fsl_dma.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
  7. * under the terms of the GNU General Public License version 2. This
  8. * program is licensed "as is" without any warranty of any kind, whether
  9. * express or implied.
  10. *
  11. * This driver implements ASoC support for the Elo DMA controller, which is
  12. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  13. * the PCM driver is what handles the DMA buffer.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/delay.h>
  21. #include <sound/core.h>
  22. #include <sound/pcm.h>
  23. #include <sound/pcm_params.h>
  24. #include <sound/soc.h>
  25. #include <asm/io.h>
  26. #include "fsl_dma.h"
  27. /*
  28. * The formats that the DMA controller supports, which is anything
  29. * that is 8, 16, or 32 bits.
  30. */
  31. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  32. SNDRV_PCM_FMTBIT_U8 | \
  33. SNDRV_PCM_FMTBIT_S16_LE | \
  34. SNDRV_PCM_FMTBIT_S16_BE | \
  35. SNDRV_PCM_FMTBIT_U16_LE | \
  36. SNDRV_PCM_FMTBIT_U16_BE | \
  37. SNDRV_PCM_FMTBIT_S24_LE | \
  38. SNDRV_PCM_FMTBIT_S24_BE | \
  39. SNDRV_PCM_FMTBIT_U24_LE | \
  40. SNDRV_PCM_FMTBIT_U24_BE | \
  41. SNDRV_PCM_FMTBIT_S32_LE | \
  42. SNDRV_PCM_FMTBIT_S32_BE | \
  43. SNDRV_PCM_FMTBIT_U32_LE | \
  44. SNDRV_PCM_FMTBIT_U32_BE)
  45. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  46. SNDRV_PCM_RATE_CONTINUOUS)
  47. /* DMA global data. This structure is used by fsl_dma_open() to determine
  48. * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
  49. * not allow the machine driver to provide this information to the PCM
  50. * driver in advance, and there's no way to differentiate between the two
  51. * DMA controllers. So for now, this driver only supports one SSI device
  52. * using two DMA channels. We cannot support multiple DMA devices.
  53. *
  54. * ssi_stx_phys: bus address of SSI STX register
  55. * ssi_srx_phys: bus address of SSI SRX register
  56. * dma_channel: pointer to the DMA channel's registers
  57. * irq: IRQ for this DMA channel
  58. * assigned: set to 1 if that DMA channel is assigned to a substream
  59. */
  60. static struct {
  61. dma_addr_t ssi_stx_phys;
  62. dma_addr_t ssi_srx_phys;
  63. struct ccsr_dma_channel __iomem *dma_channel[2];
  64. unsigned int irq[2];
  65. unsigned int assigned[2];
  66. } dma_global_data;
  67. /*
  68. * The number of DMA links to use. Two is the bare minimum, but if you
  69. * have really small links you might need more.
  70. */
  71. #define NUM_DMA_LINKS 2
  72. /** fsl_dma_private: p-substream DMA data
  73. *
  74. * Each substream has a 1-to-1 association with a DMA channel.
  75. *
  76. * The link[] array is first because it needs to be aligned on a 32-byte
  77. * boundary, so putting it first will ensure alignment without padding the
  78. * structure.
  79. *
  80. * @link[]: array of link descriptors
  81. * @controller_id: which DMA controller (0, 1, ...)
  82. * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
  83. * @dma_channel: pointer to the DMA channel's registers
  84. * @irq: IRQ for this DMA channel
  85. * @substream: pointer to the substream object, needed by the ISR
  86. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  87. * @ld_buf_phys: physical address of the LD buffer
  88. * @current_link: index into link[] of the link currently being processed
  89. * @dma_buf_phys: physical address of the DMA buffer
  90. * @dma_buf_next: physical address of the next period to process
  91. * @dma_buf_end: physical address of the byte after the end of the DMA
  92. * @buffer period_size: the size of a single period
  93. * @num_periods: the number of periods in the DMA buffer
  94. */
  95. struct fsl_dma_private {
  96. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  97. unsigned int controller_id;
  98. unsigned int channel_id;
  99. struct ccsr_dma_channel __iomem *dma_channel;
  100. unsigned int irq;
  101. struct snd_pcm_substream *substream;
  102. dma_addr_t ssi_sxx_phys;
  103. dma_addr_t ld_buf_phys;
  104. unsigned int current_link;
  105. dma_addr_t dma_buf_phys;
  106. dma_addr_t dma_buf_next;
  107. dma_addr_t dma_buf_end;
  108. size_t period_size;
  109. unsigned int num_periods;
  110. };
  111. /**
  112. * fsl_dma_hardare: define characteristics of the PCM hardware.
  113. *
  114. * The PCM hardware is the Freescale DMA controller. This structure defines
  115. * the capabilities of that hardware.
  116. *
  117. * Since the sampling rate and data format are not controlled by the DMA
  118. * controller, we specify no limits for those values. The only exception is
  119. * period_bytes_min, which is set to a reasonably low value to prevent the
  120. * DMA controller from generating too many interrupts per second.
  121. *
  122. * Since each link descriptor has a 32-bit byte count field, we set
  123. * period_bytes_max to the largest 32-bit number. We also have no maximum
  124. * number of periods.
  125. *
  126. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  127. * limitation in the SSI driver requires the sample rates for playback and
  128. * capture to be the same.
  129. */
  130. static const struct snd_pcm_hardware fsl_dma_hardware = {
  131. .info = SNDRV_PCM_INFO_INTERLEAVED |
  132. SNDRV_PCM_INFO_MMAP |
  133. SNDRV_PCM_INFO_MMAP_VALID |
  134. SNDRV_PCM_INFO_JOINT_DUPLEX,
  135. .formats = FSLDMA_PCM_FORMATS,
  136. .rates = FSLDMA_PCM_RATES,
  137. .rate_min = 5512,
  138. .rate_max = 192000,
  139. .period_bytes_min = 512, /* A reasonable limit */
  140. .period_bytes_max = (u32) -1,
  141. .periods_min = NUM_DMA_LINKS,
  142. .periods_max = (unsigned int) -1,
  143. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  144. };
  145. /**
  146. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  147. *
  148. * This function should be called by the ISR whenever the DMA controller
  149. * halts data transfer.
  150. */
  151. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  152. {
  153. unsigned long flags;
  154. snd_pcm_stream_lock_irqsave(substream, flags);
  155. if (snd_pcm_running(substream))
  156. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  157. snd_pcm_stream_unlock_irqrestore(substream, flags);
  158. }
  159. /**
  160. * fsl_dma_update_pointers - update LD pointers to point to the next period
  161. *
  162. * As each period is completed, this function changes the the link
  163. * descriptor pointers for that period to point to the next period.
  164. */
  165. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  166. {
  167. struct fsl_dma_link_descriptor *link =
  168. &dma_private->link[dma_private->current_link];
  169. /* Update our link descriptors to point to the next period */
  170. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  171. link->source_addr =
  172. cpu_to_be32(dma_private->dma_buf_next);
  173. else
  174. link->dest_addr =
  175. cpu_to_be32(dma_private->dma_buf_next);
  176. /* Update our variables for next time */
  177. dma_private->dma_buf_next += dma_private->period_size;
  178. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  179. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  180. if (++dma_private->current_link >= NUM_DMA_LINKS)
  181. dma_private->current_link = 0;
  182. }
  183. /**
  184. * fsl_dma_isr: interrupt handler for the DMA controller
  185. *
  186. * @irq: IRQ of the DMA channel
  187. * @dev_id: pointer to the dma_private structure for this DMA channel
  188. */
  189. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  190. {
  191. struct fsl_dma_private *dma_private = dev_id;
  192. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  193. irqreturn_t ret = IRQ_NONE;
  194. u32 sr, sr2 = 0;
  195. /* We got an interrupt, so read the status register to see what we
  196. were interrupted for.
  197. */
  198. sr = in_be32(&dma_channel->sr);
  199. if (sr & CCSR_DMA_SR_TE) {
  200. dev_err(dma_private->substream->pcm->card->dev,
  201. "DMA transmit error (controller=%u channel=%u irq=%u\n",
  202. dma_private->controller_id,
  203. dma_private->channel_id, irq);
  204. fsl_dma_abort_stream(dma_private->substream);
  205. sr2 |= CCSR_DMA_SR_TE;
  206. ret = IRQ_HANDLED;
  207. }
  208. if (sr & CCSR_DMA_SR_CH)
  209. ret = IRQ_HANDLED;
  210. if (sr & CCSR_DMA_SR_PE) {
  211. dev_err(dma_private->substream->pcm->card->dev,
  212. "DMA%u programming error (channel=%u irq=%u)\n",
  213. dma_private->controller_id,
  214. dma_private->channel_id, irq);
  215. fsl_dma_abort_stream(dma_private->substream);
  216. sr2 |= CCSR_DMA_SR_PE;
  217. ret = IRQ_HANDLED;
  218. }
  219. if (sr & CCSR_DMA_SR_EOLNI) {
  220. sr2 |= CCSR_DMA_SR_EOLNI;
  221. ret = IRQ_HANDLED;
  222. }
  223. if (sr & CCSR_DMA_SR_CB)
  224. ret = IRQ_HANDLED;
  225. if (sr & CCSR_DMA_SR_EOSI) {
  226. struct snd_pcm_substream *substream = dma_private->substream;
  227. /* Tell ALSA we completed a period. */
  228. snd_pcm_period_elapsed(substream);
  229. /*
  230. * Update our link descriptors to point to the next period. We
  231. * only need to do this if the number of periods is not equal to
  232. * the number of links.
  233. */
  234. if (dma_private->num_periods != NUM_DMA_LINKS)
  235. fsl_dma_update_pointers(dma_private);
  236. sr2 |= CCSR_DMA_SR_EOSI;
  237. ret = IRQ_HANDLED;
  238. }
  239. if (sr & CCSR_DMA_SR_EOLSI) {
  240. sr2 |= CCSR_DMA_SR_EOLSI;
  241. ret = IRQ_HANDLED;
  242. }
  243. /* Clear the bits that we set */
  244. if (sr2)
  245. out_be32(&dma_channel->sr, sr2);
  246. return ret;
  247. }
  248. /**
  249. * fsl_dma_new: initialize this PCM driver.
  250. *
  251. * This function is called when the codec driver calls snd_soc_new_pcms(),
  252. * once for each .dai_link in the machine driver's snd_soc_card
  253. * structure.
  254. */
  255. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  256. struct snd_pcm *pcm)
  257. {
  258. static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
  259. int ret;
  260. if (!card->dev->dma_mask)
  261. card->dev->dma_mask = &fsl_dma_dmamask;
  262. if (!card->dev->coherent_dma_mask)
  263. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  264. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
  265. fsl_dma_hardware.buffer_bytes_max,
  266. &pcm->streams[0].substream->dma_buffer);
  267. if (ret) {
  268. dev_err(card->dev,
  269. "Can't allocate playback DMA buffer (size=%u)\n",
  270. fsl_dma_hardware.buffer_bytes_max);
  271. return -ENOMEM;
  272. }
  273. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
  274. fsl_dma_hardware.buffer_bytes_max,
  275. &pcm->streams[1].substream->dma_buffer);
  276. if (ret) {
  277. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  278. dev_err(card->dev,
  279. "Can't allocate capture DMA buffer (size=%u)\n",
  280. fsl_dma_hardware.buffer_bytes_max);
  281. return -ENOMEM;
  282. }
  283. return 0;
  284. }
  285. /**
  286. * fsl_dma_open: open a new substream.
  287. *
  288. * Each substream has its own DMA buffer.
  289. *
  290. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  291. * descriptors that ping-pong from one period to the next. For example, if
  292. * there are six periods and two link descriptors, this is how they look
  293. * before playback starts:
  294. *
  295. * The last link descriptor
  296. * ____________ points back to the first
  297. * | |
  298. * V |
  299. * ___ ___ |
  300. * | |->| |->|
  301. * |___| |___|
  302. * | |
  303. * | |
  304. * V V
  305. * _________________________________________
  306. * | | | | | | | The DMA buffer is
  307. * | | | | | | | divided into 6 parts
  308. * |______|______|______|______|______|______|
  309. *
  310. * and here's how they look after the first period is finished playing:
  311. *
  312. * ____________
  313. * | |
  314. * V |
  315. * ___ ___ |
  316. * | |->| |->|
  317. * |___| |___|
  318. * | |
  319. * |______________
  320. * | |
  321. * V V
  322. * _________________________________________
  323. * | | | | | | |
  324. * | | | | | | |
  325. * |______|______|______|______|______|______|
  326. *
  327. * The first link descriptor now points to the third period. The DMA
  328. * controller is currently playing the second period. When it finishes, it
  329. * will jump back to the first descriptor and play the third period.
  330. *
  331. * There are four reasons we do this:
  332. *
  333. * 1. The only way to get the DMA controller to automatically restart the
  334. * transfer when it gets to the end of the buffer is to use chaining
  335. * mode. Basic direct mode doesn't offer that feature.
  336. * 2. We need to receive an interrupt at the end of every period. The DMA
  337. * controller can generate an interrupt at the end of every link transfer
  338. * (aka segment). Making each period into a DMA segment will give us the
  339. * interrupts we need.
  340. * 3. By creating only two link descriptors, regardless of the number of
  341. * periods, we do not need to reallocate the link descriptors if the
  342. * number of periods changes.
  343. * 4. All of the audio data is still stored in a single, contiguous DMA
  344. * buffer, which is what ALSA expects. We're just dividing it into
  345. * contiguous parts, and creating a link descriptor for each one.
  346. */
  347. static int fsl_dma_open(struct snd_pcm_substream *substream)
  348. {
  349. struct snd_pcm_runtime *runtime = substream->runtime;
  350. struct fsl_dma_private *dma_private;
  351. struct ccsr_dma_channel __iomem *dma_channel;
  352. dma_addr_t ld_buf_phys;
  353. u64 temp_link; /* Pointer to next link descriptor */
  354. u32 mr;
  355. unsigned int channel;
  356. int ret = 0;
  357. unsigned int i;
  358. /*
  359. * Reject any DMA buffer whose size is not a multiple of the period
  360. * size. We need to make sure that the DMA buffer can be evenly divided
  361. * into periods.
  362. */
  363. ret = snd_pcm_hw_constraint_integer(runtime,
  364. SNDRV_PCM_HW_PARAM_PERIODS);
  365. if (ret < 0) {
  366. dev_err(substream->pcm->card->dev, "invalid buffer size\n");
  367. return ret;
  368. }
  369. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  370. if (dma_global_data.assigned[channel]) {
  371. dev_err(substream->pcm->card->dev,
  372. "DMA channel already assigned\n");
  373. return -EBUSY;
  374. }
  375. dma_private = dma_alloc_coherent(substream->pcm->dev,
  376. sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
  377. if (!dma_private) {
  378. dev_err(substream->pcm->card->dev,
  379. "can't allocate DMA private data\n");
  380. return -ENOMEM;
  381. }
  382. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  383. dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
  384. else
  385. dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
  386. dma_private->dma_channel = dma_global_data.dma_channel[channel];
  387. dma_private->irq = dma_global_data.irq[channel];
  388. dma_private->substream = substream;
  389. dma_private->ld_buf_phys = ld_buf_phys;
  390. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  391. /* We only support one DMA controller for now */
  392. dma_private->controller_id = 0;
  393. dma_private->channel_id = channel;
  394. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  395. if (ret) {
  396. dev_err(substream->pcm->card->dev,
  397. "can't register ISR for IRQ %u (ret=%i)\n",
  398. dma_private->irq, ret);
  399. dma_free_coherent(substream->pcm->dev,
  400. sizeof(struct fsl_dma_private),
  401. dma_private, dma_private->ld_buf_phys);
  402. return ret;
  403. }
  404. dma_global_data.assigned[channel] = 1;
  405. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  406. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  407. runtime->private_data = dma_private;
  408. /* Program the fixed DMA controller parameters */
  409. dma_channel = dma_private->dma_channel;
  410. temp_link = dma_private->ld_buf_phys +
  411. sizeof(struct fsl_dma_link_descriptor);
  412. for (i = 0; i < NUM_DMA_LINKS; i++) {
  413. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  414. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  415. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  416. link->next = cpu_to_be64(temp_link);
  417. temp_link += sizeof(struct fsl_dma_link_descriptor);
  418. }
  419. /* The last link descriptor points to the first */
  420. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  421. /* Tell the DMA controller where the first link descriptor is */
  422. out_be32(&dma_channel->clndar,
  423. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  424. out_be32(&dma_channel->eclndar,
  425. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  426. /* The manual says the BCR must be clear before enabling EMP */
  427. out_be32(&dma_channel->bcr, 0);
  428. /*
  429. * Program the mode register for interrupts, external master control,
  430. * and source/destination hold. Also clear the Channel Abort bit.
  431. */
  432. mr = in_be32(&dma_channel->mr) &
  433. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  434. /*
  435. * We want External Master Start and External Master Pause enabled,
  436. * because the SSI is controlling the DMA controller. We want the DMA
  437. * controller to be set up in advance, and then we signal only the SSI
  438. * to start transferring.
  439. *
  440. * We want End-Of-Segment Interrupts enabled, because this will generate
  441. * an interrupt at the end of each segment (each link descriptor
  442. * represents one segment). Each DMA segment is the same thing as an
  443. * ALSA period, so this is how we get an interrupt at the end of every
  444. * period.
  445. *
  446. * We want Error Interrupt enabled, so that we can get an error if
  447. * the DMA controller is mis-programmed somehow.
  448. */
  449. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  450. CCSR_DMA_MR_EMS_EN;
  451. /* For playback, we want the destination address to be held. For
  452. capture, set the source address to be held. */
  453. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  454. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  455. out_be32(&dma_channel->mr, mr);
  456. return 0;
  457. }
  458. /**
  459. * fsl_dma_hw_params: continue initializing the DMA links
  460. *
  461. * This function obtains hardware parameters about the opened stream and
  462. * programs the DMA controller accordingly.
  463. *
  464. * Note that due to a quirk of the SSI's STX register, the target address
  465. * for the DMA operations depends on the sample size. So we don't program
  466. * the dest_addr (for playback -- source_addr for capture) fields in the
  467. * link descriptors here. We do that in fsl_dma_prepare()
  468. */
  469. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  470. struct snd_pcm_hw_params *hw_params)
  471. {
  472. struct snd_pcm_runtime *runtime = substream->runtime;
  473. struct fsl_dma_private *dma_private = runtime->private_data;
  474. dma_addr_t temp_addr; /* Pointer to next period */
  475. unsigned int i;
  476. /* Get all the parameters we need */
  477. size_t buffer_size = params_buffer_bytes(hw_params);
  478. size_t period_size = params_period_bytes(hw_params);
  479. /* Initialize our DMA tracking variables */
  480. dma_private->period_size = period_size;
  481. dma_private->num_periods = params_periods(hw_params);
  482. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  483. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  484. (NUM_DMA_LINKS * period_size);
  485. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  486. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  487. /*
  488. * The actual address in STX0 (destination for playback, source for
  489. * capture) is based on the sample size, but we don't know the sample
  490. * size in this function, so we'll have to adjust that later. See
  491. * comments in fsl_dma_prepare().
  492. *
  493. * The DMA controller does not have a cache, so the CPU does not
  494. * need to tell it to flush its cache. However, the DMA
  495. * controller does need to tell the CPU to flush its cache.
  496. * That's what the SNOOP bit does.
  497. *
  498. * Also, even though the DMA controller supports 36-bit addressing, for
  499. * simplicity we currently support only 32-bit addresses for the audio
  500. * buffer itself.
  501. */
  502. temp_addr = substream->dma_buffer.addr;
  503. for (i = 0; i < NUM_DMA_LINKS; i++) {
  504. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  505. link->count = cpu_to_be32(period_size);
  506. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  507. link->source_addr = cpu_to_be32(temp_addr);
  508. else
  509. link->dest_addr = cpu_to_be32(temp_addr);
  510. temp_addr += period_size;
  511. }
  512. return 0;
  513. }
  514. /**
  515. * fsl_dma_prepare - prepare the DMA registers for playback.
  516. *
  517. * This function is called after the specifics of the audio data are known,
  518. * i.e. snd_pcm_runtime is initialized.
  519. *
  520. * In this function, we finish programming the registers of the DMA
  521. * controller that are dependent on the sample size.
  522. *
  523. * One of the drawbacks with big-endian is that when copying integers of
  524. * different sizes to a fixed-sized register, the address to which the
  525. * integer must be copied is dependent on the size of the integer.
  526. *
  527. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  528. * integer, then X should be copied to address P. However, if X is a 16-bit
  529. * integer, then it should be copied to P+2. If X is an 8-bit register,
  530. * then it should be copied to P+3.
  531. *
  532. * So for playback of 8-bit samples, the DMA controller must transfer single
  533. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  534. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  535. *
  536. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  537. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  538. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  539. * 24-bit data must be padded to 32 bits.
  540. */
  541. static int fsl_dma_prepare(struct snd_pcm_substream *substream)
  542. {
  543. struct snd_pcm_runtime *runtime = substream->runtime;
  544. struct fsl_dma_private *dma_private = runtime->private_data;
  545. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  546. u32 mr;
  547. unsigned int i;
  548. dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
  549. unsigned int frame_size; /* Number of bytes per frame */
  550. ssi_sxx_phys = dma_private->ssi_sxx_phys;
  551. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  552. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  553. switch (runtime->sample_bits) {
  554. case 8:
  555. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  556. ssi_sxx_phys += 3;
  557. break;
  558. case 16:
  559. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  560. ssi_sxx_phys += 2;
  561. break;
  562. case 32:
  563. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  564. break;
  565. default:
  566. dev_err(substream->pcm->card->dev,
  567. "unsupported sample size %u\n", runtime->sample_bits);
  568. return -EINVAL;
  569. }
  570. frame_size = runtime->frame_bits / 8;
  571. /*
  572. * BWC should always be a multiple of the frame size. BWC determines
  573. * how many bytes are sent/received before the DMA controller checks the
  574. * SSI to see if it needs to stop. For playback, the transmit FIFO can
  575. * hold three frames, so we want to send two frames at a time. For
  576. * capture, the receive FIFO is triggered when it contains one frame, so
  577. * we want to receive one frame at a time.
  578. */
  579. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  580. mr |= CCSR_DMA_MR_BWC(2 * frame_size);
  581. else
  582. mr |= CCSR_DMA_MR_BWC(frame_size);
  583. out_be32(&dma_channel->mr, mr);
  584. /*
  585. * Program the address of the DMA transfer to/from the SSI.
  586. */
  587. for (i = 0; i < NUM_DMA_LINKS; i++) {
  588. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  589. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  590. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  591. else
  592. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  593. }
  594. return 0;
  595. }
  596. /**
  597. * fsl_dma_pointer: determine the current position of the DMA transfer
  598. *
  599. * This function is called by ALSA when ALSA wants to know where in the
  600. * stream buffer the hardware currently is.
  601. *
  602. * For playback, the SAR register contains the physical address of the most
  603. * recent DMA transfer. For capture, the value is in the DAR register.
  604. *
  605. * The base address of the buffer is stored in the source_addr field of the
  606. * first link descriptor.
  607. */
  608. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  609. {
  610. struct snd_pcm_runtime *runtime = substream->runtime;
  611. struct fsl_dma_private *dma_private = runtime->private_data;
  612. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  613. dma_addr_t position;
  614. snd_pcm_uframes_t frames;
  615. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  616. position = in_be32(&dma_channel->sar);
  617. else
  618. position = in_be32(&dma_channel->dar);
  619. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  620. /*
  621. * If the current address is just past the end of the buffer, wrap it
  622. * around.
  623. */
  624. if (frames == runtime->buffer_size)
  625. frames = 0;
  626. return frames;
  627. }
  628. /**
  629. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  630. *
  631. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  632. * registers.
  633. *
  634. * This function can be called multiple times.
  635. */
  636. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  637. {
  638. struct snd_pcm_runtime *runtime = substream->runtime;
  639. struct fsl_dma_private *dma_private = runtime->private_data;
  640. if (dma_private) {
  641. struct ccsr_dma_channel __iomem *dma_channel;
  642. dma_channel = dma_private->dma_channel;
  643. /* Stop the DMA */
  644. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  645. out_be32(&dma_channel->mr, 0);
  646. /* Reset all the other registers */
  647. out_be32(&dma_channel->sr, -1);
  648. out_be32(&dma_channel->clndar, 0);
  649. out_be32(&dma_channel->eclndar, 0);
  650. out_be32(&dma_channel->satr, 0);
  651. out_be32(&dma_channel->sar, 0);
  652. out_be32(&dma_channel->datr, 0);
  653. out_be32(&dma_channel->dar, 0);
  654. out_be32(&dma_channel->bcr, 0);
  655. out_be32(&dma_channel->nlndar, 0);
  656. out_be32(&dma_channel->enlndar, 0);
  657. }
  658. return 0;
  659. }
  660. /**
  661. * fsl_dma_close: close the stream.
  662. */
  663. static int fsl_dma_close(struct snd_pcm_substream *substream)
  664. {
  665. struct snd_pcm_runtime *runtime = substream->runtime;
  666. struct fsl_dma_private *dma_private = runtime->private_data;
  667. int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  668. if (dma_private) {
  669. if (dma_private->irq)
  670. free_irq(dma_private->irq, dma_private);
  671. if (dma_private->ld_buf_phys) {
  672. dma_unmap_single(substream->pcm->dev,
  673. dma_private->ld_buf_phys,
  674. sizeof(dma_private->link), DMA_TO_DEVICE);
  675. }
  676. /* Deallocate the fsl_dma_private structure */
  677. dma_free_coherent(substream->pcm->dev,
  678. sizeof(struct fsl_dma_private),
  679. dma_private, dma_private->ld_buf_phys);
  680. substream->runtime->private_data = NULL;
  681. }
  682. dma_global_data.assigned[dir] = 0;
  683. return 0;
  684. }
  685. /*
  686. * Remove this PCM driver.
  687. */
  688. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  689. {
  690. struct snd_pcm_substream *substream;
  691. unsigned int i;
  692. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  693. substream = pcm->streams[i].substream;
  694. if (substream) {
  695. snd_dma_free_pages(&substream->dma_buffer);
  696. substream->dma_buffer.area = NULL;
  697. substream->dma_buffer.addr = 0;
  698. }
  699. }
  700. }
  701. static struct snd_pcm_ops fsl_dma_ops = {
  702. .open = fsl_dma_open,
  703. .close = fsl_dma_close,
  704. .ioctl = snd_pcm_lib_ioctl,
  705. .hw_params = fsl_dma_hw_params,
  706. .hw_free = fsl_dma_hw_free,
  707. .prepare = fsl_dma_prepare,
  708. .pointer = fsl_dma_pointer,
  709. };
  710. struct snd_soc_platform fsl_soc_platform = {
  711. .name = "fsl-dma",
  712. .pcm_ops = &fsl_dma_ops,
  713. .pcm_new = fsl_dma_new,
  714. .pcm_free = fsl_dma_free_dma_buffers,
  715. };
  716. EXPORT_SYMBOL_GPL(fsl_soc_platform);
  717. /**
  718. * fsl_dma_configure: store the DMA parameters from the fabric driver.
  719. *
  720. * This function is called by the ASoC fabric driver to give us the DMA and
  721. * SSI channel information.
  722. *
  723. * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
  724. * data when a substream is created, so for now we need to store this data
  725. * into a global variable. This means that we can only support one DMA
  726. * controller, and hence only one SSI.
  727. */
  728. int fsl_dma_configure(struct fsl_dma_info *dma_info)
  729. {
  730. static int initialized;
  731. /* We only support one DMA controller for now */
  732. if (initialized)
  733. return 0;
  734. dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
  735. dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
  736. dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
  737. dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
  738. dma_global_data.irq[0] = dma_info->dma_irq[0];
  739. dma_global_data.irq[1] = dma_info->dma_irq[1];
  740. dma_global_data.assigned[0] = 0;
  741. dma_global_data.assigned[1] = 0;
  742. initialized = 1;
  743. return 1;
  744. }
  745. EXPORT_SYMBOL_GPL(fsl_dma_configure);
  746. static int __init fsl_soc_platform_init(void)
  747. {
  748. return snd_soc_register_platform(&fsl_soc_platform);
  749. }
  750. module_init(fsl_soc_platform_init);
  751. static void __exit fsl_soc_platform_exit(void)
  752. {
  753. snd_soc_unregister_platform(&fsl_soc_platform);
  754. }
  755. module_exit(fsl_soc_platform_exit);
  756. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  757. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
  758. MODULE_LICENSE("GPL");