memory.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <linux/mmu_notifier.h>
  50. #include <asm/pgalloc.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/tlb.h>
  53. #include <asm/tlbflush.h>
  54. #include <asm/pgtable.h>
  55. #include <linux/swapops.h>
  56. #include <linux/elf.h>
  57. #include "internal.h"
  58. #ifndef CONFIG_NEED_MULTIPLE_NODES
  59. /* use the per-pgdat data instead for discontigmem - mbligh */
  60. unsigned long max_mapnr;
  61. struct page *mem_map;
  62. EXPORT_SYMBOL(max_mapnr);
  63. EXPORT_SYMBOL(mem_map);
  64. #endif
  65. unsigned long num_physpages;
  66. /*
  67. * A number of key systems in x86 including ioremap() rely on the assumption
  68. * that high_memory defines the upper bound on direct map memory, then end
  69. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  70. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  71. * and ZONE_HIGHMEM.
  72. */
  73. void * high_memory;
  74. EXPORT_SYMBOL(num_physpages);
  75. EXPORT_SYMBOL(high_memory);
  76. /*
  77. * Randomize the address space (stacks, mmaps, brk, etc.).
  78. *
  79. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  80. * as ancient (libc5 based) binaries can segfault. )
  81. */
  82. int randomize_va_space __read_mostly =
  83. #ifdef CONFIG_COMPAT_BRK
  84. 1;
  85. #else
  86. 2;
  87. #endif
  88. static int __init disable_randmaps(char *s)
  89. {
  90. randomize_va_space = 0;
  91. return 1;
  92. }
  93. __setup("norandmaps", disable_randmaps);
  94. /*
  95. * If a p?d_bad entry is found while walking page tables, report
  96. * the error, before resetting entry to p?d_none. Usually (but
  97. * very seldom) called out from the p?d_none_or_clear_bad macros.
  98. */
  99. void pgd_clear_bad(pgd_t *pgd)
  100. {
  101. pgd_ERROR(*pgd);
  102. pgd_clear(pgd);
  103. }
  104. void pud_clear_bad(pud_t *pud)
  105. {
  106. pud_ERROR(*pud);
  107. pud_clear(pud);
  108. }
  109. void pmd_clear_bad(pmd_t *pmd)
  110. {
  111. pmd_ERROR(*pmd);
  112. pmd_clear(pmd);
  113. }
  114. /*
  115. * Note: this doesn't free the actual pages themselves. That
  116. * has been handled earlier when unmapping all the memory regions.
  117. */
  118. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  119. {
  120. pgtable_t token = pmd_pgtable(*pmd);
  121. pmd_clear(pmd);
  122. pte_free_tlb(tlb, token);
  123. tlb->mm->nr_ptes--;
  124. }
  125. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  126. unsigned long addr, unsigned long end,
  127. unsigned long floor, unsigned long ceiling)
  128. {
  129. pmd_t *pmd;
  130. unsigned long next;
  131. unsigned long start;
  132. start = addr;
  133. pmd = pmd_offset(pud, addr);
  134. do {
  135. next = pmd_addr_end(addr, end);
  136. if (pmd_none_or_clear_bad(pmd))
  137. continue;
  138. free_pte_range(tlb, pmd);
  139. } while (pmd++, addr = next, addr != end);
  140. start &= PUD_MASK;
  141. if (start < floor)
  142. return;
  143. if (ceiling) {
  144. ceiling &= PUD_MASK;
  145. if (!ceiling)
  146. return;
  147. }
  148. if (end - 1 > ceiling - 1)
  149. return;
  150. pmd = pmd_offset(pud, start);
  151. pud_clear(pud);
  152. pmd_free_tlb(tlb, pmd);
  153. }
  154. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  155. unsigned long addr, unsigned long end,
  156. unsigned long floor, unsigned long ceiling)
  157. {
  158. pud_t *pud;
  159. unsigned long next;
  160. unsigned long start;
  161. start = addr;
  162. pud = pud_offset(pgd, addr);
  163. do {
  164. next = pud_addr_end(addr, end);
  165. if (pud_none_or_clear_bad(pud))
  166. continue;
  167. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  168. } while (pud++, addr = next, addr != end);
  169. start &= PGDIR_MASK;
  170. if (start < floor)
  171. return;
  172. if (ceiling) {
  173. ceiling &= PGDIR_MASK;
  174. if (!ceiling)
  175. return;
  176. }
  177. if (end - 1 > ceiling - 1)
  178. return;
  179. pud = pud_offset(pgd, start);
  180. pgd_clear(pgd);
  181. pud_free_tlb(tlb, pud);
  182. }
  183. /*
  184. * This function frees user-level page tables of a process.
  185. *
  186. * Must be called with pagetable lock held.
  187. */
  188. void free_pgd_range(struct mmu_gather *tlb,
  189. unsigned long addr, unsigned long end,
  190. unsigned long floor, unsigned long ceiling)
  191. {
  192. pgd_t *pgd;
  193. unsigned long next;
  194. unsigned long start;
  195. /*
  196. * The next few lines have given us lots of grief...
  197. *
  198. * Why are we testing PMD* at this top level? Because often
  199. * there will be no work to do at all, and we'd prefer not to
  200. * go all the way down to the bottom just to discover that.
  201. *
  202. * Why all these "- 1"s? Because 0 represents both the bottom
  203. * of the address space and the top of it (using -1 for the
  204. * top wouldn't help much: the masks would do the wrong thing).
  205. * The rule is that addr 0 and floor 0 refer to the bottom of
  206. * the address space, but end 0 and ceiling 0 refer to the top
  207. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  208. * that end 0 case should be mythical).
  209. *
  210. * Wherever addr is brought up or ceiling brought down, we must
  211. * be careful to reject "the opposite 0" before it confuses the
  212. * subsequent tests. But what about where end is brought down
  213. * by PMD_SIZE below? no, end can't go down to 0 there.
  214. *
  215. * Whereas we round start (addr) and ceiling down, by different
  216. * masks at different levels, in order to test whether a table
  217. * now has no other vmas using it, so can be freed, we don't
  218. * bother to round floor or end up - the tests don't need that.
  219. */
  220. addr &= PMD_MASK;
  221. if (addr < floor) {
  222. addr += PMD_SIZE;
  223. if (!addr)
  224. return;
  225. }
  226. if (ceiling) {
  227. ceiling &= PMD_MASK;
  228. if (!ceiling)
  229. return;
  230. }
  231. if (end - 1 > ceiling - 1)
  232. end -= PMD_SIZE;
  233. if (addr > end - 1)
  234. return;
  235. start = addr;
  236. pgd = pgd_offset(tlb->mm, addr);
  237. do {
  238. next = pgd_addr_end(addr, end);
  239. if (pgd_none_or_clear_bad(pgd))
  240. continue;
  241. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  242. } while (pgd++, addr = next, addr != end);
  243. }
  244. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  245. unsigned long floor, unsigned long ceiling)
  246. {
  247. while (vma) {
  248. struct vm_area_struct *next = vma->vm_next;
  249. unsigned long addr = vma->vm_start;
  250. /*
  251. * Hide vma from rmap and vmtruncate before freeing pgtables
  252. */
  253. anon_vma_unlink(vma);
  254. unlink_file_vma(vma);
  255. if (is_vm_hugetlb_page(vma)) {
  256. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  257. floor, next? next->vm_start: ceiling);
  258. } else {
  259. /*
  260. * Optimization: gather nearby vmas into one call down
  261. */
  262. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  263. && !is_vm_hugetlb_page(next)) {
  264. vma = next;
  265. next = vma->vm_next;
  266. anon_vma_unlink(vma);
  267. unlink_file_vma(vma);
  268. }
  269. free_pgd_range(tlb, addr, vma->vm_end,
  270. floor, next? next->vm_start: ceiling);
  271. }
  272. vma = next;
  273. }
  274. }
  275. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  276. {
  277. pgtable_t new = pte_alloc_one(mm, address);
  278. if (!new)
  279. return -ENOMEM;
  280. /*
  281. * Ensure all pte setup (eg. pte page lock and page clearing) are
  282. * visible before the pte is made visible to other CPUs by being
  283. * put into page tables.
  284. *
  285. * The other side of the story is the pointer chasing in the page
  286. * table walking code (when walking the page table without locking;
  287. * ie. most of the time). Fortunately, these data accesses consist
  288. * of a chain of data-dependent loads, meaning most CPUs (alpha
  289. * being the notable exception) will already guarantee loads are
  290. * seen in-order. See the alpha page table accessors for the
  291. * smp_read_barrier_depends() barriers in page table walking code.
  292. */
  293. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  294. spin_lock(&mm->page_table_lock);
  295. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  296. mm->nr_ptes++;
  297. pmd_populate(mm, pmd, new);
  298. new = NULL;
  299. }
  300. spin_unlock(&mm->page_table_lock);
  301. if (new)
  302. pte_free(mm, new);
  303. return 0;
  304. }
  305. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  306. {
  307. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  308. if (!new)
  309. return -ENOMEM;
  310. smp_wmb(); /* See comment in __pte_alloc */
  311. spin_lock(&init_mm.page_table_lock);
  312. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  313. pmd_populate_kernel(&init_mm, pmd, new);
  314. new = NULL;
  315. }
  316. spin_unlock(&init_mm.page_table_lock);
  317. if (new)
  318. pte_free_kernel(&init_mm, new);
  319. return 0;
  320. }
  321. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  322. {
  323. if (file_rss)
  324. add_mm_counter(mm, file_rss, file_rss);
  325. if (anon_rss)
  326. add_mm_counter(mm, anon_rss, anon_rss);
  327. }
  328. /*
  329. * This function is called to print an error when a bad pte
  330. * is found. For example, we might have a PFN-mapped pte in
  331. * a region that doesn't allow it.
  332. *
  333. * The calling function must still handle the error.
  334. */
  335. static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
  336. unsigned long vaddr)
  337. {
  338. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  339. "vm_flags = %lx, vaddr = %lx\n",
  340. (long long)pte_val(pte),
  341. (vma->vm_mm == current->mm ? current->comm : "???"),
  342. vma->vm_flags, vaddr);
  343. dump_stack();
  344. }
  345. static inline int is_cow_mapping(unsigned int flags)
  346. {
  347. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  348. }
  349. /*
  350. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  351. *
  352. * "Special" mappings do not wish to be associated with a "struct page" (either
  353. * it doesn't exist, or it exists but they don't want to touch it). In this
  354. * case, NULL is returned here. "Normal" mappings do have a struct page.
  355. *
  356. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  357. * pte bit, in which case this function is trivial. Secondly, an architecture
  358. * may not have a spare pte bit, which requires a more complicated scheme,
  359. * described below.
  360. *
  361. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  362. * special mapping (even if there are underlying and valid "struct pages").
  363. * COWed pages of a VM_PFNMAP are always normal.
  364. *
  365. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  366. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  367. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  368. * mapping will always honor the rule
  369. *
  370. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  371. *
  372. * And for normal mappings this is false.
  373. *
  374. * This restricts such mappings to be a linear translation from virtual address
  375. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  376. * as the vma is not a COW mapping; in that case, we know that all ptes are
  377. * special (because none can have been COWed).
  378. *
  379. *
  380. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  381. *
  382. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  383. * page" backing, however the difference is that _all_ pages with a struct
  384. * page (that is, those where pfn_valid is true) are refcounted and considered
  385. * normal pages by the VM. The disadvantage is that pages are refcounted
  386. * (which can be slower and simply not an option for some PFNMAP users). The
  387. * advantage is that we don't have to follow the strict linearity rule of
  388. * PFNMAP mappings in order to support COWable mappings.
  389. *
  390. */
  391. #ifdef __HAVE_ARCH_PTE_SPECIAL
  392. # define HAVE_PTE_SPECIAL 1
  393. #else
  394. # define HAVE_PTE_SPECIAL 0
  395. #endif
  396. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  397. pte_t pte)
  398. {
  399. unsigned long pfn;
  400. if (HAVE_PTE_SPECIAL) {
  401. if (likely(!pte_special(pte))) {
  402. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  403. return pte_page(pte);
  404. }
  405. VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
  406. return NULL;
  407. }
  408. /* !HAVE_PTE_SPECIAL case follows: */
  409. pfn = pte_pfn(pte);
  410. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  411. if (vma->vm_flags & VM_MIXEDMAP) {
  412. if (!pfn_valid(pfn))
  413. return NULL;
  414. goto out;
  415. } else {
  416. unsigned long off;
  417. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  418. if (pfn == vma->vm_pgoff + off)
  419. return NULL;
  420. if (!is_cow_mapping(vma->vm_flags))
  421. return NULL;
  422. }
  423. }
  424. VM_BUG_ON(!pfn_valid(pfn));
  425. /*
  426. * NOTE! We still have PageReserved() pages in the page tables.
  427. *
  428. * eg. VDSO mappings can cause them to exist.
  429. */
  430. out:
  431. return pfn_to_page(pfn);
  432. }
  433. /*
  434. * copy one vm_area from one task to the other. Assumes the page tables
  435. * already present in the new task to be cleared in the whole range
  436. * covered by this vma.
  437. */
  438. static inline void
  439. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  440. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  441. unsigned long addr, int *rss)
  442. {
  443. unsigned long vm_flags = vma->vm_flags;
  444. pte_t pte = *src_pte;
  445. struct page *page;
  446. /* pte contains position in swap or file, so copy. */
  447. if (unlikely(!pte_present(pte))) {
  448. if (!pte_file(pte)) {
  449. swp_entry_t entry = pte_to_swp_entry(pte);
  450. swap_duplicate(entry);
  451. /* make sure dst_mm is on swapoff's mmlist. */
  452. if (unlikely(list_empty(&dst_mm->mmlist))) {
  453. spin_lock(&mmlist_lock);
  454. if (list_empty(&dst_mm->mmlist))
  455. list_add(&dst_mm->mmlist,
  456. &src_mm->mmlist);
  457. spin_unlock(&mmlist_lock);
  458. }
  459. if (is_write_migration_entry(entry) &&
  460. is_cow_mapping(vm_flags)) {
  461. /*
  462. * COW mappings require pages in both parent
  463. * and child to be set to read.
  464. */
  465. make_migration_entry_read(&entry);
  466. pte = swp_entry_to_pte(entry);
  467. set_pte_at(src_mm, addr, src_pte, pte);
  468. }
  469. }
  470. goto out_set_pte;
  471. }
  472. /*
  473. * If it's a COW mapping, write protect it both
  474. * in the parent and the child
  475. */
  476. if (is_cow_mapping(vm_flags)) {
  477. ptep_set_wrprotect(src_mm, addr, src_pte);
  478. pte = pte_wrprotect(pte);
  479. }
  480. /*
  481. * If it's a shared mapping, mark it clean in
  482. * the child
  483. */
  484. if (vm_flags & VM_SHARED)
  485. pte = pte_mkclean(pte);
  486. pte = pte_mkold(pte);
  487. page = vm_normal_page(vma, addr, pte);
  488. if (page) {
  489. get_page(page);
  490. page_dup_rmap(page, vma, addr);
  491. rss[!!PageAnon(page)]++;
  492. }
  493. out_set_pte:
  494. set_pte_at(dst_mm, addr, dst_pte, pte);
  495. }
  496. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  497. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  498. unsigned long addr, unsigned long end)
  499. {
  500. pte_t *src_pte, *dst_pte;
  501. spinlock_t *src_ptl, *dst_ptl;
  502. int progress = 0;
  503. int rss[2];
  504. again:
  505. rss[1] = rss[0] = 0;
  506. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  507. if (!dst_pte)
  508. return -ENOMEM;
  509. src_pte = pte_offset_map_nested(src_pmd, addr);
  510. src_ptl = pte_lockptr(src_mm, src_pmd);
  511. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  512. arch_enter_lazy_mmu_mode();
  513. do {
  514. /*
  515. * We are holding two locks at this point - either of them
  516. * could generate latencies in another task on another CPU.
  517. */
  518. if (progress >= 32) {
  519. progress = 0;
  520. if (need_resched() ||
  521. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  522. break;
  523. }
  524. if (pte_none(*src_pte)) {
  525. progress++;
  526. continue;
  527. }
  528. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  529. progress += 8;
  530. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  531. arch_leave_lazy_mmu_mode();
  532. spin_unlock(src_ptl);
  533. pte_unmap_nested(src_pte - 1);
  534. add_mm_rss(dst_mm, rss[0], rss[1]);
  535. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  536. cond_resched();
  537. if (addr != end)
  538. goto again;
  539. return 0;
  540. }
  541. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  542. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  543. unsigned long addr, unsigned long end)
  544. {
  545. pmd_t *src_pmd, *dst_pmd;
  546. unsigned long next;
  547. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  548. if (!dst_pmd)
  549. return -ENOMEM;
  550. src_pmd = pmd_offset(src_pud, addr);
  551. do {
  552. next = pmd_addr_end(addr, end);
  553. if (pmd_none_or_clear_bad(src_pmd))
  554. continue;
  555. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  556. vma, addr, next))
  557. return -ENOMEM;
  558. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  559. return 0;
  560. }
  561. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  562. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  563. unsigned long addr, unsigned long end)
  564. {
  565. pud_t *src_pud, *dst_pud;
  566. unsigned long next;
  567. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  568. if (!dst_pud)
  569. return -ENOMEM;
  570. src_pud = pud_offset(src_pgd, addr);
  571. do {
  572. next = pud_addr_end(addr, end);
  573. if (pud_none_or_clear_bad(src_pud))
  574. continue;
  575. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  576. vma, addr, next))
  577. return -ENOMEM;
  578. } while (dst_pud++, src_pud++, addr = next, addr != end);
  579. return 0;
  580. }
  581. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  582. struct vm_area_struct *vma)
  583. {
  584. pgd_t *src_pgd, *dst_pgd;
  585. unsigned long next;
  586. unsigned long addr = vma->vm_start;
  587. unsigned long end = vma->vm_end;
  588. int ret;
  589. /*
  590. * Don't copy ptes where a page fault will fill them correctly.
  591. * Fork becomes much lighter when there are big shared or private
  592. * readonly mappings. The tradeoff is that copy_page_range is more
  593. * efficient than faulting.
  594. */
  595. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  596. if (!vma->anon_vma)
  597. return 0;
  598. }
  599. if (is_vm_hugetlb_page(vma))
  600. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  601. if (unlikely(is_pfn_mapping(vma))) {
  602. /*
  603. * We do not free on error cases below as remove_vma
  604. * gets called on error from higher level routine
  605. */
  606. ret = track_pfn_vma_copy(vma);
  607. if (ret)
  608. return ret;
  609. }
  610. /*
  611. * We need to invalidate the secondary MMU mappings only when
  612. * there could be a permission downgrade on the ptes of the
  613. * parent mm. And a permission downgrade will only happen if
  614. * is_cow_mapping() returns true.
  615. */
  616. if (is_cow_mapping(vma->vm_flags))
  617. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  618. ret = 0;
  619. dst_pgd = pgd_offset(dst_mm, addr);
  620. src_pgd = pgd_offset(src_mm, addr);
  621. do {
  622. next = pgd_addr_end(addr, end);
  623. if (pgd_none_or_clear_bad(src_pgd))
  624. continue;
  625. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  626. vma, addr, next))) {
  627. ret = -ENOMEM;
  628. break;
  629. }
  630. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  631. if (is_cow_mapping(vma->vm_flags))
  632. mmu_notifier_invalidate_range_end(src_mm,
  633. vma->vm_start, end);
  634. return ret;
  635. }
  636. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  637. struct vm_area_struct *vma, pmd_t *pmd,
  638. unsigned long addr, unsigned long end,
  639. long *zap_work, struct zap_details *details)
  640. {
  641. struct mm_struct *mm = tlb->mm;
  642. pte_t *pte;
  643. spinlock_t *ptl;
  644. int file_rss = 0;
  645. int anon_rss = 0;
  646. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  647. arch_enter_lazy_mmu_mode();
  648. do {
  649. pte_t ptent = *pte;
  650. if (pte_none(ptent)) {
  651. (*zap_work)--;
  652. continue;
  653. }
  654. (*zap_work) -= PAGE_SIZE;
  655. if (pte_present(ptent)) {
  656. struct page *page;
  657. page = vm_normal_page(vma, addr, ptent);
  658. if (unlikely(details) && page) {
  659. /*
  660. * unmap_shared_mapping_pages() wants to
  661. * invalidate cache without truncating:
  662. * unmap shared but keep private pages.
  663. */
  664. if (details->check_mapping &&
  665. details->check_mapping != page->mapping)
  666. continue;
  667. /*
  668. * Each page->index must be checked when
  669. * invalidating or truncating nonlinear.
  670. */
  671. if (details->nonlinear_vma &&
  672. (page->index < details->first_index ||
  673. page->index > details->last_index))
  674. continue;
  675. }
  676. ptent = ptep_get_and_clear_full(mm, addr, pte,
  677. tlb->fullmm);
  678. tlb_remove_tlb_entry(tlb, pte, addr);
  679. if (unlikely(!page))
  680. continue;
  681. if (unlikely(details) && details->nonlinear_vma
  682. && linear_page_index(details->nonlinear_vma,
  683. addr) != page->index)
  684. set_pte_at(mm, addr, pte,
  685. pgoff_to_pte(page->index));
  686. if (PageAnon(page))
  687. anon_rss--;
  688. else {
  689. if (pte_dirty(ptent))
  690. set_page_dirty(page);
  691. if (pte_young(ptent))
  692. SetPageReferenced(page);
  693. file_rss--;
  694. }
  695. page_remove_rmap(page, vma);
  696. tlb_remove_page(tlb, page);
  697. continue;
  698. }
  699. /*
  700. * If details->check_mapping, we leave swap entries;
  701. * if details->nonlinear_vma, we leave file entries.
  702. */
  703. if (unlikely(details))
  704. continue;
  705. if (!pte_file(ptent))
  706. free_swap_and_cache(pte_to_swp_entry(ptent));
  707. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  708. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  709. add_mm_rss(mm, file_rss, anon_rss);
  710. arch_leave_lazy_mmu_mode();
  711. pte_unmap_unlock(pte - 1, ptl);
  712. return addr;
  713. }
  714. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  715. struct vm_area_struct *vma, pud_t *pud,
  716. unsigned long addr, unsigned long end,
  717. long *zap_work, struct zap_details *details)
  718. {
  719. pmd_t *pmd;
  720. unsigned long next;
  721. pmd = pmd_offset(pud, addr);
  722. do {
  723. next = pmd_addr_end(addr, end);
  724. if (pmd_none_or_clear_bad(pmd)) {
  725. (*zap_work)--;
  726. continue;
  727. }
  728. next = zap_pte_range(tlb, vma, pmd, addr, next,
  729. zap_work, details);
  730. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  731. return addr;
  732. }
  733. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  734. struct vm_area_struct *vma, pgd_t *pgd,
  735. unsigned long addr, unsigned long end,
  736. long *zap_work, struct zap_details *details)
  737. {
  738. pud_t *pud;
  739. unsigned long next;
  740. pud = pud_offset(pgd, addr);
  741. do {
  742. next = pud_addr_end(addr, end);
  743. if (pud_none_or_clear_bad(pud)) {
  744. (*zap_work)--;
  745. continue;
  746. }
  747. next = zap_pmd_range(tlb, vma, pud, addr, next,
  748. zap_work, details);
  749. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  750. return addr;
  751. }
  752. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  753. struct vm_area_struct *vma,
  754. unsigned long addr, unsigned long end,
  755. long *zap_work, struct zap_details *details)
  756. {
  757. pgd_t *pgd;
  758. unsigned long next;
  759. if (details && !details->check_mapping && !details->nonlinear_vma)
  760. details = NULL;
  761. BUG_ON(addr >= end);
  762. tlb_start_vma(tlb, vma);
  763. pgd = pgd_offset(vma->vm_mm, addr);
  764. do {
  765. next = pgd_addr_end(addr, end);
  766. if (pgd_none_or_clear_bad(pgd)) {
  767. (*zap_work)--;
  768. continue;
  769. }
  770. next = zap_pud_range(tlb, vma, pgd, addr, next,
  771. zap_work, details);
  772. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  773. tlb_end_vma(tlb, vma);
  774. return addr;
  775. }
  776. #ifdef CONFIG_PREEMPT
  777. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  778. #else
  779. /* No preempt: go for improved straight-line efficiency */
  780. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  781. #endif
  782. /**
  783. * unmap_vmas - unmap a range of memory covered by a list of vma's
  784. * @tlbp: address of the caller's struct mmu_gather
  785. * @vma: the starting vma
  786. * @start_addr: virtual address at which to start unmapping
  787. * @end_addr: virtual address at which to end unmapping
  788. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  789. * @details: details of nonlinear truncation or shared cache invalidation
  790. *
  791. * Returns the end address of the unmapping (restart addr if interrupted).
  792. *
  793. * Unmap all pages in the vma list.
  794. *
  795. * We aim to not hold locks for too long (for scheduling latency reasons).
  796. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  797. * return the ending mmu_gather to the caller.
  798. *
  799. * Only addresses between `start' and `end' will be unmapped.
  800. *
  801. * The VMA list must be sorted in ascending virtual address order.
  802. *
  803. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  804. * range after unmap_vmas() returns. So the only responsibility here is to
  805. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  806. * drops the lock and schedules.
  807. */
  808. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  809. struct vm_area_struct *vma, unsigned long start_addr,
  810. unsigned long end_addr, unsigned long *nr_accounted,
  811. struct zap_details *details)
  812. {
  813. long zap_work = ZAP_BLOCK_SIZE;
  814. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  815. int tlb_start_valid = 0;
  816. unsigned long start = start_addr;
  817. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  818. int fullmm = (*tlbp)->fullmm;
  819. struct mm_struct *mm = vma->vm_mm;
  820. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  821. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  822. unsigned long end;
  823. start = max(vma->vm_start, start_addr);
  824. if (start >= vma->vm_end)
  825. continue;
  826. end = min(vma->vm_end, end_addr);
  827. if (end <= vma->vm_start)
  828. continue;
  829. if (vma->vm_flags & VM_ACCOUNT)
  830. *nr_accounted += (end - start) >> PAGE_SHIFT;
  831. if (unlikely(is_pfn_mapping(vma)))
  832. untrack_pfn_vma(vma, 0, 0);
  833. while (start != end) {
  834. if (!tlb_start_valid) {
  835. tlb_start = start;
  836. tlb_start_valid = 1;
  837. }
  838. if (unlikely(is_vm_hugetlb_page(vma))) {
  839. /*
  840. * It is undesirable to test vma->vm_file as it
  841. * should be non-null for valid hugetlb area.
  842. * However, vm_file will be NULL in the error
  843. * cleanup path of do_mmap_pgoff. When
  844. * hugetlbfs ->mmap method fails,
  845. * do_mmap_pgoff() nullifies vma->vm_file
  846. * before calling this function to clean up.
  847. * Since no pte has actually been setup, it is
  848. * safe to do nothing in this case.
  849. */
  850. if (vma->vm_file) {
  851. unmap_hugepage_range(vma, start, end, NULL);
  852. zap_work -= (end - start) /
  853. pages_per_huge_page(hstate_vma(vma));
  854. }
  855. start = end;
  856. } else
  857. start = unmap_page_range(*tlbp, vma,
  858. start, end, &zap_work, details);
  859. if (zap_work > 0) {
  860. BUG_ON(start != end);
  861. break;
  862. }
  863. tlb_finish_mmu(*tlbp, tlb_start, start);
  864. if (need_resched() ||
  865. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  866. if (i_mmap_lock) {
  867. *tlbp = NULL;
  868. goto out;
  869. }
  870. cond_resched();
  871. }
  872. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  873. tlb_start_valid = 0;
  874. zap_work = ZAP_BLOCK_SIZE;
  875. }
  876. }
  877. out:
  878. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  879. return start; /* which is now the end (or restart) address */
  880. }
  881. /**
  882. * zap_page_range - remove user pages in a given range
  883. * @vma: vm_area_struct holding the applicable pages
  884. * @address: starting address of pages to zap
  885. * @size: number of bytes to zap
  886. * @details: details of nonlinear truncation or shared cache invalidation
  887. */
  888. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  889. unsigned long size, struct zap_details *details)
  890. {
  891. struct mm_struct *mm = vma->vm_mm;
  892. struct mmu_gather *tlb;
  893. unsigned long end = address + size;
  894. unsigned long nr_accounted = 0;
  895. lru_add_drain();
  896. tlb = tlb_gather_mmu(mm, 0);
  897. update_hiwater_rss(mm);
  898. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  899. if (tlb)
  900. tlb_finish_mmu(tlb, address, end);
  901. return end;
  902. }
  903. /**
  904. * zap_vma_ptes - remove ptes mapping the vma
  905. * @vma: vm_area_struct holding ptes to be zapped
  906. * @address: starting address of pages to zap
  907. * @size: number of bytes to zap
  908. *
  909. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  910. *
  911. * The entire address range must be fully contained within the vma.
  912. *
  913. * Returns 0 if successful.
  914. */
  915. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  916. unsigned long size)
  917. {
  918. if (address < vma->vm_start || address + size > vma->vm_end ||
  919. !(vma->vm_flags & VM_PFNMAP))
  920. return -1;
  921. zap_page_range(vma, address, size, NULL);
  922. return 0;
  923. }
  924. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  925. /*
  926. * Do a quick page-table lookup for a single page.
  927. */
  928. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  929. unsigned int flags)
  930. {
  931. pgd_t *pgd;
  932. pud_t *pud;
  933. pmd_t *pmd;
  934. pte_t *ptep, pte;
  935. spinlock_t *ptl;
  936. struct page *page;
  937. struct mm_struct *mm = vma->vm_mm;
  938. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  939. if (!IS_ERR(page)) {
  940. BUG_ON(flags & FOLL_GET);
  941. goto out;
  942. }
  943. page = NULL;
  944. pgd = pgd_offset(mm, address);
  945. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  946. goto no_page_table;
  947. pud = pud_offset(pgd, address);
  948. if (pud_none(*pud))
  949. goto no_page_table;
  950. if (pud_huge(*pud)) {
  951. BUG_ON(flags & FOLL_GET);
  952. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  953. goto out;
  954. }
  955. if (unlikely(pud_bad(*pud)))
  956. goto no_page_table;
  957. pmd = pmd_offset(pud, address);
  958. if (pmd_none(*pmd))
  959. goto no_page_table;
  960. if (pmd_huge(*pmd)) {
  961. BUG_ON(flags & FOLL_GET);
  962. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  963. goto out;
  964. }
  965. if (unlikely(pmd_bad(*pmd)))
  966. goto no_page_table;
  967. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  968. pte = *ptep;
  969. if (!pte_present(pte))
  970. goto no_page;
  971. if ((flags & FOLL_WRITE) && !pte_write(pte))
  972. goto unlock;
  973. page = vm_normal_page(vma, address, pte);
  974. if (unlikely(!page))
  975. goto bad_page;
  976. if (flags & FOLL_GET)
  977. get_page(page);
  978. if (flags & FOLL_TOUCH) {
  979. if ((flags & FOLL_WRITE) &&
  980. !pte_dirty(pte) && !PageDirty(page))
  981. set_page_dirty(page);
  982. mark_page_accessed(page);
  983. }
  984. unlock:
  985. pte_unmap_unlock(ptep, ptl);
  986. out:
  987. return page;
  988. bad_page:
  989. pte_unmap_unlock(ptep, ptl);
  990. return ERR_PTR(-EFAULT);
  991. no_page:
  992. pte_unmap_unlock(ptep, ptl);
  993. if (!pte_none(pte))
  994. return page;
  995. /* Fall through to ZERO_PAGE handling */
  996. no_page_table:
  997. /*
  998. * When core dumping an enormous anonymous area that nobody
  999. * has touched so far, we don't want to allocate page tables.
  1000. */
  1001. if (flags & FOLL_ANON) {
  1002. page = ZERO_PAGE(0);
  1003. if (flags & FOLL_GET)
  1004. get_page(page);
  1005. BUG_ON(flags & FOLL_WRITE);
  1006. }
  1007. return page;
  1008. }
  1009. /* Can we do the FOLL_ANON optimization? */
  1010. static inline int use_zero_page(struct vm_area_struct *vma)
  1011. {
  1012. /*
  1013. * We don't want to optimize FOLL_ANON for make_pages_present()
  1014. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  1015. * we want to get the page from the page tables to make sure
  1016. * that we serialize and update with any other user of that
  1017. * mapping.
  1018. */
  1019. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  1020. return 0;
  1021. /*
  1022. * And if we have a fault routine, it's not an anonymous region.
  1023. */
  1024. return !vma->vm_ops || !vma->vm_ops->fault;
  1025. }
  1026. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1027. unsigned long start, int len, int flags,
  1028. struct page **pages, struct vm_area_struct **vmas)
  1029. {
  1030. int i;
  1031. unsigned int vm_flags = 0;
  1032. int write = !!(flags & GUP_FLAGS_WRITE);
  1033. int force = !!(flags & GUP_FLAGS_FORCE);
  1034. int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
  1035. if (len <= 0)
  1036. return 0;
  1037. /*
  1038. * Require read or write permissions.
  1039. * If 'force' is set, we only require the "MAY" flags.
  1040. */
  1041. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1042. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1043. i = 0;
  1044. do {
  1045. struct vm_area_struct *vma;
  1046. unsigned int foll_flags;
  1047. vma = find_extend_vma(mm, start);
  1048. if (!vma && in_gate_area(tsk, start)) {
  1049. unsigned long pg = start & PAGE_MASK;
  1050. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1051. pgd_t *pgd;
  1052. pud_t *pud;
  1053. pmd_t *pmd;
  1054. pte_t *pte;
  1055. /* user gate pages are read-only */
  1056. if (!ignore && write)
  1057. return i ? : -EFAULT;
  1058. if (pg > TASK_SIZE)
  1059. pgd = pgd_offset_k(pg);
  1060. else
  1061. pgd = pgd_offset_gate(mm, pg);
  1062. BUG_ON(pgd_none(*pgd));
  1063. pud = pud_offset(pgd, pg);
  1064. BUG_ON(pud_none(*pud));
  1065. pmd = pmd_offset(pud, pg);
  1066. if (pmd_none(*pmd))
  1067. return i ? : -EFAULT;
  1068. pte = pte_offset_map(pmd, pg);
  1069. if (pte_none(*pte)) {
  1070. pte_unmap(pte);
  1071. return i ? : -EFAULT;
  1072. }
  1073. if (pages) {
  1074. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1075. pages[i] = page;
  1076. if (page)
  1077. get_page(page);
  1078. }
  1079. pte_unmap(pte);
  1080. if (vmas)
  1081. vmas[i] = gate_vma;
  1082. i++;
  1083. start += PAGE_SIZE;
  1084. len--;
  1085. continue;
  1086. }
  1087. if (!vma ||
  1088. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1089. (!ignore && !(vm_flags & vma->vm_flags)))
  1090. return i ? : -EFAULT;
  1091. if (is_vm_hugetlb_page(vma)) {
  1092. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1093. &start, &len, i, write);
  1094. continue;
  1095. }
  1096. foll_flags = FOLL_TOUCH;
  1097. if (pages)
  1098. foll_flags |= FOLL_GET;
  1099. if (!write && use_zero_page(vma))
  1100. foll_flags |= FOLL_ANON;
  1101. do {
  1102. struct page *page;
  1103. /*
  1104. * If tsk is ooming, cut off its access to large memory
  1105. * allocations. It has a pending SIGKILL, but it can't
  1106. * be processed until returning to user space.
  1107. */
  1108. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  1109. return i ? i : -ENOMEM;
  1110. if (write)
  1111. foll_flags |= FOLL_WRITE;
  1112. cond_resched();
  1113. while (!(page = follow_page(vma, start, foll_flags))) {
  1114. int ret;
  1115. ret = handle_mm_fault(mm, vma, start,
  1116. foll_flags & FOLL_WRITE);
  1117. if (ret & VM_FAULT_ERROR) {
  1118. if (ret & VM_FAULT_OOM)
  1119. return i ? i : -ENOMEM;
  1120. else if (ret & VM_FAULT_SIGBUS)
  1121. return i ? i : -EFAULT;
  1122. BUG();
  1123. }
  1124. if (ret & VM_FAULT_MAJOR)
  1125. tsk->maj_flt++;
  1126. else
  1127. tsk->min_flt++;
  1128. /*
  1129. * The VM_FAULT_WRITE bit tells us that
  1130. * do_wp_page has broken COW when necessary,
  1131. * even if maybe_mkwrite decided not to set
  1132. * pte_write. We can thus safely do subsequent
  1133. * page lookups as if they were reads.
  1134. */
  1135. if (ret & VM_FAULT_WRITE)
  1136. foll_flags &= ~FOLL_WRITE;
  1137. cond_resched();
  1138. }
  1139. if (IS_ERR(page))
  1140. return i ? i : PTR_ERR(page);
  1141. if (pages) {
  1142. pages[i] = page;
  1143. flush_anon_page(vma, page, start);
  1144. flush_dcache_page(page);
  1145. }
  1146. if (vmas)
  1147. vmas[i] = vma;
  1148. i++;
  1149. start += PAGE_SIZE;
  1150. len--;
  1151. } while (len && start < vma->vm_end);
  1152. } while (len);
  1153. return i;
  1154. }
  1155. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1156. unsigned long start, int len, int write, int force,
  1157. struct page **pages, struct vm_area_struct **vmas)
  1158. {
  1159. int flags = 0;
  1160. if (write)
  1161. flags |= GUP_FLAGS_WRITE;
  1162. if (force)
  1163. flags |= GUP_FLAGS_FORCE;
  1164. return __get_user_pages(tsk, mm,
  1165. start, len, flags,
  1166. pages, vmas);
  1167. }
  1168. EXPORT_SYMBOL(get_user_pages);
  1169. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1170. spinlock_t **ptl)
  1171. {
  1172. pgd_t * pgd = pgd_offset(mm, addr);
  1173. pud_t * pud = pud_alloc(mm, pgd, addr);
  1174. if (pud) {
  1175. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1176. if (pmd)
  1177. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1178. }
  1179. return NULL;
  1180. }
  1181. /*
  1182. * This is the old fallback for page remapping.
  1183. *
  1184. * For historical reasons, it only allows reserved pages. Only
  1185. * old drivers should use this, and they needed to mark their
  1186. * pages reserved for the old functions anyway.
  1187. */
  1188. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1189. struct page *page, pgprot_t prot)
  1190. {
  1191. struct mm_struct *mm = vma->vm_mm;
  1192. int retval;
  1193. pte_t *pte;
  1194. spinlock_t *ptl;
  1195. retval = -EINVAL;
  1196. if (PageAnon(page))
  1197. goto out;
  1198. retval = -ENOMEM;
  1199. flush_dcache_page(page);
  1200. pte = get_locked_pte(mm, addr, &ptl);
  1201. if (!pte)
  1202. goto out;
  1203. retval = -EBUSY;
  1204. if (!pte_none(*pte))
  1205. goto out_unlock;
  1206. /* Ok, finally just insert the thing.. */
  1207. get_page(page);
  1208. inc_mm_counter(mm, file_rss);
  1209. page_add_file_rmap(page);
  1210. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1211. retval = 0;
  1212. pte_unmap_unlock(pte, ptl);
  1213. return retval;
  1214. out_unlock:
  1215. pte_unmap_unlock(pte, ptl);
  1216. out:
  1217. return retval;
  1218. }
  1219. /**
  1220. * vm_insert_page - insert single page into user vma
  1221. * @vma: user vma to map to
  1222. * @addr: target user address of this page
  1223. * @page: source kernel page
  1224. *
  1225. * This allows drivers to insert individual pages they've allocated
  1226. * into a user vma.
  1227. *
  1228. * The page has to be a nice clean _individual_ kernel allocation.
  1229. * If you allocate a compound page, you need to have marked it as
  1230. * such (__GFP_COMP), or manually just split the page up yourself
  1231. * (see split_page()).
  1232. *
  1233. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1234. * took an arbitrary page protection parameter. This doesn't allow
  1235. * that. Your vma protection will have to be set up correctly, which
  1236. * means that if you want a shared writable mapping, you'd better
  1237. * ask for a shared writable mapping!
  1238. *
  1239. * The page does not need to be reserved.
  1240. */
  1241. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1242. struct page *page)
  1243. {
  1244. if (addr < vma->vm_start || addr >= vma->vm_end)
  1245. return -EFAULT;
  1246. if (!page_count(page))
  1247. return -EINVAL;
  1248. vma->vm_flags |= VM_INSERTPAGE;
  1249. return insert_page(vma, addr, page, vma->vm_page_prot);
  1250. }
  1251. EXPORT_SYMBOL(vm_insert_page);
  1252. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1253. unsigned long pfn, pgprot_t prot)
  1254. {
  1255. struct mm_struct *mm = vma->vm_mm;
  1256. int retval;
  1257. pte_t *pte, entry;
  1258. spinlock_t *ptl;
  1259. retval = -ENOMEM;
  1260. pte = get_locked_pte(mm, addr, &ptl);
  1261. if (!pte)
  1262. goto out;
  1263. retval = -EBUSY;
  1264. if (!pte_none(*pte))
  1265. goto out_unlock;
  1266. /* Ok, finally just insert the thing.. */
  1267. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1268. set_pte_at(mm, addr, pte, entry);
  1269. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1270. retval = 0;
  1271. out_unlock:
  1272. pte_unmap_unlock(pte, ptl);
  1273. out:
  1274. return retval;
  1275. }
  1276. /**
  1277. * vm_insert_pfn - insert single pfn into user vma
  1278. * @vma: user vma to map to
  1279. * @addr: target user address of this page
  1280. * @pfn: source kernel pfn
  1281. *
  1282. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1283. * they've allocated into a user vma. Same comments apply.
  1284. *
  1285. * This function should only be called from a vm_ops->fault handler, and
  1286. * in that case the handler should return NULL.
  1287. *
  1288. * vma cannot be a COW mapping.
  1289. *
  1290. * As this is called only for pages that do not currently exist, we
  1291. * do not need to flush old virtual caches or the TLB.
  1292. */
  1293. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1294. unsigned long pfn)
  1295. {
  1296. int ret;
  1297. /*
  1298. * Technically, architectures with pte_special can avoid all these
  1299. * restrictions (same for remap_pfn_range). However we would like
  1300. * consistency in testing and feature parity among all, so we should
  1301. * try to keep these invariants in place for everybody.
  1302. */
  1303. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1304. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1305. (VM_PFNMAP|VM_MIXEDMAP));
  1306. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1307. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1308. if (addr < vma->vm_start || addr >= vma->vm_end)
  1309. return -EFAULT;
  1310. if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
  1311. return -EINVAL;
  1312. ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1313. if (ret)
  1314. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1315. return ret;
  1316. }
  1317. EXPORT_SYMBOL(vm_insert_pfn);
  1318. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1319. unsigned long pfn)
  1320. {
  1321. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1322. if (addr < vma->vm_start || addr >= vma->vm_end)
  1323. return -EFAULT;
  1324. /*
  1325. * If we don't have pte special, then we have to use the pfn_valid()
  1326. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1327. * refcount the page if pfn_valid is true (hence insert_page rather
  1328. * than insert_pfn).
  1329. */
  1330. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1331. struct page *page;
  1332. page = pfn_to_page(pfn);
  1333. return insert_page(vma, addr, page, vma->vm_page_prot);
  1334. }
  1335. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1336. }
  1337. EXPORT_SYMBOL(vm_insert_mixed);
  1338. /*
  1339. * maps a range of physical memory into the requested pages. the old
  1340. * mappings are removed. any references to nonexistent pages results
  1341. * in null mappings (currently treated as "copy-on-access")
  1342. */
  1343. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1344. unsigned long addr, unsigned long end,
  1345. unsigned long pfn, pgprot_t prot)
  1346. {
  1347. pte_t *pte;
  1348. spinlock_t *ptl;
  1349. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1350. if (!pte)
  1351. return -ENOMEM;
  1352. arch_enter_lazy_mmu_mode();
  1353. do {
  1354. BUG_ON(!pte_none(*pte));
  1355. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1356. pfn++;
  1357. } while (pte++, addr += PAGE_SIZE, addr != end);
  1358. arch_leave_lazy_mmu_mode();
  1359. pte_unmap_unlock(pte - 1, ptl);
  1360. return 0;
  1361. }
  1362. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1363. unsigned long addr, unsigned long end,
  1364. unsigned long pfn, pgprot_t prot)
  1365. {
  1366. pmd_t *pmd;
  1367. unsigned long next;
  1368. pfn -= addr >> PAGE_SHIFT;
  1369. pmd = pmd_alloc(mm, pud, addr);
  1370. if (!pmd)
  1371. return -ENOMEM;
  1372. do {
  1373. next = pmd_addr_end(addr, end);
  1374. if (remap_pte_range(mm, pmd, addr, next,
  1375. pfn + (addr >> PAGE_SHIFT), prot))
  1376. return -ENOMEM;
  1377. } while (pmd++, addr = next, addr != end);
  1378. return 0;
  1379. }
  1380. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1381. unsigned long addr, unsigned long end,
  1382. unsigned long pfn, pgprot_t prot)
  1383. {
  1384. pud_t *pud;
  1385. unsigned long next;
  1386. pfn -= addr >> PAGE_SHIFT;
  1387. pud = pud_alloc(mm, pgd, addr);
  1388. if (!pud)
  1389. return -ENOMEM;
  1390. do {
  1391. next = pud_addr_end(addr, end);
  1392. if (remap_pmd_range(mm, pud, addr, next,
  1393. pfn + (addr >> PAGE_SHIFT), prot))
  1394. return -ENOMEM;
  1395. } while (pud++, addr = next, addr != end);
  1396. return 0;
  1397. }
  1398. /**
  1399. * remap_pfn_range - remap kernel memory to userspace
  1400. * @vma: user vma to map to
  1401. * @addr: target user address to start at
  1402. * @pfn: physical address of kernel memory
  1403. * @size: size of map area
  1404. * @prot: page protection flags for this mapping
  1405. *
  1406. * Note: this is only safe if the mm semaphore is held when called.
  1407. */
  1408. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1409. unsigned long pfn, unsigned long size, pgprot_t prot)
  1410. {
  1411. pgd_t *pgd;
  1412. unsigned long next;
  1413. unsigned long end = addr + PAGE_ALIGN(size);
  1414. struct mm_struct *mm = vma->vm_mm;
  1415. int err;
  1416. /*
  1417. * Physically remapped pages are special. Tell the
  1418. * rest of the world about it:
  1419. * VM_IO tells people not to look at these pages
  1420. * (accesses can have side effects).
  1421. * VM_RESERVED is specified all over the place, because
  1422. * in 2.4 it kept swapout's vma scan off this vma; but
  1423. * in 2.6 the LRU scan won't even find its pages, so this
  1424. * flag means no more than count its pages in reserved_vm,
  1425. * and omit it from core dump, even when VM_IO turned off.
  1426. * VM_PFNMAP tells the core MM that the base pages are just
  1427. * raw PFN mappings, and do not have a "struct page" associated
  1428. * with them.
  1429. *
  1430. * There's a horrible special case to handle copy-on-write
  1431. * behaviour that some programs depend on. We mark the "original"
  1432. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1433. */
  1434. if (addr == vma->vm_start && end == vma->vm_end)
  1435. vma->vm_pgoff = pfn;
  1436. else if (is_cow_mapping(vma->vm_flags))
  1437. return -EINVAL;
  1438. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1439. err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
  1440. if (err)
  1441. return -EINVAL;
  1442. BUG_ON(addr >= end);
  1443. pfn -= addr >> PAGE_SHIFT;
  1444. pgd = pgd_offset(mm, addr);
  1445. flush_cache_range(vma, addr, end);
  1446. do {
  1447. next = pgd_addr_end(addr, end);
  1448. err = remap_pud_range(mm, pgd, addr, next,
  1449. pfn + (addr >> PAGE_SHIFT), prot);
  1450. if (err)
  1451. break;
  1452. } while (pgd++, addr = next, addr != end);
  1453. if (err)
  1454. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1455. return err;
  1456. }
  1457. EXPORT_SYMBOL(remap_pfn_range);
  1458. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1459. unsigned long addr, unsigned long end,
  1460. pte_fn_t fn, void *data)
  1461. {
  1462. pte_t *pte;
  1463. int err;
  1464. pgtable_t token;
  1465. spinlock_t *uninitialized_var(ptl);
  1466. pte = (mm == &init_mm) ?
  1467. pte_alloc_kernel(pmd, addr) :
  1468. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1469. if (!pte)
  1470. return -ENOMEM;
  1471. BUG_ON(pmd_huge(*pmd));
  1472. token = pmd_pgtable(*pmd);
  1473. do {
  1474. err = fn(pte, token, addr, data);
  1475. if (err)
  1476. break;
  1477. } while (pte++, addr += PAGE_SIZE, addr != end);
  1478. if (mm != &init_mm)
  1479. pte_unmap_unlock(pte-1, ptl);
  1480. return err;
  1481. }
  1482. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1483. unsigned long addr, unsigned long end,
  1484. pte_fn_t fn, void *data)
  1485. {
  1486. pmd_t *pmd;
  1487. unsigned long next;
  1488. int err;
  1489. BUG_ON(pud_huge(*pud));
  1490. pmd = pmd_alloc(mm, pud, addr);
  1491. if (!pmd)
  1492. return -ENOMEM;
  1493. do {
  1494. next = pmd_addr_end(addr, end);
  1495. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1496. if (err)
  1497. break;
  1498. } while (pmd++, addr = next, addr != end);
  1499. return err;
  1500. }
  1501. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1502. unsigned long addr, unsigned long end,
  1503. pte_fn_t fn, void *data)
  1504. {
  1505. pud_t *pud;
  1506. unsigned long next;
  1507. int err;
  1508. pud = pud_alloc(mm, pgd, addr);
  1509. if (!pud)
  1510. return -ENOMEM;
  1511. do {
  1512. next = pud_addr_end(addr, end);
  1513. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1514. if (err)
  1515. break;
  1516. } while (pud++, addr = next, addr != end);
  1517. return err;
  1518. }
  1519. /*
  1520. * Scan a region of virtual memory, filling in page tables as necessary
  1521. * and calling a provided function on each leaf page table.
  1522. */
  1523. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1524. unsigned long size, pte_fn_t fn, void *data)
  1525. {
  1526. pgd_t *pgd;
  1527. unsigned long next;
  1528. unsigned long start = addr, end = addr + size;
  1529. int err;
  1530. BUG_ON(addr >= end);
  1531. mmu_notifier_invalidate_range_start(mm, start, end);
  1532. pgd = pgd_offset(mm, addr);
  1533. do {
  1534. next = pgd_addr_end(addr, end);
  1535. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1536. if (err)
  1537. break;
  1538. } while (pgd++, addr = next, addr != end);
  1539. mmu_notifier_invalidate_range_end(mm, start, end);
  1540. return err;
  1541. }
  1542. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1543. /*
  1544. * handle_pte_fault chooses page fault handler according to an entry
  1545. * which was read non-atomically. Before making any commitment, on
  1546. * those architectures or configurations (e.g. i386 with PAE) which
  1547. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1548. * must check under lock before unmapping the pte and proceeding
  1549. * (but do_wp_page is only called after already making such a check;
  1550. * and do_anonymous_page and do_no_page can safely check later on).
  1551. */
  1552. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1553. pte_t *page_table, pte_t orig_pte)
  1554. {
  1555. int same = 1;
  1556. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1557. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1558. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1559. spin_lock(ptl);
  1560. same = pte_same(*page_table, orig_pte);
  1561. spin_unlock(ptl);
  1562. }
  1563. #endif
  1564. pte_unmap(page_table);
  1565. return same;
  1566. }
  1567. /*
  1568. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1569. * servicing faults for write access. In the normal case, do always want
  1570. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1571. * that do not have writing enabled, when used by access_process_vm.
  1572. */
  1573. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1574. {
  1575. if (likely(vma->vm_flags & VM_WRITE))
  1576. pte = pte_mkwrite(pte);
  1577. return pte;
  1578. }
  1579. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1580. {
  1581. /*
  1582. * If the source page was a PFN mapping, we don't have
  1583. * a "struct page" for it. We do a best-effort copy by
  1584. * just copying from the original user address. If that
  1585. * fails, we just zero-fill it. Live with it.
  1586. */
  1587. if (unlikely(!src)) {
  1588. void *kaddr = kmap_atomic(dst, KM_USER0);
  1589. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1590. /*
  1591. * This really shouldn't fail, because the page is there
  1592. * in the page tables. But it might just be unreadable,
  1593. * in which case we just give up and fill the result with
  1594. * zeroes.
  1595. */
  1596. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1597. memset(kaddr, 0, PAGE_SIZE);
  1598. kunmap_atomic(kaddr, KM_USER0);
  1599. flush_dcache_page(dst);
  1600. } else
  1601. copy_user_highpage(dst, src, va, vma);
  1602. }
  1603. /*
  1604. * This routine handles present pages, when users try to write
  1605. * to a shared page. It is done by copying the page to a new address
  1606. * and decrementing the shared-page counter for the old page.
  1607. *
  1608. * Note that this routine assumes that the protection checks have been
  1609. * done by the caller (the low-level page fault routine in most cases).
  1610. * Thus we can safely just mark it writable once we've done any necessary
  1611. * COW.
  1612. *
  1613. * We also mark the page dirty at this point even though the page will
  1614. * change only once the write actually happens. This avoids a few races,
  1615. * and potentially makes it more efficient.
  1616. *
  1617. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1618. * but allow concurrent faults), with pte both mapped and locked.
  1619. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1620. */
  1621. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1622. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1623. spinlock_t *ptl, pte_t orig_pte)
  1624. {
  1625. struct page *old_page, *new_page;
  1626. pte_t entry;
  1627. int reuse = 0, ret = 0;
  1628. int page_mkwrite = 0;
  1629. struct page *dirty_page = NULL;
  1630. old_page = vm_normal_page(vma, address, orig_pte);
  1631. if (!old_page) {
  1632. /*
  1633. * VM_MIXEDMAP !pfn_valid() case
  1634. *
  1635. * We should not cow pages in a shared writeable mapping.
  1636. * Just mark the pages writable as we can't do any dirty
  1637. * accounting on raw pfn maps.
  1638. */
  1639. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1640. (VM_WRITE|VM_SHARED))
  1641. goto reuse;
  1642. goto gotten;
  1643. }
  1644. /*
  1645. * Take out anonymous pages first, anonymous shared vmas are
  1646. * not dirty accountable.
  1647. */
  1648. if (PageAnon(old_page)) {
  1649. if (trylock_page(old_page)) {
  1650. reuse = can_share_swap_page(old_page);
  1651. unlock_page(old_page);
  1652. }
  1653. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1654. (VM_WRITE|VM_SHARED))) {
  1655. /*
  1656. * Only catch write-faults on shared writable pages,
  1657. * read-only shared pages can get COWed by
  1658. * get_user_pages(.write=1, .force=1).
  1659. */
  1660. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1661. /*
  1662. * Notify the address space that the page is about to
  1663. * become writable so that it can prohibit this or wait
  1664. * for the page to get into an appropriate state.
  1665. *
  1666. * We do this without the lock held, so that it can
  1667. * sleep if it needs to.
  1668. */
  1669. page_cache_get(old_page);
  1670. pte_unmap_unlock(page_table, ptl);
  1671. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1672. goto unwritable_page;
  1673. /*
  1674. * Since we dropped the lock we need to revalidate
  1675. * the PTE as someone else may have changed it. If
  1676. * they did, we just return, as we can count on the
  1677. * MMU to tell us if they didn't also make it writable.
  1678. */
  1679. page_table = pte_offset_map_lock(mm, pmd, address,
  1680. &ptl);
  1681. page_cache_release(old_page);
  1682. if (!pte_same(*page_table, orig_pte))
  1683. goto unlock;
  1684. page_mkwrite = 1;
  1685. }
  1686. dirty_page = old_page;
  1687. get_page(dirty_page);
  1688. reuse = 1;
  1689. }
  1690. if (reuse) {
  1691. reuse:
  1692. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1693. entry = pte_mkyoung(orig_pte);
  1694. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1695. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1696. update_mmu_cache(vma, address, entry);
  1697. ret |= VM_FAULT_WRITE;
  1698. goto unlock;
  1699. }
  1700. /*
  1701. * Ok, we need to copy. Oh, well..
  1702. */
  1703. page_cache_get(old_page);
  1704. gotten:
  1705. pte_unmap_unlock(page_table, ptl);
  1706. if (unlikely(anon_vma_prepare(vma)))
  1707. goto oom;
  1708. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1709. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1710. if (!new_page)
  1711. goto oom;
  1712. /*
  1713. * Don't let another task, with possibly unlocked vma,
  1714. * keep the mlocked page.
  1715. */
  1716. if (vma->vm_flags & VM_LOCKED) {
  1717. lock_page(old_page); /* for LRU manipulation */
  1718. clear_page_mlock(old_page);
  1719. unlock_page(old_page);
  1720. }
  1721. cow_user_page(new_page, old_page, address, vma);
  1722. __SetPageUptodate(new_page);
  1723. if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
  1724. goto oom_free_new;
  1725. /*
  1726. * Re-check the pte - we dropped the lock
  1727. */
  1728. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1729. if (likely(pte_same(*page_table, orig_pte))) {
  1730. if (old_page) {
  1731. if (!PageAnon(old_page)) {
  1732. dec_mm_counter(mm, file_rss);
  1733. inc_mm_counter(mm, anon_rss);
  1734. }
  1735. } else
  1736. inc_mm_counter(mm, anon_rss);
  1737. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1738. entry = mk_pte(new_page, vma->vm_page_prot);
  1739. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1740. /*
  1741. * Clear the pte entry and flush it first, before updating the
  1742. * pte with the new entry. This will avoid a race condition
  1743. * seen in the presence of one thread doing SMC and another
  1744. * thread doing COW.
  1745. */
  1746. ptep_clear_flush_notify(vma, address, page_table);
  1747. SetPageSwapBacked(new_page);
  1748. lru_cache_add_active_or_unevictable(new_page, vma);
  1749. page_add_new_anon_rmap(new_page, vma, address);
  1750. //TODO: is this safe? do_anonymous_page() does it this way.
  1751. set_pte_at(mm, address, page_table, entry);
  1752. update_mmu_cache(vma, address, entry);
  1753. if (old_page) {
  1754. /*
  1755. * Only after switching the pte to the new page may
  1756. * we remove the mapcount here. Otherwise another
  1757. * process may come and find the rmap count decremented
  1758. * before the pte is switched to the new page, and
  1759. * "reuse" the old page writing into it while our pte
  1760. * here still points into it and can be read by other
  1761. * threads.
  1762. *
  1763. * The critical issue is to order this
  1764. * page_remove_rmap with the ptp_clear_flush above.
  1765. * Those stores are ordered by (if nothing else,)
  1766. * the barrier present in the atomic_add_negative
  1767. * in page_remove_rmap.
  1768. *
  1769. * Then the TLB flush in ptep_clear_flush ensures that
  1770. * no process can access the old page before the
  1771. * decremented mapcount is visible. And the old page
  1772. * cannot be reused until after the decremented
  1773. * mapcount is visible. So transitively, TLBs to
  1774. * old page will be flushed before it can be reused.
  1775. */
  1776. page_remove_rmap(old_page, vma);
  1777. }
  1778. /* Free the old page.. */
  1779. new_page = old_page;
  1780. ret |= VM_FAULT_WRITE;
  1781. } else
  1782. mem_cgroup_uncharge_page(new_page);
  1783. if (new_page)
  1784. page_cache_release(new_page);
  1785. if (old_page)
  1786. page_cache_release(old_page);
  1787. unlock:
  1788. pte_unmap_unlock(page_table, ptl);
  1789. if (dirty_page) {
  1790. if (vma->vm_file)
  1791. file_update_time(vma->vm_file);
  1792. /*
  1793. * Yes, Virginia, this is actually required to prevent a race
  1794. * with clear_page_dirty_for_io() from clearing the page dirty
  1795. * bit after it clear all dirty ptes, but before a racing
  1796. * do_wp_page installs a dirty pte.
  1797. *
  1798. * do_no_page is protected similarly.
  1799. */
  1800. wait_on_page_locked(dirty_page);
  1801. set_page_dirty_balance(dirty_page, page_mkwrite);
  1802. put_page(dirty_page);
  1803. }
  1804. return ret;
  1805. oom_free_new:
  1806. page_cache_release(new_page);
  1807. oom:
  1808. if (old_page)
  1809. page_cache_release(old_page);
  1810. return VM_FAULT_OOM;
  1811. unwritable_page:
  1812. page_cache_release(old_page);
  1813. return VM_FAULT_SIGBUS;
  1814. }
  1815. /*
  1816. * Helper functions for unmap_mapping_range().
  1817. *
  1818. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1819. *
  1820. * We have to restart searching the prio_tree whenever we drop the lock,
  1821. * since the iterator is only valid while the lock is held, and anyway
  1822. * a later vma might be split and reinserted earlier while lock dropped.
  1823. *
  1824. * The list of nonlinear vmas could be handled more efficiently, using
  1825. * a placeholder, but handle it in the same way until a need is shown.
  1826. * It is important to search the prio_tree before nonlinear list: a vma
  1827. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1828. * while the lock is dropped; but never shifted from list to prio_tree.
  1829. *
  1830. * In order to make forward progress despite restarting the search,
  1831. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1832. * quickly skip it next time around. Since the prio_tree search only
  1833. * shows us those vmas affected by unmapping the range in question, we
  1834. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1835. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1836. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1837. * i_mmap_lock.
  1838. *
  1839. * In order to make forward progress despite repeatedly restarting some
  1840. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1841. * and restart from that address when we reach that vma again. It might
  1842. * have been split or merged, shrunk or extended, but never shifted: so
  1843. * restart_addr remains valid so long as it remains in the vma's range.
  1844. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1845. * values so we can save vma's restart_addr in its truncate_count field.
  1846. */
  1847. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1848. static void reset_vma_truncate_counts(struct address_space *mapping)
  1849. {
  1850. struct vm_area_struct *vma;
  1851. struct prio_tree_iter iter;
  1852. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1853. vma->vm_truncate_count = 0;
  1854. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1855. vma->vm_truncate_count = 0;
  1856. }
  1857. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1858. unsigned long start_addr, unsigned long end_addr,
  1859. struct zap_details *details)
  1860. {
  1861. unsigned long restart_addr;
  1862. int need_break;
  1863. /*
  1864. * files that support invalidating or truncating portions of the
  1865. * file from under mmaped areas must have their ->fault function
  1866. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1867. * This provides synchronisation against concurrent unmapping here.
  1868. */
  1869. again:
  1870. restart_addr = vma->vm_truncate_count;
  1871. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1872. start_addr = restart_addr;
  1873. if (start_addr >= end_addr) {
  1874. /* Top of vma has been split off since last time */
  1875. vma->vm_truncate_count = details->truncate_count;
  1876. return 0;
  1877. }
  1878. }
  1879. restart_addr = zap_page_range(vma, start_addr,
  1880. end_addr - start_addr, details);
  1881. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1882. if (restart_addr >= end_addr) {
  1883. /* We have now completed this vma: mark it so */
  1884. vma->vm_truncate_count = details->truncate_count;
  1885. if (!need_break)
  1886. return 0;
  1887. } else {
  1888. /* Note restart_addr in vma's truncate_count field */
  1889. vma->vm_truncate_count = restart_addr;
  1890. if (!need_break)
  1891. goto again;
  1892. }
  1893. spin_unlock(details->i_mmap_lock);
  1894. cond_resched();
  1895. spin_lock(details->i_mmap_lock);
  1896. return -EINTR;
  1897. }
  1898. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1899. struct zap_details *details)
  1900. {
  1901. struct vm_area_struct *vma;
  1902. struct prio_tree_iter iter;
  1903. pgoff_t vba, vea, zba, zea;
  1904. restart:
  1905. vma_prio_tree_foreach(vma, &iter, root,
  1906. details->first_index, details->last_index) {
  1907. /* Skip quickly over those we have already dealt with */
  1908. if (vma->vm_truncate_count == details->truncate_count)
  1909. continue;
  1910. vba = vma->vm_pgoff;
  1911. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1912. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1913. zba = details->first_index;
  1914. if (zba < vba)
  1915. zba = vba;
  1916. zea = details->last_index;
  1917. if (zea > vea)
  1918. zea = vea;
  1919. if (unmap_mapping_range_vma(vma,
  1920. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1921. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1922. details) < 0)
  1923. goto restart;
  1924. }
  1925. }
  1926. static inline void unmap_mapping_range_list(struct list_head *head,
  1927. struct zap_details *details)
  1928. {
  1929. struct vm_area_struct *vma;
  1930. /*
  1931. * In nonlinear VMAs there is no correspondence between virtual address
  1932. * offset and file offset. So we must perform an exhaustive search
  1933. * across *all* the pages in each nonlinear VMA, not just the pages
  1934. * whose virtual address lies outside the file truncation point.
  1935. */
  1936. restart:
  1937. list_for_each_entry(vma, head, shared.vm_set.list) {
  1938. /* Skip quickly over those we have already dealt with */
  1939. if (vma->vm_truncate_count == details->truncate_count)
  1940. continue;
  1941. details->nonlinear_vma = vma;
  1942. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1943. vma->vm_end, details) < 0)
  1944. goto restart;
  1945. }
  1946. }
  1947. /**
  1948. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1949. * @mapping: the address space containing mmaps to be unmapped.
  1950. * @holebegin: byte in first page to unmap, relative to the start of
  1951. * the underlying file. This will be rounded down to a PAGE_SIZE
  1952. * boundary. Note that this is different from vmtruncate(), which
  1953. * must keep the partial page. In contrast, we must get rid of
  1954. * partial pages.
  1955. * @holelen: size of prospective hole in bytes. This will be rounded
  1956. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1957. * end of the file.
  1958. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1959. * but 0 when invalidating pagecache, don't throw away private data.
  1960. */
  1961. void unmap_mapping_range(struct address_space *mapping,
  1962. loff_t const holebegin, loff_t const holelen, int even_cows)
  1963. {
  1964. struct zap_details details;
  1965. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1966. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1967. /* Check for overflow. */
  1968. if (sizeof(holelen) > sizeof(hlen)) {
  1969. long long holeend =
  1970. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1971. if (holeend & ~(long long)ULONG_MAX)
  1972. hlen = ULONG_MAX - hba + 1;
  1973. }
  1974. details.check_mapping = even_cows? NULL: mapping;
  1975. details.nonlinear_vma = NULL;
  1976. details.first_index = hba;
  1977. details.last_index = hba + hlen - 1;
  1978. if (details.last_index < details.first_index)
  1979. details.last_index = ULONG_MAX;
  1980. details.i_mmap_lock = &mapping->i_mmap_lock;
  1981. spin_lock(&mapping->i_mmap_lock);
  1982. /* Protect against endless unmapping loops */
  1983. mapping->truncate_count++;
  1984. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1985. if (mapping->truncate_count == 0)
  1986. reset_vma_truncate_counts(mapping);
  1987. mapping->truncate_count++;
  1988. }
  1989. details.truncate_count = mapping->truncate_count;
  1990. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1991. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1992. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1993. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1994. spin_unlock(&mapping->i_mmap_lock);
  1995. }
  1996. EXPORT_SYMBOL(unmap_mapping_range);
  1997. /**
  1998. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1999. * @inode: inode of the file used
  2000. * @offset: file offset to start truncating
  2001. *
  2002. * NOTE! We have to be ready to update the memory sharing
  2003. * between the file and the memory map for a potential last
  2004. * incomplete page. Ugly, but necessary.
  2005. */
  2006. int vmtruncate(struct inode * inode, loff_t offset)
  2007. {
  2008. if (inode->i_size < offset) {
  2009. unsigned long limit;
  2010. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2011. if (limit != RLIM_INFINITY && offset > limit)
  2012. goto out_sig;
  2013. if (offset > inode->i_sb->s_maxbytes)
  2014. goto out_big;
  2015. i_size_write(inode, offset);
  2016. } else {
  2017. struct address_space *mapping = inode->i_mapping;
  2018. /*
  2019. * truncation of in-use swapfiles is disallowed - it would
  2020. * cause subsequent swapout to scribble on the now-freed
  2021. * blocks.
  2022. */
  2023. if (IS_SWAPFILE(inode))
  2024. return -ETXTBSY;
  2025. i_size_write(inode, offset);
  2026. /*
  2027. * unmap_mapping_range is called twice, first simply for
  2028. * efficiency so that truncate_inode_pages does fewer
  2029. * single-page unmaps. However after this first call, and
  2030. * before truncate_inode_pages finishes, it is possible for
  2031. * private pages to be COWed, which remain after
  2032. * truncate_inode_pages finishes, hence the second
  2033. * unmap_mapping_range call must be made for correctness.
  2034. */
  2035. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2036. truncate_inode_pages(mapping, offset);
  2037. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2038. }
  2039. if (inode->i_op && inode->i_op->truncate)
  2040. inode->i_op->truncate(inode);
  2041. return 0;
  2042. out_sig:
  2043. send_sig(SIGXFSZ, current, 0);
  2044. out_big:
  2045. return -EFBIG;
  2046. }
  2047. EXPORT_SYMBOL(vmtruncate);
  2048. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2049. {
  2050. struct address_space *mapping = inode->i_mapping;
  2051. /*
  2052. * If the underlying filesystem is not going to provide
  2053. * a way to truncate a range of blocks (punch a hole) -
  2054. * we should return failure right now.
  2055. */
  2056. if (!inode->i_op || !inode->i_op->truncate_range)
  2057. return -ENOSYS;
  2058. mutex_lock(&inode->i_mutex);
  2059. down_write(&inode->i_alloc_sem);
  2060. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2061. truncate_inode_pages_range(mapping, offset, end);
  2062. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2063. inode->i_op->truncate_range(inode, offset, end);
  2064. up_write(&inode->i_alloc_sem);
  2065. mutex_unlock(&inode->i_mutex);
  2066. return 0;
  2067. }
  2068. /*
  2069. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2070. * but allow concurrent faults), and pte mapped but not yet locked.
  2071. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2072. */
  2073. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2074. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2075. int write_access, pte_t orig_pte)
  2076. {
  2077. spinlock_t *ptl;
  2078. struct page *page;
  2079. swp_entry_t entry;
  2080. pte_t pte;
  2081. int ret = 0;
  2082. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2083. goto out;
  2084. entry = pte_to_swp_entry(orig_pte);
  2085. if (is_migration_entry(entry)) {
  2086. migration_entry_wait(mm, pmd, address);
  2087. goto out;
  2088. }
  2089. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2090. page = lookup_swap_cache(entry);
  2091. if (!page) {
  2092. grab_swap_token(); /* Contend for token _before_ read-in */
  2093. page = swapin_readahead(entry,
  2094. GFP_HIGHUSER_MOVABLE, vma, address);
  2095. if (!page) {
  2096. /*
  2097. * Back out if somebody else faulted in this pte
  2098. * while we released the pte lock.
  2099. */
  2100. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2101. if (likely(pte_same(*page_table, orig_pte)))
  2102. ret = VM_FAULT_OOM;
  2103. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2104. goto unlock;
  2105. }
  2106. /* Had to read the page from swap area: Major fault */
  2107. ret = VM_FAULT_MAJOR;
  2108. count_vm_event(PGMAJFAULT);
  2109. }
  2110. mark_page_accessed(page);
  2111. lock_page(page);
  2112. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2113. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2114. ret = VM_FAULT_OOM;
  2115. unlock_page(page);
  2116. goto out;
  2117. }
  2118. /*
  2119. * Back out if somebody else already faulted in this pte.
  2120. */
  2121. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2122. if (unlikely(!pte_same(*page_table, orig_pte)))
  2123. goto out_nomap;
  2124. if (unlikely(!PageUptodate(page))) {
  2125. ret = VM_FAULT_SIGBUS;
  2126. goto out_nomap;
  2127. }
  2128. /* The page isn't present yet, go ahead with the fault. */
  2129. inc_mm_counter(mm, anon_rss);
  2130. pte = mk_pte(page, vma->vm_page_prot);
  2131. if (write_access && can_share_swap_page(page)) {
  2132. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2133. write_access = 0;
  2134. }
  2135. flush_icache_page(vma, page);
  2136. set_pte_at(mm, address, page_table, pte);
  2137. page_add_anon_rmap(page, vma, address);
  2138. swap_free(entry);
  2139. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2140. remove_exclusive_swap_page(page);
  2141. unlock_page(page);
  2142. if (write_access) {
  2143. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2144. if (ret & VM_FAULT_ERROR)
  2145. ret &= VM_FAULT_ERROR;
  2146. goto out;
  2147. }
  2148. /* No need to invalidate - it was non-present before */
  2149. update_mmu_cache(vma, address, pte);
  2150. unlock:
  2151. pte_unmap_unlock(page_table, ptl);
  2152. out:
  2153. return ret;
  2154. out_nomap:
  2155. mem_cgroup_uncharge_page(page);
  2156. pte_unmap_unlock(page_table, ptl);
  2157. unlock_page(page);
  2158. page_cache_release(page);
  2159. return ret;
  2160. }
  2161. /*
  2162. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2163. * but allow concurrent faults), and pte mapped but not yet locked.
  2164. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2165. */
  2166. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2167. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2168. int write_access)
  2169. {
  2170. struct page *page;
  2171. spinlock_t *ptl;
  2172. pte_t entry;
  2173. /* Allocate our own private page. */
  2174. pte_unmap(page_table);
  2175. if (unlikely(anon_vma_prepare(vma)))
  2176. goto oom;
  2177. page = alloc_zeroed_user_highpage_movable(vma, address);
  2178. if (!page)
  2179. goto oom;
  2180. __SetPageUptodate(page);
  2181. if (mem_cgroup_charge(page, mm, GFP_KERNEL))
  2182. goto oom_free_page;
  2183. entry = mk_pte(page, vma->vm_page_prot);
  2184. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2185. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2186. if (!pte_none(*page_table))
  2187. goto release;
  2188. inc_mm_counter(mm, anon_rss);
  2189. SetPageSwapBacked(page);
  2190. lru_cache_add_active_or_unevictable(page, vma);
  2191. page_add_new_anon_rmap(page, vma, address);
  2192. set_pte_at(mm, address, page_table, entry);
  2193. /* No need to invalidate - it was non-present before */
  2194. update_mmu_cache(vma, address, entry);
  2195. unlock:
  2196. pte_unmap_unlock(page_table, ptl);
  2197. return 0;
  2198. release:
  2199. mem_cgroup_uncharge_page(page);
  2200. page_cache_release(page);
  2201. goto unlock;
  2202. oom_free_page:
  2203. page_cache_release(page);
  2204. oom:
  2205. return VM_FAULT_OOM;
  2206. }
  2207. /*
  2208. * __do_fault() tries to create a new page mapping. It aggressively
  2209. * tries to share with existing pages, but makes a separate copy if
  2210. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2211. * the next page fault.
  2212. *
  2213. * As this is called only for pages that do not currently exist, we
  2214. * do not need to flush old virtual caches or the TLB.
  2215. *
  2216. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2217. * but allow concurrent faults), and pte neither mapped nor locked.
  2218. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2219. */
  2220. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2221. unsigned long address, pmd_t *pmd,
  2222. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2223. {
  2224. pte_t *page_table;
  2225. spinlock_t *ptl;
  2226. struct page *page;
  2227. pte_t entry;
  2228. int anon = 0;
  2229. int charged = 0;
  2230. struct page *dirty_page = NULL;
  2231. struct vm_fault vmf;
  2232. int ret;
  2233. int page_mkwrite = 0;
  2234. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2235. vmf.pgoff = pgoff;
  2236. vmf.flags = flags;
  2237. vmf.page = NULL;
  2238. ret = vma->vm_ops->fault(vma, &vmf);
  2239. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2240. return ret;
  2241. /*
  2242. * For consistency in subsequent calls, make the faulted page always
  2243. * locked.
  2244. */
  2245. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2246. lock_page(vmf.page);
  2247. else
  2248. VM_BUG_ON(!PageLocked(vmf.page));
  2249. /*
  2250. * Should we do an early C-O-W break?
  2251. */
  2252. page = vmf.page;
  2253. if (flags & FAULT_FLAG_WRITE) {
  2254. if (!(vma->vm_flags & VM_SHARED)) {
  2255. anon = 1;
  2256. if (unlikely(anon_vma_prepare(vma))) {
  2257. ret = VM_FAULT_OOM;
  2258. goto out;
  2259. }
  2260. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2261. vma, address);
  2262. if (!page) {
  2263. ret = VM_FAULT_OOM;
  2264. goto out;
  2265. }
  2266. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2267. ret = VM_FAULT_OOM;
  2268. page_cache_release(page);
  2269. goto out;
  2270. }
  2271. charged = 1;
  2272. /*
  2273. * Don't let another task, with possibly unlocked vma,
  2274. * keep the mlocked page.
  2275. */
  2276. if (vma->vm_flags & VM_LOCKED)
  2277. clear_page_mlock(vmf.page);
  2278. copy_user_highpage(page, vmf.page, address, vma);
  2279. __SetPageUptodate(page);
  2280. } else {
  2281. /*
  2282. * If the page will be shareable, see if the backing
  2283. * address space wants to know that the page is about
  2284. * to become writable
  2285. */
  2286. if (vma->vm_ops->page_mkwrite) {
  2287. unlock_page(page);
  2288. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2289. ret = VM_FAULT_SIGBUS;
  2290. anon = 1; /* no anon but release vmf.page */
  2291. goto out_unlocked;
  2292. }
  2293. lock_page(page);
  2294. /*
  2295. * XXX: this is not quite right (racy vs
  2296. * invalidate) to unlock and relock the page
  2297. * like this, however a better fix requires
  2298. * reworking page_mkwrite locking API, which
  2299. * is better done later.
  2300. */
  2301. if (!page->mapping) {
  2302. ret = 0;
  2303. anon = 1; /* no anon but release vmf.page */
  2304. goto out;
  2305. }
  2306. page_mkwrite = 1;
  2307. }
  2308. }
  2309. }
  2310. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2311. /*
  2312. * This silly early PAGE_DIRTY setting removes a race
  2313. * due to the bad i386 page protection. But it's valid
  2314. * for other architectures too.
  2315. *
  2316. * Note that if write_access is true, we either now have
  2317. * an exclusive copy of the page, or this is a shared mapping,
  2318. * so we can make it writable and dirty to avoid having to
  2319. * handle that later.
  2320. */
  2321. /* Only go through if we didn't race with anybody else... */
  2322. if (likely(pte_same(*page_table, orig_pte))) {
  2323. flush_icache_page(vma, page);
  2324. entry = mk_pte(page, vma->vm_page_prot);
  2325. if (flags & FAULT_FLAG_WRITE)
  2326. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2327. if (anon) {
  2328. inc_mm_counter(mm, anon_rss);
  2329. SetPageSwapBacked(page);
  2330. lru_cache_add_active_or_unevictable(page, vma);
  2331. page_add_new_anon_rmap(page, vma, address);
  2332. } else {
  2333. inc_mm_counter(mm, file_rss);
  2334. page_add_file_rmap(page);
  2335. if (flags & FAULT_FLAG_WRITE) {
  2336. dirty_page = page;
  2337. get_page(dirty_page);
  2338. }
  2339. }
  2340. //TODO: is this safe? do_anonymous_page() does it this way.
  2341. set_pte_at(mm, address, page_table, entry);
  2342. /* no need to invalidate: a not-present page won't be cached */
  2343. update_mmu_cache(vma, address, entry);
  2344. } else {
  2345. if (charged)
  2346. mem_cgroup_uncharge_page(page);
  2347. if (anon)
  2348. page_cache_release(page);
  2349. else
  2350. anon = 1; /* no anon but release faulted_page */
  2351. }
  2352. pte_unmap_unlock(page_table, ptl);
  2353. out:
  2354. unlock_page(vmf.page);
  2355. out_unlocked:
  2356. if (anon)
  2357. page_cache_release(vmf.page);
  2358. else if (dirty_page) {
  2359. if (vma->vm_file)
  2360. file_update_time(vma->vm_file);
  2361. set_page_dirty_balance(dirty_page, page_mkwrite);
  2362. put_page(dirty_page);
  2363. }
  2364. return ret;
  2365. }
  2366. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2367. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2368. int write_access, pte_t orig_pte)
  2369. {
  2370. pgoff_t pgoff = (((address & PAGE_MASK)
  2371. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2372. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2373. pte_unmap(page_table);
  2374. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2375. }
  2376. /*
  2377. * Fault of a previously existing named mapping. Repopulate the pte
  2378. * from the encoded file_pte if possible. This enables swappable
  2379. * nonlinear vmas.
  2380. *
  2381. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2382. * but allow concurrent faults), and pte mapped but not yet locked.
  2383. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2384. */
  2385. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2386. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2387. int write_access, pte_t orig_pte)
  2388. {
  2389. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2390. (write_access ? FAULT_FLAG_WRITE : 0);
  2391. pgoff_t pgoff;
  2392. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2393. return 0;
  2394. if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
  2395. !(vma->vm_flags & VM_CAN_NONLINEAR))) {
  2396. /*
  2397. * Page table corrupted: show pte and kill process.
  2398. */
  2399. print_bad_pte(vma, orig_pte, address);
  2400. return VM_FAULT_OOM;
  2401. }
  2402. pgoff = pte_to_pgoff(orig_pte);
  2403. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2404. }
  2405. /*
  2406. * These routines also need to handle stuff like marking pages dirty
  2407. * and/or accessed for architectures that don't do it in hardware (most
  2408. * RISC architectures). The early dirtying is also good on the i386.
  2409. *
  2410. * There is also a hook called "update_mmu_cache()" that architectures
  2411. * with external mmu caches can use to update those (ie the Sparc or
  2412. * PowerPC hashed page tables that act as extended TLBs).
  2413. *
  2414. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2415. * but allow concurrent faults), and pte mapped but not yet locked.
  2416. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2417. */
  2418. static inline int handle_pte_fault(struct mm_struct *mm,
  2419. struct vm_area_struct *vma, unsigned long address,
  2420. pte_t *pte, pmd_t *pmd, int write_access)
  2421. {
  2422. pte_t entry;
  2423. spinlock_t *ptl;
  2424. entry = *pte;
  2425. if (!pte_present(entry)) {
  2426. if (pte_none(entry)) {
  2427. if (vma->vm_ops) {
  2428. if (likely(vma->vm_ops->fault))
  2429. return do_linear_fault(mm, vma, address,
  2430. pte, pmd, write_access, entry);
  2431. }
  2432. return do_anonymous_page(mm, vma, address,
  2433. pte, pmd, write_access);
  2434. }
  2435. if (pte_file(entry))
  2436. return do_nonlinear_fault(mm, vma, address,
  2437. pte, pmd, write_access, entry);
  2438. return do_swap_page(mm, vma, address,
  2439. pte, pmd, write_access, entry);
  2440. }
  2441. ptl = pte_lockptr(mm, pmd);
  2442. spin_lock(ptl);
  2443. if (unlikely(!pte_same(*pte, entry)))
  2444. goto unlock;
  2445. if (write_access) {
  2446. if (!pte_write(entry))
  2447. return do_wp_page(mm, vma, address,
  2448. pte, pmd, ptl, entry);
  2449. entry = pte_mkdirty(entry);
  2450. }
  2451. entry = pte_mkyoung(entry);
  2452. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2453. update_mmu_cache(vma, address, entry);
  2454. } else {
  2455. /*
  2456. * This is needed only for protection faults but the arch code
  2457. * is not yet telling us if this is a protection fault or not.
  2458. * This still avoids useless tlb flushes for .text page faults
  2459. * with threads.
  2460. */
  2461. if (write_access)
  2462. flush_tlb_page(vma, address);
  2463. }
  2464. unlock:
  2465. pte_unmap_unlock(pte, ptl);
  2466. return 0;
  2467. }
  2468. /*
  2469. * By the time we get here, we already hold the mm semaphore
  2470. */
  2471. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2472. unsigned long address, int write_access)
  2473. {
  2474. pgd_t *pgd;
  2475. pud_t *pud;
  2476. pmd_t *pmd;
  2477. pte_t *pte;
  2478. __set_current_state(TASK_RUNNING);
  2479. count_vm_event(PGFAULT);
  2480. if (unlikely(is_vm_hugetlb_page(vma)))
  2481. return hugetlb_fault(mm, vma, address, write_access);
  2482. pgd = pgd_offset(mm, address);
  2483. pud = pud_alloc(mm, pgd, address);
  2484. if (!pud)
  2485. return VM_FAULT_OOM;
  2486. pmd = pmd_alloc(mm, pud, address);
  2487. if (!pmd)
  2488. return VM_FAULT_OOM;
  2489. pte = pte_alloc_map(mm, pmd, address);
  2490. if (!pte)
  2491. return VM_FAULT_OOM;
  2492. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2493. }
  2494. #ifndef __PAGETABLE_PUD_FOLDED
  2495. /*
  2496. * Allocate page upper directory.
  2497. * We've already handled the fast-path in-line.
  2498. */
  2499. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2500. {
  2501. pud_t *new = pud_alloc_one(mm, address);
  2502. if (!new)
  2503. return -ENOMEM;
  2504. smp_wmb(); /* See comment in __pte_alloc */
  2505. spin_lock(&mm->page_table_lock);
  2506. if (pgd_present(*pgd)) /* Another has populated it */
  2507. pud_free(mm, new);
  2508. else
  2509. pgd_populate(mm, pgd, new);
  2510. spin_unlock(&mm->page_table_lock);
  2511. return 0;
  2512. }
  2513. #endif /* __PAGETABLE_PUD_FOLDED */
  2514. #ifndef __PAGETABLE_PMD_FOLDED
  2515. /*
  2516. * Allocate page middle directory.
  2517. * We've already handled the fast-path in-line.
  2518. */
  2519. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2520. {
  2521. pmd_t *new = pmd_alloc_one(mm, address);
  2522. if (!new)
  2523. return -ENOMEM;
  2524. smp_wmb(); /* See comment in __pte_alloc */
  2525. spin_lock(&mm->page_table_lock);
  2526. #ifndef __ARCH_HAS_4LEVEL_HACK
  2527. if (pud_present(*pud)) /* Another has populated it */
  2528. pmd_free(mm, new);
  2529. else
  2530. pud_populate(mm, pud, new);
  2531. #else
  2532. if (pgd_present(*pud)) /* Another has populated it */
  2533. pmd_free(mm, new);
  2534. else
  2535. pgd_populate(mm, pud, new);
  2536. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2537. spin_unlock(&mm->page_table_lock);
  2538. return 0;
  2539. }
  2540. #endif /* __PAGETABLE_PMD_FOLDED */
  2541. int make_pages_present(unsigned long addr, unsigned long end)
  2542. {
  2543. int ret, len, write;
  2544. struct vm_area_struct * vma;
  2545. vma = find_vma(current->mm, addr);
  2546. if (!vma)
  2547. return -ENOMEM;
  2548. write = (vma->vm_flags & VM_WRITE) != 0;
  2549. BUG_ON(addr >= end);
  2550. BUG_ON(end > vma->vm_end);
  2551. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2552. ret = get_user_pages(current, current->mm, addr,
  2553. len, write, 0, NULL, NULL);
  2554. if (ret < 0)
  2555. return ret;
  2556. return ret == len ? 0 : -EFAULT;
  2557. }
  2558. #if !defined(__HAVE_ARCH_GATE_AREA)
  2559. #if defined(AT_SYSINFO_EHDR)
  2560. static struct vm_area_struct gate_vma;
  2561. static int __init gate_vma_init(void)
  2562. {
  2563. gate_vma.vm_mm = NULL;
  2564. gate_vma.vm_start = FIXADDR_USER_START;
  2565. gate_vma.vm_end = FIXADDR_USER_END;
  2566. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2567. gate_vma.vm_page_prot = __P101;
  2568. /*
  2569. * Make sure the vDSO gets into every core dump.
  2570. * Dumping its contents makes post-mortem fully interpretable later
  2571. * without matching up the same kernel and hardware config to see
  2572. * what PC values meant.
  2573. */
  2574. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2575. return 0;
  2576. }
  2577. __initcall(gate_vma_init);
  2578. #endif
  2579. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2580. {
  2581. #ifdef AT_SYSINFO_EHDR
  2582. return &gate_vma;
  2583. #else
  2584. return NULL;
  2585. #endif
  2586. }
  2587. int in_gate_area_no_task(unsigned long addr)
  2588. {
  2589. #ifdef AT_SYSINFO_EHDR
  2590. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2591. return 1;
  2592. #endif
  2593. return 0;
  2594. }
  2595. #endif /* __HAVE_ARCH_GATE_AREA */
  2596. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2597. int follow_phys(struct vm_area_struct *vma,
  2598. unsigned long address, unsigned int flags,
  2599. unsigned long *prot, resource_size_t *phys)
  2600. {
  2601. pgd_t *pgd;
  2602. pud_t *pud;
  2603. pmd_t *pmd;
  2604. pte_t *ptep, pte;
  2605. spinlock_t *ptl;
  2606. resource_size_t phys_addr = 0;
  2607. struct mm_struct *mm = vma->vm_mm;
  2608. int ret = -EINVAL;
  2609. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2610. goto out;
  2611. pgd = pgd_offset(mm, address);
  2612. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2613. goto out;
  2614. pud = pud_offset(pgd, address);
  2615. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2616. goto out;
  2617. pmd = pmd_offset(pud, address);
  2618. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2619. goto out;
  2620. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2621. if (pmd_huge(*pmd))
  2622. goto out;
  2623. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  2624. if (!ptep)
  2625. goto out;
  2626. pte = *ptep;
  2627. if (!pte_present(pte))
  2628. goto unlock;
  2629. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2630. goto unlock;
  2631. phys_addr = pte_pfn(pte);
  2632. phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
  2633. *prot = pgprot_val(pte_pgprot(pte));
  2634. *phys = phys_addr;
  2635. ret = 0;
  2636. unlock:
  2637. pte_unmap_unlock(ptep, ptl);
  2638. out:
  2639. return ret;
  2640. }
  2641. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2642. void *buf, int len, int write)
  2643. {
  2644. resource_size_t phys_addr;
  2645. unsigned long prot = 0;
  2646. void *maddr;
  2647. int offset = addr & (PAGE_SIZE-1);
  2648. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2649. return -EINVAL;
  2650. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2651. if (write)
  2652. memcpy_toio(maddr + offset, buf, len);
  2653. else
  2654. memcpy_fromio(buf, maddr + offset, len);
  2655. iounmap(maddr);
  2656. return len;
  2657. }
  2658. #endif
  2659. /*
  2660. * Access another process' address space.
  2661. * Source/target buffer must be kernel space,
  2662. * Do not walk the page table directly, use get_user_pages
  2663. */
  2664. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2665. {
  2666. struct mm_struct *mm;
  2667. struct vm_area_struct *vma;
  2668. void *old_buf = buf;
  2669. mm = get_task_mm(tsk);
  2670. if (!mm)
  2671. return 0;
  2672. down_read(&mm->mmap_sem);
  2673. /* ignore errors, just check how much was successfully transferred */
  2674. while (len) {
  2675. int bytes, ret, offset;
  2676. void *maddr;
  2677. struct page *page = NULL;
  2678. ret = get_user_pages(tsk, mm, addr, 1,
  2679. write, 1, &page, &vma);
  2680. if (ret <= 0) {
  2681. /*
  2682. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2683. * we can access using slightly different code.
  2684. */
  2685. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2686. vma = find_vma(mm, addr);
  2687. if (!vma)
  2688. break;
  2689. if (vma->vm_ops && vma->vm_ops->access)
  2690. ret = vma->vm_ops->access(vma, addr, buf,
  2691. len, write);
  2692. if (ret <= 0)
  2693. #endif
  2694. break;
  2695. bytes = ret;
  2696. } else {
  2697. bytes = len;
  2698. offset = addr & (PAGE_SIZE-1);
  2699. if (bytes > PAGE_SIZE-offset)
  2700. bytes = PAGE_SIZE-offset;
  2701. maddr = kmap(page);
  2702. if (write) {
  2703. copy_to_user_page(vma, page, addr,
  2704. maddr + offset, buf, bytes);
  2705. set_page_dirty_lock(page);
  2706. } else {
  2707. copy_from_user_page(vma, page, addr,
  2708. buf, maddr + offset, bytes);
  2709. }
  2710. kunmap(page);
  2711. page_cache_release(page);
  2712. }
  2713. len -= bytes;
  2714. buf += bytes;
  2715. addr += bytes;
  2716. }
  2717. up_read(&mm->mmap_sem);
  2718. mmput(mm);
  2719. return buf - old_buf;
  2720. }
  2721. /*
  2722. * Print the name of a VMA.
  2723. */
  2724. void print_vma_addr(char *prefix, unsigned long ip)
  2725. {
  2726. struct mm_struct *mm = current->mm;
  2727. struct vm_area_struct *vma;
  2728. /*
  2729. * Do not print if we are in atomic
  2730. * contexts (in exception stacks, etc.):
  2731. */
  2732. if (preempt_count())
  2733. return;
  2734. down_read(&mm->mmap_sem);
  2735. vma = find_vma(mm, ip);
  2736. if (vma && vma->vm_file) {
  2737. struct file *f = vma->vm_file;
  2738. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2739. if (buf) {
  2740. char *p, *s;
  2741. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2742. if (IS_ERR(p))
  2743. p = "?";
  2744. s = strrchr(p, '/');
  2745. if (s)
  2746. p = s+1;
  2747. printk("%s%s[%lx+%lx]", prefix, p,
  2748. vma->vm_start,
  2749. vma->vm_end - vma->vm_start);
  2750. free_page((unsigned long)buf);
  2751. }
  2752. }
  2753. up_read(&current->mm->mmap_sem);
  2754. }
  2755. #ifdef CONFIG_PROVE_LOCKING
  2756. void might_fault(void)
  2757. {
  2758. might_sleep();
  2759. /*
  2760. * it would be nicer only to annotate paths which are not under
  2761. * pagefault_disable, however that requires a larger audit and
  2762. * providing helpers like get_user_atomic.
  2763. */
  2764. if (!in_atomic() && current->mm)
  2765. might_lock_read(&current->mm->mmap_sem);
  2766. }
  2767. EXPORT_SYMBOL(might_fault);
  2768. #endif