cs4236_lib.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037
  1. /*
  2. * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  3. * Routines for control of CS4235/4236B/4237B/4238B/4239 chips
  4. *
  5. * Note:
  6. * -----
  7. *
  8. * Bugs:
  9. * -----
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  24. *
  25. */
  26. /*
  27. * Indirect control registers (CS4236B+)
  28. *
  29. * C0
  30. * D8: WSS reset (all chips)
  31. *
  32. * C1 (all chips except CS4236)
  33. * D7-D5: version
  34. * D4-D0: chip id
  35. * 11101 - CS4235
  36. * 01011 - CS4236B
  37. * 01000 - CS4237B
  38. * 01001 - CS4238B
  39. * 11110 - CS4239
  40. *
  41. * C2
  42. * D7-D4: 3D Space (CS4235,CS4237B,CS4238B,CS4239)
  43. * D3-D0: 3D Center (CS4237B); 3D Volume (CS4238B)
  44. *
  45. * C3
  46. * D7: 3D Enable (CS4237B)
  47. * D6: 3D Mono Enable (CS4237B)
  48. * D5: 3D Serial Output (CS4237B,CS4238B)
  49. * D4: 3D Enable (CS4235,CS4238B,CS4239)
  50. *
  51. * C4
  52. * D7: consumer serial port enable (CS4237B,CS4238B)
  53. * D6: channels status block reset (CS4237B,CS4238B)
  54. * D5: user bit in sub-frame of digital audio data (CS4237B,CS4238B)
  55. * D4: validity bit bit in sub-frame of digital audio data (CS4237B,CS4238B)
  56. *
  57. * C5 lower channel status (digital serial data description) (CS4237B,CS4238B)
  58. * D7-D6: first two bits of category code
  59. * D5: lock
  60. * D4-D3: pre-emphasis (0 = none, 1 = 50/15us)
  61. * D2: copy/copyright (0 = copy inhibited)
  62. * D1: 0 = digital audio / 1 = non-digital audio
  63. *
  64. * C6 upper channel status (digital serial data description) (CS4237B,CS4238B)
  65. * D7-D6: sample frequency (0 = 44.1kHz)
  66. * D5: generation status (0 = no indication, 1 = original/commercially precaptureed data)
  67. * D4-D0: category code (upper bits)
  68. *
  69. * C7 reserved (must write 0)
  70. *
  71. * C8 wavetable control
  72. * D7: volume control interrupt enable (CS4235,CS4239)
  73. * D6: hardware volume control format (CS4235,CS4239)
  74. * D3: wavetable serial port enable (all chips)
  75. * D2: DSP serial port switch (all chips)
  76. * D1: disable MCLK (all chips)
  77. * D0: force BRESET low (all chips)
  78. *
  79. */
  80. #include <asm/io.h>
  81. #include <linux/delay.h>
  82. #include <linux/init.h>
  83. #include <linux/time.h>
  84. #include <linux/wait.h>
  85. #include <sound/core.h>
  86. #include <sound/wss.h>
  87. #include <sound/asoundef.h>
  88. MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
  89. MODULE_DESCRIPTION("Routines for control of CS4235/4236B/4237B/4238B/4239 chips");
  90. MODULE_LICENSE("GPL");
  91. /*
  92. *
  93. */
  94. static unsigned char snd_cs4236_ext_map[18] = {
  95. /* CS4236_LEFT_LINE */ 0xff,
  96. /* CS4236_RIGHT_LINE */ 0xff,
  97. /* CS4236_LEFT_MIC */ 0xdf,
  98. /* CS4236_RIGHT_MIC */ 0xdf,
  99. /* CS4236_LEFT_MIX_CTRL */ 0xe0 | 0x18,
  100. /* CS4236_RIGHT_MIX_CTRL */ 0xe0,
  101. /* CS4236_LEFT_FM */ 0xbf,
  102. /* CS4236_RIGHT_FM */ 0xbf,
  103. /* CS4236_LEFT_DSP */ 0xbf,
  104. /* CS4236_RIGHT_DSP */ 0xbf,
  105. /* CS4236_RIGHT_LOOPBACK */ 0xbf,
  106. /* CS4236_DAC_MUTE */ 0xe0,
  107. /* CS4236_ADC_RATE */ 0x01, /* 48kHz */
  108. /* CS4236_DAC_RATE */ 0x01, /* 48kHz */
  109. /* CS4236_LEFT_MASTER */ 0xbf,
  110. /* CS4236_RIGHT_MASTER */ 0xbf,
  111. /* CS4236_LEFT_WAVE */ 0xbf,
  112. /* CS4236_RIGHT_WAVE */ 0xbf
  113. };
  114. /*
  115. *
  116. */
  117. static void snd_cs4236_ctrl_out(struct snd_wss *chip,
  118. unsigned char reg, unsigned char val)
  119. {
  120. outb(reg, chip->cport + 3);
  121. outb(chip->cimage[reg] = val, chip->cport + 4);
  122. }
  123. static unsigned char snd_cs4236_ctrl_in(struct snd_wss *chip, unsigned char reg)
  124. {
  125. outb(reg, chip->cport + 3);
  126. return inb(chip->cport + 4);
  127. }
  128. /*
  129. * PCM
  130. */
  131. #define CLOCKS 8
  132. static struct snd_ratnum clocks[CLOCKS] = {
  133. { .num = 16934400, .den_min = 353, .den_max = 353, .den_step = 1 },
  134. { .num = 16934400, .den_min = 529, .den_max = 529, .den_step = 1 },
  135. { .num = 16934400, .den_min = 617, .den_max = 617, .den_step = 1 },
  136. { .num = 16934400, .den_min = 1058, .den_max = 1058, .den_step = 1 },
  137. { .num = 16934400, .den_min = 1764, .den_max = 1764, .den_step = 1 },
  138. { .num = 16934400, .den_min = 2117, .den_max = 2117, .den_step = 1 },
  139. { .num = 16934400, .den_min = 2558, .den_max = 2558, .den_step = 1 },
  140. { .num = 16934400/16, .den_min = 21, .den_max = 192, .den_step = 1 }
  141. };
  142. static struct snd_pcm_hw_constraint_ratnums hw_constraints_clocks = {
  143. .nrats = CLOCKS,
  144. .rats = clocks,
  145. };
  146. static int snd_cs4236_xrate(struct snd_pcm_runtime *runtime)
  147. {
  148. return snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  149. &hw_constraints_clocks);
  150. }
  151. static unsigned char divisor_to_rate_register(unsigned int divisor)
  152. {
  153. switch (divisor) {
  154. case 353: return 1;
  155. case 529: return 2;
  156. case 617: return 3;
  157. case 1058: return 4;
  158. case 1764: return 5;
  159. case 2117: return 6;
  160. case 2558: return 7;
  161. default:
  162. if (divisor < 21 || divisor > 192) {
  163. snd_BUG();
  164. return 192;
  165. }
  166. return divisor;
  167. }
  168. }
  169. static void snd_cs4236_playback_format(struct snd_wss *chip,
  170. struct snd_pcm_hw_params *params,
  171. unsigned char pdfr)
  172. {
  173. unsigned long flags;
  174. unsigned char rate = divisor_to_rate_register(params->rate_den);
  175. spin_lock_irqsave(&chip->reg_lock, flags);
  176. /* set fast playback format change and clean playback FIFO */
  177. snd_wss_out(chip, CS4231_ALT_FEATURE_1,
  178. chip->image[CS4231_ALT_FEATURE_1] | 0x10);
  179. snd_wss_out(chip, CS4231_PLAYBK_FORMAT, pdfr & 0xf0);
  180. snd_wss_out(chip, CS4231_ALT_FEATURE_1,
  181. chip->image[CS4231_ALT_FEATURE_1] & ~0x10);
  182. snd_cs4236_ext_out(chip, CS4236_DAC_RATE, rate);
  183. spin_unlock_irqrestore(&chip->reg_lock, flags);
  184. }
  185. static void snd_cs4236_capture_format(struct snd_wss *chip,
  186. struct snd_pcm_hw_params *params,
  187. unsigned char cdfr)
  188. {
  189. unsigned long flags;
  190. unsigned char rate = divisor_to_rate_register(params->rate_den);
  191. spin_lock_irqsave(&chip->reg_lock, flags);
  192. /* set fast capture format change and clean capture FIFO */
  193. snd_wss_out(chip, CS4231_ALT_FEATURE_1,
  194. chip->image[CS4231_ALT_FEATURE_1] | 0x20);
  195. snd_wss_out(chip, CS4231_REC_FORMAT, cdfr & 0xf0);
  196. snd_wss_out(chip, CS4231_ALT_FEATURE_1,
  197. chip->image[CS4231_ALT_FEATURE_1] & ~0x20);
  198. snd_cs4236_ext_out(chip, CS4236_ADC_RATE, rate);
  199. spin_unlock_irqrestore(&chip->reg_lock, flags);
  200. }
  201. #ifdef CONFIG_PM
  202. static void snd_cs4236_suspend(struct snd_wss *chip)
  203. {
  204. int reg;
  205. unsigned long flags;
  206. spin_lock_irqsave(&chip->reg_lock, flags);
  207. for (reg = 0; reg < 32; reg++)
  208. chip->image[reg] = snd_wss_in(chip, reg);
  209. for (reg = 0; reg < 18; reg++)
  210. chip->eimage[reg] = snd_cs4236_ext_in(chip, CS4236_I23VAL(reg));
  211. for (reg = 2; reg < 9; reg++)
  212. chip->cimage[reg] = snd_cs4236_ctrl_in(chip, reg);
  213. spin_unlock_irqrestore(&chip->reg_lock, flags);
  214. }
  215. static void snd_cs4236_resume(struct snd_wss *chip)
  216. {
  217. int reg;
  218. unsigned long flags;
  219. snd_wss_mce_up(chip);
  220. spin_lock_irqsave(&chip->reg_lock, flags);
  221. for (reg = 0; reg < 32; reg++) {
  222. switch (reg) {
  223. case CS4236_EXT_REG:
  224. case CS4231_VERSION:
  225. case 27: /* why? CS4235 - master left */
  226. case 29: /* why? CS4235 - master right */
  227. break;
  228. default:
  229. snd_wss_out(chip, reg, chip->image[reg]);
  230. break;
  231. }
  232. }
  233. for (reg = 0; reg < 18; reg++)
  234. snd_cs4236_ext_out(chip, CS4236_I23VAL(reg), chip->eimage[reg]);
  235. for (reg = 2; reg < 9; reg++) {
  236. switch (reg) {
  237. case 7:
  238. break;
  239. default:
  240. snd_cs4236_ctrl_out(chip, reg, chip->cimage[reg]);
  241. }
  242. }
  243. spin_unlock_irqrestore(&chip->reg_lock, flags);
  244. snd_wss_mce_down(chip);
  245. }
  246. #endif /* CONFIG_PM */
  247. int snd_cs4236_create(struct snd_card *card,
  248. unsigned long port,
  249. unsigned long cport,
  250. int irq, int dma1, int dma2,
  251. unsigned short hardware,
  252. unsigned short hwshare,
  253. struct snd_wss **rchip)
  254. {
  255. struct snd_wss *chip;
  256. unsigned char ver1, ver2;
  257. unsigned int reg;
  258. int err;
  259. *rchip = NULL;
  260. if (hardware == WSS_HW_DETECT)
  261. hardware = WSS_HW_DETECT3;
  262. if (cport < 0x100) {
  263. snd_printk("please, specify control port for CS4236+ chips\n");
  264. return -ENODEV;
  265. }
  266. err = snd_wss_create(card, port, cport,
  267. irq, dma1, dma2, hardware, hwshare, &chip);
  268. if (err < 0)
  269. return err;
  270. if (!(chip->hardware & WSS_HW_CS4236B_MASK)) {
  271. snd_printk("CS4236+: MODE3 and extended registers not available, hardware=0x%x\n",chip->hardware);
  272. snd_device_free(card, chip);
  273. return -ENODEV;
  274. }
  275. #if 0
  276. {
  277. int idx;
  278. for (idx = 0; idx < 8; idx++)
  279. snd_printk("CD%i = 0x%x\n", idx, inb(chip->cport + idx));
  280. for (idx = 0; idx < 9; idx++)
  281. snd_printk("C%i = 0x%x\n", idx, snd_cs4236_ctrl_in(chip, idx));
  282. }
  283. #endif
  284. ver1 = snd_cs4236_ctrl_in(chip, 1);
  285. ver2 = snd_cs4236_ext_in(chip, CS4236_VERSION);
  286. snd_printdd("CS4236: [0x%lx] C1 (version) = 0x%x, ext = 0x%x\n", cport, ver1, ver2);
  287. if (ver1 != ver2) {
  288. snd_printk("CS4236+ chip detected, but control port 0x%lx is not valid\n", cport);
  289. snd_device_free(card, chip);
  290. return -ENODEV;
  291. }
  292. snd_cs4236_ctrl_out(chip, 0, 0x00);
  293. snd_cs4236_ctrl_out(chip, 2, 0xff);
  294. snd_cs4236_ctrl_out(chip, 3, 0x00);
  295. snd_cs4236_ctrl_out(chip, 4, 0x80);
  296. snd_cs4236_ctrl_out(chip, 5, ((IEC958_AES1_CON_PCM_CODER & 3) << 6) | IEC958_AES0_CON_EMPHASIS_NONE);
  297. snd_cs4236_ctrl_out(chip, 6, IEC958_AES1_CON_PCM_CODER >> 2);
  298. snd_cs4236_ctrl_out(chip, 7, 0x00);
  299. /* 0x8c for C8 is valid for Turtle Beach Malibu - the IEC-958 output */
  300. /* is working with this setup, other hardware should have */
  301. /* different signal paths and this value should be selectable */
  302. /* in the future */
  303. snd_cs4236_ctrl_out(chip, 8, 0x8c);
  304. chip->rate_constraint = snd_cs4236_xrate;
  305. chip->set_playback_format = snd_cs4236_playback_format;
  306. chip->set_capture_format = snd_cs4236_capture_format;
  307. #ifdef CONFIG_PM
  308. chip->suspend = snd_cs4236_suspend;
  309. chip->resume = snd_cs4236_resume;
  310. #endif
  311. /* initialize extended registers */
  312. for (reg = 0; reg < sizeof(snd_cs4236_ext_map); reg++)
  313. snd_cs4236_ext_out(chip, CS4236_I23VAL(reg), snd_cs4236_ext_map[reg]);
  314. /* initialize compatible but more featured registers */
  315. snd_wss_out(chip, CS4231_LEFT_INPUT, 0x40);
  316. snd_wss_out(chip, CS4231_RIGHT_INPUT, 0x40);
  317. snd_wss_out(chip, CS4231_AUX1_LEFT_INPUT, 0xff);
  318. snd_wss_out(chip, CS4231_AUX1_RIGHT_INPUT, 0xff);
  319. snd_wss_out(chip, CS4231_AUX2_LEFT_INPUT, 0xdf);
  320. snd_wss_out(chip, CS4231_AUX2_RIGHT_INPUT, 0xdf);
  321. snd_wss_out(chip, CS4231_RIGHT_LINE_IN, 0xff);
  322. snd_wss_out(chip, CS4231_LEFT_LINE_IN, 0xff);
  323. snd_wss_out(chip, CS4231_RIGHT_LINE_IN, 0xff);
  324. switch (chip->hardware) {
  325. case WSS_HW_CS4235:
  326. case WSS_HW_CS4239:
  327. snd_wss_out(chip, CS4235_LEFT_MASTER, 0xff);
  328. snd_wss_out(chip, CS4235_RIGHT_MASTER, 0xff);
  329. break;
  330. }
  331. *rchip = chip;
  332. return 0;
  333. }
  334. int snd_cs4236_pcm(struct snd_wss *chip, int device, struct snd_pcm **rpcm)
  335. {
  336. struct snd_pcm *pcm;
  337. int err;
  338. err = snd_wss_pcm(chip, device, &pcm);
  339. if (err < 0)
  340. return err;
  341. pcm->info_flags &= ~SNDRV_PCM_INFO_JOINT_DUPLEX;
  342. if (rpcm)
  343. *rpcm = pcm;
  344. return 0;
  345. }
  346. /*
  347. * MIXER
  348. */
  349. #define CS4236_SINGLE(xname, xindex, reg, shift, mask, invert) \
  350. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  351. .info = snd_cs4236_info_single, \
  352. .get = snd_cs4236_get_single, .put = snd_cs4236_put_single, \
  353. .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
  354. static int snd_cs4236_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  355. {
  356. int mask = (kcontrol->private_value >> 16) & 0xff;
  357. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  358. uinfo->count = 1;
  359. uinfo->value.integer.min = 0;
  360. uinfo->value.integer.max = mask;
  361. return 0;
  362. }
  363. static int snd_cs4236_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  364. {
  365. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  366. unsigned long flags;
  367. int reg = kcontrol->private_value & 0xff;
  368. int shift = (kcontrol->private_value >> 8) & 0xff;
  369. int mask = (kcontrol->private_value >> 16) & 0xff;
  370. int invert = (kcontrol->private_value >> 24) & 0xff;
  371. spin_lock_irqsave(&chip->reg_lock, flags);
  372. ucontrol->value.integer.value[0] = (chip->eimage[CS4236_REG(reg)] >> shift) & mask;
  373. spin_unlock_irqrestore(&chip->reg_lock, flags);
  374. if (invert)
  375. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  376. return 0;
  377. }
  378. static int snd_cs4236_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  379. {
  380. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  381. unsigned long flags;
  382. int reg = kcontrol->private_value & 0xff;
  383. int shift = (kcontrol->private_value >> 8) & 0xff;
  384. int mask = (kcontrol->private_value >> 16) & 0xff;
  385. int invert = (kcontrol->private_value >> 24) & 0xff;
  386. int change;
  387. unsigned short val;
  388. val = (ucontrol->value.integer.value[0] & mask);
  389. if (invert)
  390. val = mask - val;
  391. val <<= shift;
  392. spin_lock_irqsave(&chip->reg_lock, flags);
  393. val = (chip->eimage[CS4236_REG(reg)] & ~(mask << shift)) | val;
  394. change = val != chip->eimage[CS4236_REG(reg)];
  395. snd_cs4236_ext_out(chip, reg, val);
  396. spin_unlock_irqrestore(&chip->reg_lock, flags);
  397. return change;
  398. }
  399. #define CS4236_SINGLEC(xname, xindex, reg, shift, mask, invert) \
  400. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  401. .info = snd_cs4236_info_single, \
  402. .get = snd_cs4236_get_singlec, .put = snd_cs4236_put_singlec, \
  403. .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
  404. static int snd_cs4236_get_singlec(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  405. {
  406. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  407. unsigned long flags;
  408. int reg = kcontrol->private_value & 0xff;
  409. int shift = (kcontrol->private_value >> 8) & 0xff;
  410. int mask = (kcontrol->private_value >> 16) & 0xff;
  411. int invert = (kcontrol->private_value >> 24) & 0xff;
  412. spin_lock_irqsave(&chip->reg_lock, flags);
  413. ucontrol->value.integer.value[0] = (chip->cimage[reg] >> shift) & mask;
  414. spin_unlock_irqrestore(&chip->reg_lock, flags);
  415. if (invert)
  416. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  417. return 0;
  418. }
  419. static int snd_cs4236_put_singlec(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  420. {
  421. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  422. unsigned long flags;
  423. int reg = kcontrol->private_value & 0xff;
  424. int shift = (kcontrol->private_value >> 8) & 0xff;
  425. int mask = (kcontrol->private_value >> 16) & 0xff;
  426. int invert = (kcontrol->private_value >> 24) & 0xff;
  427. int change;
  428. unsigned short val;
  429. val = (ucontrol->value.integer.value[0] & mask);
  430. if (invert)
  431. val = mask - val;
  432. val <<= shift;
  433. spin_lock_irqsave(&chip->reg_lock, flags);
  434. val = (chip->cimage[reg] & ~(mask << shift)) | val;
  435. change = val != chip->cimage[reg];
  436. snd_cs4236_ctrl_out(chip, reg, val);
  437. spin_unlock_irqrestore(&chip->reg_lock, flags);
  438. return change;
  439. }
  440. #define CS4236_DOUBLE(xname, xindex, left_reg, right_reg, shift_left, shift_right, mask, invert) \
  441. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  442. .info = snd_cs4236_info_double, \
  443. .get = snd_cs4236_get_double, .put = snd_cs4236_put_double, \
  444. .private_value = left_reg | (right_reg << 8) | (shift_left << 16) | (shift_right << 19) | (mask << 24) | (invert << 22) }
  445. static int snd_cs4236_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  446. {
  447. int mask = (kcontrol->private_value >> 24) & 0xff;
  448. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  449. uinfo->count = 2;
  450. uinfo->value.integer.min = 0;
  451. uinfo->value.integer.max = mask;
  452. return 0;
  453. }
  454. static int snd_cs4236_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  455. {
  456. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  457. unsigned long flags;
  458. int left_reg = kcontrol->private_value & 0xff;
  459. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  460. int shift_left = (kcontrol->private_value >> 16) & 0x07;
  461. int shift_right = (kcontrol->private_value >> 19) & 0x07;
  462. int mask = (kcontrol->private_value >> 24) & 0xff;
  463. int invert = (kcontrol->private_value >> 22) & 1;
  464. spin_lock_irqsave(&chip->reg_lock, flags);
  465. ucontrol->value.integer.value[0] = (chip->eimage[CS4236_REG(left_reg)] >> shift_left) & mask;
  466. ucontrol->value.integer.value[1] = (chip->eimage[CS4236_REG(right_reg)] >> shift_right) & mask;
  467. spin_unlock_irqrestore(&chip->reg_lock, flags);
  468. if (invert) {
  469. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  470. ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
  471. }
  472. return 0;
  473. }
  474. static int snd_cs4236_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  475. {
  476. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  477. unsigned long flags;
  478. int left_reg = kcontrol->private_value & 0xff;
  479. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  480. int shift_left = (kcontrol->private_value >> 16) & 0x07;
  481. int shift_right = (kcontrol->private_value >> 19) & 0x07;
  482. int mask = (kcontrol->private_value >> 24) & 0xff;
  483. int invert = (kcontrol->private_value >> 22) & 1;
  484. int change;
  485. unsigned short val1, val2;
  486. val1 = ucontrol->value.integer.value[0] & mask;
  487. val2 = ucontrol->value.integer.value[1] & mask;
  488. if (invert) {
  489. val1 = mask - val1;
  490. val2 = mask - val2;
  491. }
  492. val1 <<= shift_left;
  493. val2 <<= shift_right;
  494. spin_lock_irqsave(&chip->reg_lock, flags);
  495. if (left_reg != right_reg) {
  496. val1 = (chip->eimage[CS4236_REG(left_reg)] & ~(mask << shift_left)) | val1;
  497. val2 = (chip->eimage[CS4236_REG(right_reg)] & ~(mask << shift_right)) | val2;
  498. change = val1 != chip->eimage[CS4236_REG(left_reg)] || val2 != chip->eimage[CS4236_REG(right_reg)];
  499. snd_cs4236_ext_out(chip, left_reg, val1);
  500. snd_cs4236_ext_out(chip, right_reg, val2);
  501. } else {
  502. val1 = (chip->eimage[CS4236_REG(left_reg)] & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
  503. change = val1 != chip->eimage[CS4236_REG(left_reg)];
  504. snd_cs4236_ext_out(chip, left_reg, val1);
  505. }
  506. spin_unlock_irqrestore(&chip->reg_lock, flags);
  507. return change;
  508. }
  509. #define CS4236_DOUBLE1(xname, xindex, left_reg, right_reg, shift_left, shift_right, mask, invert) \
  510. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  511. .info = snd_cs4236_info_double, \
  512. .get = snd_cs4236_get_double1, .put = snd_cs4236_put_double1, \
  513. .private_value = left_reg | (right_reg << 8) | (shift_left << 16) | (shift_right << 19) | (mask << 24) | (invert << 22) }
  514. static int snd_cs4236_get_double1(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  515. {
  516. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  517. unsigned long flags;
  518. int left_reg = kcontrol->private_value & 0xff;
  519. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  520. int shift_left = (kcontrol->private_value >> 16) & 0x07;
  521. int shift_right = (kcontrol->private_value >> 19) & 0x07;
  522. int mask = (kcontrol->private_value >> 24) & 0xff;
  523. int invert = (kcontrol->private_value >> 22) & 1;
  524. spin_lock_irqsave(&chip->reg_lock, flags);
  525. ucontrol->value.integer.value[0] = (chip->image[left_reg] >> shift_left) & mask;
  526. ucontrol->value.integer.value[1] = (chip->eimage[CS4236_REG(right_reg)] >> shift_right) & mask;
  527. spin_unlock_irqrestore(&chip->reg_lock, flags);
  528. if (invert) {
  529. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  530. ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
  531. }
  532. return 0;
  533. }
  534. static int snd_cs4236_put_double1(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  535. {
  536. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  537. unsigned long flags;
  538. int left_reg = kcontrol->private_value & 0xff;
  539. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  540. int shift_left = (kcontrol->private_value >> 16) & 0x07;
  541. int shift_right = (kcontrol->private_value >> 19) & 0x07;
  542. int mask = (kcontrol->private_value >> 24) & 0xff;
  543. int invert = (kcontrol->private_value >> 22) & 1;
  544. int change;
  545. unsigned short val1, val2;
  546. val1 = ucontrol->value.integer.value[0] & mask;
  547. val2 = ucontrol->value.integer.value[1] & mask;
  548. if (invert) {
  549. val1 = mask - val1;
  550. val2 = mask - val2;
  551. }
  552. val1 <<= shift_left;
  553. val2 <<= shift_right;
  554. spin_lock_irqsave(&chip->reg_lock, flags);
  555. val1 = (chip->image[left_reg] & ~(mask << shift_left)) | val1;
  556. val2 = (chip->eimage[CS4236_REG(right_reg)] & ~(mask << shift_right)) | val2;
  557. change = val1 != chip->image[left_reg] || val2 != chip->eimage[CS4236_REG(right_reg)];
  558. snd_wss_out(chip, left_reg, val1);
  559. snd_cs4236_ext_out(chip, right_reg, val2);
  560. spin_unlock_irqrestore(&chip->reg_lock, flags);
  561. return change;
  562. }
  563. #define CS4236_MASTER_DIGITAL(xname, xindex) \
  564. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  565. .info = snd_cs4236_info_double, \
  566. .get = snd_cs4236_get_master_digital, .put = snd_cs4236_put_master_digital, \
  567. .private_value = 71 << 24 }
  568. static inline int snd_cs4236_mixer_master_digital_invert_volume(int vol)
  569. {
  570. return (vol < 64) ? 63 - vol : 64 + (71 - vol);
  571. }
  572. static int snd_cs4236_get_master_digital(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  573. {
  574. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  575. unsigned long flags;
  576. spin_lock_irqsave(&chip->reg_lock, flags);
  577. ucontrol->value.integer.value[0] = snd_cs4236_mixer_master_digital_invert_volume(chip->eimage[CS4236_REG(CS4236_LEFT_MASTER)] & 0x7f);
  578. ucontrol->value.integer.value[1] = snd_cs4236_mixer_master_digital_invert_volume(chip->eimage[CS4236_REG(CS4236_RIGHT_MASTER)] & 0x7f);
  579. spin_unlock_irqrestore(&chip->reg_lock, flags);
  580. return 0;
  581. }
  582. static int snd_cs4236_put_master_digital(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  583. {
  584. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  585. unsigned long flags;
  586. int change;
  587. unsigned short val1, val2;
  588. val1 = snd_cs4236_mixer_master_digital_invert_volume(ucontrol->value.integer.value[0] & 0x7f);
  589. val2 = snd_cs4236_mixer_master_digital_invert_volume(ucontrol->value.integer.value[1] & 0x7f);
  590. spin_lock_irqsave(&chip->reg_lock, flags);
  591. val1 = (chip->eimage[CS4236_REG(CS4236_LEFT_MASTER)] & ~0x7f) | val1;
  592. val2 = (chip->eimage[CS4236_REG(CS4236_RIGHT_MASTER)] & ~0x7f) | val2;
  593. change = val1 != chip->eimage[CS4236_REG(CS4236_LEFT_MASTER)] || val2 != chip->eimage[CS4236_REG(CS4236_RIGHT_MASTER)];
  594. snd_cs4236_ext_out(chip, CS4236_LEFT_MASTER, val1);
  595. snd_cs4236_ext_out(chip, CS4236_RIGHT_MASTER, val2);
  596. spin_unlock_irqrestore(&chip->reg_lock, flags);
  597. return change;
  598. }
  599. #define CS4235_OUTPUT_ACCU(xname, xindex) \
  600. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  601. .info = snd_cs4236_info_double, \
  602. .get = snd_cs4235_get_output_accu, .put = snd_cs4235_put_output_accu, \
  603. .private_value = 3 << 24 }
  604. static inline int snd_cs4235_mixer_output_accu_get_volume(int vol)
  605. {
  606. switch ((vol >> 5) & 3) {
  607. case 0: return 1;
  608. case 1: return 3;
  609. case 2: return 2;
  610. case 3: return 0;
  611. }
  612. return 3;
  613. }
  614. static inline int snd_cs4235_mixer_output_accu_set_volume(int vol)
  615. {
  616. switch (vol & 3) {
  617. case 0: return 3 << 5;
  618. case 1: return 0 << 5;
  619. case 2: return 2 << 5;
  620. case 3: return 1 << 5;
  621. }
  622. return 1 << 5;
  623. }
  624. static int snd_cs4235_get_output_accu(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  625. {
  626. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  627. unsigned long flags;
  628. spin_lock_irqsave(&chip->reg_lock, flags);
  629. ucontrol->value.integer.value[0] = snd_cs4235_mixer_output_accu_get_volume(chip->image[CS4235_LEFT_MASTER]);
  630. ucontrol->value.integer.value[1] = snd_cs4235_mixer_output_accu_get_volume(chip->image[CS4235_RIGHT_MASTER]);
  631. spin_unlock_irqrestore(&chip->reg_lock, flags);
  632. return 0;
  633. }
  634. static int snd_cs4235_put_output_accu(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  635. {
  636. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  637. unsigned long flags;
  638. int change;
  639. unsigned short val1, val2;
  640. val1 = snd_cs4235_mixer_output_accu_set_volume(ucontrol->value.integer.value[0]);
  641. val2 = snd_cs4235_mixer_output_accu_set_volume(ucontrol->value.integer.value[1]);
  642. spin_lock_irqsave(&chip->reg_lock, flags);
  643. val1 = (chip->image[CS4235_LEFT_MASTER] & ~(3 << 5)) | val1;
  644. val2 = (chip->image[CS4235_RIGHT_MASTER] & ~(3 << 5)) | val2;
  645. change = val1 != chip->image[CS4235_LEFT_MASTER] || val2 != chip->image[CS4235_RIGHT_MASTER];
  646. snd_wss_out(chip, CS4235_LEFT_MASTER, val1);
  647. snd_wss_out(chip, CS4235_RIGHT_MASTER, val2);
  648. spin_unlock_irqrestore(&chip->reg_lock, flags);
  649. return change;
  650. }
  651. static struct snd_kcontrol_new snd_cs4236_controls[] = {
  652. CS4236_DOUBLE("Master Digital Playback Switch", 0,
  653. CS4236_LEFT_MASTER, CS4236_RIGHT_MASTER, 7, 7, 1, 1),
  654. CS4236_DOUBLE("Master Digital Capture Switch", 0,
  655. CS4236_DAC_MUTE, CS4236_DAC_MUTE, 7, 6, 1, 1),
  656. CS4236_MASTER_DIGITAL("Master Digital Volume", 0),
  657. CS4236_DOUBLE("Capture Boost Volume", 0,
  658. CS4236_LEFT_MIX_CTRL, CS4236_RIGHT_MIX_CTRL, 5, 5, 3, 1),
  659. WSS_DOUBLE("PCM Playback Switch", 0,
  660. CS4231_LEFT_OUTPUT, CS4231_RIGHT_OUTPUT, 7, 7, 1, 1),
  661. WSS_DOUBLE("PCM Playback Volume", 0,
  662. CS4231_LEFT_OUTPUT, CS4231_RIGHT_OUTPUT, 0, 0, 63, 1),
  663. CS4236_DOUBLE("DSP Playback Switch", 0,
  664. CS4236_LEFT_DSP, CS4236_RIGHT_DSP, 7, 7, 1, 1),
  665. CS4236_DOUBLE("DSP Playback Volume", 0,
  666. CS4236_LEFT_DSP, CS4236_RIGHT_DSP, 0, 0, 63, 1),
  667. CS4236_DOUBLE("FM Playback Switch", 0,
  668. CS4236_LEFT_FM, CS4236_RIGHT_FM, 7, 7, 1, 1),
  669. CS4236_DOUBLE("FM Playback Volume", 0,
  670. CS4236_LEFT_FM, CS4236_RIGHT_FM, 0, 0, 63, 1),
  671. CS4236_DOUBLE("Wavetable Playback Switch", 0,
  672. CS4236_LEFT_WAVE, CS4236_RIGHT_WAVE, 7, 7, 1, 1),
  673. CS4236_DOUBLE("Wavetable Playback Volume", 0,
  674. CS4236_LEFT_WAVE, CS4236_RIGHT_WAVE, 0, 0, 63, 1),
  675. WSS_DOUBLE("Synth Playback Switch", 0,
  676. CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 7, 7, 1, 1),
  677. WSS_DOUBLE("Synth Volume", 0,
  678. CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 0, 0, 31, 1),
  679. WSS_DOUBLE("Synth Capture Switch", 0,
  680. CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 6, 6, 1, 1),
  681. WSS_DOUBLE("Synth Capture Bypass", 0,
  682. CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 5, 5, 1, 1),
  683. CS4236_DOUBLE("Mic Playback Switch", 0,
  684. CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 6, 6, 1, 1),
  685. CS4236_DOUBLE("Mic Capture Switch", 0,
  686. CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 7, 7, 1, 1),
  687. CS4236_DOUBLE("Mic Volume", 0, CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 0, 0, 31, 1),
  688. CS4236_DOUBLE("Mic Playback Boost", 0,
  689. CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 5, 5, 1, 0),
  690. WSS_DOUBLE("Line Playback Switch", 0,
  691. CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 7, 7, 1, 1),
  692. WSS_DOUBLE("Line Volume", 0,
  693. CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 0, 0, 31, 1),
  694. WSS_DOUBLE("Line Capture Switch", 0,
  695. CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 6, 6, 1, 1),
  696. WSS_DOUBLE("Line Capture Bypass", 0,
  697. CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 5, 5, 1, 1),
  698. WSS_DOUBLE("CD Playback Switch", 0,
  699. CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 7, 7, 1, 1),
  700. WSS_DOUBLE("CD Volume", 0,
  701. CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 0, 0, 31, 1),
  702. WSS_DOUBLE("CD Capture Switch", 0,
  703. CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 6, 6, 1, 1),
  704. CS4236_DOUBLE1("Mono Output Playback Switch", 0,
  705. CS4231_MONO_CTRL, CS4236_RIGHT_MIX_CTRL, 6, 7, 1, 1),
  706. CS4236_DOUBLE1("Mono Playback Switch", 0,
  707. CS4231_MONO_CTRL, CS4236_LEFT_MIX_CTRL, 7, 7, 1, 1),
  708. WSS_SINGLE("Mono Playback Volume", 0, CS4231_MONO_CTRL, 0, 15, 1),
  709. WSS_SINGLE("Mono Playback Bypass", 0, CS4231_MONO_CTRL, 5, 1, 0),
  710. WSS_DOUBLE("Capture Volume", 0,
  711. CS4231_LEFT_INPUT, CS4231_RIGHT_INPUT, 0, 0, 15, 0),
  712. WSS_DOUBLE("Analog Loopback Capture Switch", 0,
  713. CS4231_LEFT_INPUT, CS4231_RIGHT_INPUT, 7, 7, 1, 0),
  714. WSS_SINGLE("Digital Loopback Playback Switch", 0, CS4231_LOOPBACK, 0, 1, 0),
  715. CS4236_DOUBLE1("Digital Loopback Playback Volume", 0,
  716. CS4231_LOOPBACK, CS4236_RIGHT_LOOPBACK, 2, 0, 63, 1)
  717. };
  718. static struct snd_kcontrol_new snd_cs4235_controls[] = {
  719. WSS_DOUBLE("Master Switch", 0,
  720. CS4235_LEFT_MASTER, CS4235_RIGHT_MASTER, 7, 7, 1, 1),
  721. WSS_DOUBLE("Master Volume", 0,
  722. CS4235_LEFT_MASTER, CS4235_RIGHT_MASTER, 0, 0, 31, 1),
  723. CS4235_OUTPUT_ACCU("Playback Volume", 0),
  724. CS4236_DOUBLE("Master Digital Playback Switch", 0,
  725. CS4236_LEFT_MASTER, CS4236_RIGHT_MASTER, 7, 7, 1, 1),
  726. CS4236_DOUBLE("Master Digital Capture Switch", 0,
  727. CS4236_DAC_MUTE, CS4236_DAC_MUTE, 7, 6, 1, 1),
  728. CS4236_MASTER_DIGITAL("Master Digital Volume", 0),
  729. WSS_DOUBLE("Master Digital Playback Switch", 1,
  730. CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 7, 7, 1, 1),
  731. WSS_DOUBLE("Master Digital Capture Switch", 1,
  732. CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 6, 6, 1, 1),
  733. WSS_DOUBLE("Master Digital Volume", 1,
  734. CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 0, 0, 31, 1),
  735. CS4236_DOUBLE("Capture Volume", 0,
  736. CS4236_LEFT_MIX_CTRL, CS4236_RIGHT_MIX_CTRL, 5, 5, 3, 1),
  737. WSS_DOUBLE("PCM Switch", 0,
  738. CS4231_LEFT_OUTPUT, CS4231_RIGHT_OUTPUT, 7, 7, 1, 1),
  739. WSS_DOUBLE("PCM Volume", 0,
  740. CS4231_LEFT_OUTPUT, CS4231_RIGHT_OUTPUT, 0, 0, 63, 1),
  741. CS4236_DOUBLE("DSP Switch", 0, CS4236_LEFT_DSP, CS4236_RIGHT_DSP, 7, 7, 1, 1),
  742. CS4236_DOUBLE("FM Switch", 0, CS4236_LEFT_FM, CS4236_RIGHT_FM, 7, 7, 1, 1),
  743. CS4236_DOUBLE("Wavetable Switch", 0,
  744. CS4236_LEFT_WAVE, CS4236_RIGHT_WAVE, 7, 7, 1, 1),
  745. CS4236_DOUBLE("Mic Capture Switch", 0,
  746. CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 7, 7, 1, 1),
  747. CS4236_DOUBLE("Mic Playback Switch", 0,
  748. CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 6, 6, 1, 1),
  749. CS4236_SINGLE("Mic Volume", 0, CS4236_LEFT_MIC, 0, 31, 1),
  750. CS4236_SINGLE("Mic Playback Boost", 0, CS4236_LEFT_MIC, 5, 1, 0),
  751. WSS_DOUBLE("Aux Playback Switch", 0,
  752. CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 7, 7, 1, 1),
  753. WSS_DOUBLE("Aux Capture Switch", 0,
  754. CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 6, 6, 1, 1),
  755. WSS_DOUBLE("Aux Volume", 0,
  756. CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 0, 0, 31, 1),
  757. WSS_DOUBLE("Aux Playback Switch", 1,
  758. CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 7, 7, 1, 1),
  759. WSS_DOUBLE("Aux Capture Switch", 1,
  760. CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 6, 6, 1, 1),
  761. WSS_DOUBLE("Aux Volume", 1,
  762. CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 0, 0, 31, 1),
  763. CS4236_DOUBLE1("Master Mono Switch", 0,
  764. CS4231_MONO_CTRL, CS4236_RIGHT_MIX_CTRL, 6, 7, 1, 1),
  765. CS4236_DOUBLE1("Mono Switch", 0,
  766. CS4231_MONO_CTRL, CS4236_LEFT_MIX_CTRL, 7, 7, 1, 1),
  767. WSS_SINGLE("Mono Volume", 0, CS4231_MONO_CTRL, 0, 15, 1),
  768. WSS_DOUBLE("Analog Loopback Switch", 0,
  769. CS4231_LEFT_INPUT, CS4231_RIGHT_INPUT, 7, 7, 1, 0),
  770. };
  771. #define CS4236_IEC958_ENABLE(xname, xindex) \
  772. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  773. .info = snd_cs4236_info_single, \
  774. .get = snd_cs4236_get_iec958_switch, .put = snd_cs4236_put_iec958_switch, \
  775. .private_value = 1 << 16 }
  776. static int snd_cs4236_get_iec958_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  777. {
  778. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  779. unsigned long flags;
  780. spin_lock_irqsave(&chip->reg_lock, flags);
  781. ucontrol->value.integer.value[0] = chip->image[CS4231_ALT_FEATURE_1] & 0x02 ? 1 : 0;
  782. #if 0
  783. printk("get valid: ALT = 0x%x, C3 = 0x%x, C4 = 0x%x, C5 = 0x%x, C6 = 0x%x, C8 = 0x%x\n",
  784. snd_wss_in(chip, CS4231_ALT_FEATURE_1),
  785. snd_cs4236_ctrl_in(chip, 3),
  786. snd_cs4236_ctrl_in(chip, 4),
  787. snd_cs4236_ctrl_in(chip, 5),
  788. snd_cs4236_ctrl_in(chip, 6),
  789. snd_cs4236_ctrl_in(chip, 8));
  790. #endif
  791. spin_unlock_irqrestore(&chip->reg_lock, flags);
  792. return 0;
  793. }
  794. static int snd_cs4236_put_iec958_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  795. {
  796. struct snd_wss *chip = snd_kcontrol_chip(kcontrol);
  797. unsigned long flags;
  798. int change;
  799. unsigned short enable, val;
  800. enable = ucontrol->value.integer.value[0] & 1;
  801. mutex_lock(&chip->mce_mutex);
  802. snd_wss_mce_up(chip);
  803. spin_lock_irqsave(&chip->reg_lock, flags);
  804. val = (chip->image[CS4231_ALT_FEATURE_1] & ~0x0e) | (0<<2) | (enable << 1);
  805. change = val != chip->image[CS4231_ALT_FEATURE_1];
  806. snd_wss_out(chip, CS4231_ALT_FEATURE_1, val);
  807. val = snd_cs4236_ctrl_in(chip, 4) | 0xc0;
  808. snd_cs4236_ctrl_out(chip, 4, val);
  809. udelay(100);
  810. val &= ~0x40;
  811. snd_cs4236_ctrl_out(chip, 4, val);
  812. spin_unlock_irqrestore(&chip->reg_lock, flags);
  813. snd_wss_mce_down(chip);
  814. mutex_unlock(&chip->mce_mutex);
  815. #if 0
  816. printk("set valid: ALT = 0x%x, C3 = 0x%x, C4 = 0x%x, C5 = 0x%x, C6 = 0x%x, C8 = 0x%x\n",
  817. snd_wss_in(chip, CS4231_ALT_FEATURE_1),
  818. snd_cs4236_ctrl_in(chip, 3),
  819. snd_cs4236_ctrl_in(chip, 4),
  820. snd_cs4236_ctrl_in(chip, 5),
  821. snd_cs4236_ctrl_in(chip, 6),
  822. snd_cs4236_ctrl_in(chip, 8));
  823. #endif
  824. return change;
  825. }
  826. static struct snd_kcontrol_new snd_cs4236_iec958_controls[] = {
  827. CS4236_IEC958_ENABLE("IEC958 Output Enable", 0),
  828. CS4236_SINGLEC("IEC958 Output Validity", 0, 4, 4, 1, 0),
  829. CS4236_SINGLEC("IEC958 Output User", 0, 4, 5, 1, 0),
  830. CS4236_SINGLEC("IEC958 Output CSBR", 0, 4, 6, 1, 0),
  831. CS4236_SINGLEC("IEC958 Output Channel Status Low", 0, 5, 1, 127, 0),
  832. CS4236_SINGLEC("IEC958 Output Channel Status High", 0, 6, 0, 255, 0)
  833. };
  834. static struct snd_kcontrol_new snd_cs4236_3d_controls_cs4235[] = {
  835. CS4236_SINGLEC("3D Control - Switch", 0, 3, 4, 1, 0),
  836. CS4236_SINGLEC("3D Control - Space", 0, 2, 4, 15, 1)
  837. };
  838. static struct snd_kcontrol_new snd_cs4236_3d_controls_cs4237[] = {
  839. CS4236_SINGLEC("3D Control - Switch", 0, 3, 7, 1, 0),
  840. CS4236_SINGLEC("3D Control - Space", 0, 2, 4, 15, 1),
  841. CS4236_SINGLEC("3D Control - Center", 0, 2, 0, 15, 1),
  842. CS4236_SINGLEC("3D Control - Mono", 0, 3, 6, 1, 0),
  843. CS4236_SINGLEC("3D Control - IEC958", 0, 3, 5, 1, 0)
  844. };
  845. static struct snd_kcontrol_new snd_cs4236_3d_controls_cs4238[] = {
  846. CS4236_SINGLEC("3D Control - Switch", 0, 3, 4, 1, 0),
  847. CS4236_SINGLEC("3D Control - Space", 0, 2, 4, 15, 1),
  848. CS4236_SINGLEC("3D Control - Volume", 0, 2, 0, 15, 1),
  849. CS4236_SINGLEC("3D Control - IEC958", 0, 3, 5, 1, 0)
  850. };
  851. int snd_cs4236_mixer(struct snd_wss *chip)
  852. {
  853. struct snd_card *card;
  854. unsigned int idx, count;
  855. int err;
  856. struct snd_kcontrol_new *kcontrol;
  857. if (snd_BUG_ON(!chip || !chip->card))
  858. return -EINVAL;
  859. card = chip->card;
  860. strcpy(card->mixername, snd_wss_chip_id(chip));
  861. if (chip->hardware == WSS_HW_CS4235 ||
  862. chip->hardware == WSS_HW_CS4239) {
  863. for (idx = 0; idx < ARRAY_SIZE(snd_cs4235_controls); idx++) {
  864. if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4235_controls[idx], chip))) < 0)
  865. return err;
  866. }
  867. } else {
  868. for (idx = 0; idx < ARRAY_SIZE(snd_cs4236_controls); idx++) {
  869. if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4236_controls[idx], chip))) < 0)
  870. return err;
  871. }
  872. }
  873. switch (chip->hardware) {
  874. case WSS_HW_CS4235:
  875. case WSS_HW_CS4239:
  876. count = ARRAY_SIZE(snd_cs4236_3d_controls_cs4235);
  877. kcontrol = snd_cs4236_3d_controls_cs4235;
  878. break;
  879. case WSS_HW_CS4237B:
  880. count = ARRAY_SIZE(snd_cs4236_3d_controls_cs4237);
  881. kcontrol = snd_cs4236_3d_controls_cs4237;
  882. break;
  883. case WSS_HW_CS4238B:
  884. count = ARRAY_SIZE(snd_cs4236_3d_controls_cs4238);
  885. kcontrol = snd_cs4236_3d_controls_cs4238;
  886. break;
  887. default:
  888. count = 0;
  889. kcontrol = NULL;
  890. }
  891. for (idx = 0; idx < count; idx++, kcontrol++) {
  892. if ((err = snd_ctl_add(card, snd_ctl_new1(kcontrol, chip))) < 0)
  893. return err;
  894. }
  895. if (chip->hardware == WSS_HW_CS4237B ||
  896. chip->hardware == WSS_HW_CS4238B) {
  897. for (idx = 0; idx < ARRAY_SIZE(snd_cs4236_iec958_controls); idx++) {
  898. if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4236_iec958_controls[idx], chip))) < 0)
  899. return err;
  900. }
  901. }
  902. return 0;
  903. }
  904. EXPORT_SYMBOL(snd_cs4236_create);
  905. EXPORT_SYMBOL(snd_cs4236_pcm);
  906. EXPORT_SYMBOL(snd_cs4236_mixer);
  907. /*
  908. * INIT part
  909. */
  910. static int __init alsa_cs4236_init(void)
  911. {
  912. return 0;
  913. }
  914. static void __exit alsa_cs4236_exit(void)
  915. {
  916. }
  917. module_init(alsa_cs4236_init)
  918. module_exit(alsa_cs4236_exit)