653. }
  654. /* fall through */
  655. case SPEED_100:
  656. val |= BNX2_EMAC_MODE_PORT_MII;
  657. break;
  658. case SPEED_2500:
  659. val |= BNX2_EMAC_MODE_25G;
  660. /* fall through */
  661. case SPEED_1000:
  662. val |= BNX2_EMAC_MODE_PORT_GMII;
  663. break;
  664. }
  665. }
  666. else {
  667. val |= BNX2_EMAC_MODE_PORT_GMII;
  668. }
  669. /* Set the MAC to operate in the appropriate duplex mode. */
  670. if (bp->duplex == DUPLEX_HALF)
  671. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  672. REG_WR(bp, BNX2_EMAC_MODE, val);
  673. /* Enable/disable rx PAUSE. */
  674. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  675. if (bp->flow_ctrl & FLOW_CTRL_RX)
  676. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  677. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  678. /* Enable/disable tx PAUSE. */
  679. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  680. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  681. if (bp->flow_ctrl & FLOW_CTRL_TX)
  682. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  683. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  684. /* Acknowledge the interrupt. */
  685. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  686. return 0;
  687. }
  688. static int
  689. bnx2_set_link(struct bnx2 *bp)
  690. {
  691. u32 bmsr;
  692. u8 link_up;
  693. if (bp->loopback == MAC_LOOPBACK) {
  694. bp->link_up = 1;
  695. return 0;
  696. }
  697. link_up = bp->link_up;
  698. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  699. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  700. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  701. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  702. u32 val;
  703. val = REG_RD(bp, BNX2_EMAC_STATUS);
  704. if (val & BNX2_EMAC_STATUS_LINK)
  705. bmsr |= BMSR_LSTATUS;
  706. else
  707. bmsr &= ~BMSR_LSTATUS;
  708. }
  709. if (bmsr & BMSR_LSTATUS) {
  710. bp->link_up = 1;
  711. if (bp->phy_flags & PHY_SERDES_FLAG) {
  712. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  713. bnx2_5706s_linkup(bp);
  714. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  715. bnx2_5708s_linkup(bp);
  716. }
  717. else {
  718. bnx2_copper_linkup(bp);
  719. }
  720. bnx2_resolve_flow_ctrl(bp);
  721. }
  722. else {
  723. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  724. (bp->autoneg & AUTONEG_SPEED)) {
  725. u32 bmcr;
  726. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  727. if (!(bmcr & BMCR_ANENABLE)) {
  728. bnx2_write_phy(bp, MII_BMCR, bmcr |
  729. BMCR_ANENABLE);
  730. }
  731. }
  732. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  733. bp->link_up = 0;
  734. }
  735. if (bp->link_up != link_up) {
  736. bnx2_report_link(bp);
  737. }
  738. bnx2_set_mac_link(bp);
  739. return 0;
  740. }
  741. static int
  742. bnx2_reset_phy(struct bnx2 *bp)
  743. {
  744. int i;
  745. u32 reg;
  746. bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
  747. #define PHY_RESET_MAX_WAIT 100
  748. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  749. udelay(10);
  750. bnx2_read_phy(bp, MII_BMCR, &reg);
  751. if (!(reg & BMCR_RESET)) {
  752. udelay(20);
  753. break;
  754. }
  755. }
  756. if (i == PHY_RESET_MAX_WAIT) {
  757. return -EBUSY;
  758. }
  759. return 0;
  760. }
  761. static u32
  762. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  763. {
  764. u32 adv = 0;
  765. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  766. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  767. if (bp->phy_flags & PHY_SERDES_FLAG) {
  768. adv = ADVERTISE_1000XPAUSE;
  769. }
  770. else {
  771. adv = ADVERTISE_PAUSE_CAP;
  772. }
  773. }
  774. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  775. if (bp->phy_flags & PHY_SERDES_FLAG) {
  776. adv = ADVERTISE_1000XPSE_ASYM;
  777. }
  778. else {
  779. adv = ADVERTISE_PAUSE_ASYM;
  780. }
  781. }
  782. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  783. if (bp->phy_flags & PHY_SERDES_FLAG) {
  784. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  785. }
  786. else {
  787. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  788. }
  789. }
  790. return adv;
  791. }
  792. static int
  793. bnx2_setup_serdes_phy(struct bnx2 *bp)
  794. {
  795. u32 adv, bmcr, up1;
  796. u32 new_adv = 0;
  797. if (!(bp->autoneg & AUTONEG_SPEED)) {
  798. u32 new_bmcr;
  799. int force_link_down = 0;
  800. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  801. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  802. if (up1 & BCM5708S_UP1_2G5) {
  803. up1 &= ~BCM5708S_UP1_2G5;
  804. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  805. force_link_down = 1;
  806. }
  807. }
  808. bnx2_read_phy(bp, MII_ADVERTISE, &adv);
  809. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  810. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  811. new_bmcr = bmcr & ~BMCR_ANENABLE;
  812. new_bmcr |= BMCR_SPEED1000;
  813. if (bp->req_duplex == DUPLEX_FULL) {
  814. adv |= ADVERTISE_1000XFULL;
  815. new_bmcr |= BMCR_FULLDPLX;
  816. }
  817. else {
  818. adv |= ADVERTISE_1000XHALF;
  819. new_bmcr &= ~BMCR_FULLDPLX;
  820. }
  821. if ((new_bmcr != bmcr) || (force_link_down)) {
  822. /* Force a link down visible on the other side */
  823. if (bp->link_up) {
  824. bnx2_write_phy(bp, MII_ADVERTISE, adv &
  825. ~(ADVERTISE_1000XFULL |
  826. ADVERTISE_1000XHALF));
  827. bnx2_write_phy(bp, MII_BMCR, bmcr |
  828. BMCR_ANRESTART | BMCR_ANENABLE);
  829. bp->link_up = 0;
  830. netif_carrier_off(bp->dev);
  831. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  832. }
  833. bnx2_write_phy(bp, MII_ADVERTISE, adv);
  834. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  835. }
  836. return 0;
  837. }
  838. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  839. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  840. up1 |= BCM5708S_UP1_2G5;
  841. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  842. }
  843. if (bp->advertising & ADVERTISED_1000baseT_Full)
  844. new_adv |= ADVERTISE_1000XFULL;
  845. new_adv |= bnx2_phy_get_pause_adv(bp);
  846. bnx2_read_phy(bp, MII_ADVERTISE, &adv);
  847. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  848. bp->serdes_an_pending = 0;
  849. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  850. /* Force a link down visible on the other side */
  851. if (bp->link_up) {
  852. int i;
  853. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  854. for (i = 0; i < 110; i++) {
  855. udelay(100);
  856. }
  857. }
  858. bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
  859. bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
  860. BMCR_ANENABLE);
  861. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  862. /* Speed up link-up time when the link partner
  863. * does not autonegotiate which is very common
  864. * in blade servers. Some blade servers use
  865. * IPMI for kerboard input and it's important
  866. * to minimize link disruptions. Autoneg. involves
  867. * exchanging base pages plus 3 next pages and
  868. * normally completes in about 120 msec.
  869. */
  870. bp->current_interval = SERDES_AN_TIMEOUT;
  871. bp->serdes_an_pending = 1;
  872. mod_timer(&bp->timer, jiffies + bp->current_interval);
  873. }
  874. }
  875. return 0;
  876. }
  877. #define ETHTOOL_ALL_FIBRE_SPEED \
  878. (ADVERTISED_1000baseT_Full)
  879. #define ETHTOOL_ALL_COPPER_SPEED \
  880. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  881. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  882. ADVERTISED_1000baseT_Full)
  883. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  884. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  885. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  886. static int
  887. bnx2_setup_copper_phy(struct bnx2 *bp)
  888. {
  889. u32 bmcr;
  890. u32 new_bmcr;
  891. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  892. if (bp->autoneg & AUTONEG_SPEED) {
  893. u32 adv_reg, adv1000_reg;
  894. u32 new_adv_reg = 0;
  895. u32 new_adv1000_reg = 0;
  896. bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
  897. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  898. ADVERTISE_PAUSE_ASYM);
  899. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  900. adv1000_reg &= PHY_ALL_1000_SPEED;
  901. if (bp->advertising & ADVERTISED_10baseT_Half)
  902. new_adv_reg |= ADVERTISE_10HALF;
  903. if (bp->advertising & ADVERTISED_10baseT_Full)
  904. new_adv_reg |= ADVERTISE_10FULL;
  905. if (bp->advertising & ADVERTISED_100baseT_Half)
  906. new_adv_reg |= ADVERTISE_100HALF;
  907. if (bp->advertising & ADVERTISED_100baseT_Full)
  908. new_adv_reg |= ADVERTISE_100FULL;
  909. if (bp->advertising & ADVERTISED_1000baseT_Full)
  910. new_adv1000_reg |= ADVERTISE_1000FULL;
  911. new_adv_reg |= ADVERTISE_CSMA;
  912. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  913. if ((adv1000_reg != new_adv1000_reg) ||
  914. (adv_reg != new_adv_reg) ||
  915. ((bmcr & BMCR_ANENABLE) == 0)) {
  916. bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
  917. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  918. bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
  919. BMCR_ANENABLE);
  920. }
  921. else if (bp->link_up) {
  922. /* Flow ctrl may have changed from auto to forced */
  923. /* or vice-versa. */
  924. bnx2_resolve_flow_ctrl(bp);
  925. bnx2_set_mac_link(bp);
  926. }
  927. return 0;
  928. }
  929. new_bmcr = 0;
  930. if (bp->req_line_speed == SPEED_100) {
  931. new_bmcr |= BMCR_SPEED100;
  932. }
  933. if (bp->req_duplex == DUPLEX_FULL) {
  934. new_bmcr |= BMCR_FULLDPLX;
  935. }
  936. if (new_bmcr != bmcr) {
  937. u32 bmsr;
  938. int i = 0;
  939. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  940. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  941. if (bmsr & BMSR_LSTATUS) {
  942. /* Force link down */
  943. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  944. do {
  945. udelay(100);
  946. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  947. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  948. i++;
  949. } while ((bmsr & BMSR_LSTATUS) && (i < 620));
  950. }
  951. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  952. /* Normally, the new speed is setup after the link has
  953. * gone down and up again. In some cases, link will not go
  954. * down so we need to set up the new speed here.
  955. */
  956. if (bmsr & BMSR_LSTATUS) {
  957. bp->line_speed = bp->req_line_speed;
  958. bp->duplex = bp->req_duplex;
  959. bnx2_resolve_flow_ctrl(bp);
  960. bnx2_set_mac_link(bp);
  961. }
  962. }
  963. return 0;
  964. }
  965. static int
  966. bnx2_setup_phy(struct bnx2 *bp)
  967. {
  968. if (bp->loopback == MAC_LOOPBACK)
  969. return 0;
  970. if (bp->phy_flags & PHY_SERDES_FLAG) {
  971. return (bnx2_setup_serdes_phy(bp));
  972. }
  973. else {
  974. return (bnx2_setup_copper_phy(bp));
  975. }
  976. }
  977. static int
  978. bnx2_init_5708s_phy(struct bnx2 *bp)
  979. {
  980. u32 val;
  981. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  982. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  983. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  984. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  985. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  986. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  987. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  988. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  989. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  990. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  991. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  992. val |= BCM5708S_UP1_2G5;
  993. bnx2_write_phy(bp, BCM5708S_UP1, val);
  994. }
  995. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  996. (CHIP_ID(bp) == CHIP_ID_5708_B0)) {
  997. /* increase tx signal amplitude */
  998. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  999. BCM5708S_BLK_ADDR_TX_MISC);
  1000. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1001. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1002. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1003. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1004. }
  1005. val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
  1006. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1007. if (val) {
  1008. u32 is_backplane;
  1009. is_backplane = REG_RD_IND(bp, bp->shmem_base +
  1010. BNX2_SHARED_HW_CFG_CONFIG);
  1011. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1012. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1013. BCM5708S_BLK_ADDR_TX_MISC);
  1014. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1015. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1016. BCM5708S_BLK_ADDR_DIG);
  1017. }
  1018. }
  1019. return 0;
  1020. }
  1021. static int
  1022. bnx2_init_5706s_phy(struct bnx2 *bp)
  1023. {
  1024. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  1025. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  1026. REG_WR(bp, BNX2_MISC_UNUSED0, 0x300);
  1027. }
  1028. if (bp->dev->mtu > 1500) {
  1029. u32 val;
  1030. /* Set extended packet length bit */
  1031. bnx2_write_phy(bp, 0x18, 0x7);
  1032. bnx2_read_phy(bp, 0x18, &val);
  1033. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1034. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1035. bnx2_read_phy(bp, 0x1c, &val);
  1036. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1037. }
  1038. else {
  1039. u32 val;
  1040. bnx2_write_phy(bp, 0x18, 0x7);
  1041. bnx2_read_phy(bp, 0x18, &val);
  1042. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1043. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1044. bnx2_read_phy(bp, 0x1c, &val);
  1045. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1046. }
  1047. return 0;
  1048. }
  1049. static int
  1050. bnx2_init_copper_phy(struct bnx2 *bp)
  1051. {
  1052. u32 val;
  1053. bp->phy_flags |= PHY_CRC_FIX_FLAG;
  1054. if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
  1055. bnx2_write_phy(bp, 0x18, 0x0c00);
  1056. bnx2_write_phy(bp, 0x17, 0x000a);
  1057. bnx2_write_phy(bp, 0x15, 0x310b);
  1058. bnx2_write_phy(bp, 0x17, 0x201f);
  1059. bnx2_write_phy(bp, 0x15, 0x9506);
  1060. bnx2_write_phy(bp, 0x17, 0x401f);
  1061. bnx2_write_phy(bp, 0x15, 0x14e2);
  1062. bnx2_write_phy(bp, 0x18, 0x0400);
  1063. }
  1064. if (bp->dev->mtu > 1500) {
  1065. /* Set extended packet length bit */
  1066. bnx2_write_phy(bp, 0x18, 0x7);
  1067. bnx2_read_phy(bp, 0x18, &val);
  1068. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1069. bnx2_read_phy(bp, 0x10, &val);
  1070. bnx2_write_phy(bp, 0x10, val | 0x1);
  1071. }
  1072. else {
  1073. bnx2_write_phy(bp, 0x18, 0x7);
  1074. bnx2_read_phy(bp, 0x18, &val);
  1075. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1076. bnx2_read_phy(bp, 0x10, &val);
  1077. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1078. }
  1079. /* ethernet@wirespeed */
  1080. bnx2_write_phy(bp, 0x18, 0x7007);
  1081. bnx2_read_phy(bp, 0x18, &val);
  1082. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1083. return 0;
  1084. }
  1085. static int
  1086. bnx2_init_phy(struct bnx2 *bp)
  1087. {
  1088. u32 val;
  1089. int rc = 0;
  1090. bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
  1091. bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
  1092. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1093. bnx2_reset_phy(bp);
  1094. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1095. bp->phy_id = val << 16;
  1096. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1097. bp->phy_id |= val & 0xffff;
  1098. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1099. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1100. rc = bnx2_init_5706s_phy(bp);
  1101. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1102. rc = bnx2_init_5708s_phy(bp);
  1103. }
  1104. else {
  1105. rc = bnx2_init_copper_phy(bp);
  1106. }
  1107. bnx2_setup_phy(bp);
  1108. return rc;
  1109. }
  1110. static int
  1111. bnx2_set_mac_loopback(struct bnx2 *bp)
  1112. {
  1113. u32 mac_mode;
  1114. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1115. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1116. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1117. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1118. bp->link_up = 1;
  1119. return 0;
  1120. }
  1121. static int
  1122. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data)
  1123. {
  1124. int i;
  1125. u32 val;
  1126. if (bp->fw_timed_out)
  1127. return -EBUSY;
  1128. bp->fw_wr_seq++;
  1129. msg_data |= bp->fw_wr_seq;
  1130. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1131. /* wait for an acknowledgement. */
  1132. for (i = 0; i < (FW_ACK_TIME_OUT_MS * 1000)/5; i++) {
  1133. udelay(5);
  1134. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
  1135. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1136. break;
  1137. }
  1138. /* If we timed out, inform the firmware that this is the case. */
  1139. if (((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) &&
  1140. ((msg_data & BNX2_DRV_MSG_DATA) != BNX2_DRV_MSG_DATA_WAIT0)) {
  1141. msg_data &= ~BNX2_DRV_MSG_CODE;
  1142. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1143. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1144. bp->fw_timed_out = 1;
  1145. return -EBUSY;
  1146. }
  1147. return 0;
  1148. }
  1149. static void
  1150. bnx2_init_context(struct bnx2 *bp)
  1151. {
  1152. u32 vcid;
  1153. vcid = 96;
  1154. while (vcid) {
  1155. u32 vcid_addr, pcid_addr, offset;
  1156. vcid--;
  1157. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1158. u32 new_vcid;
  1159. vcid_addr = GET_PCID_ADDR(vcid);
  1160. if (vcid & 0x8) {
  1161. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1162. }
  1163. else {
  1164. new_vcid = vcid;
  1165. }
  1166. pcid_addr = GET_PCID_ADDR(new_vcid);
  1167. }
  1168. else {
  1169. vcid_addr = GET_CID_ADDR(vcid);
  1170. pcid_addr = vcid_addr;
  1171. }
  1172. REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
  1173. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1174. /* Zero out the context. */
  1175. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
  1176. CTX_WR(bp, 0x00, offset, 0);
  1177. }
  1178. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1179. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1180. }
  1181. }
  1182. static int
  1183. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1184. {
  1185. u16 *good_mbuf;
  1186. u32 good_mbuf_cnt;
  1187. u32 val;
  1188. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1189. if (good_mbuf == NULL) {
  1190. printk(KERN_ERR PFX "Failed to allocate memory in "
  1191. "bnx2_alloc_bad_rbuf\n");
  1192. return -ENOMEM;
  1193. }
  1194. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1195. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1196. good_mbuf_cnt = 0;
  1197. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1198. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1199. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1200. REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
  1201. val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1202. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1203. /* The addresses with Bit 9 set are bad memory blocks. */
  1204. if (!(val & (1 << 9))) {
  1205. good_mbuf[good_mbuf_cnt] = (u16) val;
  1206. good_mbuf_cnt++;
  1207. }
  1208. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1209. }
  1210. /* Free the good ones back to the mbuf pool thus discarding
  1211. * all the bad ones. */
  1212. while (good_mbuf_cnt) {
  1213. good_mbuf_cnt--;
  1214. val = good_mbuf[good_mbuf_cnt];
  1215. val = (val << 9) | val | 1;
  1216. REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1217. }
  1218. kfree(good_mbuf);
  1219. return 0;
  1220. }
  1221. static void
  1222. bnx2_set_mac_addr(struct bnx2 *bp)
  1223. {
  1224. u32 val;
  1225. u8 *mac_addr = bp->dev->dev_addr;
  1226. val = (mac_addr[0] << 8) | mac_addr[1];
  1227. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1228. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1229. (mac_addr[4] << 8) | mac_addr[5];
  1230. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1231. }
  1232. static inline int
  1233. bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
  1234. {
  1235. struct sk_buff *skb;
  1236. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  1237. dma_addr_t mapping;
  1238. struct rx_bd *rxbd = &bp->rx_desc_ring[index];
  1239. unsigned long align;
  1240. skb = dev_alloc_skb(bp->rx_buf_size);
  1241. if (skb == NULL) {
  1242. return -ENOMEM;
  1243. }
  1244. if (unlikely((align = (unsigned long) skb->data & 0x7))) {
  1245. skb_reserve(skb, 8 - align);
  1246. }
  1247. skb->dev = bp->dev;
  1248. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  1249. PCI_DMA_FROMDEVICE);
  1250. rx_buf->skb = skb;
  1251. pci_unmap_addr_set(rx_buf, mapping, mapping);
  1252. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1253. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1254. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1255. return 0;
  1256. }
  1257. static void
  1258. bnx2_phy_int(struct bnx2 *bp)
  1259. {
  1260. u32 new_link_state, old_link_state;
  1261. new_link_state = bp->status_blk->status_attn_bits &
  1262. STATUS_ATTN_BITS_LINK_STATE;
  1263. old_link_state = bp->status_blk->status_attn_bits_ack &
  1264. STATUS_ATTN_BITS_LINK_STATE;
  1265. if (new_link_state != old_link_state) {
  1266. if (new_link_state) {
  1267. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
  1268. STATUS_ATTN_BITS_LINK_STATE);
  1269. }
  1270. else {
  1271. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
  1272. STATUS_ATTN_BITS_LINK_STATE);
  1273. }
  1274. bnx2_set_link(bp);
  1275. }
  1276. }
  1277. static void
  1278. bnx2_tx_int(struct bnx2 *bp)
  1279. {
  1280. u16 hw_cons, sw_cons, sw_ring_cons;
  1281. int tx_free_bd = 0;
  1282. hw_cons = bp->status_blk->status_tx_quick_consumer_index0;
  1283. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1284. hw_cons++;
  1285. }
  1286. sw_cons = bp->tx_cons;
  1287. while (sw_cons != hw_cons) {
  1288. struct sw_bd *tx_buf;
  1289. struct sk_buff *skb;
  1290. int i, last;
  1291. sw_ring_cons = TX_RING_IDX(sw_cons);
  1292. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  1293. skb = tx_buf->skb;
  1294. #ifdef BCM_TSO
  1295. /* partial BD completions possible with TSO packets */
  1296. if (skb_shinfo(skb)->tso_size) {
  1297. u16 last_idx, last_ring_idx;
  1298. last_idx = sw_cons +
  1299. skb_shinfo(skb)->nr_frags + 1;
  1300. last_ring_idx = sw_ring_cons +
  1301. skb_shinfo(skb)->nr_frags + 1;
  1302. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  1303. last_idx++;
  1304. }
  1305. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  1306. break;
  1307. }
  1308. }
  1309. #endif
  1310. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  1311. skb_headlen(skb), PCI_DMA_TODEVICE);
  1312. tx_buf->skb = NULL;
  1313. last = skb_shinfo(skb)->nr_frags;
  1314. for (i = 0; i < last; i++) {
  1315. sw_cons = NEXT_TX_BD(sw_cons);
  1316. pci_unmap_page(bp->pdev,
  1317. pci_unmap_addr(
  1318. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  1319. mapping),
  1320. skb_shinfo(skb)->frags[i].size,
  1321. PCI_DMA_TODEVICE);
  1322. }
  1323. sw_cons = NEXT_TX_BD(sw_cons);
  1324. tx_free_bd += last + 1;
  1325. dev_kfree_skb_irq(skb);
  1326. hw_cons = bp->status_blk->status_tx_quick_consumer_index0;
  1327. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1328. hw_cons++;
  1329. }
  1330. }
  1331. bp->tx_cons = sw_cons;
  1332. if (unlikely(netif_queue_stopped(bp->dev))) {
  1333. spin_lock(&bp->tx_lock);
  1334. if ((netif_queue_stopped(bp->dev)) &&
  1335. (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)) {
  1336. netif_wake_queue(bp->dev);
  1337. }
  1338. spin_unlock(&bp->tx_lock);
  1339. }
  1340. }
  1341. static inline void
  1342. bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
  1343. u16 cons, u16 prod)
  1344. {
  1345. struct sw_bd *cons_rx_buf = &bp->rx_buf_ring[cons];
  1346. struct sw_bd *prod_rx_buf = &bp->rx_buf_ring[prod];
  1347. struct rx_bd *cons_bd = &bp->rx_desc_ring[cons];
  1348. struct rx_bd *prod_bd = &bp->rx_desc_ring[prod];
  1349. pci_dma_sync_single_for_device(bp->pdev,
  1350. pci_unmap_addr(cons_rx_buf, mapping),
  1351. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1352. prod_rx_buf->skb = cons_rx_buf->skb;
  1353. pci_unmap_addr_set(prod_rx_buf, mapping,
  1354. pci_unmap_addr(cons_rx_buf, mapping));
  1355. memcpy(prod_bd, cons_bd, 8);
  1356. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1357. }
  1358. static int
  1359. bnx2_rx_int(struct bnx2 *bp, int budget)
  1360. {
  1361. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  1362. struct l2_fhdr *rx_hdr;
  1363. int rx_pkt = 0;
  1364. hw_cons = bp->status_blk->status_rx_quick_consumer_index0;
  1365. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
  1366. hw_cons++;
  1367. }
  1368. sw_cons = bp->rx_cons;
  1369. sw_prod = bp->rx_prod;
  1370. /* Memory barrier necessary as speculative reads of the rx
  1371. * buffer can be ahead of the index in the status block
  1372. */
  1373. rmb();
  1374. while (sw_cons != hw_cons) {
  1375. unsigned int len;
  1376. u16 status;
  1377. struct sw_bd *rx_buf;
  1378. struct sk_buff *skb;
  1379. sw_ring_cons = RX_RING_IDX(sw_cons);
  1380. sw_ring_prod = RX_RING_IDX(sw_prod);
  1381. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  1382. skb = rx_buf->skb;
  1383. pci_dma_sync_single_for_cpu(bp->pdev,
  1384. pci_unmap_addr(rx_buf, mapping),
  1385. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1386. rx_hdr = (struct l2_fhdr *) skb->data;
  1387. len = rx_hdr->l2_fhdr_pkt_len - 4;
  1388. if (rx_hdr->l2_fhdr_errors &
  1389. (L2_FHDR_ERRORS_BAD_CRC |
  1390. L2_FHDR_ERRORS_PHY_DECODE |
  1391. L2_FHDR_ERRORS_ALIGNMENT |
  1392. L2_FHDR_ERRORS_TOO_SHORT |
  1393. L2_FHDR_ERRORS_GIANT_FRAME)) {
  1394. goto reuse_rx;
  1395. }
  1396. /* Since we don't have a jumbo ring, copy small packets
  1397. * if mtu > 1500
  1398. */
  1399. if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
  1400. struct sk_buff *new_skb;
  1401. new_skb = dev_alloc_skb(len + 2);
  1402. if (new_skb == NULL)
  1403. goto reuse_rx;
  1404. /* aligned copy */
  1405. memcpy(new_skb->data,
  1406. skb->data + bp->rx_offset - 2,
  1407. len + 2);
  1408. skb_reserve(new_skb, 2);
  1409. skb_put(new_skb, len);
  1410. new_skb->dev = bp->dev;
  1411. bnx2_reuse_rx_skb(bp, skb,
  1412. sw_ring_cons, sw_ring_prod);
  1413. skb = new_skb;
  1414. }
  1415. else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
  1416. pci_unmap_single(bp->pdev,
  1417. pci_unmap_addr(rx_buf, mapping),
  1418. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  1419. skb_reserve(skb, bp->rx_offset);
  1420. skb_put(skb, len);
  1421. }
  1422. else {
  1423. reuse_rx:
  1424. bnx2_reuse_rx_skb(bp, skb,
  1425. sw_ring_cons, sw_ring_prod);
  1426. goto next_rx;
  1427. }
  1428. skb->protocol = eth_type_trans(skb, bp->dev);
  1429. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  1430. (htons(skb->protocol) != 0x8100)) {
  1431. dev_kfree_skb_irq(skb);
  1432. goto next_rx;
  1433. }
  1434. status = rx_hdr->l2_fhdr_status;
  1435. skb->ip_summed = CHECKSUM_NONE;
  1436. if (bp->rx_csum &&
  1437. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  1438. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  1439. u16 cksum = rx_hdr->l2_fhdr_tcp_udp_xsum;
  1440. if (cksum == 0xffff)
  1441. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1442. }
  1443. #ifdef BCM_VLAN
  1444. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
  1445. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  1446. rx_hdr->l2_fhdr_vlan_tag);
  1447. }
  1448. else
  1449. #endif
  1450. netif_receive_skb(skb);
  1451. bp->dev->last_rx = jiffies;
  1452. rx_pkt++;
  1453. next_rx:
  1454. rx_buf->skb = NULL;
  1455. sw_cons = NEXT_RX_BD(sw_cons);
  1456. sw_prod = NEXT_RX_BD(sw_prod);
  1457. if ((rx_pkt == budget))
  1458. break;
  1459. }
  1460. bp->rx_cons = sw_cons;
  1461. bp->rx_prod = sw_prod;
  1462. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  1463. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  1464. mmiowb();
  1465. return rx_pkt;
  1466. }
  1467. /* MSI ISR - The only difference between this and the INTx ISR
  1468. * is that the MSI interrupt is always serviced.
  1469. */
  1470. static irqreturn_t
  1471. bnx2_msi(int irq, void *dev_instance, struct pt_regs *regs)
  1472. {
  1473. struct net_device *dev = dev_instance;
  1474. struct bnx2 *bp = dev->priv;
  1475. prefetch(bp->status_blk);
  1476. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1477. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1478. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1479. /* Return here if interrupt is disabled. */
  1480. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1481. return IRQ_HANDLED;
  1482. netif_rx_schedule(dev);
  1483. return IRQ_HANDLED;
  1484. }
  1485. static irqreturn_t
  1486. bnx2_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
  1487. {
  1488. struct net_device *dev = dev_instance;
  1489. struct bnx2 *bp = dev->priv;
  1490. /* When using INTx, it is possible for the interrupt to arrive
  1491. * at the CPU before the status block posted prior to the
  1492. * interrupt. Reading a register will flush the status block.
  1493. * When using MSI, the MSI message will always complete after
  1494. * the status block write.
  1495. */
  1496. if ((bp->status_blk->status_idx == bp->last_status_idx) &&
  1497. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  1498. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  1499. return IRQ_NONE;
  1500. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1501. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1502. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1503. /* Return here if interrupt is shared and is disabled. */
  1504. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1505. return IRQ_HANDLED;
  1506. netif_rx_schedule(dev);
  1507. return IRQ_HANDLED;
  1508. }
  1509. static int
  1510. bnx2_poll(struct net_device *dev, int *budget)
  1511. {
  1512. struct bnx2 *bp = dev->priv;
  1513. int rx_done = 1;
  1514. bp->last_status_idx = bp->status_blk->status_idx;
  1515. rmb();
  1516. if ((bp->status_blk->status_attn_bits &
  1517. STATUS_ATTN_BITS_LINK_STATE) !=
  1518. (bp->status_blk->status_attn_bits_ack &
  1519. STATUS_ATTN_BITS_LINK_STATE)) {
  1520. spin_lock(&bp->phy_lock);
  1521. bnx2_phy_int(bp);
  1522. spin_unlock(&bp->phy_lock);
  1523. }
  1524. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_cons) {
  1525. bnx2_tx_int(bp);
  1526. }
  1527. if (bp->status_blk->status_rx_quick_consumer_index0 != bp->rx_cons) {
  1528. int orig_budget = *budget;
  1529. int work_done;
  1530. if (orig_budget > dev->quota)
  1531. orig_budget = dev->quota;
  1532. work_done = bnx2_rx_int(bp, orig_budget);
  1533. *budget -= work_done;
  1534. dev->quota -= work_done;
  1535. if (work_done >= orig_budget) {
  1536. rx_done = 0;
  1537. }
  1538. }
  1539. if (rx_done) {
  1540. netif_rx_complete(dev);
  1541. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1542. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1543. bp->last_status_idx);
  1544. return 0;
  1545. }
  1546. return 1;
  1547. }
  1548. /* Called with rtnl_lock from vlan functions and also dev->xmit_lock
  1549. * from set_multicast.
  1550. */
  1551. static void
  1552. bnx2_set_rx_mode(struct net_device *dev)
  1553. {
  1554. struct bnx2 *bp = dev->priv;
  1555. u32 rx_mode, sort_mode;
  1556. int i;
  1557. spin_lock_bh(&bp->phy_lock);
  1558. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  1559. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  1560. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  1561. #ifdef BCM_VLAN
  1562. if (!bp->vlgrp) {
  1563. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1564. }
  1565. #else
  1566. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1567. #endif
  1568. if (dev->flags & IFF_PROMISC) {
  1569. /* Promiscuous mode. */
  1570. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  1571. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN;
  1572. }
  1573. else if (dev->flags & IFF_ALLMULTI) {
  1574. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1575. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1576. 0xffffffff);
  1577. }
  1578. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  1579. }
  1580. else {
  1581. /* Accept one or more multicast(s). */
  1582. struct dev_mc_list *mclist;
  1583. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  1584. u32 regidx;
  1585. u32 bit;
  1586. u32 crc;
  1587. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  1588. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  1589. i++, mclist = mclist->next) {
  1590. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  1591. bit = crc & 0xff;
  1592. regidx = (bit & 0xe0) >> 5;
  1593. bit &= 0x1f;
  1594. mc_filter[regidx] |= (1 << bit);
  1595. }
  1596. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1597. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1598. mc_filter[i]);
  1599. }
  1600. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  1601. }
  1602. if (rx_mode != bp->rx_mode) {
  1603. bp->rx_mode = rx_mode;
  1604. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  1605. }
  1606. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  1607. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  1608. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  1609. spin_unlock_bh(&bp->phy_lock);
  1610. }
  1611. static void
  1612. load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
  1613. u32 rv2p_proc)
  1614. {
  1615. int i;
  1616. u32 val;
  1617. for (i = 0; i < rv2p_code_len; i += 8) {
  1618. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, *rv2p_code);
  1619. rv2p_code++;
  1620. REG_WR(bp, BNX2_RV2P_INSTR_LOW, *rv2p_code);
  1621. rv2p_code++;
  1622. if (rv2p_proc == RV2P_PROC1) {
  1623. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  1624. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  1625. }
  1626. else {
  1627. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  1628. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  1629. }
  1630. }
  1631. /* Reset the processor, un-stall is done later. */
  1632. if (rv2p_proc == RV2P_PROC1) {
  1633. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  1634. }
  1635. else {
  1636. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  1637. }
  1638. }
  1639. static void
  1640. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  1641. {
  1642. u32 offset;
  1643. u32 val;
  1644. /* Halt the CPU. */
  1645. val = REG_RD_IND(bp, cpu_reg->mode);
  1646. val |= cpu_reg->mode_value_halt;
  1647. REG_WR_IND(bp, cpu_reg->mode, val);
  1648. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  1649. /* Load the Text area. */
  1650. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  1651. if (fw->text) {
  1652. int j;
  1653. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  1654. REG_WR_IND(bp, offset, fw->text[j]);
  1655. }
  1656. }
  1657. /* Load the Data area. */
  1658. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  1659. if (fw->data) {
  1660. int j;
  1661. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  1662. REG_WR_IND(bp, offset, fw->data[j]);
  1663. }
  1664. }
  1665. /* Load the SBSS area. */
  1666. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  1667. if (fw->sbss) {
  1668. int j;
  1669. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  1670. REG_WR_IND(bp, offset, fw->sbss[j]);
  1671. }
  1672. }
  1673. /* Load the BSS area. */
  1674. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  1675. if (fw->bss) {
  1676. int j;
  1677. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  1678. REG_WR_IND(bp, offset, fw->bss[j]);
  1679. }
  1680. }
  1681. /* Load the Read-Only area. */
  1682. offset = cpu_reg->spad_base +
  1683. (fw->rodata_addr - cpu_reg->mips_view_base);
  1684. if (fw->rodata) {
  1685. int j;
  1686. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  1687. REG_WR_IND(bp, offset, fw->rodata[j]);
  1688. }
  1689. }
  1690. /* Clear the pre-fetch instruction. */
  1691. REG_WR_IND(bp, cpu_reg->inst, 0);
  1692. REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
  1693. /* Start the CPU. */
  1694. val = REG_RD_IND(bp, cpu_reg->mode);
  1695. val &= ~cpu_reg->mode_value_halt;
  1696. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  1697. REG_WR_IND(bp, cpu_reg->mode, val);
  1698. }
  1699. static void
  1700. bnx2_init_cpus(struct bnx2 *bp)
  1701. {
  1702. struct cpu_reg cpu_reg;
  1703. struct fw_info fw;
  1704. /* Initialize the RV2P processor. */
  1705. load_rv2p_fw(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), RV2P_PROC1);
  1706. load_rv2p_fw(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), RV2P_PROC2);
  1707. /* Initialize the RX Processor. */
  1708. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  1709. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  1710. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  1711. cpu_reg.state = BNX2_RXP_CPU_STATE;
  1712. cpu_reg.state_value_clear = 0xffffff;
  1713. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  1714. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  1715. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  1716. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  1717. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  1718. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  1719. cpu_reg.mips_view_base = 0x8000000;
  1720. fw.ver_major = bnx2_RXP_b06FwReleaseMajor;
  1721. fw.ver_minor = bnx2_RXP_b06FwReleaseMinor;
  1722. fw.ver_fix = bnx2_RXP_b06FwReleaseFix;
  1723. fw.start_addr = bnx2_RXP_b06FwStartAddr;
  1724. fw.text_addr = bnx2_RXP_b06FwTextAddr;
  1725. fw.text_len = bnx2_RXP_b06FwTextLen;
  1726. fw.text_index = 0;
  1727. fw.text = bnx2_RXP_b06FwText;
  1728. fw.data_addr = bnx2_RXP_b06FwDataAddr;
  1729. fw.data_len = bnx2_RXP_b06FwDataLen;
  1730. fw.data_index = 0;
  1731. fw.data = bnx2_RXP_b06FwData;
  1732. fw.sbss_addr = bnx2_RXP_b06FwSbssAddr;
  1733. fw.sbss_len = bnx2_RXP_b06FwSbssLen;
  1734. fw.sbss_index = 0;
  1735. fw.sbss = bnx2_RXP_b06FwSbss;
  1736. fw.bss_addr = bnx2_RXP_b06FwBssAddr;
  1737. fw.bss_len = bnx2_RXP_b06FwBssLen;
  1738. fw.bss_index = 0;
  1739. fw.bss = bnx2_RXP_b06FwBss;
  1740. fw.rodata_addr = bnx2_RXP_b06FwRodataAddr;
  1741. fw.rodata_len = bnx2_RXP_b06FwRodataLen;
  1742. fw.rodata_index = 0;
  1743. fw.rodata = bnx2_RXP_b06FwRodata;
  1744. load_cpu_fw(bp, &cpu_reg, &fw);
  1745. /* Initialize the TX Processor. */
  1746. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  1747. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  1748. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  1749. cpu_reg.state = BNX2_TXP_CPU_STATE;
  1750. cpu_reg.state_value_clear = 0xffffff;
  1751. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  1752. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  1753. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  1754. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  1755. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  1756. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  1757. cpu_reg.mips_view_base = 0x8000000;
  1758. fw.ver_major = bnx2_TXP_b06FwReleaseMajor;
  1759. fw.ver_minor = bnx2_TXP_b06FwReleaseMinor;
  1760. fw.ver_fix = bnx2_TXP_b06FwReleaseFix;
  1761. fw.start_addr = bnx2_TXP_b06FwStartAddr;
  1762. fw.text_addr = bnx2_TXP_b06FwTextAddr;
  1763. fw.text_len = bnx2_TXP_b06FwTextLen;
  1764. fw.text_index = 0;
  1765. fw.text = bnx2_TXP_b06FwText;
  1766. fw.data_addr = bnx2_TXP_b06FwDataAddr;
  1767. fw.data_len = bnx2_TXP_b06FwDataLen;
  1768. fw.data_index = 0;
  1769. fw.data = bnx2_TXP_b06FwData;
  1770. fw.sbss_addr = bnx2_TXP_b06FwSbssAddr;
  1771. fw.sbss_len = bnx2_TXP_b06FwSbssLen;
  1772. fw.sbss_index = 0;
  1773. fw.sbss = bnx2_TXP_b06FwSbss;
  1774. fw.bss_addr = bnx2_TXP_b06FwBssAddr;
  1775. fw.bss_len = bnx2_TXP_b06FwBssLen;
  1776. fw.bss_index = 0;
  1777. fw.bss = bnx2_TXP_b06FwBss;
  1778. fw.rodata_addr = bnx2_TXP_b06FwRodataAddr;
  1779. fw.rodata_len = bnx2_TXP_b06FwRodataLen;
  1780. fw.rodata_index = 0;
  1781. fw.rodata = bnx2_TXP_b06FwRodata;
  1782. load_cpu_fw(bp, &cpu_reg, &fw);
  1783. /* Initialize the TX Patch-up Processor. */
  1784. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  1785. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  1786. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  1787. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  1788. cpu_reg.state_value_clear = 0xffffff;
  1789. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  1790. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  1791. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  1792. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  1793. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  1794. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  1795. cpu_reg.mips_view_base = 0x8000000;
  1796. fw.ver_major = bnx2_TPAT_b06FwReleaseMajor;
  1797. fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor;
  1798. fw.ver_fix = bnx2_TPAT_b06FwReleaseFix;
  1799. fw.start_addr = bnx2_TPAT_b06FwStartAddr;
  1800. fw.text_addr = bnx2_TPAT_b06FwTextAddr;
  1801. fw.text_len = bnx2_TPAT_b06FwTextLen;
  1802. fw.text_index = 0;
  1803. fw.text = bnx2_TPAT_b06FwText;
  1804. fw.data_addr = bnx2_TPAT_b06FwDataAddr;
  1805. fw.data_len = bnx2_TPAT_b06FwDataLen;
  1806. fw.data_index = 0;
  1807. fw.data = bnx2_TPAT_b06FwData;
  1808. fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr;
  1809. fw.sbss_len = bnx2_TPAT_b06FwSbssLen;
  1810. fw.sbss_index = 0;
  1811. fw.sbss = bnx2_TPAT_b06FwSbss;
  1812. fw.bss_addr = bnx2_TPAT_b06FwBssAddr;
  1813. fw.bss_len = bnx2_TPAT_b06FwBssLen;
  1814. fw.bss_index = 0;
  1815. fw.bss = bnx2_TPAT_b06FwBss;
  1816. fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr;
  1817. fw.rodata_len = bnx2_TPAT_b06FwRodataLen;
  1818. fw.rodata_index = 0;
  1819. fw.rodata = bnx2_TPAT_b06FwRodata;
  1820. load_cpu_fw(bp, &cpu_reg, &fw);
  1821. /* Initialize the Completion Processor. */
  1822. cpu_reg.mode = BNX2_COM_CPU_MODE;
  1823. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  1824. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  1825. cpu_reg.state = BNX2_COM_CPU_STATE;
  1826. cpu_reg.state_value_clear = 0xffffff;
  1827. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  1828. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  1829. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  1830. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  1831. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  1832. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  1833. cpu_reg.mips_view_base = 0x8000000;
  1834. fw.ver_major = bnx2_COM_b06FwReleaseMajor;
  1835. fw.ver_minor = bnx2_COM_b06FwReleaseMinor;
  1836. fw.ver_fix = bnx2_COM_b06FwReleaseFix;
  1837. fw.start_addr = bnx2_COM_b06FwStartAddr;
  1838. fw.text_addr = bnx2_COM_b06FwTextAddr;
  1839. fw.text_len = bnx2_COM_b06FwTextLen;
  1840. fw.text_index = 0;
  1841. fw.text = bnx2_COM_b06FwText;
  1842. fw.data_addr = bnx2_COM_b06FwDataAddr;
  1843. fw.data_len = bnx2_COM_b06FwDataLen;
  1844. fw.data_index = 0;
  1845. fw.data = bnx2_COM_b06FwData;
  1846. fw.sbss_addr = bnx2_COM_b06FwSbssAddr;
  1847. fw.sbss_len = bnx2_COM_b06FwSbssLen;
  1848. fw.sbss_index = 0;
  1849. fw.sbss = bnx2_COM_b06FwSbss;
  1850. fw.bss_addr = bnx2_COM_b06FwBssAddr;
  1851. fw.bss_len = bnx2_COM_b06FwBssLen;
  1852. fw.bss_index = 0;
  1853. fw.bss = bnx2_COM_b06FwBss;
  1854. fw.rodata_addr = bnx2_COM_b06FwRodataAddr;
  1855. fw.rodata_len = bnx2_COM_b06FwRodataLen;
  1856. fw.rodata_index = 0;
  1857. fw.rodata = bnx2_COM_b06FwRodata;
  1858. load_cpu_fw(bp, &cpu_reg, &fw);
  1859. }
  1860. static int
  1861. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  1862. {
  1863. u16 pmcsr;
  1864. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  1865. switch (state) {
  1866. case PCI_D0: {
  1867. u32 val;
  1868. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  1869. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  1870. PCI_PM_CTRL_PME_STATUS);
  1871. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  1872. /* delay required during transition out of D3hot */
  1873. msleep(20);
  1874. val = REG_RD(bp, BNX2_EMAC_MODE);
  1875. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  1876. val &= ~BNX2_EMAC_MODE_MPKT;
  1877. REG_WR(bp, BNX2_EMAC_MODE, val);
  1878. val = REG_RD(bp, BNX2_RPM_CONFIG);
  1879. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  1880. REG_WR(bp, BNX2_RPM_CONFIG, val);
  1881. break;
  1882. }
  1883. case PCI_D3hot: {
  1884. int i;
  1885. u32 val, wol_msg;
  1886. if (bp->wol) {
  1887. u32 advertising;
  1888. u8 autoneg;
  1889. autoneg = bp->autoneg;
  1890. advertising = bp->advertising;
  1891. bp->autoneg = AUTONEG_SPEED;
  1892. bp->advertising = ADVERTISED_10baseT_Half |
  1893. ADVERTISED_10baseT_Full |
  1894. ADVERTISED_100baseT_Half |
  1895. ADVERTISED_100baseT_Full |
  1896. ADVERTISED_Autoneg;
  1897. bnx2_setup_copper_phy(bp);
  1898. bp->autoneg = autoneg;
  1899. bp->advertising = advertising;
  1900. bnx2_set_mac_addr(bp);
  1901. val = REG_RD(bp, BNX2_EMAC_MODE);
  1902. /* Enable port mode. */
  1903. val &= ~BNX2_EMAC_MODE_PORT;
  1904. val |= BNX2_EMAC_MODE_PORT_MII |
  1905. BNX2_EMAC_MODE_MPKT_RCVD |
  1906. BNX2_EMAC_MODE_ACPI_RCVD |
  1907. BNX2_EMAC_MODE_FORCE_LINK |
  1908. BNX2_EMAC_MODE_MPKT;
  1909. REG_WR(bp, BNX2_EMAC_MODE, val);
  1910. /* receive all multicast */
  1911. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1912. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1913. 0xffffffff);
  1914. }
  1915. REG_WR(bp, BNX2_EMAC_RX_MODE,
  1916. BNX2_EMAC_RX_MODE_SORT_MODE);
  1917. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  1918. BNX2_RPM_SORT_USER0_MC_EN;
  1919. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  1920. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  1921. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  1922. BNX2_RPM_SORT_USER0_ENA);
  1923. /* Need to enable EMAC and RPM for WOL. */
  1924. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1925. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  1926. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  1927. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  1928. val = REG_RD(bp, BNX2_RPM_CONFIG);
  1929. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  1930. REG_WR(bp, BNX2_RPM_CONFIG, val);
  1931. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  1932. }
  1933. else {
  1934. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  1935. }
  1936. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg);
  1937. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  1938. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  1939. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  1940. if (bp->wol)
  1941. pmcsr |= 3;
  1942. }
  1943. else {
  1944. pmcsr |= 3;
  1945. }
  1946. if (bp->wol) {
  1947. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  1948. }
  1949. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  1950. pmcsr);
  1951. /* No more memory access after this point until
  1952. * device is brought back to D0.
  1953. */
  1954. udelay(50);
  1955. break;
  1956. }
  1957. default:
  1958. return -EINVAL;
  1959. }
  1960. return 0;
  1961. }
  1962. static int
  1963. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  1964. {
  1965. u32 val;
  1966. int j;
  1967. /* Request access to the flash interface. */
  1968. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  1969. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  1970. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  1971. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  1972. break;
  1973. udelay(5);
  1974. }
  1975. if (j >= NVRAM_TIMEOUT_COUNT)
  1976. return -EBUSY;
  1977. return 0;
  1978. }
  1979. static int
  1980. bnx2_release_nvram_lock(struct bnx2 *bp)
  1981. {
  1982. int j;
  1983. u32 val;
  1984. /* Relinquish nvram interface. */
  1985. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  1986. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  1987. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  1988. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  1989. break;
  1990. udelay(5);
  1991. }
  1992. if (j >= NVRAM_TIMEOUT_COUNT)
  1993. return -EBUSY;
  1994. return 0;
  1995. }
  1996. static int
  1997. bnx2_enable_nvram_write(struct bnx2 *bp)
  1998. {
  1999. u32 val;
  2000. val = REG_RD(bp, BNX2_MISC_CFG);
  2001. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  2002. if (!bp->flash_info->buffered) {
  2003. int j;
  2004. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2005. REG_WR(bp, BNX2_NVM_COMMAND,
  2006. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  2007. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2008. udelay(5);
  2009. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2010. if (val & BNX2_NVM_COMMAND_DONE)
  2011. break;
  2012. }
  2013. if (j >= NVRAM_TIMEOUT_COUNT)
  2014. return -EBUSY;
  2015. }
  2016. return 0;
  2017. }
  2018. static void
  2019. bnx2_disable_nvram_write(struct bnx2 *bp)
  2020. {
  2021. u32 val;
  2022. val = REG_RD(bp, BNX2_MISC_CFG);
  2023. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  2024. }
  2025. static void
  2026. bnx2_enable_nvram_access(struct bnx2 *bp)
  2027. {
  2028. u32 val;
  2029. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2030. /* Enable both bits, even on read. */
  2031. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2032. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  2033. }
  2034. static void
  2035. bnx2_disable_nvram_access(struct bnx2 *bp)
  2036. {
  2037. u32 val;
  2038. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2039. /* Disable both bits, even after read. */
  2040. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2041. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  2042. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  2043. }
  2044. static int
  2045. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  2046. {
  2047. u32 cmd;
  2048. int j;
  2049. if (bp->flash_info->buffered)
  2050. /* Buffered flash, no erase needed */
  2051. return 0;
  2052. /* Build an erase command */
  2053. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  2054. BNX2_NVM_COMMAND_DOIT;
  2055. /* Need to clear DONE bit separately. */
  2056. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2057. /* Address of the NVRAM to read from. */
  2058. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2059. /* Issue an erase command. */
  2060. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2061. /* Wait for completion. */
  2062. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2063. u32 val;
  2064. udelay(5);
  2065. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2066. if (val & BNX2_NVM_COMMAND_DONE)
  2067. break;
  2068. }
  2069. if (j >= NVRAM_TIMEOUT_COUNT)
  2070. return -EBUSY;
  2071. return 0;
  2072. }
  2073. static int
  2074. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  2075. {
  2076. u32 cmd;
  2077. int j;
  2078. /* Build the command word. */
  2079. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  2080. /* Calculate an offset of a buffered flash. */
  2081. if (bp->flash_info->buffered) {
  2082. offset = ((offset / bp->flash_info->page_size) <<
  2083. bp->flash_info->page_bits) +
  2084. (offset % bp->flash_info->page_size);
  2085. }
  2086. /* Need to clear DONE bit separately. */
  2087. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2088. /* Address of the NVRAM to read from. */
  2089. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2090. /* Issue a read command. */
  2091. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2092. /* Wait for completion. */
  2093. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2094. u32 val;
  2095. udelay(5);
  2096. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2097. if (val & BNX2_NVM_COMMAND_DONE) {
  2098. val = REG_RD(bp, BNX2_NVM_READ);
  2099. val = be32_to_cpu(val);
  2100. memcpy(ret_val, &val, 4);
  2101. break;
  2102. }
  2103. }
  2104. if (j >= NVRAM_TIMEOUT_COUNT)
  2105. return -EBUSY;
  2106. return 0;
  2107. }
  2108. static int
  2109. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  2110. {
  2111. u32 cmd, val32;
  2112. int j;
  2113. /* Build the command word. */
  2114. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  2115. /* Calculate an offset of a buffered flash. */
  2116. if (bp->flash_info->buffered) {
  2117. offset = ((offset / bp->flash_info->page_size) <<
  2118. bp->flash_info->page_bits) +
  2119. (offset % bp->flash_info->page_size);
  2120. }
  2121. /* Need to clear DONE bit separately. */
  2122. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2123. memcpy(&val32, val, 4);
  2124. val32 = cpu_to_be32(val32);
  2125. /* Write the data. */
  2126. REG_WR(bp, BNX2_NVM_WRITE, val32);
  2127. /* Address of the NVRAM to write to. */
  2128. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2129. /* Issue the write command. */
  2130. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2131. /* Wait for completion. */
  2132. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2133. udelay(5);
  2134. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  2135. break;
  2136. }
  2137. if (j >= NVRAM_TIMEOUT_COUNT)
  2138. return -EBUSY;
  2139. return 0;
  2140. }
  2141. static int
  2142. bnx2_init_nvram(struct bnx2 *bp)
  2143. {
  2144. u32 val;
  2145. int j, entry_count, rc;
  2146. struct flash_spec *flash;
  2147. /* Determine the selected interface. */
  2148. val = REG_RD(bp, BNX2_NVM_CFG1);
  2149. entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
  2150. rc = 0;
  2151. if (val & 0x40000000) {
  2152. /* Flash interface has been reconfigured */
  2153. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2154. j++, flash++) {
  2155. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  2156. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  2157. bp->flash_info = flash;
  2158. break;
  2159. }
  2160. }
  2161. }
  2162. else {
  2163. u32 mask;
  2164. /* Not yet been reconfigured */
  2165. if (val & (1 << 23))
  2166. mask = FLASH_BACKUP_STRAP_MASK;
  2167. else
  2168. mask = FLASH_STRAP_MASK;
  2169. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2170. j++, flash++) {
  2171. if ((val & mask) == (flash->strapping & mask)) {
  2172. bp->flash_info = flash;
  2173. /* Request access to the flash interface. */
  2174. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2175. return rc;
  2176. /* Enable access to flash interface */
  2177. bnx2_enable_nvram_access(bp);
  2178. /* Reconfigure the flash interface */
  2179. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  2180. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  2181. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  2182. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  2183. /* Disable access to flash interface */
  2184. bnx2_disable_nvram_access(bp);
  2185. bnx2_release_nvram_lock(bp);
  2186. break;
  2187. }
  2188. }
  2189. } /* if (val & 0x40000000) */
  2190. if (j == entry_count) {
  2191. bp->flash_info = NULL;
  2192. printk(KERN_ALERT "Unknown flash/EEPROM type.\n");
  2193. rc = -ENODEV;
  2194. }
  2195. return rc;
  2196. }
  2197. static int
  2198. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  2199. int buf_size)
  2200. {
  2201. int rc = 0;
  2202. u32 cmd_flags, offset32, len32, extra;
  2203. if (buf_size == 0)
  2204. return 0;
  2205. /* Request access to the flash interface. */
  2206. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2207. return rc;
  2208. /* Enable access to flash interface */
  2209. bnx2_enable_nvram_access(bp);
  2210. len32 = buf_size;
  2211. offset32 = offset;
  2212. extra = 0;
  2213. cmd_flags = 0;
  2214. if (offset32 & 3) {
  2215. u8 buf[4];
  2216. u32 pre_len;
  2217. offset32 &= ~3;
  2218. pre_len = 4 - (offset & 3);
  2219. if (pre_len >= len32) {
  2220. pre_len = len32;
  2221. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2222. BNX2_NVM_COMMAND_LAST;
  2223. }
  2224. else {
  2225. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2226. }
  2227. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2228. if (rc)
  2229. return rc;
  2230. memcpy(ret_buf, buf + (offset & 3), pre_len);
  2231. offset32 += 4;
  2232. ret_buf += pre_len;
  2233. len32 -= pre_len;
  2234. }
  2235. if (len32 & 3) {
  2236. extra = 4 - (len32 & 3);
  2237. len32 = (len32 + 4) & ~3;
  2238. }
  2239. if (len32 == 4) {
  2240. u8 buf[4];
  2241. if (cmd_flags)
  2242. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2243. else
  2244. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2245. BNX2_NVM_COMMAND_LAST;
  2246. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2247. memcpy(ret_buf, buf, 4 - extra);
  2248. }
  2249. else if (len32 > 0) {
  2250. u8 buf[4];
  2251. /* Read the first word. */
  2252. if (cmd_flags)
  2253. cmd_flags = 0;
  2254. else
  2255. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2256. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  2257. /* Advance to the next dword. */
  2258. offset32 += 4;
  2259. ret_buf += 4;
  2260. len32 -= 4;
  2261. while (len32 > 4 && rc == 0) {
  2262. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  2263. /* Advance to the next dword. */
  2264. offset32 += 4;
  2265. ret_buf += 4;
  2266. len32 -= 4;
  2267. }
  2268. if (rc)
  2269. return rc;
  2270. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2271. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2272. memcpy(ret_buf, buf, 4 - extra);
  2273. }
  2274. /* Disable access to flash interface */
  2275. bnx2_disable_nvram_access(bp);
  2276. bnx2_release_nvram_lock(bp);
  2277. return rc;
  2278. }
  2279. static int
  2280. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  2281. int buf_size)
  2282. {
  2283. u32 written, offset32, len32;
  2284. u8 *buf, start[4], end[4];
  2285. int rc = 0;
  2286. int align_start, align_end;
  2287. buf = data_buf;
  2288. offset32 = offset;
  2289. len32 = buf_size;
  2290. align_start = align_end = 0;
  2291. if ((align_start = (offset32 & 3))) {
  2292. offset32 &= ~3;
  2293. len32 += align_start;
  2294. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  2295. return rc;
  2296. }
  2297. if (len32 & 3) {
  2298. if ((len32 > 4) || !align_start) {
  2299. align_end = 4 - (len32 & 3);
  2300. len32 += align_end;
  2301. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
  2302. end, 4))) {
  2303. return rc;
  2304. }
  2305. }
  2306. }
  2307. if (align_start || align_end) {
  2308. buf = kmalloc(len32, GFP_KERNEL);
  2309. if (buf == 0)
  2310. return -ENOMEM;
  2311. if (align_start) {
  2312. memcpy(buf, start, 4);
  2313. }
  2314. if (align_end) {
  2315. memcpy(buf + len32 - 4, end, 4);
  2316. }
  2317. memcpy(buf + align_start, data_buf, buf_size);
  2318. }
  2319. written = 0;
  2320. while ((written < len32) && (rc == 0)) {
  2321. u32 page_start, page_end, data_start, data_end;
  2322. u32 addr, cmd_flags;
  2323. int i;
  2324. u8 flash_buffer[264];
  2325. /* Find the page_start addr */
  2326. page_start = offset32 + written;
  2327. page_start -= (page_start % bp->flash_info->page_size);
  2328. /* Find the page_end addr */
  2329. page_end = page_start + bp->flash_info->page_size;
  2330. /* Find the data_start addr */
  2331. data_start = (written == 0) ? offset32 : page_start;
  2332. /* Find the data_end addr */
  2333. data_end = (page_end > offset32 + len32) ?
  2334. (offset32 + len32) : page_end;
  2335. /* Request access to the flash interface. */
  2336. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2337. goto nvram_write_end;
  2338. /* Enable access to flash interface */
  2339. bnx2_enable_nvram_access(bp);
  2340. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2341. if (bp->flash_info->buffered == 0) {
  2342. int j;
  2343. /* Read the whole page into the buffer
  2344. * (non-buffer flash only) */
  2345. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  2346. if (j == (bp->flash_info->page_size - 4)) {
  2347. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2348. }
  2349. rc = bnx2_nvram_read_dword(bp,
  2350. page_start + j,
  2351. &flash_buffer[j],
  2352. cmd_flags);
  2353. if (rc)
  2354. goto nvram_write_end;
  2355. cmd_flags = 0;
  2356. }
  2357. }
  2358. /* Enable writes to flash interface (unlock write-protect) */
  2359. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  2360. goto nvram_write_end;
  2361. /* Erase the page */
  2362. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  2363. goto nvram_write_end;
  2364. /* Re-enable the write again for the actual write */
  2365. bnx2_enable_nvram_write(bp);
  2366. /* Loop to write back the buffer data from page_start to
  2367. * data_start */
  2368. i = 0;
  2369. if (bp->flash_info->buffered == 0) {
  2370. for (addr = page_start; addr < data_start;
  2371. addr += 4, i += 4) {
  2372. rc = bnx2_nvram_write_dword(bp, addr,
  2373. &flash_buffer[i], cmd_flags);
  2374. if (rc != 0)
  2375. goto nvram_write_end;
  2376. cmd_flags = 0;
  2377. }
  2378. }
  2379. /* Loop to write the new data from data_start to data_end */
  2380. for (addr = data_start; addr < data_end; addr += 4, i++) {
  2381. if ((addr == page_end - 4) ||
  2382. ((bp->flash_info->buffered) &&
  2383. (addr == data_end - 4))) {
  2384. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2385. }
  2386. rc = bnx2_nvram_write_dword(bp, addr, buf,
  2387. cmd_flags);
  2388. if (rc != 0)
  2389. goto nvram_write_end;
  2390. cmd_flags = 0;
  2391. buf += 4;
  2392. }
  2393. /* Loop to write back the buffer data from data_end
  2394. * to page_end */
  2395. if (bp->flash_info->buffered == 0) {
  2396. for (addr = data_end; addr < page_end;
  2397. addr += 4, i += 4) {
  2398. if (addr == page_end-4) {
  2399. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2400. }
  2401. rc = bnx2_nvram_write_dword(bp, addr,
  2402. &flash_buffer[i], cmd_flags);
  2403. if (rc != 0)
  2404. goto nvram_write_end;
  2405. cmd_flags = 0;
  2406. }
  2407. }
  2408. /* Disable writes to flash interface (lock write-protect) */
  2409. bnx2_disable_nvram_write(bp);
  2410. /* Disable access to flash interface */
  2411. bnx2_disable_nvram_access(bp);
  2412. bnx2_release_nvram_lock(bp);
  2413. /* Increment written */
  2414. written += data_end - data_start;
  2415. }
  2416. nvram_write_end:
  2417. if (align_start || align_end)
  2418. kfree(buf);
  2419. return rc;
  2420. }
  2421. static int
  2422. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  2423. {
  2424. u32 val;
  2425. int i, rc = 0;
  2426. /* Wait for the current PCI transaction to complete before
  2427. * issuing a reset. */
  2428. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  2429. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  2430. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  2431. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  2432. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  2433. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  2434. udelay(5);
  2435. /* Deposit a driver reset signature so the firmware knows that
  2436. * this is a soft reset. */
  2437. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
  2438. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  2439. bp->fw_timed_out = 0;
  2440. /* Wait for the firmware to tell us it is ok to issue a reset. */
  2441. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code);
  2442. /* Do a dummy read to force the chip to complete all current transaction
  2443. * before we issue a reset. */
  2444. val = REG_RD(bp, BNX2_MISC_ID);
  2445. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2446. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  2447. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  2448. /* Chip reset. */
  2449. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  2450. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2451. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  2452. msleep(15);
  2453. /* Reset takes approximate 30 usec */
  2454. for (i = 0; i < 10; i++) {
  2455. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  2456. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2457. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
  2458. break;
  2459. }
  2460. udelay(10);
  2461. }
  2462. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2463. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  2464. printk(KERN_ERR PFX "Chip reset did not complete\n");
  2465. return -EBUSY;
  2466. }
  2467. /* Make sure byte swapping is properly configured. */
  2468. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  2469. if (val != 0x01020304) {
  2470. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  2471. return -ENODEV;
  2472. }
  2473. bp->fw_timed_out = 0;
  2474. /* Wait for the firmware to finish its initialization. */
  2475. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code);
  2476. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2477. /* Adjust the voltage regular to two steps lower. The default
  2478. * of this register is 0x0000000e. */
  2479. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  2480. /* Remove bad rbuf memory from the free pool. */
  2481. rc = bnx2_alloc_bad_rbuf(bp);
  2482. }
  2483. return rc;
  2484. }
  2485. static int
  2486. bnx2_init_chip(struct bnx2 *bp)
  2487. {
  2488. u32 val;
  2489. /* Make sure the interrupt is not active. */
  2490. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2491. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  2492. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  2493. #ifdef __BIG_ENDIAN
  2494. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  2495. #endif
  2496. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  2497. DMA_READ_CHANS << 12 |
  2498. DMA_WRITE_CHANS << 16;
  2499. val |= (0x2 << 20) | (1 << 11);
  2500. if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz = 133))
  2501. val |= (1 << 23);
  2502. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  2503. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
  2504. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  2505. REG_WR(bp, BNX2_DMA_CONFIG, val);
  2506. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2507. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  2508. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  2509. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  2510. }
  2511. if (bp->flags & PCIX_FLAG) {
  2512. u16 val16;
  2513. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  2514. &val16);
  2515. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  2516. val16 & ~PCI_X_CMD_ERO);
  2517. }
  2518. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2519. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  2520. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  2521. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  2522. /* Initialize context mapping and zero out the quick contexts. The
  2523. * context block must have already been enabled. */
  2524. bnx2_init_context(bp);
  2525. bnx2_init_cpus(bp);
  2526. bnx2_init_nvram(bp);
  2527. bnx2_set_mac_addr(bp);
  2528. val = REG_RD(bp, BNX2_MQ_CONFIG);
  2529. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  2530. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  2531. REG_WR(bp, BNX2_MQ_CONFIG, val);
  2532. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  2533. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  2534. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  2535. val = (BCM_PAGE_BITS - 8) << 24;
  2536. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  2537. /* Configure page size. */
  2538. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  2539. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  2540. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  2541. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  2542. val = bp->mac_addr[0] +
  2543. (bp->mac_addr[1] << 8) +
  2544. (bp->mac_addr[2] << 16) +
  2545. bp->mac_addr[3] +
  2546. (bp->mac_addr[4] << 8) +
  2547. (bp->mac_addr[5] << 16);
  2548. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  2549. /* Program the MTU. Also include 4 bytes for CRC32. */
  2550. val = bp->dev->mtu + ETH_HLEN + 4;
  2551. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  2552. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  2553. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  2554. bp->last_status_idx = 0;
  2555. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  2556. /* Set up how to generate a link change interrupt. */
  2557. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2558. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  2559. (u64) bp->status_blk_mapping & 0xffffffff);
  2560. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  2561. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  2562. (u64) bp->stats_blk_mapping & 0xffffffff);
  2563. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  2564. (u64) bp->stats_blk_mapping >> 32);
  2565. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  2566. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  2567. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  2568. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  2569. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  2570. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  2571. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  2572. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  2573. REG_WR(bp, BNX2_HC_COM_TICKS,
  2574. (bp->com_ticks_int << 16) | bp->com_ticks);
  2575. REG_WR(bp, BNX2_HC_CMD_TICKS,
  2576. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  2577. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
  2578. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  2579. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  2580. REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
  2581. else {
  2582. REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
  2583. BNX2_HC_CONFIG_TX_TMR_MODE |
  2584. BNX2_HC_CONFIG_COLLECT_STATS);
  2585. }
  2586. /* Clear internal stats counters. */
  2587. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  2588. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
  2589. /* Initialize the receive filter. */
  2590. bnx2_set_rx_mode(bp->dev);
  2591. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET);
  2592. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
  2593. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  2594. udelay(20);
  2595. return 0;
  2596. }
  2597. static void
  2598. bnx2_init_tx_ring(struct bnx2 *bp)
  2599. {
  2600. struct tx_bd *txbd;
  2601. u32 val;
  2602. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  2603. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  2604. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  2605. bp->tx_prod = 0;
  2606. bp->tx_cons = 0;
  2607. bp->tx_prod_bseq = 0;
  2608. val = BNX2_L2CTX_TYPE_TYPE_L2;
  2609. val |= BNX2_L2CTX_TYPE_SIZE_L2;
  2610. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val);
  2611. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2;
  2612. val |= 8 << 16;
  2613. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val);
  2614. val = (u64) bp->tx_desc_mapping >> 32;
  2615. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val);
  2616. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  2617. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val);
  2618. }
  2619. static void
  2620. bnx2_init_rx_ring(struct bnx2 *bp)
  2621. {
  2622. struct rx_bd *rxbd;
  2623. int i;
  2624. u16 prod, ring_prod;
  2625. u32 val;
  2626. /* 8 for CRC and VLAN */
  2627. bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  2628. /* 8 for alignment */
  2629. bp->rx_buf_size = bp->rx_buf_use_size + 8;
  2630. ring_prod = prod = bp->rx_prod = 0;
  2631. bp->rx_cons = 0;
  2632. bp->rx_prod_bseq = 0;
  2633. rxbd = &bp->rx_desc_ring[0];
  2634. for (i = 0; i < MAX_RX_DESC_CNT; i++, rxbd++) {
  2635. rxbd->rx_bd_len = bp->rx_buf_use_size;
  2636. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  2637. }
  2638. rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping >> 32;
  2639. rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping & 0xffffffff;
  2640. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  2641. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  2642. val |= 0x02 << 8;
  2643. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
  2644. val = (u64) bp->rx_desc_mapping >> 32;
  2645. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
  2646. val = (u64) bp->rx_desc_mapping & 0xffffffff;
  2647. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
  2648. for ( ;ring_prod < bp->rx_ring_size; ) {
  2649. if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
  2650. break;
  2651. }
  2652. prod = NEXT_RX_BD(prod);
  2653. ring_prod = RX_RING_IDX(prod);
  2654. }
  2655. bp->rx_prod = prod;
  2656. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  2657. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  2658. }
  2659. static void
  2660. bnx2_free_tx_skbs(struct bnx2 *bp)
  2661. {
  2662. int i;
  2663. if (bp->tx_buf_ring == NULL)
  2664. return;
  2665. for (i = 0; i < TX_DESC_CNT; ) {
  2666. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  2667. struct sk_buff *skb = tx_buf->skb;
  2668. int j, last;
  2669. if (skb == NULL) {
  2670. i++;
  2671. continue;
  2672. }
  2673. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2674. skb_headlen(skb), PCI_DMA_TODEVICE);
  2675. tx_buf->skb = NULL;
  2676. last = skb_shinfo(skb)->nr_frags;
  2677. for (j = 0; j < last; j++) {
  2678. tx_buf = &bp->tx_buf_ring[i + j + 1];
  2679. pci_unmap_page(bp->pdev,
  2680. pci_unmap_addr(tx_buf, mapping),
  2681. skb_shinfo(skb)->frags[j].size,
  2682. PCI_DMA_TODEVICE);
  2683. }
  2684. dev_kfree_skb_any(skb);
  2685. i += j + 1;
  2686. }
  2687. }
  2688. static void
  2689. bnx2_free_rx_skbs(struct bnx2 *bp)
  2690. {
  2691. int i;
  2692. if (bp->rx_buf_ring == NULL)
  2693. return;
  2694. for (i = 0; i < RX_DESC_CNT; i++) {
  2695. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  2696. struct sk_buff *skb = rx_buf->skb;
  2697. if (skb == 0)
  2698. continue;
  2699. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  2700. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  2701. rx_buf->skb = NULL;
  2702. dev_kfree_skb_any(skb);
  2703. }
  2704. }
  2705. static void
  2706. bnx2_free_skbs(struct bnx2 *bp)
  2707. {
  2708. bnx2_free_tx_skbs(bp);
  2709. bnx2_free_rx_skbs(bp);
  2710. }
  2711. static int
  2712. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  2713. {
  2714. int rc;
  2715. rc = bnx2_reset_chip(bp, reset_code);
  2716. bnx2_free_skbs(bp);
  2717. if (rc)
  2718. return rc;
  2719. bnx2_init_chip(bp);
  2720. bnx2_init_tx_ring(bp);
  2721. bnx2_init_rx_ring(bp);
  2722. return 0;
  2723. }
  2724. static int
  2725. bnx2_init_nic(struct bnx2 *bp)
  2726. {
  2727. int rc;
  2728. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  2729. return rc;
  2730. bnx2_init_phy(bp);
  2731. bnx2_set_link(bp);
  2732. return 0;
  2733. }
  2734. static int
  2735. bnx2_test_registers(struct bnx2 *bp)
  2736. {
  2737. int ret;
  2738. int i;
  2739. static struct {
  2740. u16 offset;
  2741. u16 flags;
  2742. u32 rw_mask;
  2743. u32 ro_mask;
  2744. } reg_tbl[] = {
  2745. { 0x006c, 0, 0x00000000, 0x0000003f },
  2746. { 0x0090, 0, 0xffffffff, 0x00000000 },
  2747. { 0x0094, 0, 0x00000000, 0x00000000 },
  2748. { 0x0404, 0, 0x00003f00, 0x00000000 },
  2749. { 0x0418, 0, 0x00000000, 0xffffffff },
  2750. { 0x041c, 0, 0x00000000, 0xffffffff },
  2751. { 0x0420, 0, 0x00000000, 0x80ffffff },
  2752. { 0x0424, 0, 0x00000000, 0x00000000 },
  2753. { 0x0428, 0, 0x00000000, 0x00000001 },
  2754. { 0x0450, 0, 0x00000000, 0x0000ffff },
  2755. { 0x0454, 0, 0x00000000, 0xffffffff },
  2756. { 0x0458, 0, 0x00000000, 0xffffffff },
  2757. { 0x0808, 0, 0x00000000, 0xffffffff },
  2758. { 0x0854, 0, 0x00000000, 0xffffffff },
  2759. { 0x0868, 0, 0x00000000, 0x77777777 },
  2760. { 0x086c, 0, 0x00000000, 0x77777777 },
  2761. { 0x0870, 0, 0x00000000, 0x77777777 },
  2762. { 0x0874, 0, 0x00000000, 0x77777777 },
  2763. { 0x0c00, 0, 0x00000000, 0x00000001 },
  2764. { 0x0c04, 0, 0x00000000, 0x03ff0001 },
  2765. { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
  2766. { 0x0c0c, 0, 0x00ffffff, 0x00000000 },
  2767. { 0x0c30, 0, 0x00000000, 0xffffffff },
  2768. { 0x0c34, 0, 0x00000000, 0xffffffff },
  2769. { 0x0c38, 0, 0x00000000, 0xffffffff },
  2770. { 0x0c3c, 0, 0x00000000, 0xffffffff },
  2771. { 0x0c40, 0, 0x00000000, 0xffffffff },
  2772. { 0x0c44, 0, 0x00000000, 0xffffffff },
  2773. { 0x0c48, 0, 0x00000000, 0x0007ffff },
  2774. { 0x0c4c, 0, 0x00000000, 0xffffffff },
  2775. { 0x0c50, 0, 0x00000000, 0xffffffff },
  2776. { 0x0c54, 0, 0x00000000, 0xffffffff },
  2777. { 0x0c58, 0, 0x00000000, 0xffffffff },
  2778. { 0x0c5c, 0, 0x00000000, 0xffffffff },
  2779. { 0x0c60, 0, 0x00000000, 0xffffffff },
  2780. { 0x0c64, 0, 0x00000000, 0xffffffff },
  2781. { 0x0c68, 0, 0x00000000, 0xffffffff },
  2782. { 0x0c6c, 0, 0x00000000, 0xffffffff },
  2783. { 0x0c70, 0, 0x00000000, 0xffffffff },
  2784. { 0x0c74, 0, 0x00000000, 0xffffffff },
  2785. { 0x0c78, 0, 0x00000000, 0xffffffff },
  2786. { 0x0c7c, 0, 0x00000000, 0xffffffff },
  2787. { 0x0c80, 0, 0x00000000, 0xffffffff },
  2788. { 0x0c84, 0, 0x00000000, 0xffffffff },
  2789. { 0x0c88, 0, 0x00000000, 0xffffffff },
  2790. { 0x0c8c, 0, 0x00000000, 0xffffffff },
  2791. { 0x0c90, 0, 0x00000000, 0xffffffff },
  2792. { 0x0c94, 0, 0x00000000, 0xffffffff },
  2793. { 0x0c98, 0, 0x00000000, 0xffffffff },
  2794. { 0x0c9c, 0, 0x00000000, 0xffffffff },
  2795. { 0x0ca0, 0, 0x00000000, 0xffffffff },
  2796. { 0x0ca4, 0, 0x00000000, 0xffffffff },
  2797. { 0x0ca8, 0, 0x00000000, 0x0007ffff },
  2798. { 0x0cac, 0, 0x00000000, 0xffffffff },
  2799. { 0x0cb0, 0, 0x00000000, 0xffffffff },
  2800. { 0x0cb4, 0, 0x00000000, 0xffffffff },
  2801. { 0x0cb8, 0, 0x00000000, 0xffffffff },
  2802. { 0x0cbc, 0, 0x00000000, 0xffffffff },
  2803. { 0x0cc0, 0, 0x00000000, 0xffffffff },
  2804. { 0x0cc4, 0, 0x00000000, 0xffffffff },
  2805. { 0x0cc8, 0, 0x00000000, 0xffffffff },
  2806. { 0x0ccc, 0, 0x00000000, 0xffffffff },
  2807. { 0x0cd0, 0, 0x00000000, 0xffffffff },
  2808. { 0x0cd4, 0, 0x00000000, 0xffffffff },
  2809. { 0x0cd8, 0, 0x00000000, 0xffffffff },
  2810. { 0x0cdc, 0, 0x00000000, 0xffffffff },
  2811. { 0x0ce0, 0, 0x00000000, 0xffffffff },
  2812. { 0x0ce4, 0, 0x00000000, 0xffffffff },
  2813. { 0x0ce8, 0, 0x00000000, 0xffffffff },
  2814. { 0x0cec, 0, 0x00000000, 0xffffffff },
  2815. { 0x0cf0, 0, 0x00000000, 0xffffffff },
  2816. { 0x0cf4, 0, 0x00000000, 0xffffffff },
  2817. { 0x0cf8, 0, 0x00000000, 0xffffffff },
  2818. { 0x0cfc, 0, 0x00000000, 0xffffffff },
  2819. { 0x0d00, 0, 0x00000000, 0xffffffff },
  2820. { 0x0d04, 0, 0x00000000, 0xffffffff },
  2821. { 0x1000, 0, 0x00000000, 0x00000001 },
  2822. { 0x1004, 0, 0x00000000, 0x000f0001 },
  2823. { 0x1044, 0, 0x00000000, 0xffc003ff },
  2824. { 0x1080, 0, 0x00000000, 0x0001ffff },
  2825. { 0x1084, 0, 0x00000000, 0xffffffff },
  2826. { 0x1088, 0, 0x00000000, 0xffffffff },
  2827. { 0x108c, 0, 0x00000000, 0xffffffff },
  2828. { 0x1090, 0, 0x00000000, 0xffffffff },
  2829. { 0x1094, 0, 0x00000000, 0xffffffff },
  2830. { 0x1098, 0, 0x00000000, 0xffffffff },
  2831. { 0x109c, 0, 0x00000000, 0xffffffff },
  2832. { 0x10a0, 0, 0x00000000, 0xffffffff },
  2833. { 0x1408, 0, 0x01c00800, 0x00000000 },
  2834. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  2835. { 0x14a8, 0, 0x00000000, 0x000001ff },
  2836. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  2837. { 0x14b0, 0, 0x00000002, 0x00000001 },
  2838. { 0x14b8, 0, 0x00000000, 0x00000000 },
  2839. { 0x14c0, 0, 0x00000000, 0x00000009 },
  2840. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  2841. { 0x14cc, 0, 0x00000000, 0x00000001 },
  2842. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  2843. { 0x1500, 0, 0x00000000, 0xffffffff },
  2844. { 0x1504, 0, 0x00000000, 0xffffffff },
  2845. { 0x1508, 0, 0x00000000, 0xffffffff },
  2846. { 0x150c, 0, 0x00000000, 0xffffffff },
  2847. { 0x1510, 0, 0x00000000, 0xffffffff },
  2848. { 0x1514, 0, 0x00000000, 0xffffffff },
  2849. { 0x1518, 0, 0x00000000, 0xffffffff },
  2850. { 0x151c, 0, 0x00000000, 0xffffffff },
  2851. { 0x1520, 0, 0x00000000, 0xffffffff },
  2852. { 0x1524, 0, 0x00000000, 0xffffffff },
  2853. { 0x1528, 0, 0x00000000, 0xffffffff },
  2854. { 0x152c, 0, 0x00000000, 0xffffffff },
  2855. { 0x1530, 0, 0x00000000, 0xffffffff },
  2856. { 0x1534, 0, 0x00000000, 0xffffffff },
  2857. { 0x1538, 0, 0x00000000, 0xffffffff },
  2858. { 0x153c, 0, 0x00000000, 0xffffffff },
  2859. { 0x1540, 0, 0x00000000, 0xffffffff },
  2860. { 0x1544, 0, 0x00000000, 0xffffffff },
  2861. { 0x1548, 0, 0x00000000, 0xffffffff },
  2862. { 0x154c, 0, 0x00000000, 0xffffffff },
  2863. { 0x1550, 0, 0x00000000, 0xffffffff },
  2864. { 0x1554, 0, 0x00000000, 0xffffffff },
  2865. { 0x1558, 0, 0x00000000, 0xffffffff },
  2866. { 0x1600, 0, 0x00000000, 0xffffffff },
  2867. { 0x1604, 0, 0x00000000, 0xffffffff },
  2868. { 0x1608, 0, 0x00000000, 0xffffffff },
  2869. { 0x160c, 0, 0x00000000, 0xffffffff },
  2870. { 0x1610, 0, 0x00000000, 0xffffffff },
  2871. { 0x1614, 0, 0x00000000, 0xffffffff },
  2872. { 0x1618, 0, 0x00000000, 0xffffffff },
  2873. { 0x161c, 0, 0x00000000, 0xffffffff },
  2874. { 0x1620, 0, 0x00000000, 0xffffffff },
  2875. { 0x1624, 0, 0x00000000, 0xffffffff },
  2876. { 0x1628, 0, 0x00000000, 0xffffffff },
  2877. { 0x162c, 0, 0x00000000, 0xffffffff },
  2878. { 0x1630, 0, 0x00000000, 0xffffffff },
  2879. { 0x1634, 0, 0x00000000, 0xffffffff },
  2880. { 0x1638, 0, 0x00000000, 0xffffffff },
  2881. { 0x163c, 0, 0x00000000, 0xffffffff },
  2882. { 0x1640, 0, 0x00000000, 0xffffffff },
  2883. { 0x1644, 0, 0x00000000, 0xffffffff },
  2884. { 0x1648, 0, 0x00000000, 0xffffffff },
  2885. { 0x164c, 0, 0x00000000, 0xffffffff },
  2886. { 0x1650, 0, 0x00000000, 0xffffffff },
  2887. { 0x1654, 0, 0x00000000, 0xffffffff },
  2888. { 0x1800, 0, 0x00000000, 0x00000001 },
  2889. { 0x1804, 0, 0x00000000, 0x00000003 },
  2890. { 0x1840, 0, 0x00000000, 0xffffffff },
  2891. { 0x1844, 0, 0x00000000, 0xffffffff },
  2892. { 0x1848, 0, 0x00000000, 0xffffffff },
  2893. { 0x184c, 0, 0x00000000, 0xffffffff },
  2894. { 0x1850, 0, 0x00000000, 0xffffffff },
  2895. { 0x1900, 0, 0x7ffbffff, 0x00000000 },
  2896. { 0x1904, 0, 0xffffffff, 0x00000000 },
  2897. { 0x190c, 0, 0xffffffff, 0x00000000 },
  2898. { 0x1914, 0, 0xffffffff, 0x00000000 },
  2899. { 0x191c, 0, 0xffffffff, 0x00000000 },
  2900. { 0x1924, 0, 0xffffffff, 0x00000000 },
  2901. { 0x192c, 0, 0xffffffff, 0x00000000 },
  2902. { 0x1934, 0, 0xffffffff, 0x00000000 },
  2903. { 0x193c, 0, 0xffffffff, 0x00000000 },
  2904. { 0x1944, 0, 0xffffffff, 0x00000000 },
  2905. { 0x194c, 0, 0xffffffff, 0x00000000 },
  2906. { 0x1954, 0, 0xffffffff, 0x00000000 },
  2907. { 0x195c, 0, 0xffffffff, 0x00000000 },
  2908. { 0x1964, 0, 0xffffffff, 0x00000000 },
  2909. { 0x196c, 0, 0xffffffff, 0x00000000 },
  2910. { 0x1974, 0, 0xffffffff, 0x00000000 },
  2911. { 0x197c, 0, 0xffffffff, 0x00000000 },
  2912. { 0x1980, 0, 0x0700ffff, 0x00000000 },
  2913. { 0x1c00, 0, 0x00000000, 0x00000001 },
  2914. { 0x1c04, 0, 0x00000000, 0x00000003 },
  2915. { 0x1c08, 0, 0x0000000f, 0x00000000 },
  2916. { 0x1c40, 0, 0x00000000, 0xffffffff },
  2917. { 0x1c44, 0, 0x00000000, 0xffffffff },
  2918. { 0x1c48, 0, 0x00000000, 0xffffffff },
  2919. { 0x1c4c, 0, 0x00000000, 0xffffffff },
  2920. { 0x1c50, 0, 0x00000000, 0xffffffff },
  2921. { 0x1d00, 0, 0x7ffbffff, 0x00000000 },
  2922. { 0x1d04, 0, 0xffffffff, 0x00000000 },
  2923. { 0x1d0c, 0, 0xffffffff, 0x00000000 },
  2924. { 0x1d14, 0, 0xffffffff, 0x00000000 },
  2925. { 0x1d1c, 0, 0xffffffff, 0x00000000 },
  2926. { 0x1d24, 0, 0xffffffff, 0x00000000 },
  2927. { 0x1d2c, 0, 0xffffffff, 0x00000000 },
  2928. { 0x1d34, 0, 0xffffffff, 0x00000000 },
  2929. { 0x1d3c, 0, 0xffffffff, 0x00000000 },
  2930. { 0x1d44, 0, 0xffffffff, 0x00000000 },
  2931. { 0x1d4c, 0, 0xffffffff, 0x00000000 },
  2932. { 0x1d54, 0, 0xffffffff, 0x00000000 },
  2933. { 0x1d5c, 0, 0xffffffff, 0x00000000 },
  2934. { 0x1d64, 0, 0xffffffff, 0x00000000 },
  2935. { 0x1d6c, 0, 0xffffffff, 0x00000000 },
  2936. { 0x1d74, 0, 0xffffffff, 0x00000000 },
  2937. { 0x1d7c, 0, 0xffffffff, 0x00000000 },
  2938. { 0x1d80, 0, 0x0700ffff, 0x00000000 },
  2939. { 0x2004, 0, 0x00000000, 0x0337000f },
  2940. { 0x2008, 0, 0xffffffff, 0x00000000 },
  2941. { 0x200c, 0, 0xffffffff, 0x00000000 },
  2942. { 0x2010, 0, 0xffffffff, 0x00000000 },
  2943. { 0x2014, 0, 0x801fff80, 0x00000000 },
  2944. { 0x2018, 0, 0x000003ff, 0x00000000 },
  2945. { 0x2800, 0, 0x00000000, 0x00000001 },
  2946. { 0x2804, 0, 0x00000000, 0x00003f01 },
  2947. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  2948. { 0x2810, 0, 0xffff0000, 0x00000000 },
  2949. { 0x2814, 0, 0xffff0000, 0x00000000 },
  2950. { 0x2818, 0, 0xffff0000, 0x00000000 },
  2951. { 0x281c, 0, 0xffff0000, 0x00000000 },
  2952. { 0x2834, 0, 0xffffffff, 0x00000000 },
  2953. { 0x2840, 0, 0x00000000, 0xffffffff },
  2954. { 0x2844, 0, 0x00000000, 0xffffffff },
  2955. { 0x2848, 0, 0xffffffff, 0x00000000 },
  2956. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  2957. { 0x2c00, 0, 0x00000000, 0x00000011 },
  2958. { 0x2c04, 0, 0x00000000, 0x00030007 },
  2959. { 0x3000, 0, 0x00000000, 0x00000001 },
  2960. { 0x3004, 0, 0x00000000, 0x007007ff },
  2961. { 0x3008, 0, 0x00000003, 0x00000000 },
  2962. { 0x300c, 0, 0xffffffff, 0x00000000 },
  2963. { 0x3010, 0, 0xffffffff, 0x00000000 },
  2964. { 0x3014, 0, 0xffffffff, 0x00000000 },
  2965. { 0x3034, 0, 0xffffffff, 0x00000000 },
  2966. { 0x3038, 0, 0xffffffff, 0x00000000 },
  2967. { 0x3050, 0, 0x00000001, 0x00000000 },
  2968. { 0x3c00, 0, 0x00000000, 0x00000001 },
  2969. { 0x3c04, 0, 0x00000000, 0x00070000 },
  2970. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  2971. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  2972. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  2973. { 0x3c14, 0, 0x00000000, 0xffffffff },
  2974. { 0x3c18, 0, 0x00000000, 0xffffffff },
  2975. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  2976. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  2977. { 0x3c24, 0, 0xffffffff, 0x00000000 },
  2978. { 0x3c28, 0, 0xffffffff, 0x00000000 },
  2979. { 0x3c2c, 0, 0xffffffff, 0x00000000 },
  2980. { 0x3c30, 0, 0xffffffff, 0x00000000 },
  2981. { 0x3c34, 0, 0xffffffff, 0x00000000 },
  2982. { 0x3c38, 0, 0xffffffff, 0x00000000 },
  2983. { 0x3c3c, 0, 0xffffffff, 0x00000000 },
  2984. { 0x3c40, 0, 0xffffffff, 0x00000000 },
  2985. { 0x3c44, 0, 0xffffffff, 0x00000000 },
  2986. { 0x3c48, 0, 0xffffffff, 0x00000000 },
  2987. { 0x3c4c, 0, 0xffffffff, 0x00000000 },
  2988. { 0x3c50, 0, 0xffffffff, 0x00000000 },
  2989. { 0x3c54, 0, 0xffffffff, 0x00000000 },
  2990. { 0x3c58, 0, 0xffffffff, 0x00000000 },
  2991. { 0x3c5c, 0, 0xffffffff, 0x00000000 },
  2992. { 0x3c60, 0, 0xffffffff, 0x00000000 },
  2993. { 0x3c64, 0, 0xffffffff, 0x00000000 },
  2994. { 0x3c68, 0, 0xffffffff, 0x00000000 },
  2995. { 0x3c6c, 0, 0xffffffff, 0x00000000 },
  2996. { 0x3c70, 0, 0xffffffff, 0x00000000 },
  2997. { 0x3c74, 0, 0x0000003f, 0x00000000 },
  2998. { 0x3c78, 0, 0x00000000, 0x00000000 },
  2999. { 0x3c7c, 0, 0x00000000, 0x00000000 },
  3000. { 0x3c80, 0, 0x3fffffff, 0x00000000 },
  3001. { 0x3c84, 0, 0x0000003f, 0x00000000 },
  3002. { 0x3c88, 0, 0x00000000, 0xffffffff },
  3003. { 0x3c8c, 0, 0x00000000, 0xffffffff },
  3004. { 0x4000, 0, 0x00000000, 0x00000001 },
  3005. { 0x4004, 0, 0x00000000, 0x00030000 },
  3006. { 0x4008, 0, 0x00000ff0, 0x00000000 },
  3007. { 0x400c, 0, 0xffffffff, 0x00000000 },
  3008. { 0x4088, 0, 0x00000000, 0x00070303 },
  3009. { 0x4400, 0, 0x00000000, 0x00000001 },
  3010. { 0x4404, 0, 0x00000000, 0x00003f01 },
  3011. { 0x4408, 0, 0x7fff00ff, 0x00000000 },
  3012. { 0x440c, 0, 0xffffffff, 0x00000000 },
  3013. { 0x4410, 0, 0xffff, 0x0000 },
  3014. { 0x4414, 0, 0xffff, 0x0000 },
  3015. { 0x4418, 0, 0xffff, 0x0000 },
  3016. { 0x441c, 0, 0xffff, 0x0000 },
  3017. { 0x4428, 0, 0xffffffff, 0x00000000 },
  3018. { 0x442c, 0, 0xffffffff, 0x00000000 },
  3019. { 0x4430, 0, 0xffffffff, 0x00000000 },
  3020. { 0x4434, 0, 0xffffffff, 0x00000000 },
  3021. { 0x4438, 0, 0xffffffff, 0x00000000 },
  3022. { 0x443c, 0, 0xffffffff, 0x00000000 },
  3023. { 0x4440, 0, 0xffffffff, 0x00000000 },
  3024. { 0x4444, 0, 0xffffffff, 0x00000000 },
  3025. { 0x4c00, 0, 0x00000000, 0x00000001 },
  3026. { 0x4c04, 0, 0x00000000, 0x0000003f },
  3027. { 0x4c08, 0, 0xffffffff, 0x00000000 },
  3028. { 0x4c0c, 0, 0x0007fc00, 0x00000000 },
  3029. { 0x4c10, 0, 0x80003fe0, 0x00000000 },
  3030. { 0x4c14, 0, 0xffffffff, 0x00000000 },
  3031. { 0x4c44, 0, 0x00000000, 0x9fff9fff },
  3032. { 0x4c48, 0, 0x00000000, 0xb3009fff },
  3033. { 0x4c4c, 0, 0x00000000, 0x77f33b30 },
  3034. { 0x4c50, 0, 0x00000000, 0xffffffff },
  3035. { 0x5004, 0, 0x00000000, 0x0000007f },
  3036. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  3037. { 0x500c, 0, 0xf800f800, 0x07ff07ff },
  3038. { 0x5400, 0, 0x00000008, 0x00000001 },
  3039. { 0x5404, 0, 0x00000000, 0x0000003f },
  3040. { 0x5408, 0, 0x0000001f, 0x00000000 },
  3041. { 0x540c, 0, 0xffffffff, 0x00000000 },
  3042. { 0x5410, 0, 0xffffffff, 0x00000000 },
  3043. { 0x5414, 0, 0x0000ffff, 0x00000000 },
  3044. { 0x5418, 0, 0x0000ffff, 0x00000000 },
  3045. { 0x541c, 0, 0x0000ffff, 0x00000000 },
  3046. { 0x5420, 0, 0x0000ffff, 0x00000000 },
  3047. { 0x5428, 0, 0x000000ff, 0x00000000 },
  3048. { 0x542c, 0, 0xff00ffff, 0x00000000 },
  3049. { 0x5430, 0, 0x001fff80, 0x00000000 },
  3050. { 0x5438, 0, 0xffffffff, 0x00000000 },
  3051. { 0x543c, 0, 0xffffffff, 0x00000000 },
  3052. { 0x5440, 0, 0xf800f800, 0x07ff07ff },
  3053. { 0x5c00, 0, 0x00000000, 0x00000001 },
  3054. { 0x5c04, 0, 0x00000000, 0x0003000f },
  3055. { 0x5c08, 0, 0x00000003, 0x00000000 },
  3056. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  3057. { 0x5c10, 0, 0x00000000, 0xffffffff },
  3058. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  3059. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  3060. { 0x5c88, 0, 0x00000000, 0x00077373 },
  3061. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  3062. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  3063. { 0x680c, 0, 0xffffffff, 0x00000000 },
  3064. { 0x6810, 0, 0xffffffff, 0x00000000 },
  3065. { 0x6814, 0, 0xffffffff, 0x00000000 },
  3066. { 0x6818, 0, 0xffffffff, 0x00000000 },
  3067. { 0x681c, 0, 0xffffffff, 0x00000000 },
  3068. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  3069. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  3070. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  3071. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  3072. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  3073. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  3074. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  3075. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  3076. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  3077. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  3078. { 0x684c, 0, 0xffffffff, 0x00000000 },
  3079. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  3080. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  3081. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  3082. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  3083. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  3084. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  3085. { 0xffff, 0, 0x00000000, 0x00000000 },
  3086. };
  3087. ret = 0;
  3088. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  3089. u32 offset, rw_mask, ro_mask, save_val, val;
  3090. offset = (u32) reg_tbl[i].offset;
  3091. rw_mask = reg_tbl[i].rw_mask;
  3092. ro_mask = reg_tbl[i].ro_mask;
  3093. save_val = readl(bp->regview + offset);
  3094. writel(0, bp->regview + offset);
  3095. val = readl(bp->regview + offset);
  3096. if ((val & rw_mask) != 0) {
  3097. goto reg_test_err;
  3098. }
  3099. if ((val & ro_mask) != (save_val & ro_mask)) {
  3100. goto reg_test_err;
  3101. }
  3102. writel(0xffffffff, bp->regview + offset);
  3103. val = readl(bp->regview + offset);
  3104. if ((val & rw_mask) != rw_mask) {
  3105. goto reg_test_err;
  3106. }
  3107. if ((val & ro_mask) != (save_val & ro_mask)) {
  3108. goto reg_test_err;
  3109. }
  3110. writel(save_val, bp->regview + offset);
  3111. continue;
  3112. reg_test_err:
  3113. writel(save_val, bp->regview + offset);
  3114. ret = -ENODEV;
  3115. break;
  3116. }
  3117. return ret;
  3118. }
  3119. static int
  3120. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  3121. {
  3122. static u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  3123. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  3124. int i;
  3125. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  3126. u32 offset;
  3127. for (offset = 0; offset < size; offset += 4) {
  3128. REG_WR_IND(bp, start + offset, test_pattern[i]);
  3129. if (REG_RD_IND(bp, start + offset) !=
  3130. test_pattern[i]) {
  3131. return -ENODEV;
  3132. }
  3133. }
  3134. }
  3135. return 0;
  3136. }
  3137. static int
  3138. bnx2_test_memory(struct bnx2 *bp)
  3139. {
  3140. int ret = 0;
  3141. int i;
  3142. static struct {
  3143. u32 offset;
  3144. u32 len;
  3145. } mem_tbl[] = {
  3146. { 0x60000, 0x4000 },
  3147. { 0xa0000, 0x3000 },
  3148. { 0xe0000, 0x4000 },
  3149. { 0x120000, 0x4000 },
  3150. { 0x1a0000, 0x4000 },
  3151. { 0x160000, 0x4000 },
  3152. { 0xffffffff, 0 },
  3153. };
  3154. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  3155. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  3156. mem_tbl[i].len)) != 0) {
  3157. return ret;
  3158. }
  3159. }
  3160. return ret;
  3161. }
  3162. static int
  3163. bnx2_test_loopback(struct bnx2 *bp)
  3164. {
  3165. unsigned int pkt_size, num_pkts, i;
  3166. struct sk_buff *skb, *rx_skb;
  3167. unsigned char *packet;
  3168. u16 rx_start_idx, rx_idx, send_idx;
  3169. u32 send_bseq, val;
  3170. dma_addr_t map;
  3171. struct tx_bd *txbd;
  3172. struct sw_bd *rx_buf;
  3173. struct l2_fhdr *rx_hdr;
  3174. int ret = -ENODEV;
  3175. if (!netif_running(bp->dev))
  3176. return -ENODEV;
  3177. bp->loopback = MAC_LOOPBACK;
  3178. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_DIAG);
  3179. bnx2_set_mac_loopback(bp);
  3180. pkt_size = 1514;
  3181. skb = dev_alloc_skb(pkt_size);
  3182. packet = skb_put(skb, pkt_size);
  3183. memcpy(packet, bp->mac_addr, 6);
  3184. memset(packet + 6, 0x0, 8);
  3185. for (i = 14; i < pkt_size; i++)
  3186. packet[i] = (unsigned char) (i & 0xff);
  3187. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  3188. PCI_DMA_TODEVICE);
  3189. val = REG_RD(bp, BNX2_HC_COMMAND);
  3190. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3191. REG_RD(bp, BNX2_HC_COMMAND);
  3192. udelay(5);
  3193. rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3194. send_idx = 0;
  3195. send_bseq = 0;
  3196. num_pkts = 0;
  3197. txbd = &bp->tx_desc_ring[send_idx];
  3198. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  3199. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  3200. txbd->tx_bd_mss_nbytes = pkt_size;
  3201. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  3202. num_pkts++;
  3203. send_idx = NEXT_TX_BD(send_idx);
  3204. send_bseq += pkt_size;
  3205. REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, send_idx);
  3206. REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, send_bseq);
  3207. udelay(100);
  3208. val = REG_RD(bp, BNX2_HC_COMMAND);
  3209. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3210. REG_RD(bp, BNX2_HC_COMMAND);
  3211. udelay(5);
  3212. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  3213. dev_kfree_skb_irq(skb);
  3214. if (bp->status_blk->status_tx_quick_consumer_index0 != send_idx) {
  3215. goto loopback_test_done;
  3216. }
  3217. rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3218. if (rx_idx != rx_start_idx + num_pkts) {
  3219. goto loopback_test_done;
  3220. }
  3221. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  3222. rx_skb = rx_buf->skb;
  3223. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  3224. skb_reserve(rx_skb, bp->rx_offset);
  3225. pci_dma_sync_single_for_cpu(bp->pdev,
  3226. pci_unmap_addr(rx_buf, mapping),
  3227. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  3228. if (rx_hdr->l2_fhdr_errors &
  3229. (L2_FHDR_ERRORS_BAD_CRC |
  3230. L2_FHDR_ERRORS_PHY_DECODE |
  3231. L2_FHDR_ERRORS_ALIGNMENT |
  3232. L2_FHDR_ERRORS_TOO_SHORT |
  3233. L2_FHDR_ERRORS_GIANT_FRAME)) {
  3234. goto loopback_test_done;
  3235. }
  3236. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  3237. goto loopback_test_done;
  3238. }
  3239. for (i = 14; i < pkt_size; i++) {
  3240. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  3241. goto loopback_test_done;
  3242. }
  3243. }
  3244. ret = 0;
  3245. loopback_test_done:
  3246. bp->loopback = 0;
  3247. return ret;
  3248. }
  3249. #define NVRAM_SIZE 0x200
  3250. #define CRC32_RESIDUAL 0xdebb20e3
  3251. static int
  3252. bnx2_test_nvram(struct bnx2 *bp)
  3253. {
  3254. u32 buf[NVRAM_SIZE / 4];
  3255. u8 *data = (u8 *) buf;
  3256. int rc = 0;
  3257. u32 magic, csum;
  3258. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  3259. goto test_nvram_done;
  3260. magic = be32_to_cpu(buf[0]);
  3261. if (magic != 0x669955aa) {
  3262. rc = -ENODEV;
  3263. goto test_nvram_done;
  3264. }
  3265. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  3266. goto test_nvram_done;
  3267. csum = ether_crc_le(0x100, data);
  3268. if (csum != CRC32_RESIDUAL) {
  3269. rc = -ENODEV;
  3270. goto test_nvram_done;
  3271. }
  3272. csum = ether_crc_le(0x100, data + 0x100);
  3273. if (csum != CRC32_RESIDUAL) {
  3274. rc = -ENODEV;
  3275. }
  3276. test_nvram_done:
  3277. return rc;
  3278. }
  3279. static int
  3280. bnx2_test_link(struct bnx2 *bp)
  3281. {
  3282. u32 bmsr;
  3283. spin_lock_bh(&bp->phy_lock);
  3284. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  3285. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  3286. spin_unlock_bh(&bp->phy_lock);
  3287. if (bmsr & BMSR_LSTATUS) {
  3288. return 0;
  3289. }
  3290. return -ENODEV;
  3291. }
  3292. static int
  3293. bnx2_test_intr(struct bnx2 *bp)
  3294. {
  3295. int i;
  3296. u32 val;
  3297. u16 status_idx;
  3298. if (!netif_running(bp->dev))
  3299. return -ENODEV;
  3300. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  3301. /* This register is not touched during run-time. */
  3302. val = REG_RD(bp, BNX2_HC_COMMAND);
  3303. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW);
  3304. REG_RD(bp, BNX2_HC_COMMAND);
  3305. for (i = 0; i < 10; i++) {
  3306. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  3307. status_idx) {
  3308. break;
  3309. }
  3310. msleep_interruptible(10);
  3311. }
  3312. if (i < 10)
  3313. return 0;
  3314. return -ENODEV;
  3315. }
  3316. static void
  3317. bnx2_timer(unsigned long data)
  3318. {
  3319. struct bnx2 *bp = (struct bnx2 *) data;
  3320. u32 msg;
  3321. if (!netif_running(bp->dev))
  3322. return;
  3323. if (atomic_read(&bp->intr_sem) != 0)
  3324. goto bnx2_restart_timer;
  3325. msg = (u32) ++bp->fw_drv_pulse_wr_seq;
  3326. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
  3327. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  3328. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  3329. spin_lock(&bp->phy_lock);
  3330. if (bp->serdes_an_pending) {
  3331. bp->serdes_an_pending--;
  3332. }
  3333. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3334. u32 bmcr;
  3335. bp->current_interval = bp->timer_interval;
  3336. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3337. if (bmcr & BMCR_ANENABLE) {
  3338. u32 phy1, phy2;
  3339. bnx2_write_phy(bp, 0x1c, 0x7c00);
  3340. bnx2_read_phy(bp, 0x1c, &phy1);
  3341. bnx2_write_phy(bp, 0x17, 0x0f01);
  3342. bnx2_read_phy(bp, 0x15, &phy2);
  3343. bnx2_write_phy(bp, 0x17, 0x0f01);
  3344. bnx2_read_phy(bp, 0x15, &phy2);
  3345. if ((phy1 & 0x10) && /* SIGNAL DETECT */
  3346. !(phy2 & 0x20)) { /* no CONFIG */
  3347. bmcr &= ~BMCR_ANENABLE;
  3348. bmcr |= BMCR_SPEED1000 |
  3349. BMCR_FULLDPLX;
  3350. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3351. bp->phy_flags |=
  3352. PHY_PARALLEL_DETECT_FLAG;
  3353. }
  3354. }
  3355. }
  3356. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  3357. (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
  3358. u32 phy2;
  3359. bnx2_write_phy(bp, 0x17, 0x0f01);
  3360. bnx2_read_phy(bp, 0x15, &phy2);
  3361. if (phy2 & 0x20) {
  3362. u32 bmcr;
  3363. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3364. bmcr |= BMCR_ANENABLE;
  3365. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3366. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  3367. }
  3368. }
  3369. else
  3370. bp->current_interval = bp->timer_interval;
  3371. spin_unlock(&bp->phy_lock);
  3372. }
  3373. bnx2_restart_timer:
  3374. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3375. }
  3376. /* Called with rtnl_lock */
  3377. static int
  3378. bnx2_open(struct net_device *dev)
  3379. {
  3380. struct bnx2 *bp = dev->priv;
  3381. int rc;
  3382. bnx2_set_power_state(bp, PCI_D0);
  3383. bnx2_disable_int(bp);
  3384. rc = bnx2_alloc_mem(bp);
  3385. if (rc)
  3386. return rc;
  3387. if ((CHIP_ID(bp) != CHIP_ID_5706_A0) &&
  3388. (CHIP_ID(bp) != CHIP_ID_5706_A1) &&
  3389. !disable_msi) {
  3390. if (pci_enable_msi(bp->pdev) == 0) {
  3391. bp->flags |= USING_MSI_FLAG;
  3392. rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name,
  3393. dev);
  3394. }
  3395. else {
  3396. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3397. SA_SHIRQ, dev->name, dev);
  3398. }
  3399. }
  3400. else {
  3401. rc = request_irq(bp->pdev->irq, bnx2_interrupt, SA_SHIRQ,
  3402. dev->name, dev);
  3403. }
  3404. if (rc) {
  3405. bnx2_free_mem(bp);
  3406. return rc;
  3407. }
  3408. rc = bnx2_init_nic(bp);
  3409. if (rc) {
  3410. free_irq(bp->pdev->irq, dev);
  3411. if (bp->flags & USING_MSI_FLAG) {
  3412. pci_disable_msi(bp->pdev);
  3413. bp->flags &= ~USING_MSI_FLAG;
  3414. }
  3415. bnx2_free_skbs(bp);
  3416. bnx2_free_mem(bp);
  3417. return rc;
  3418. }
  3419. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3420. atomic_set(&bp->intr_sem, 0);
  3421. bnx2_enable_int(bp);
  3422. if (bp->flags & USING_MSI_FLAG) {
  3423. /* Test MSI to make sure it is working
  3424. * If MSI test fails, go back to INTx mode
  3425. */
  3426. if (bnx2_test_intr(bp) != 0) {
  3427. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  3428. " using MSI, switching to INTx mode. Please"
  3429. " report this failure to the PCI maintainer"
  3430. " and include system chipset information.\n",
  3431. bp->dev->name);
  3432. bnx2_disable_int(bp);
  3433. free_irq(bp->pdev->irq, dev);
  3434. pci_disable_msi(bp->pdev);
  3435. bp->flags &= ~USING_MSI_FLAG;
  3436. rc = bnx2_init_nic(bp);
  3437. if (!rc) {
  3438. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3439. SA_SHIRQ, dev->name, dev);
  3440. }
  3441. if (rc) {
  3442. bnx2_free_skbs(bp);
  3443. bnx2_free_mem(bp);
  3444. del_timer_sync(&bp->timer);
  3445. return rc;
  3446. }
  3447. bnx2_enable_int(bp);
  3448. }
  3449. }
  3450. if (bp->flags & USING_MSI_FLAG) {
  3451. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  3452. }
  3453. netif_start_queue(dev);
  3454. return 0;
  3455. }
  3456. static void
  3457. bnx2_reset_task(void *data)
  3458. {
  3459. struct bnx2 *bp = data;
  3460. if (!netif_running(bp->dev))
  3461. return;
  3462. bp->in_reset_task = 1;
  3463. bnx2_netif_stop(bp);
  3464. bnx2_init_nic(bp);
  3465. atomic_set(&bp->intr_sem, 1);
  3466. bnx2_netif_start(bp);
  3467. bp->in_reset_task = 0;
  3468. }
  3469. static void
  3470. bnx2_tx_timeout(struct net_device *dev)
  3471. {
  3472. struct bnx2 *bp = dev->priv;
  3473. /* This allows the netif to be shutdown gracefully before resetting */
  3474. schedule_work(&bp->reset_task);
  3475. }
  3476. #ifdef BCM_VLAN
  3477. /* Called with rtnl_lock */
  3478. static void
  3479. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  3480. {
  3481. struct bnx2 *bp = dev->priv;
  3482. bnx2_netif_stop(bp);
  3483. bp->vlgrp = vlgrp;
  3484. bnx2_set_rx_mode(dev);
  3485. bnx2_netif_start(bp);
  3486. }
  3487. /* Called with rtnl_lock */
  3488. static void
  3489. bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
  3490. {
  3491. struct bnx2 *bp = dev->priv;
  3492. bnx2_netif_stop(bp);
  3493. if (bp->vlgrp)
  3494. bp->vlgrp->vlan_devices[vid] = NULL;
  3495. bnx2_set_rx_mode(dev);
  3496. bnx2_netif_start(bp);
  3497. }
  3498. #endif
  3499. /* Called with dev->xmit_lock.
  3500. * hard_start_xmit is pseudo-lockless - a lock is only required when
  3501. * the tx queue is full. This way, we get the benefit of lockless
  3502. * operations most of the time without the complexities to handle
  3503. * netif_stop_queue/wake_queue race conditions.
  3504. */
  3505. static int
  3506. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  3507. {
  3508. struct bnx2 *bp = dev->priv;
  3509. dma_addr_t mapping;
  3510. struct tx_bd *txbd;
  3511. struct sw_bd *tx_buf;
  3512. u32 len, vlan_tag_flags, last_frag, mss;
  3513. u16 prod, ring_prod;
  3514. int i;
  3515. if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
  3516. netif_stop_queue(dev);
  3517. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  3518. dev->name);
  3519. return NETDEV_TX_BUSY;
  3520. }
  3521. len = skb_headlen(skb);
  3522. prod = bp->tx_prod;
  3523. ring_prod = TX_RING_IDX(prod);
  3524. vlan_tag_flags = 0;
  3525. if (skb->ip_summed == CHECKSUM_HW) {
  3526. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  3527. }
  3528. if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
  3529. vlan_tag_flags |=
  3530. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  3531. }
  3532. #ifdef BCM_TSO
  3533. if ((mss = skb_shinfo(skb)->tso_size) &&
  3534. (skb->len > (bp->dev->mtu + ETH_HLEN))) {
  3535. u32 tcp_opt_len, ip_tcp_len;
  3536. if (skb_header_cloned(skb) &&
  3537. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  3538. dev_kfree_skb(skb);
  3539. return NETDEV_TX_OK;
  3540. }
  3541. tcp_opt_len = ((skb->h.th->doff - 5) * 4);
  3542. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  3543. tcp_opt_len = 0;
  3544. if (skb->h.th->doff > 5) {
  3545. tcp_opt_len = (skb->h.th->doff - 5) << 2;
  3546. }
  3547. ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr);
  3548. skb->nh.iph->check = 0;
  3549. skb->nh.iph->tot_len = ntohs(mss + ip_tcp_len + tcp_opt_len);
  3550. skb->h.th->check =
  3551. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  3552. skb->nh.iph->daddr,
  3553. 0, IPPROTO_TCP, 0);
  3554. if (tcp_opt_len || (skb->nh.iph->ihl > 5)) {
  3555. vlan_tag_flags |= ((skb->nh.iph->ihl - 5) +
  3556. (tcp_opt_len >> 2)) << 8;
  3557. }
  3558. }
  3559. else
  3560. #endif
  3561. {
  3562. mss = 0;
  3563. }
  3564. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  3565. tx_buf = &bp->tx_buf_ring[ring_prod];
  3566. tx_buf->skb = skb;
  3567. pci_unmap_addr_set(tx_buf, mapping, mapping);
  3568. txbd = &bp->tx_desc_ring[ring_prod];
  3569. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3570. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3571. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3572. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  3573. last_frag = skb_shinfo(skb)->nr_frags;
  3574. for (i = 0; i < last_frag; i++) {
  3575. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3576. prod = NEXT_TX_BD(prod);
  3577. ring_prod = TX_RING_IDX(prod);
  3578. txbd = &bp->tx_desc_ring[ring_prod];
  3579. len = frag->size;
  3580. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  3581. len, PCI_DMA_TODEVICE);
  3582. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  3583. mapping, mapping);
  3584. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3585. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3586. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3587. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  3588. }
  3589. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  3590. prod = NEXT_TX_BD(prod);
  3591. bp->tx_prod_bseq += skb->len;
  3592. REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod);
  3593. REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
  3594. mmiowb();
  3595. bp->tx_prod = prod;
  3596. dev->trans_start = jiffies;
  3597. if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
  3598. spin_lock(&bp->tx_lock);
  3599. netif_stop_queue(dev);
  3600. if (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)
  3601. netif_wake_queue(dev);
  3602. spin_unlock(&bp->tx_lock);
  3603. }
  3604. return NETDEV_TX_OK;
  3605. }
  3606. /* Called with rtnl_lock */
  3607. static int
  3608. bnx2_close(struct net_device *dev)
  3609. {
  3610. struct bnx2 *bp = dev->priv;
  3611. u32 reset_code;
  3612. /* Calling flush_scheduled_work() may deadlock because
  3613. * linkwatch_event() may be on the workqueue and it will try to get
  3614. * the rtnl_lock which we are holding.
  3615. */
  3616. while (bp->in_reset_task)
  3617. msleep(1);
  3618. bnx2_netif_stop(bp);
  3619. del_timer_sync(&bp->timer);
  3620. if (bp->wol)
  3621. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3622. else
  3623. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3624. bnx2_reset_chip(bp, reset_code);
  3625. free_irq(bp->pdev->irq, dev);
  3626. if (bp->flags & USING_MSI_FLAG) {
  3627. pci_disable_msi(bp->pdev);
  3628. bp->flags &= ~USING_MSI_FLAG;
  3629. }
  3630. bnx2_free_skbs(bp);
  3631. bnx2_free_mem(bp);
  3632. bp->link_up = 0;
  3633. netif_carrier_off(bp->dev);
  3634. bnx2_set_power_state(bp, PCI_D3hot);
  3635. return 0;
  3636. }
  3637. #define GET_NET_STATS64(ctr) \
  3638. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  3639. (unsigned long) (ctr##_lo)
  3640. #define GET_NET_STATS32(ctr) \
  3641. (ctr##_lo)
  3642. #if (BITS_PER_LONG == 64)
  3643. #define GET_NET_STATS GET_NET_STATS64
  3644. #else
  3645. #define GET_NET_STATS GET_NET_STATS32
  3646. #endif
  3647. static struct net_device_stats *
  3648. bnx2_get_stats(struct net_device *dev)
  3649. {
  3650. struct bnx2 *bp = dev->priv;
  3651. struct statistics_block *stats_blk = bp->stats_blk;
  3652. struct net_device_stats *net_stats = &bp->net_stats;
  3653. if (bp->stats_blk == NULL) {
  3654. return net_stats;
  3655. }
  3656. net_stats->rx_packets =
  3657. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  3658. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  3659. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  3660. net_stats->tx_packets =
  3661. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  3662. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  3663. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  3664. net_stats->rx_bytes =
  3665. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  3666. net_stats->tx_bytes =
  3667. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  3668. net_stats->multicast =
  3669. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  3670. net_stats->collisions =
  3671. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  3672. net_stats->rx_length_errors =
  3673. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  3674. stats_blk->stat_EtherStatsOverrsizePkts);
  3675. net_stats->rx_over_errors =
  3676. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  3677. net_stats->rx_frame_errors =
  3678. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  3679. net_stats->rx_crc_errors =
  3680. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  3681. net_stats->rx_errors = net_stats->rx_length_errors +
  3682. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  3683. net_stats->rx_crc_errors;
  3684. net_stats->tx_aborted_errors =
  3685. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  3686. stats_blk->stat_Dot3StatsLateCollisions);
  3687. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  3688. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  3689. net_stats->tx_carrier_errors = 0;
  3690. else {
  3691. net_stats->tx_carrier_errors =
  3692. (unsigned long)
  3693. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  3694. }
  3695. net_stats->tx_errors =
  3696. (unsigned long)
  3697. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  3698. +
  3699. net_stats->tx_aborted_errors +
  3700. net_stats->tx_carrier_errors;
  3701. return net_stats;
  3702. }
  3703. /* All ethtool functions called with rtnl_lock */
  3704. static int
  3705. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  3706. {
  3707. struct bnx2 *bp = dev->priv;
  3708. cmd->supported = SUPPORTED_Autoneg;
  3709. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3710. cmd->supported |= SUPPORTED_1000baseT_Full |
  3711. SUPPORTED_FIBRE;
  3712. cmd->port = PORT_FIBRE;
  3713. }
  3714. else {
  3715. cmd->supported |= SUPPORTED_10baseT_Half |
  3716. SUPPORTED_10baseT_Full |
  3717. SUPPORTED_100baseT_Half |
  3718. SUPPORTED_100baseT_Full |
  3719. SUPPORTED_1000baseT_Full |
  3720. SUPPORTED_TP;
  3721. cmd->port = PORT_TP;
  3722. }
  3723. cmd->advertising = bp->advertising;
  3724. if (bp->autoneg & AUTONEG_SPEED) {
  3725. cmd->autoneg = AUTONEG_ENABLE;
  3726. }
  3727. else {
  3728. cmd->autoneg = AUTONEG_DISABLE;
  3729. }
  3730. if (netif_carrier_ok(dev)) {
  3731. cmd->speed = bp->line_speed;
  3732. cmd->duplex = bp->duplex;
  3733. }
  3734. else {
  3735. cmd->speed = -1;
  3736. cmd->duplex = -1;
  3737. }
  3738. cmd->transceiver = XCVR_INTERNAL;
  3739. cmd->phy_address = bp->phy_addr;
  3740. return 0;
  3741. }
  3742. static int
  3743. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  3744. {
  3745. struct bnx2 *bp = dev->priv;
  3746. u8 autoneg = bp->autoneg;
  3747. u8 req_duplex = bp->req_duplex;
  3748. u16 req_line_speed = bp->req_line_speed;
  3749. u32 advertising = bp->advertising;
  3750. if (cmd->autoneg == AUTONEG_ENABLE) {
  3751. autoneg |= AUTONEG_SPEED;
  3752. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  3753. /* allow advertising 1 speed */
  3754. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  3755. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  3756. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  3757. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  3758. if (bp->phy_flags & PHY_SERDES_FLAG)
  3759. return -EINVAL;
  3760. advertising = cmd->advertising;
  3761. }
  3762. else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
  3763. advertising = cmd->advertising;
  3764. }
  3765. else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
  3766. return -EINVAL;
  3767. }
  3768. else {
  3769. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3770. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  3771. }
  3772. else {
  3773. advertising = ETHTOOL_ALL_COPPER_SPEED;
  3774. }
  3775. }
  3776. advertising |= ADVERTISED_Autoneg;
  3777. }
  3778. else {
  3779. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3780. if ((cmd->speed != SPEED_1000) ||
  3781. (cmd->duplex != DUPLEX_FULL)) {
  3782. return -EINVAL;
  3783. }
  3784. }
  3785. else if (cmd->speed == SPEED_1000) {
  3786. return -EINVAL;
  3787. }
  3788. autoneg &= ~AUTONEG_SPEED;
  3789. req_line_speed = cmd->speed;
  3790. req_duplex = cmd->duplex;
  3791. advertising = 0;
  3792. }
  3793. bp->autoneg = autoneg;
  3794. bp->advertising = advertising;
  3795. bp->req_line_speed = req_line_speed;
  3796. bp->req_duplex = req_duplex;
  3797. spin_lock_bh(&bp->phy_lock);
  3798. bnx2_setup_phy(bp);
  3799. spin_unlock_bh(&bp->phy_lock);
  3800. return 0;
  3801. }
  3802. static void
  3803. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3804. {
  3805. struct bnx2 *bp = dev->priv;
  3806. strcpy(info->driver, DRV_MODULE_NAME);
  3807. strcpy(info->version, DRV_MODULE_VERSION);
  3808. strcpy(info->bus_info, pci_name(bp->pdev));
  3809. info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
  3810. info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
  3811. info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
  3812. info->fw_version[6] = (bp->fw_ver & 0xff) + '0';
  3813. info->fw_version[1] = info->fw_version[3] = info->fw_version[5] = '.';
  3814. info->fw_version[7] = 0;
  3815. }
  3816. static void
  3817. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  3818. {
  3819. struct bnx2 *bp = dev->priv;
  3820. if (bp->flags & NO_WOL_FLAG) {
  3821. wol->supported = 0;
  3822. wol->wolopts = 0;
  3823. }
  3824. else {
  3825. wol->supported = WAKE_MAGIC;
  3826. if (bp->wol)
  3827. wol->wolopts = WAKE_MAGIC;
  3828. else
  3829. wol->wolopts = 0;
  3830. }
  3831. memset(&wol->sopass, 0, sizeof(wol->sopass));
  3832. }
  3833. static int
  3834. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  3835. {
  3836. struct bnx2 *bp = dev->priv;
  3837. if (wol->wolopts & ~WAKE_MAGIC)
  3838. return -EINVAL;
  3839. if (wol->wolopts & WAKE_MAGIC) {
  3840. if (bp->flags & NO_WOL_FLAG)
  3841. return -EINVAL;
  3842. bp->wol = 1;
  3843. }
  3844. else {
  3845. bp->wol = 0;
  3846. }
  3847. return 0;
  3848. }
  3849. static int
  3850. bnx2_nway_reset(struct net_device *dev)
  3851. {
  3852. struct bnx2 *bp = dev->priv;
  3853. u32 bmcr;
  3854. if (!(bp->autoneg & AUTONEG_SPEED)) {
  3855. return -EINVAL;
  3856. }
  3857. spin_lock_bh(&bp->phy_lock);
  3858. /* Force a link down visible on the other side */
  3859. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3860. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  3861. spin_unlock_bh(&bp->phy_lock);
  3862. msleep(20);
  3863. spin_lock_bh(&bp->phy_lock);
  3864. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  3865. bp->current_interval = SERDES_AN_TIMEOUT;
  3866. bp->serdes_an_pending = 1;
  3867. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3868. }
  3869. }
  3870. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3871. bmcr &= ~BMCR_LOOPBACK;
  3872. bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  3873. spin_unlock_bh(&bp->phy_lock);
  3874. return 0;
  3875. }
  3876. static int
  3877. bnx2_get_eeprom_len(struct net_device *dev)
  3878. {
  3879. struct bnx2 *bp = dev->priv;
  3880. if (bp->flash_info == 0)
  3881. return 0;
  3882. return (int) bp->flash_info->total_size;
  3883. }
  3884. static int
  3885. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  3886. u8 *eebuf)
  3887. {
  3888. struct bnx2 *bp = dev->priv;
  3889. int rc;
  3890. if (eeprom->offset > bp->flash_info->total_size)
  3891. return -EINVAL;
  3892. if ((eeprom->offset + eeprom->len) > bp->flash_info->total_size)
  3893. eeprom->len = bp->flash_info->total_size - eeprom->offset;
  3894. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  3895. return rc;
  3896. }
  3897. static int
  3898. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  3899. u8 *eebuf)
  3900. {
  3901. struct bnx2 *bp = dev->priv;
  3902. int rc;
  3903. if (eeprom->offset > bp->flash_info->total_size)
  3904. return -EINVAL;
  3905. if ((eeprom->offset + eeprom->len) > bp->flash_info->total_size)
  3906. eeprom->len = bp->flash_info->total_size - eeprom->offset;
  3907. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  3908. return rc;
  3909. }
  3910. static int
  3911. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  3912. {
  3913. struct bnx2 *bp = dev->priv;
  3914. memset(coal, 0, sizeof(struct ethtool_coalesce));
  3915. coal->rx_coalesce_usecs = bp->rx_ticks;
  3916. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  3917. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  3918. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  3919. coal->tx_coalesce_usecs = bp->tx_ticks;
  3920. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  3921. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  3922. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  3923. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  3924. return 0;
  3925. }
  3926. static int
  3927. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  3928. {
  3929. struct bnx2 *bp = dev->priv;
  3930. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  3931. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  3932. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  3933. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  3934. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  3935. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  3936. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  3937. if (bp->rx_quick_cons_trip_int > 0xff)
  3938. bp->rx_quick_cons_trip_int = 0xff;
  3939. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  3940. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  3941. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  3942. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  3943. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  3944. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  3945. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  3946. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  3947. 0xff;
  3948. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  3949. if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
  3950. bp->stats_ticks &= 0xffff00;
  3951. if (netif_running(bp->dev)) {
  3952. bnx2_netif_stop(bp);
  3953. bnx2_init_nic(bp);
  3954. bnx2_netif_start(bp);
  3955. }
  3956. return 0;
  3957. }
  3958. static void
  3959. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  3960. {
  3961. struct bnx2 *bp = dev->priv;
  3962. ering->rx_max_pending = MAX_RX_DESC_CNT;
  3963. ering->rx_mini_max_pending = 0;
  3964. ering->rx_jumbo_max_pending = 0;
  3965. ering->rx_pending = bp->rx_ring_size;
  3966. ering->rx_mini_pending = 0;
  3967. ering->rx_jumbo_pending = 0;
  3968. ering->tx_max_pending = MAX_TX_DESC_CNT;
  3969. ering->tx_pending = bp->tx_ring_size;
  3970. }
  3971. static int
  3972. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  3973. {
  3974. struct bnx2 *bp = dev->priv;
  3975. if ((ering->rx_pending > MAX_RX_DESC_CNT) ||
  3976. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  3977. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  3978. return -EINVAL;
  3979. }
  3980. bp->rx_ring_size = ering->rx_pending;
  3981. bp->tx_ring_size = ering->tx_pending;
  3982. if (netif_running(bp->dev)) {
  3983. bnx2_netif_stop(bp);
  3984. bnx2_init_nic(bp);
  3985. bnx2_netif_start(bp);
  3986. }
  3987. return 0;
  3988. }
  3989. static void
  3990. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  3991. {
  3992. struct bnx2 *bp = dev->priv;
  3993. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  3994. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  3995. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  3996. }
  3997. static int
  3998. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  3999. {
  4000. struct bnx2 *bp = dev->priv;
  4001. bp->req_flow_ctrl = 0;
  4002. if (epause->rx_pause)
  4003. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  4004. if (epause->tx_pause)
  4005. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  4006. if (epause->autoneg) {
  4007. bp->autoneg |= AUTONEG_FLOW_CTRL;
  4008. }
  4009. else {
  4010. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  4011. }
  4012. spin_lock_bh(&bp->phy_lock);
  4013. bnx2_setup_phy(bp);
  4014. spin_unlock_bh(&bp->phy_lock);
  4015. return 0;
  4016. }
  4017. static u32
  4018. bnx2_get_rx_csum(struct net_device *dev)
  4019. {
  4020. struct bnx2 *bp = dev->priv;
  4021. return bp->rx_csum;
  4022. }
  4023. static int
  4024. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  4025. {
  4026. struct bnx2 *bp = dev->priv;
  4027. bp->rx_csum = data;
  4028. return 0;
  4029. }
  4030. #define BNX2_NUM_STATS 45
  4031. static struct {
  4032. char string[ETH_GSTRING_LEN];
  4033. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  4034. { "rx_bytes" },
  4035. { "rx_error_bytes" },
  4036. { "tx_bytes" },
  4037. { "tx_error_bytes" },
  4038. { "rx_ucast_packets" },
  4039. { "rx_mcast_packets" },
  4040. { "rx_bcast_packets" },
  4041. { "tx_ucast_packets" },
  4042. { "tx_mcast_packets" },
  4043. { "tx_bcast_packets" },
  4044. { "tx_mac_errors" },
  4045. { "tx_carrier_errors" },
  4046. { "rx_crc_errors" },
  4047. { "rx_align_errors" },
  4048. { "tx_single_collisions" },
  4049. { "tx_multi_collisions" },
  4050. { "tx_deferred" },
  4051. { "tx_excess_collisions" },
  4052. { "tx_late_collisions" },
  4053. { "tx_total_collisions" },
  4054. { "rx_fragments" },
  4055. { "rx_jabbers" },
  4056. { "rx_undersize_packets" },
  4057. { "rx_oversize_packets" },
  4058. { "rx_64_byte_packets" },
  4059. { "rx_65_to_127_byte_packets" },
  4060. { "rx_128_to_255_byte_packets" },
  4061. { "rx_256_to_511_byte_packets" },
  4062. { "rx_512_to_1023_byte_packets" },
  4063. { "rx_1024_to_1522_byte_packets" },
  4064. { "rx_1523_to_9022_byte_packets" },
  4065. { "tx_64_byte_packets" },
  4066. { "tx_65_to_127_byte_packets" },
  4067. { "tx_128_to_255_byte_packets" },
  4068. { "tx_256_to_511_byte_packets" },
  4069. { "tx_512_to_1023_byte_packets" },
  4070. { "tx_1024_to_1522_byte_packets" },
  4071. { "tx_1523_to_9022_byte_packets" },
  4072. { "rx_xon_frames" },
  4073. { "rx_xoff_frames" },
  4074. { "tx_xon_frames" },
  4075. { "tx_xoff_frames" },
  4076. { "rx_mac_ctrl_frames" },
  4077. { "rx_filtered_packets" },
  4078. { "rx_discards" },
  4079. };
  4080. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  4081. static unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  4082. STATS_OFFSET32(stat_IfHCInOctets_hi),
  4083. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  4084. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  4085. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  4086. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  4087. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  4088. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  4089. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  4090. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  4091. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  4092. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  4093. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  4094. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  4095. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  4096. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  4097. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  4098. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  4099. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  4100. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  4101. STATS_OFFSET32(stat_EtherStatsCollisions),
  4102. STATS_OFFSET32(stat_EtherStatsFragments),
  4103. STATS_OFFSET32(stat_EtherStatsJabbers),
  4104. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  4105. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  4106. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  4107. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  4108. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  4109. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  4110. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  4111. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  4112. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  4113. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  4114. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  4115. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  4116. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  4117. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  4118. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  4119. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  4120. STATS_OFFSET32(stat_XonPauseFramesReceived),
  4121. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  4122. STATS_OFFSET32(stat_OutXonSent),
  4123. STATS_OFFSET32(stat_OutXoffSent),
  4124. STATS_OFFSET32(stat_MacControlFramesReceived),
  4125. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  4126. STATS_OFFSET32(stat_IfInMBUFDiscards),
  4127. };
  4128. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  4129. * skipped because of errata.
  4130. */
  4131. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  4132. 8,0,8,8,8,8,8,8,8,8,
  4133. 4,0,4,4,4,4,4,4,4,4,
  4134. 4,4,4,4,4,4,4,4,4,4,
  4135. 4,4,4,4,4,4,4,4,4,4,
  4136. 4,4,4,4,4,
  4137. };
  4138. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  4139. 8,0,8,8,8,8,8,8,8,8,
  4140. 4,4,4,4,4,4,4,4,4,4,
  4141. 4,4,4,4,4,4,4,4,4,4,
  4142. 4,4,4,4,4,4,4,4,4,4,
  4143. 4,4,4,4,4,
  4144. };
  4145. #define BNX2_NUM_TESTS 6
  4146. static struct {
  4147. char string[ETH_GSTRING_LEN];
  4148. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  4149. { "register_test (offline)" },
  4150. { "memory_test (offline)" },
  4151. { "loopback_test (offline)" },
  4152. { "nvram_test (online)" },
  4153. { "interrupt_test (online)" },
  4154. { "link_test (online)" },
  4155. };
  4156. static int
  4157. bnx2_self_test_count(struct net_device *dev)
  4158. {
  4159. return BNX2_NUM_TESTS;
  4160. }
  4161. static void
  4162. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  4163. {
  4164. struct bnx2 *bp = dev->priv;
  4165. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  4166. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  4167. bnx2_netif_stop(bp);
  4168. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  4169. bnx2_free_skbs(bp);
  4170. if (bnx2_test_registers(bp) != 0) {
  4171. buf[0] = 1;
  4172. etest->flags |= ETH_TEST_FL_FAILED;
  4173. }
  4174. if (bnx2_test_memory(bp) != 0) {
  4175. buf[1] = 1;
  4176. etest->flags |= ETH_TEST_FL_FAILED;
  4177. }
  4178. if (bnx2_test_loopback(bp) != 0) {
  4179. buf[2] = 1;
  4180. etest->flags |= ETH_TEST_FL_FAILED;
  4181. }
  4182. if (!netif_running(bp->dev)) {
  4183. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4184. }
  4185. else {
  4186. bnx2_init_nic(bp);
  4187. bnx2_netif_start(bp);
  4188. }
  4189. /* wait for link up */
  4190. msleep_interruptible(3000);
  4191. if ((!bp->link_up) && !(bp->phy_flags & PHY_SERDES_FLAG))
  4192. msleep_interruptible(4000);
  4193. }
  4194. if (bnx2_test_nvram(bp) != 0) {
  4195. buf[3] = 1;
  4196. etest->flags |= ETH_TEST_FL_FAILED;
  4197. }
  4198. if (bnx2_test_intr(bp) != 0) {
  4199. buf[4] = 1;
  4200. etest->flags |= ETH_TEST_FL_FAILED;
  4201. }
  4202. if (bnx2_test_link(bp) != 0) {
  4203. buf[5] = 1;
  4204. etest->flags |= ETH_TEST_FL_FAILED;
  4205. }
  4206. }
  4207. static void
  4208. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  4209. {
  4210. switch (stringset) {
  4211. case ETH_SS_STATS:
  4212. memcpy(buf, bnx2_stats_str_arr,
  4213. sizeof(bnx2_stats_str_arr));
  4214. break;
  4215. case ETH_SS_TEST:
  4216. memcpy(buf, bnx2_tests_str_arr,
  4217. sizeof(bnx2_tests_str_arr));
  4218. break;
  4219. }
  4220. }
  4221. static int
  4222. bnx2_get_stats_count(struct net_device *dev)
  4223. {
  4224. return BNX2_NUM_STATS;
  4225. }
  4226. static void
  4227. bnx2_get_ethtool_stats(struct net_device *dev,
  4228. struct ethtool_stats *stats, u64 *buf)
  4229. {
  4230. struct bnx2 *bp = dev->priv;
  4231. int i;
  4232. u32 *hw_stats = (u32 *) bp->stats_blk;
  4233. u8 *stats_len_arr = NULL;
  4234. if (hw_stats == NULL) {
  4235. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  4236. return;
  4237. }
  4238. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  4239. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  4240. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  4241. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4242. stats_len_arr = bnx2_5706_stats_len_arr;
  4243. else
  4244. stats_len_arr = bnx2_5708_stats_len_arr;
  4245. for (i = 0; i < BNX2_NUM_STATS; i++) {
  4246. if (stats_len_arr[i] == 0) {
  4247. /* skip this counter */
  4248. buf[i] = 0;
  4249. continue;
  4250. }
  4251. if (stats_len_arr[i] == 4) {
  4252. /* 4-byte counter */
  4253. buf[i] = (u64)
  4254. *(hw_stats + bnx2_stats_offset_arr[i]);
  4255. continue;
  4256. }
  4257. /* 8-byte counter */
  4258. buf[i] = (((u64) *(hw_stats +
  4259. bnx2_stats_offset_arr[i])) << 32) +
  4260. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  4261. }
  4262. }
  4263. static int
  4264. bnx2_phys_id(struct net_device *dev, u32 data)
  4265. {
  4266. struct bnx2 *bp = dev->priv;
  4267. int i;
  4268. u32 save;
  4269. if (data == 0)
  4270. data = 2;
  4271. save = REG_RD(bp, BNX2_MISC_CFG);
  4272. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  4273. for (i = 0; i < (data * 2); i++) {
  4274. if ((i % 2) == 0) {
  4275. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  4276. }
  4277. else {
  4278. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  4279. BNX2_EMAC_LED_1000MB_OVERRIDE |
  4280. BNX2_EMAC_LED_100MB_OVERRIDE |
  4281. BNX2_EMAC_LED_10MB_OVERRIDE |
  4282. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  4283. BNX2_EMAC_LED_TRAFFIC);
  4284. }
  4285. msleep_interruptible(500);
  4286. if (signal_pending(current))
  4287. break;
  4288. }
  4289. REG_WR(bp, BNX2_EMAC_LED, 0);
  4290. REG_WR(bp, BNX2_MISC_CFG, save);
  4291. return 0;
  4292. }
  4293. static struct ethtool_ops bnx2_ethtool_ops = {
  4294. .get_settings = bnx2_get_settings,
  4295. .set_settings = bnx2_set_settings,
  4296. .get_drvinfo = bnx2_get_drvinfo,
  4297. .get_wol = bnx2_get_wol,
  4298. .set_wol = bnx2_set_wol,
  4299. .nway_reset = bnx2_nway_reset,
  4300. .get_link = ethtool_op_get_link,
  4301. .get_eeprom_len = bnx2_get_eeprom_len,
  4302. .get_eeprom = bnx2_get_eeprom,
  4303. .set_eeprom = bnx2_set_eeprom,
  4304. .get_coalesce = bnx2_get_coalesce,
  4305. .set_coalesce = bnx2_set_coalesce,
  4306. .get_ringparam = bnx2_get_ringparam,
  4307. .set_ringparam = bnx2_set_ringparam,
  4308. .get_pauseparam = bnx2_get_pauseparam,
  4309. .set_pauseparam = bnx2_set_pauseparam,
  4310. .get_rx_csum = bnx2_get_rx_csum,
  4311. .set_rx_csum = bnx2_set_rx_csum,
  4312. .get_tx_csum = ethtool_op_get_tx_csum,
  4313. .set_tx_csum = ethtool_op_set_tx_csum,
  4314. .get_sg = ethtool_op_get_sg,
  4315. .set_sg = ethtool_op_set_sg,
  4316. #ifdef BCM_TSO
  4317. .get_tso = ethtool_op_get_tso,
  4318. .set_tso = ethtool_op_set_tso,
  4319. #endif
  4320. .self_test_count = bnx2_self_test_count,
  4321. .self_test = bnx2_self_test,
  4322. .get_strings = bnx2_get_strings,
  4323. .phys_id = bnx2_phys_id,
  4324. .get_stats_count = bnx2_get_stats_count,
  4325. .get_ethtool_stats = bnx2_get_ethtool_stats,
  4326. .get_perm_addr = ethtool_op_get_perm_addr,
  4327. };
  4328. /* Called with rtnl_lock */
  4329. static int
  4330. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4331. {
  4332. struct mii_ioctl_data *data = if_mii(ifr);
  4333. struct bnx2 *bp = dev->priv;
  4334. int err;
  4335. switch(cmd) {
  4336. case SIOCGMIIPHY:
  4337. data->phy_id = bp->phy_addr;
  4338. /* fallthru */
  4339. case SIOCGMIIREG: {
  4340. u32 mii_regval;
  4341. spin_lock_bh(&bp->phy_lock);
  4342. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  4343. spin_unlock_bh(&bp->phy_lock);
  4344. data->val_out = mii_regval;
  4345. return err;
  4346. }
  4347. case SIOCSMIIREG:
  4348. if (!capable(CAP_NET_ADMIN))
  4349. return -EPERM;
  4350. spin_lock_bh(&bp->phy_lock);
  4351. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  4352. spin_unlock_bh(&bp->phy_lock);
  4353. return err;
  4354. default:
  4355. /* do nothing */
  4356. break;
  4357. }
  4358. return -EOPNOTSUPP;
  4359. }
  4360. /* Called with rtnl_lock */
  4361. static int
  4362. bnx2_change_mac_addr(struct net_device *dev, void *p)
  4363. {
  4364. struct sockaddr *addr = p;
  4365. struct bnx2 *bp = dev->priv;
  4366. if (!is_valid_ether_addr(addr->sa_data))
  4367. return -EINVAL;
  4368. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4369. if (netif_running(dev))
  4370. bnx2_set_mac_addr(bp);
  4371. return 0;
  4372. }
  4373. /* Called with rtnl_lock */
  4374. static int
  4375. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  4376. {
  4377. struct bnx2 *bp = dev->priv;
  4378. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  4379. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  4380. return -EINVAL;
  4381. dev->mtu = new_mtu;
  4382. if (netif_running(dev)) {
  4383. bnx2_netif_stop(bp);
  4384. bnx2_init_nic(bp);
  4385. bnx2_netif_start(bp);
  4386. }
  4387. return 0;
  4388. }
  4389. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4390. static void
  4391. poll_bnx2(struct net_device *dev)
  4392. {
  4393. struct bnx2 *bp = dev->priv;
  4394. disable_irq(bp->pdev->irq);
  4395. bnx2_interrupt(bp->pdev->irq, dev, NULL);
  4396. enable_irq(bp->pdev->irq);
  4397. }
  4398. #endif
  4399. static int __devinit
  4400. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  4401. {
  4402. struct bnx2 *bp;
  4403. unsigned long mem_len;
  4404. int rc;
  4405. u32 reg;
  4406. SET_MODULE_OWNER(dev);
  4407. SET_NETDEV_DEV(dev, &pdev->dev);
  4408. bp = dev->priv;
  4409. bp->flags = 0;
  4410. bp->phy_flags = 0;
  4411. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  4412. rc = pci_enable_device(pdev);
  4413. if (rc) {
  4414. printk(KERN_ERR PFX "Cannot enable PCI device, aborting.");
  4415. goto err_out;
  4416. }
  4417. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  4418. printk(KERN_ERR PFX "Cannot find PCI device base address, "
  4419. "aborting.\n");
  4420. rc = -ENODEV;
  4421. goto err_out_disable;
  4422. }
  4423. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  4424. if (rc) {
  4425. printk(KERN_ERR PFX "Cannot obtain PCI resources, aborting.\n");
  4426. goto err_out_disable;
  4427. }
  4428. pci_set_master(pdev);
  4429. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  4430. if (bp->pm_cap == 0) {
  4431. printk(KERN_ERR PFX "Cannot find power management capability, "
  4432. "aborting.\n");
  4433. rc = -EIO;
  4434. goto err_out_release;
  4435. }
  4436. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  4437. if (bp->pcix_cap == 0) {
  4438. printk(KERN_ERR PFX "Cannot find PCIX capability, aborting.\n");
  4439. rc = -EIO;
  4440. goto err_out_release;
  4441. }
  4442. if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) {
  4443. bp->flags |= USING_DAC_FLAG;
  4444. if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
  4445. printk(KERN_ERR PFX "pci_set_consistent_dma_mask "
  4446. "failed, aborting.\n");
  4447. rc = -EIO;
  4448. goto err_out_release;
  4449. }
  4450. }
  4451. else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) {
  4452. printk(KERN_ERR PFX "System does not support DMA, aborting.\n");
  4453. rc = -EIO;
  4454. goto err_out_release;
  4455. }
  4456. bp->dev = dev;
  4457. bp->pdev = pdev;
  4458. spin_lock_init(&bp->phy_lock);
  4459. spin_lock_init(&bp->tx_lock);
  4460. INIT_WORK(&bp->reset_task, bnx2_reset_task, bp);
  4461. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  4462. mem_len = MB_GET_CID_ADDR(17);
  4463. dev->mem_end = dev->mem_start + mem_len;
  4464. dev->irq = pdev->irq;
  4465. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  4466. if (!bp->regview) {
  4467. printk(KERN_ERR PFX "Cannot map register space, aborting.\n");
  4468. rc = -ENOMEM;
  4469. goto err_out_release;
  4470. }
  4471. /* Configure byte swap and enable write to the reg_window registers.
  4472. * Rely on CPU to do target byte swapping on big endian systems
  4473. * The chip's target access swapping will not swap all accesses
  4474. */
  4475. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  4476. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  4477. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  4478. bnx2_set_power_state(bp, PCI_D0);
  4479. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  4480. /* Get bus information. */
  4481. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  4482. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  4483. u32 clkreg;
  4484. bp->flags |= PCIX_FLAG;
  4485. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  4486. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  4487. switch (clkreg) {
  4488. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  4489. bp->bus_speed_mhz = 133;
  4490. break;
  4491. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  4492. bp->bus_speed_mhz = 100;
  4493. break;
  4494. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  4495. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  4496. bp->bus_speed_mhz = 66;
  4497. break;
  4498. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  4499. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  4500. bp->bus_speed_mhz = 50;
  4501. break;
  4502. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  4503. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  4504. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  4505. bp->bus_speed_mhz = 33;
  4506. break;
  4507. }
  4508. }
  4509. else {
  4510. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  4511. bp->bus_speed_mhz = 66;
  4512. else
  4513. bp->bus_speed_mhz = 33;
  4514. }
  4515. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  4516. bp->flags |= PCI_32BIT_FLAG;
  4517. /* 5706A0 may falsely detect SERR and PERR. */
  4518. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4519. reg = REG_RD(bp, PCI_COMMAND);
  4520. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  4521. REG_WR(bp, PCI_COMMAND, reg);
  4522. }
  4523. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  4524. !(bp->flags & PCIX_FLAG)) {
  4525. printk(KERN_ERR PFX "5706 A1 can only be used in a PCIX bus, "
  4526. "aborting.\n");
  4527. goto err_out_unmap;
  4528. }
  4529. bnx2_init_nvram(bp);
  4530. reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
  4531. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  4532. BNX2_SHM_HDR_SIGNATURE_SIG)
  4533. bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0);
  4534. else
  4535. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  4536. /* Get the permanent MAC address. First we need to make sure the
  4537. * firmware is actually running.
  4538. */
  4539. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
  4540. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  4541. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  4542. printk(KERN_ERR PFX "Firmware not running, aborting.\n");
  4543. rc = -ENODEV;
  4544. goto err_out_unmap;
  4545. }
  4546. bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
  4547. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
  4548. bp->mac_addr[0] = (u8) (reg >> 8);
  4549. bp->mac_addr[1] = (u8) reg;
  4550. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
  4551. bp->mac_addr[2] = (u8) (reg >> 24);
  4552. bp->mac_addr[3] = (u8) (reg >> 16);
  4553. bp->mac_addr[4] = (u8) (reg >> 8);
  4554. bp->mac_addr[5] = (u8) reg;
  4555. bp->tx_ring_size = MAX_TX_DESC_CNT;
  4556. bp->rx_ring_size = 100;
  4557. bp->rx_csum = 1;
  4558. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  4559. bp->tx_quick_cons_trip_int = 20;
  4560. bp->tx_quick_cons_trip = 20;
  4561. bp->tx_ticks_int = 80;
  4562. bp->tx_ticks = 80;
  4563. bp->rx_quick_cons_trip_int = 6;
  4564. bp->rx_quick_cons_trip = 6;
  4565. bp->rx_ticks_int = 18;
  4566. bp->rx_ticks = 18;
  4567. bp->stats_ticks = 1000000 & 0xffff00;
  4568. bp->timer_interval = HZ;
  4569. bp->current_interval = HZ;
  4570. bp->phy_addr = 1;
  4571. /* Disable WOL support if we are running on a SERDES chip. */
  4572. if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) {
  4573. bp->phy_flags |= PHY_SERDES_FLAG;
  4574. bp->flags |= NO_WOL_FLAG;
  4575. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  4576. bp->phy_addr = 2;
  4577. reg = REG_RD_IND(bp, bp->shmem_base +
  4578. BNX2_SHARED_HW_CFG_CONFIG);
  4579. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  4580. bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
  4581. }
  4582. }
  4583. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4584. bp->tx_quick_cons_trip_int =
  4585. bp->tx_quick_cons_trip;
  4586. bp->tx_ticks_int = bp->tx_ticks;
  4587. bp->rx_quick_cons_trip_int =
  4588. bp->rx_quick_cons_trip;
  4589. bp->rx_ticks_int = bp->rx_ticks;
  4590. bp->comp_prod_trip_int = bp->comp_prod_trip;
  4591. bp->com_ticks_int = bp->com_ticks;
  4592. bp->cmd_ticks_int = bp->cmd_ticks;
  4593. }
  4594. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  4595. bp->req_line_speed = 0;
  4596. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4597. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  4598. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
  4599. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  4600. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  4601. bp->autoneg = 0;
  4602. bp->req_line_speed = bp->line_speed = SPEED_1000;
  4603. bp->req_duplex = DUPLEX_FULL;
  4604. }
  4605. }
  4606. else {
  4607. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  4608. }
  4609. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  4610. init_timer(&bp->timer);
  4611. bp->timer.expires = RUN_AT(bp->timer_interval);
  4612. bp->timer.data = (unsigned long) bp;
  4613. bp->timer.function = bnx2_timer;
  4614. return 0;
  4615. err_out_unmap:
  4616. if (bp->regview) {
  4617. iounmap(bp->regview);
  4618. bp->regview = NULL;
  4619. }
  4620. err_out_release:
  4621. pci_release_regions(pdev);
  4622. err_out_disable:
  4623. pci_disable_device(pdev);
  4624. pci_set_drvdata(pdev, NULL);
  4625. err_out:
  4626. return rc;
  4627. }
  4628. static int __devinit
  4629. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  4630. {
  4631. static int version_printed = 0;
  4632. struct net_device *dev = NULL;
  4633. struct bnx2 *bp;
  4634. int rc, i;
  4635. if (version_printed++ == 0)
  4636. printk(KERN_INFO "%s", version);
  4637. /* dev zeroed in init_etherdev */
  4638. dev = alloc_etherdev(sizeof(*bp));
  4639. if (!dev)
  4640. return -ENOMEM;
  4641. rc = bnx2_init_board(pdev, dev);
  4642. if (rc < 0) {
  4643. free_netdev(dev);
  4644. return rc;
  4645. }
  4646. dev->open = bnx2_open;
  4647. dev->hard_start_xmit = bnx2_start_xmit;
  4648. dev->stop = bnx2_close;
  4649. dev->get_stats = bnx2_get_stats;
  4650. dev->set_multicast_list = bnx2_set_rx_mode;
  4651. dev->do_ioctl = bnx2_ioctl;
  4652. dev->set_mac_address = bnx2_change_mac_addr;
  4653. dev->change_mtu = bnx2_change_mtu;
  4654. dev->tx_timeout = bnx2_tx_timeout;
  4655. dev->watchdog_timeo = TX_TIMEOUT;
  4656. #ifdef BCM_VLAN
  4657. dev->vlan_rx_register = bnx2_vlan_rx_register;
  4658. dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid;
  4659. #endif
  4660. dev->poll = bnx2_poll;
  4661. dev->ethtool_ops = &bnx2_ethtool_ops;
  4662. dev->weight = 64;
  4663. bp = dev->priv;
  4664. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4665. dev->poll_controller = poll_bnx2;
  4666. #endif
  4667. if ((rc = register_netdev(dev))) {
  4668. printk(KERN_ERR PFX "Cannot register net device\n");
  4669. if (bp->regview)
  4670. iounmap(bp->regview);
  4671. pci_release_regions(pdev);
  4672. pci_disable_device(pdev);
  4673. pci_set_drvdata(pdev, NULL);
  4674. free_netdev(dev);
  4675. return rc;
  4676. }
  4677. pci_set_drvdata(pdev, dev);
  4678. memcpy(dev->dev_addr, bp->mac_addr, 6);
  4679. memcpy(dev->perm_addr, bp->mac_addr, 6);
  4680. bp->name = board_info[ent->driver_data].name,
  4681. printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
  4682. "IRQ %d, ",
  4683. dev->name,
  4684. bp->name,
  4685. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  4686. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  4687. ((bp->flags & PCIX_FLAG) ? "-X" : ""),
  4688. ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
  4689. bp->bus_speed_mhz,
  4690. dev->base_addr,
  4691. bp->pdev->irq);
  4692. printk("node addr ");
  4693. for (i = 0; i < 6; i++)
  4694. printk("%2.2x", dev->dev_addr[i]);
  4695. printk("\n");
  4696. dev->features |= NETIF_F_SG;
  4697. if (bp->flags & USING_DAC_FLAG)
  4698. dev->features |= NETIF_F_HIGHDMA;
  4699. dev->features |= NETIF_F_IP_CSUM;
  4700. #ifdef BCM_VLAN
  4701. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  4702. #endif
  4703. #ifdef BCM_TSO
  4704. dev->features |= NETIF_F_TSO;
  4705. #endif
  4706. netif_carrier_off(bp->dev);
  4707. return 0;
  4708. }
  4709. static void __devexit
  4710. bnx2_remove_one(struct pci_dev *pdev)
  4711. {
  4712. struct net_device *dev = pci_get_drvdata(pdev);
  4713. struct bnx2 *bp = dev->priv;
  4714. flush_scheduled_work();
  4715. unregister_netdev(dev);
  4716. if (bp->regview)
  4717. iounmap(bp->regview);
  4718. free_netdev(dev);
  4719. pci_release_regions(pdev);
  4720. pci_disable_device(pdev);
  4721. pci_set_drvdata(pdev, NULL);
  4722. }
  4723. static int
  4724. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  4725. {
  4726. struct net_device *dev = pci_get_drvdata(pdev);
  4727. struct bnx2 *bp = dev->priv;
  4728. u32 reset_code;
  4729. if (!netif_running(dev))
  4730. return 0;
  4731. bnx2_netif_stop(bp);
  4732. netif_device_detach(dev);
  4733. del_timer_sync(&bp->timer);
  4734. if (bp->wol)
  4735. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4736. else
  4737. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4738. bnx2_reset_chip(bp, reset_code);
  4739. bnx2_free_skbs(bp);
  4740. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  4741. return 0;
  4742. }
  4743. static int
  4744. bnx2_resume(struct pci_dev *pdev)
  4745. {
  4746. struct net_device *dev = pci_get_drvdata(pdev);
  4747. struct bnx2 *bp = dev->priv;
  4748. if (!netif_running(dev))
  4749. return 0;
  4750. bnx2_set_power_state(bp, PCI_D0);
  4751. netif_device_attach(dev);
  4752. bnx2_init_nic(bp);
  4753. bnx2_netif_start(bp);
  4754. return 0;
  4755. }
  4756. static struct pci_driver bnx2_pci_driver = {
  4757. .name = DRV_MODULE_NAME,
  4758. .id_table = bnx2_pci_tbl,
  4759. .probe = bnx2_init_one,
  4760. .remove = __devexit_p(bnx2_remove_one),
  4761. .suspend = bnx2_suspend,
  4762. .resume = bnx2_resume,
  4763. };
  4764. static int __init bnx2_init(void)
  4765. {
  4766. return pci_module_init(&bnx2_pci_driver);
  4767. }
  4768. static void __exit bnx2_cleanup(void)
  4769. {
  4770. pci_unregister_driver(&bnx2_pci_driver);
  4771. }
  4772. module_init(bnx2_init);
  4773. module_exit(bnx2_cleanup);