ring_buffer.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. #include "trace.h"
  19. /*
  20. * A fast way to enable or disable all ring buffers is to
  21. * call tracing_on or tracing_off. Turning off the ring buffers
  22. * prevents all ring buffers from being recorded to.
  23. * Turning this switch on, makes it OK to write to the
  24. * ring buffer, if the ring buffer is enabled itself.
  25. *
  26. * There's three layers that must be on in order to write
  27. * to the ring buffer.
  28. *
  29. * 1) This global flag must be set.
  30. * 2) The ring buffer must be enabled for recording.
  31. * 3) The per cpu buffer must be enabled for recording.
  32. *
  33. * In case of an anomaly, this global flag has a bit set that
  34. * will permantly disable all ring buffers.
  35. */
  36. /*
  37. * Global flag to disable all recording to ring buffers
  38. * This has two bits: ON, DISABLED
  39. *
  40. * ON DISABLED
  41. * ---- ----------
  42. * 0 0 : ring buffers are off
  43. * 1 0 : ring buffers are on
  44. * X 1 : ring buffers are permanently disabled
  45. */
  46. enum {
  47. RB_BUFFERS_ON_BIT = 0,
  48. RB_BUFFERS_DISABLED_BIT = 1,
  49. };
  50. enum {
  51. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  52. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  53. };
  54. static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  55. /**
  56. * tracing_on - enable all tracing buffers
  57. *
  58. * This function enables all tracing buffers that may have been
  59. * disabled with tracing_off.
  60. */
  61. void tracing_on(void)
  62. {
  63. set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  64. }
  65. EXPORT_SYMBOL_GPL(tracing_on);
  66. /**
  67. * tracing_off - turn off all tracing buffers
  68. *
  69. * This function stops all tracing buffers from recording data.
  70. * It does not disable any overhead the tracers themselves may
  71. * be causing. This function simply causes all recording to
  72. * the ring buffers to fail.
  73. */
  74. void tracing_off(void)
  75. {
  76. clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  77. }
  78. EXPORT_SYMBOL_GPL(tracing_off);
  79. /**
  80. * tracing_off_permanent - permanently disable ring buffers
  81. *
  82. * This function, once called, will disable all ring buffers
  83. * permanenty.
  84. */
  85. void tracing_off_permanent(void)
  86. {
  87. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  88. }
  89. #include "trace.h"
  90. /* Up this if you want to test the TIME_EXTENTS and normalization */
  91. #define DEBUG_SHIFT 0
  92. /* FIXME!!! */
  93. u64 ring_buffer_time_stamp(int cpu)
  94. {
  95. u64 time;
  96. preempt_disable_notrace();
  97. /* shift to debug/test normalization and TIME_EXTENTS */
  98. time = sched_clock() << DEBUG_SHIFT;
  99. preempt_enable_no_resched_notrace();
  100. return time;
  101. }
  102. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  103. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  104. {
  105. /* Just stupid testing the normalize function and deltas */
  106. *ts >>= DEBUG_SHIFT;
  107. }
  108. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  109. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  110. #define RB_ALIGNMENT_SHIFT 2
  111. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  112. #define RB_MAX_SMALL_DATA 28
  113. enum {
  114. RB_LEN_TIME_EXTEND = 8,
  115. RB_LEN_TIME_STAMP = 16,
  116. };
  117. /* inline for ring buffer fast paths */
  118. static inline unsigned
  119. rb_event_length(struct ring_buffer_event *event)
  120. {
  121. unsigned length;
  122. switch (event->type) {
  123. case RINGBUF_TYPE_PADDING:
  124. /* undefined */
  125. return -1;
  126. case RINGBUF_TYPE_TIME_EXTEND:
  127. return RB_LEN_TIME_EXTEND;
  128. case RINGBUF_TYPE_TIME_STAMP:
  129. return RB_LEN_TIME_STAMP;
  130. case RINGBUF_TYPE_DATA:
  131. if (event->len)
  132. length = event->len << RB_ALIGNMENT_SHIFT;
  133. else
  134. length = event->array[0];
  135. return length + RB_EVNT_HDR_SIZE;
  136. default:
  137. BUG();
  138. }
  139. /* not hit */
  140. return 0;
  141. }
  142. /**
  143. * ring_buffer_event_length - return the length of the event
  144. * @event: the event to get the length of
  145. */
  146. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  147. {
  148. return rb_event_length(event);
  149. }
  150. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  151. /* inline for ring buffer fast paths */
  152. static inline void *
  153. rb_event_data(struct ring_buffer_event *event)
  154. {
  155. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  156. /* If length is in len field, then array[0] has the data */
  157. if (event->len)
  158. return (void *)&event->array[0];
  159. /* Otherwise length is in array[0] and array[1] has the data */
  160. return (void *)&event->array[1];
  161. }
  162. /**
  163. * ring_buffer_event_data - return the data of the event
  164. * @event: the event to get the data from
  165. */
  166. void *ring_buffer_event_data(struct ring_buffer_event *event)
  167. {
  168. return rb_event_data(event);
  169. }
  170. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  171. #define for_each_buffer_cpu(buffer, cpu) \
  172. for_each_cpu(cpu, buffer->cpumask)
  173. #define TS_SHIFT 27
  174. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  175. #define TS_DELTA_TEST (~TS_MASK)
  176. struct buffer_data_page {
  177. u64 time_stamp; /* page time stamp */
  178. local_t commit; /* write commited index */
  179. unsigned char data[]; /* data of buffer page */
  180. };
  181. struct buffer_page {
  182. local_t write; /* index for next write */
  183. unsigned read; /* index for next read */
  184. struct list_head list; /* list of free pages */
  185. struct buffer_data_page *page; /* Actual data page */
  186. };
  187. static void rb_init_page(struct buffer_data_page *bpage)
  188. {
  189. local_set(&bpage->commit, 0);
  190. }
  191. /*
  192. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  193. * this issue out.
  194. */
  195. static inline void free_buffer_page(struct buffer_page *bpage)
  196. {
  197. if (bpage->page)
  198. free_page((unsigned long)bpage->page);
  199. kfree(bpage);
  200. }
  201. /*
  202. * We need to fit the time_stamp delta into 27 bits.
  203. */
  204. static inline int test_time_stamp(u64 delta)
  205. {
  206. if (delta & TS_DELTA_TEST)
  207. return 1;
  208. return 0;
  209. }
  210. #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
  211. /*
  212. * head_page == tail_page && head == tail then buffer is empty.
  213. */
  214. struct ring_buffer_per_cpu {
  215. int cpu;
  216. struct ring_buffer *buffer;
  217. spinlock_t reader_lock; /* serialize readers */
  218. raw_spinlock_t lock;
  219. struct lock_class_key lock_key;
  220. struct list_head pages;
  221. struct buffer_page *head_page; /* read from head */
  222. struct buffer_page *tail_page; /* write to tail */
  223. struct buffer_page *commit_page; /* commited pages */
  224. struct buffer_page *reader_page;
  225. unsigned long overrun;
  226. unsigned long entries;
  227. u64 write_stamp;
  228. u64 read_stamp;
  229. atomic_t record_disabled;
  230. };
  231. struct ring_buffer {
  232. unsigned pages;
  233. unsigned flags;
  234. int cpus;
  235. cpumask_var_t cpumask;
  236. atomic_t record_disabled;
  237. struct mutex mutex;
  238. struct ring_buffer_per_cpu **buffers;
  239. };
  240. struct ring_buffer_iter {
  241. struct ring_buffer_per_cpu *cpu_buffer;
  242. unsigned long head;
  243. struct buffer_page *head_page;
  244. u64 read_stamp;
  245. };
  246. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  247. #define RB_WARN_ON(buffer, cond) \
  248. ({ \
  249. int _____ret = unlikely(cond); \
  250. if (_____ret) { \
  251. atomic_inc(&buffer->record_disabled); \
  252. WARN_ON(1); \
  253. } \
  254. _____ret; \
  255. })
  256. /**
  257. * check_pages - integrity check of buffer pages
  258. * @cpu_buffer: CPU buffer with pages to test
  259. *
  260. * As a safty measure we check to make sure the data pages have not
  261. * been corrupted.
  262. */
  263. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  264. {
  265. struct list_head *head = &cpu_buffer->pages;
  266. struct buffer_page *bpage, *tmp;
  267. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  268. return -1;
  269. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  270. return -1;
  271. list_for_each_entry_safe(bpage, tmp, head, list) {
  272. if (RB_WARN_ON(cpu_buffer,
  273. bpage->list.next->prev != &bpage->list))
  274. return -1;
  275. if (RB_WARN_ON(cpu_buffer,
  276. bpage->list.prev->next != &bpage->list))
  277. return -1;
  278. }
  279. return 0;
  280. }
  281. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  282. unsigned nr_pages)
  283. {
  284. struct list_head *head = &cpu_buffer->pages;
  285. struct buffer_page *bpage, *tmp;
  286. unsigned long addr;
  287. LIST_HEAD(pages);
  288. unsigned i;
  289. for (i = 0; i < nr_pages; i++) {
  290. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  291. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  292. if (!bpage)
  293. goto free_pages;
  294. list_add(&bpage->list, &pages);
  295. addr = __get_free_page(GFP_KERNEL);
  296. if (!addr)
  297. goto free_pages;
  298. bpage->page = (void *)addr;
  299. rb_init_page(bpage->page);
  300. }
  301. list_splice(&pages, head);
  302. rb_check_pages(cpu_buffer);
  303. return 0;
  304. free_pages:
  305. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  306. list_del_init(&bpage->list);
  307. free_buffer_page(bpage);
  308. }
  309. return -ENOMEM;
  310. }
  311. static struct ring_buffer_per_cpu *
  312. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  313. {
  314. struct ring_buffer_per_cpu *cpu_buffer;
  315. struct buffer_page *bpage;
  316. unsigned long addr;
  317. int ret;
  318. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  319. GFP_KERNEL, cpu_to_node(cpu));
  320. if (!cpu_buffer)
  321. return NULL;
  322. cpu_buffer->cpu = cpu;
  323. cpu_buffer->buffer = buffer;
  324. spin_lock_init(&cpu_buffer->reader_lock);
  325. cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  326. INIT_LIST_HEAD(&cpu_buffer->pages);
  327. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  328. GFP_KERNEL, cpu_to_node(cpu));
  329. if (!bpage)
  330. goto fail_free_buffer;
  331. cpu_buffer->reader_page = bpage;
  332. addr = __get_free_page(GFP_KERNEL);
  333. if (!addr)
  334. goto fail_free_reader;
  335. bpage->page = (void *)addr;
  336. rb_init_page(bpage->page);
  337. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  338. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  339. if (ret < 0)
  340. goto fail_free_reader;
  341. cpu_buffer->head_page
  342. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  343. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  344. return cpu_buffer;
  345. fail_free_reader:
  346. free_buffer_page(cpu_buffer->reader_page);
  347. fail_free_buffer:
  348. kfree(cpu_buffer);
  349. return NULL;
  350. }
  351. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  352. {
  353. struct list_head *head = &cpu_buffer->pages;
  354. struct buffer_page *bpage, *tmp;
  355. list_del_init(&cpu_buffer->reader_page->list);
  356. free_buffer_page(cpu_buffer->reader_page);
  357. list_for_each_entry_safe(bpage, tmp, head, list) {
  358. list_del_init(&bpage->list);
  359. free_buffer_page(bpage);
  360. }
  361. kfree(cpu_buffer);
  362. }
  363. /*
  364. * Causes compile errors if the struct buffer_page gets bigger
  365. * than the struct page.
  366. */
  367. extern int ring_buffer_page_too_big(void);
  368. /**
  369. * ring_buffer_alloc - allocate a new ring_buffer
  370. * @size: the size in bytes per cpu that is needed.
  371. * @flags: attributes to set for the ring buffer.
  372. *
  373. * Currently the only flag that is available is the RB_FL_OVERWRITE
  374. * flag. This flag means that the buffer will overwrite old data
  375. * when the buffer wraps. If this flag is not set, the buffer will
  376. * drop data when the tail hits the head.
  377. */
  378. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  379. {
  380. struct ring_buffer *buffer;
  381. int bsize;
  382. int cpu;
  383. /* Paranoid! Optimizes out when all is well */
  384. if (sizeof(struct buffer_page) > sizeof(struct page))
  385. ring_buffer_page_too_big();
  386. /* keep it in its own cache line */
  387. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  388. GFP_KERNEL);
  389. if (!buffer)
  390. return NULL;
  391. if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  392. goto fail_free_buffer;
  393. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  394. buffer->flags = flags;
  395. /* need at least two pages */
  396. if (buffer->pages == 1)
  397. buffer->pages++;
  398. cpumask_copy(buffer->cpumask, cpu_possible_mask);
  399. buffer->cpus = nr_cpu_ids;
  400. bsize = sizeof(void *) * nr_cpu_ids;
  401. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  402. GFP_KERNEL);
  403. if (!buffer->buffers)
  404. goto fail_free_cpumask;
  405. for_each_buffer_cpu(buffer, cpu) {
  406. buffer->buffers[cpu] =
  407. rb_allocate_cpu_buffer(buffer, cpu);
  408. if (!buffer->buffers[cpu])
  409. goto fail_free_buffers;
  410. }
  411. mutex_init(&buffer->mutex);
  412. return buffer;
  413. fail_free_buffers:
  414. for_each_buffer_cpu(buffer, cpu) {
  415. if (buffer->buffers[cpu])
  416. rb_free_cpu_buffer(buffer->buffers[cpu]);
  417. }
  418. kfree(buffer->buffers);
  419. fail_free_cpumask:
  420. free_cpumask_var(buffer->cpumask);
  421. fail_free_buffer:
  422. kfree(buffer);
  423. return NULL;
  424. }
  425. EXPORT_SYMBOL_GPL(ring_buffer_alloc);
  426. /**
  427. * ring_buffer_free - free a ring buffer.
  428. * @buffer: the buffer to free.
  429. */
  430. void
  431. ring_buffer_free(struct ring_buffer *buffer)
  432. {
  433. int cpu;
  434. for_each_buffer_cpu(buffer, cpu)
  435. rb_free_cpu_buffer(buffer->buffers[cpu]);
  436. free_cpumask_var(buffer->cpumask);
  437. kfree(buffer);
  438. }
  439. EXPORT_SYMBOL_GPL(ring_buffer_free);
  440. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  441. static void
  442. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  443. {
  444. struct buffer_page *bpage;
  445. struct list_head *p;
  446. unsigned i;
  447. atomic_inc(&cpu_buffer->record_disabled);
  448. synchronize_sched();
  449. for (i = 0; i < nr_pages; i++) {
  450. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  451. return;
  452. p = cpu_buffer->pages.next;
  453. bpage = list_entry(p, struct buffer_page, list);
  454. list_del_init(&bpage->list);
  455. free_buffer_page(bpage);
  456. }
  457. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  458. return;
  459. rb_reset_cpu(cpu_buffer);
  460. rb_check_pages(cpu_buffer);
  461. atomic_dec(&cpu_buffer->record_disabled);
  462. }
  463. static void
  464. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  465. struct list_head *pages, unsigned nr_pages)
  466. {
  467. struct buffer_page *bpage;
  468. struct list_head *p;
  469. unsigned i;
  470. atomic_inc(&cpu_buffer->record_disabled);
  471. synchronize_sched();
  472. for (i = 0; i < nr_pages; i++) {
  473. if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
  474. return;
  475. p = pages->next;
  476. bpage = list_entry(p, struct buffer_page, list);
  477. list_del_init(&bpage->list);
  478. list_add_tail(&bpage->list, &cpu_buffer->pages);
  479. }
  480. rb_reset_cpu(cpu_buffer);
  481. rb_check_pages(cpu_buffer);
  482. atomic_dec(&cpu_buffer->record_disabled);
  483. }
  484. /**
  485. * ring_buffer_resize - resize the ring buffer
  486. * @buffer: the buffer to resize.
  487. * @size: the new size.
  488. *
  489. * The tracer is responsible for making sure that the buffer is
  490. * not being used while changing the size.
  491. * Note: We may be able to change the above requirement by using
  492. * RCU synchronizations.
  493. *
  494. * Minimum size is 2 * BUF_PAGE_SIZE.
  495. *
  496. * Returns -1 on failure.
  497. */
  498. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  499. {
  500. struct ring_buffer_per_cpu *cpu_buffer;
  501. unsigned nr_pages, rm_pages, new_pages;
  502. struct buffer_page *bpage, *tmp;
  503. unsigned long buffer_size;
  504. unsigned long addr;
  505. LIST_HEAD(pages);
  506. int i, cpu;
  507. /*
  508. * Always succeed at resizing a non-existent buffer:
  509. */
  510. if (!buffer)
  511. return size;
  512. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  513. size *= BUF_PAGE_SIZE;
  514. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  515. /* we need a minimum of two pages */
  516. if (size < BUF_PAGE_SIZE * 2)
  517. size = BUF_PAGE_SIZE * 2;
  518. if (size == buffer_size)
  519. return size;
  520. mutex_lock(&buffer->mutex);
  521. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  522. if (size < buffer_size) {
  523. /* easy case, just free pages */
  524. if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
  525. mutex_unlock(&buffer->mutex);
  526. return -1;
  527. }
  528. rm_pages = buffer->pages - nr_pages;
  529. for_each_buffer_cpu(buffer, cpu) {
  530. cpu_buffer = buffer->buffers[cpu];
  531. rb_remove_pages(cpu_buffer, rm_pages);
  532. }
  533. goto out;
  534. }
  535. /*
  536. * This is a bit more difficult. We only want to add pages
  537. * when we can allocate enough for all CPUs. We do this
  538. * by allocating all the pages and storing them on a local
  539. * link list. If we succeed in our allocation, then we
  540. * add these pages to the cpu_buffers. Otherwise we just free
  541. * them all and return -ENOMEM;
  542. */
  543. if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
  544. mutex_unlock(&buffer->mutex);
  545. return -1;
  546. }
  547. new_pages = nr_pages - buffer->pages;
  548. for_each_buffer_cpu(buffer, cpu) {
  549. for (i = 0; i < new_pages; i++) {
  550. bpage = kzalloc_node(ALIGN(sizeof(*bpage),
  551. cache_line_size()),
  552. GFP_KERNEL, cpu_to_node(cpu));
  553. if (!bpage)
  554. goto free_pages;
  555. list_add(&bpage->list, &pages);
  556. addr = __get_free_page(GFP_KERNEL);
  557. if (!addr)
  558. goto free_pages;
  559. bpage->page = (void *)addr;
  560. rb_init_page(bpage->page);
  561. }
  562. }
  563. for_each_buffer_cpu(buffer, cpu) {
  564. cpu_buffer = buffer->buffers[cpu];
  565. rb_insert_pages(cpu_buffer, &pages, new_pages);
  566. }
  567. if (RB_WARN_ON(buffer, !list_empty(&pages))) {
  568. mutex_unlock(&buffer->mutex);
  569. return -1;
  570. }
  571. out:
  572. buffer->pages = nr_pages;
  573. mutex_unlock(&buffer->mutex);
  574. return size;
  575. free_pages:
  576. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  577. list_del_init(&bpage->list);
  578. free_buffer_page(bpage);
  579. }
  580. mutex_unlock(&buffer->mutex);
  581. return -ENOMEM;
  582. }
  583. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  584. static inline int rb_null_event(struct ring_buffer_event *event)
  585. {
  586. return event->type == RINGBUF_TYPE_PADDING;
  587. }
  588. static inline void *
  589. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  590. {
  591. return bpage->data + index;
  592. }
  593. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  594. {
  595. return bpage->page->data + index;
  596. }
  597. static inline struct ring_buffer_event *
  598. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  599. {
  600. return __rb_page_index(cpu_buffer->reader_page,
  601. cpu_buffer->reader_page->read);
  602. }
  603. static inline struct ring_buffer_event *
  604. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  605. {
  606. return __rb_page_index(cpu_buffer->head_page,
  607. cpu_buffer->head_page->read);
  608. }
  609. static inline struct ring_buffer_event *
  610. rb_iter_head_event(struct ring_buffer_iter *iter)
  611. {
  612. return __rb_page_index(iter->head_page, iter->head);
  613. }
  614. static inline unsigned rb_page_write(struct buffer_page *bpage)
  615. {
  616. return local_read(&bpage->write);
  617. }
  618. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  619. {
  620. return local_read(&bpage->page->commit);
  621. }
  622. /* Size is determined by what has been commited */
  623. static inline unsigned rb_page_size(struct buffer_page *bpage)
  624. {
  625. return rb_page_commit(bpage);
  626. }
  627. static inline unsigned
  628. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  629. {
  630. return rb_page_commit(cpu_buffer->commit_page);
  631. }
  632. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  633. {
  634. return rb_page_commit(cpu_buffer->head_page);
  635. }
  636. /*
  637. * When the tail hits the head and the buffer is in overwrite mode,
  638. * the head jumps to the next page and all content on the previous
  639. * page is discarded. But before doing so, we update the overrun
  640. * variable of the buffer.
  641. */
  642. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  643. {
  644. struct ring_buffer_event *event;
  645. unsigned long head;
  646. for (head = 0; head < rb_head_size(cpu_buffer);
  647. head += rb_event_length(event)) {
  648. event = __rb_page_index(cpu_buffer->head_page, head);
  649. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  650. return;
  651. /* Only count data entries */
  652. if (event->type != RINGBUF_TYPE_DATA)
  653. continue;
  654. cpu_buffer->overrun++;
  655. cpu_buffer->entries--;
  656. }
  657. }
  658. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  659. struct buffer_page **bpage)
  660. {
  661. struct list_head *p = (*bpage)->list.next;
  662. if (p == &cpu_buffer->pages)
  663. p = p->next;
  664. *bpage = list_entry(p, struct buffer_page, list);
  665. }
  666. static inline unsigned
  667. rb_event_index(struct ring_buffer_event *event)
  668. {
  669. unsigned long addr = (unsigned long)event;
  670. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  671. }
  672. static inline int
  673. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  674. struct ring_buffer_event *event)
  675. {
  676. unsigned long addr = (unsigned long)event;
  677. unsigned long index;
  678. index = rb_event_index(event);
  679. addr &= PAGE_MASK;
  680. return cpu_buffer->commit_page->page == (void *)addr &&
  681. rb_commit_index(cpu_buffer) == index;
  682. }
  683. static inline void
  684. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  685. struct ring_buffer_event *event)
  686. {
  687. unsigned long addr = (unsigned long)event;
  688. unsigned long index;
  689. index = rb_event_index(event);
  690. addr &= PAGE_MASK;
  691. while (cpu_buffer->commit_page->page != (void *)addr) {
  692. if (RB_WARN_ON(cpu_buffer,
  693. cpu_buffer->commit_page == cpu_buffer->tail_page))
  694. return;
  695. cpu_buffer->commit_page->page->commit =
  696. cpu_buffer->commit_page->write;
  697. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  698. cpu_buffer->write_stamp =
  699. cpu_buffer->commit_page->page->time_stamp;
  700. }
  701. /* Now set the commit to the event's index */
  702. local_set(&cpu_buffer->commit_page->page->commit, index);
  703. }
  704. static inline void
  705. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  706. {
  707. /*
  708. * We only race with interrupts and NMIs on this CPU.
  709. * If we own the commit event, then we can commit
  710. * all others that interrupted us, since the interruptions
  711. * are in stack format (they finish before they come
  712. * back to us). This allows us to do a simple loop to
  713. * assign the commit to the tail.
  714. */
  715. again:
  716. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  717. cpu_buffer->commit_page->page->commit =
  718. cpu_buffer->commit_page->write;
  719. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  720. cpu_buffer->write_stamp =
  721. cpu_buffer->commit_page->page->time_stamp;
  722. /* add barrier to keep gcc from optimizing too much */
  723. barrier();
  724. }
  725. while (rb_commit_index(cpu_buffer) !=
  726. rb_page_write(cpu_buffer->commit_page)) {
  727. cpu_buffer->commit_page->page->commit =
  728. cpu_buffer->commit_page->write;
  729. barrier();
  730. }
  731. /* again, keep gcc from optimizing */
  732. barrier();
  733. /*
  734. * If an interrupt came in just after the first while loop
  735. * and pushed the tail page forward, we will be left with
  736. * a dangling commit that will never go forward.
  737. */
  738. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  739. goto again;
  740. }
  741. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  742. {
  743. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  744. cpu_buffer->reader_page->read = 0;
  745. }
  746. static inline void rb_inc_iter(struct ring_buffer_iter *iter)
  747. {
  748. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  749. /*
  750. * The iterator could be on the reader page (it starts there).
  751. * But the head could have moved, since the reader was
  752. * found. Check for this case and assign the iterator
  753. * to the head page instead of next.
  754. */
  755. if (iter->head_page == cpu_buffer->reader_page)
  756. iter->head_page = cpu_buffer->head_page;
  757. else
  758. rb_inc_page(cpu_buffer, &iter->head_page);
  759. iter->read_stamp = iter->head_page->page->time_stamp;
  760. iter->head = 0;
  761. }
  762. /**
  763. * ring_buffer_update_event - update event type and data
  764. * @event: the even to update
  765. * @type: the type of event
  766. * @length: the size of the event field in the ring buffer
  767. *
  768. * Update the type and data fields of the event. The length
  769. * is the actual size that is written to the ring buffer,
  770. * and with this, we can determine what to place into the
  771. * data field.
  772. */
  773. static inline void
  774. rb_update_event(struct ring_buffer_event *event,
  775. unsigned type, unsigned length)
  776. {
  777. event->type = type;
  778. switch (type) {
  779. case RINGBUF_TYPE_PADDING:
  780. break;
  781. case RINGBUF_TYPE_TIME_EXTEND:
  782. event->len =
  783. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  784. >> RB_ALIGNMENT_SHIFT;
  785. break;
  786. case RINGBUF_TYPE_TIME_STAMP:
  787. event->len =
  788. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  789. >> RB_ALIGNMENT_SHIFT;
  790. break;
  791. case RINGBUF_TYPE_DATA:
  792. length -= RB_EVNT_HDR_SIZE;
  793. if (length > RB_MAX_SMALL_DATA) {
  794. event->len = 0;
  795. event->array[0] = length;
  796. } else
  797. event->len =
  798. (length + (RB_ALIGNMENT-1))
  799. >> RB_ALIGNMENT_SHIFT;
  800. break;
  801. default:
  802. BUG();
  803. }
  804. }
  805. static inline unsigned rb_calculate_event_length(unsigned length)
  806. {
  807. struct ring_buffer_event event; /* Used only for sizeof array */
  808. /* zero length can cause confusions */
  809. if (!length)
  810. length = 1;
  811. if (length > RB_MAX_SMALL_DATA)
  812. length += sizeof(event.array[0]);
  813. length += RB_EVNT_HDR_SIZE;
  814. length = ALIGN(length, RB_ALIGNMENT);
  815. return length;
  816. }
  817. static struct ring_buffer_event *
  818. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  819. unsigned type, unsigned long length, u64 *ts)
  820. {
  821. struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
  822. unsigned long tail, write;
  823. struct ring_buffer *buffer = cpu_buffer->buffer;
  824. struct ring_buffer_event *event;
  825. unsigned long flags;
  826. commit_page = cpu_buffer->commit_page;
  827. /* we just need to protect against interrupts */
  828. barrier();
  829. tail_page = cpu_buffer->tail_page;
  830. write = local_add_return(length, &tail_page->write);
  831. tail = write - length;
  832. /* See if we shot pass the end of this buffer page */
  833. if (write > BUF_PAGE_SIZE) {
  834. struct buffer_page *next_page = tail_page;
  835. local_irq_save(flags);
  836. __raw_spin_lock(&cpu_buffer->lock);
  837. rb_inc_page(cpu_buffer, &next_page);
  838. head_page = cpu_buffer->head_page;
  839. reader_page = cpu_buffer->reader_page;
  840. /* we grabbed the lock before incrementing */
  841. if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
  842. goto out_unlock;
  843. /*
  844. * If for some reason, we had an interrupt storm that made
  845. * it all the way around the buffer, bail, and warn
  846. * about it.
  847. */
  848. if (unlikely(next_page == commit_page)) {
  849. WARN_ON_ONCE(1);
  850. goto out_unlock;
  851. }
  852. if (next_page == head_page) {
  853. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  854. /* reset write */
  855. if (tail <= BUF_PAGE_SIZE)
  856. local_set(&tail_page->write, tail);
  857. goto out_unlock;
  858. }
  859. /* tail_page has not moved yet? */
  860. if (tail_page == cpu_buffer->tail_page) {
  861. /* count overflows */
  862. rb_update_overflow(cpu_buffer);
  863. rb_inc_page(cpu_buffer, &head_page);
  864. cpu_buffer->head_page = head_page;
  865. cpu_buffer->head_page->read = 0;
  866. }
  867. }
  868. /*
  869. * If the tail page is still the same as what we think
  870. * it is, then it is up to us to update the tail
  871. * pointer.
  872. */
  873. if (tail_page == cpu_buffer->tail_page) {
  874. local_set(&next_page->write, 0);
  875. local_set(&next_page->page->commit, 0);
  876. cpu_buffer->tail_page = next_page;
  877. /* reread the time stamp */
  878. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  879. cpu_buffer->tail_page->page->time_stamp = *ts;
  880. }
  881. /*
  882. * The actual tail page has moved forward.
  883. */
  884. if (tail < BUF_PAGE_SIZE) {
  885. /* Mark the rest of the page with padding */
  886. event = __rb_page_index(tail_page, tail);
  887. event->type = RINGBUF_TYPE_PADDING;
  888. }
  889. if (tail <= BUF_PAGE_SIZE)
  890. /* Set the write back to the previous setting */
  891. local_set(&tail_page->write, tail);
  892. /*
  893. * If this was a commit entry that failed,
  894. * increment that too
  895. */
  896. if (tail_page == cpu_buffer->commit_page &&
  897. tail == rb_commit_index(cpu_buffer)) {
  898. rb_set_commit_to_write(cpu_buffer);
  899. }
  900. __raw_spin_unlock(&cpu_buffer->lock);
  901. local_irq_restore(flags);
  902. /* fail and let the caller try again */
  903. return ERR_PTR(-EAGAIN);
  904. }
  905. /* We reserved something on the buffer */
  906. if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
  907. return NULL;
  908. event = __rb_page_index(tail_page, tail);
  909. rb_update_event(event, type, length);
  910. /*
  911. * If this is a commit and the tail is zero, then update
  912. * this page's time stamp.
  913. */
  914. if (!tail && rb_is_commit(cpu_buffer, event))
  915. cpu_buffer->commit_page->page->time_stamp = *ts;
  916. return event;
  917. out_unlock:
  918. __raw_spin_unlock(&cpu_buffer->lock);
  919. local_irq_restore(flags);
  920. return NULL;
  921. }
  922. static int
  923. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  924. u64 *ts, u64 *delta)
  925. {
  926. struct ring_buffer_event *event;
  927. static int once;
  928. int ret;
  929. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  930. printk(KERN_WARNING "Delta way too big! %llu"
  931. " ts=%llu write stamp = %llu\n",
  932. (unsigned long long)*delta,
  933. (unsigned long long)*ts,
  934. (unsigned long long)cpu_buffer->write_stamp);
  935. WARN_ON(1);
  936. }
  937. /*
  938. * The delta is too big, we to add a
  939. * new timestamp.
  940. */
  941. event = __rb_reserve_next(cpu_buffer,
  942. RINGBUF_TYPE_TIME_EXTEND,
  943. RB_LEN_TIME_EXTEND,
  944. ts);
  945. if (!event)
  946. return -EBUSY;
  947. if (PTR_ERR(event) == -EAGAIN)
  948. return -EAGAIN;
  949. /* Only a commited time event can update the write stamp */
  950. if (rb_is_commit(cpu_buffer, event)) {
  951. /*
  952. * If this is the first on the page, then we need to
  953. * update the page itself, and just put in a zero.
  954. */
  955. if (rb_event_index(event)) {
  956. event->time_delta = *delta & TS_MASK;
  957. event->array[0] = *delta >> TS_SHIFT;
  958. } else {
  959. cpu_buffer->commit_page->page->time_stamp = *ts;
  960. event->time_delta = 0;
  961. event->array[0] = 0;
  962. }
  963. cpu_buffer->write_stamp = *ts;
  964. /* let the caller know this was the commit */
  965. ret = 1;
  966. } else {
  967. /* Darn, this is just wasted space */
  968. event->time_delta = 0;
  969. event->array[0] = 0;
  970. ret = 0;
  971. }
  972. *delta = 0;
  973. return ret;
  974. }
  975. static struct ring_buffer_event *
  976. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  977. unsigned type, unsigned long length)
  978. {
  979. struct ring_buffer_event *event;
  980. u64 ts, delta;
  981. int commit = 0;
  982. int nr_loops = 0;
  983. again:
  984. /*
  985. * We allow for interrupts to reenter here and do a trace.
  986. * If one does, it will cause this original code to loop
  987. * back here. Even with heavy interrupts happening, this
  988. * should only happen a few times in a row. If this happens
  989. * 1000 times in a row, there must be either an interrupt
  990. * storm or we have something buggy.
  991. * Bail!
  992. */
  993. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  994. return NULL;
  995. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  996. /*
  997. * Only the first commit can update the timestamp.
  998. * Yes there is a race here. If an interrupt comes in
  999. * just after the conditional and it traces too, then it
  1000. * will also check the deltas. More than one timestamp may
  1001. * also be made. But only the entry that did the actual
  1002. * commit will be something other than zero.
  1003. */
  1004. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  1005. rb_page_write(cpu_buffer->tail_page) ==
  1006. rb_commit_index(cpu_buffer)) {
  1007. delta = ts - cpu_buffer->write_stamp;
  1008. /* make sure this delta is calculated here */
  1009. barrier();
  1010. /* Did the write stamp get updated already? */
  1011. if (unlikely(ts < cpu_buffer->write_stamp))
  1012. delta = 0;
  1013. if (test_time_stamp(delta)) {
  1014. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  1015. if (commit == -EBUSY)
  1016. return NULL;
  1017. if (commit == -EAGAIN)
  1018. goto again;
  1019. RB_WARN_ON(cpu_buffer, commit < 0);
  1020. }
  1021. } else
  1022. /* Non commits have zero deltas */
  1023. delta = 0;
  1024. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  1025. if (PTR_ERR(event) == -EAGAIN)
  1026. goto again;
  1027. if (!event) {
  1028. if (unlikely(commit))
  1029. /*
  1030. * Ouch! We needed a timestamp and it was commited. But
  1031. * we didn't get our event reserved.
  1032. */
  1033. rb_set_commit_to_write(cpu_buffer);
  1034. return NULL;
  1035. }
  1036. /*
  1037. * If the timestamp was commited, make the commit our entry
  1038. * now so that we will update it when needed.
  1039. */
  1040. if (commit)
  1041. rb_set_commit_event(cpu_buffer, event);
  1042. else if (!rb_is_commit(cpu_buffer, event))
  1043. delta = 0;
  1044. event->time_delta = delta;
  1045. return event;
  1046. }
  1047. static DEFINE_PER_CPU(int, rb_need_resched);
  1048. /**
  1049. * ring_buffer_lock_reserve - reserve a part of the buffer
  1050. * @buffer: the ring buffer to reserve from
  1051. * @length: the length of the data to reserve (excluding event header)
  1052. * @flags: a pointer to save the interrupt flags
  1053. *
  1054. * Returns a reseverd event on the ring buffer to copy directly to.
  1055. * The user of this interface will need to get the body to write into
  1056. * and can use the ring_buffer_event_data() interface.
  1057. *
  1058. * The length is the length of the data needed, not the event length
  1059. * which also includes the event header.
  1060. *
  1061. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  1062. * If NULL is returned, then nothing has been allocated or locked.
  1063. */
  1064. struct ring_buffer_event *
  1065. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  1066. unsigned long length,
  1067. unsigned long *flags)
  1068. {
  1069. struct ring_buffer_per_cpu *cpu_buffer;
  1070. struct ring_buffer_event *event;
  1071. int cpu, resched;
  1072. if (ring_buffer_flags != RB_BUFFERS_ON)
  1073. return NULL;
  1074. if (atomic_read(&buffer->record_disabled))
  1075. return NULL;
  1076. /* If we are tracing schedule, we don't want to recurse */
  1077. resched = ftrace_preempt_disable();
  1078. cpu = raw_smp_processor_id();
  1079. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1080. goto out;
  1081. cpu_buffer = buffer->buffers[cpu];
  1082. if (atomic_read(&cpu_buffer->record_disabled))
  1083. goto out;
  1084. length = rb_calculate_event_length(length);
  1085. if (length > BUF_PAGE_SIZE)
  1086. goto out;
  1087. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  1088. if (!event)
  1089. goto out;
  1090. /*
  1091. * Need to store resched state on this cpu.
  1092. * Only the first needs to.
  1093. */
  1094. if (preempt_count() == 1)
  1095. per_cpu(rb_need_resched, cpu) = resched;
  1096. return event;
  1097. out:
  1098. ftrace_preempt_enable(resched);
  1099. return NULL;
  1100. }
  1101. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  1102. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1103. struct ring_buffer_event *event)
  1104. {
  1105. cpu_buffer->entries++;
  1106. /* Only process further if we own the commit */
  1107. if (!rb_is_commit(cpu_buffer, event))
  1108. return;
  1109. cpu_buffer->write_stamp += event->time_delta;
  1110. rb_set_commit_to_write(cpu_buffer);
  1111. }
  1112. /**
  1113. * ring_buffer_unlock_commit - commit a reserved
  1114. * @buffer: The buffer to commit to
  1115. * @event: The event pointer to commit.
  1116. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  1117. *
  1118. * This commits the data to the ring buffer, and releases any locks held.
  1119. *
  1120. * Must be paired with ring_buffer_lock_reserve.
  1121. */
  1122. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  1123. struct ring_buffer_event *event,
  1124. unsigned long flags)
  1125. {
  1126. struct ring_buffer_per_cpu *cpu_buffer;
  1127. int cpu = raw_smp_processor_id();
  1128. cpu_buffer = buffer->buffers[cpu];
  1129. rb_commit(cpu_buffer, event);
  1130. /*
  1131. * Only the last preempt count needs to restore preemption.
  1132. */
  1133. if (preempt_count() == 1)
  1134. ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
  1135. else
  1136. preempt_enable_no_resched_notrace();
  1137. return 0;
  1138. }
  1139. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  1140. /**
  1141. * ring_buffer_write - write data to the buffer without reserving
  1142. * @buffer: The ring buffer to write to.
  1143. * @length: The length of the data being written (excluding the event header)
  1144. * @data: The data to write to the buffer.
  1145. *
  1146. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1147. * one function. If you already have the data to write to the buffer, it
  1148. * may be easier to simply call this function.
  1149. *
  1150. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1151. * and not the length of the event which would hold the header.
  1152. */
  1153. int ring_buffer_write(struct ring_buffer *buffer,
  1154. unsigned long length,
  1155. void *data)
  1156. {
  1157. struct ring_buffer_per_cpu *cpu_buffer;
  1158. struct ring_buffer_event *event;
  1159. unsigned long event_length;
  1160. void *body;
  1161. int ret = -EBUSY;
  1162. int cpu, resched;
  1163. if (ring_buffer_flags != RB_BUFFERS_ON)
  1164. return -EBUSY;
  1165. if (atomic_read(&buffer->record_disabled))
  1166. return -EBUSY;
  1167. resched = ftrace_preempt_disable();
  1168. cpu = raw_smp_processor_id();
  1169. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1170. goto out;
  1171. cpu_buffer = buffer->buffers[cpu];
  1172. if (atomic_read(&cpu_buffer->record_disabled))
  1173. goto out;
  1174. event_length = rb_calculate_event_length(length);
  1175. event = rb_reserve_next_event(cpu_buffer,
  1176. RINGBUF_TYPE_DATA, event_length);
  1177. if (!event)
  1178. goto out;
  1179. body = rb_event_data(event);
  1180. memcpy(body, data, length);
  1181. rb_commit(cpu_buffer, event);
  1182. ret = 0;
  1183. out:
  1184. ftrace_preempt_enable(resched);
  1185. return ret;
  1186. }
  1187. EXPORT_SYMBOL_GPL(ring_buffer_write);
  1188. static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1189. {
  1190. struct buffer_page *reader = cpu_buffer->reader_page;
  1191. struct buffer_page *head = cpu_buffer->head_page;
  1192. struct buffer_page *commit = cpu_buffer->commit_page;
  1193. return reader->read == rb_page_commit(reader) &&
  1194. (commit == reader ||
  1195. (commit == head &&
  1196. head->read == rb_page_commit(commit)));
  1197. }
  1198. /**
  1199. * ring_buffer_record_disable - stop all writes into the buffer
  1200. * @buffer: The ring buffer to stop writes to.
  1201. *
  1202. * This prevents all writes to the buffer. Any attempt to write
  1203. * to the buffer after this will fail and return NULL.
  1204. *
  1205. * The caller should call synchronize_sched() after this.
  1206. */
  1207. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1208. {
  1209. atomic_inc(&buffer->record_disabled);
  1210. }
  1211. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  1212. /**
  1213. * ring_buffer_record_enable - enable writes to the buffer
  1214. * @buffer: The ring buffer to enable writes
  1215. *
  1216. * Note, multiple disables will need the same number of enables
  1217. * to truely enable the writing (much like preempt_disable).
  1218. */
  1219. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1220. {
  1221. atomic_dec(&buffer->record_disabled);
  1222. }
  1223. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  1224. /**
  1225. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1226. * @buffer: The ring buffer to stop writes to.
  1227. * @cpu: The CPU buffer to stop
  1228. *
  1229. * This prevents all writes to the buffer. Any attempt to write
  1230. * to the buffer after this will fail and return NULL.
  1231. *
  1232. * The caller should call synchronize_sched() after this.
  1233. */
  1234. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1235. {
  1236. struct ring_buffer_per_cpu *cpu_buffer;
  1237. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1238. return;
  1239. cpu_buffer = buffer->buffers[cpu];
  1240. atomic_inc(&cpu_buffer->record_disabled);
  1241. }
  1242. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  1243. /**
  1244. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1245. * @buffer: The ring buffer to enable writes
  1246. * @cpu: The CPU to enable.
  1247. *
  1248. * Note, multiple disables will need the same number of enables
  1249. * to truely enable the writing (much like preempt_disable).
  1250. */
  1251. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1252. {
  1253. struct ring_buffer_per_cpu *cpu_buffer;
  1254. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1255. return;
  1256. cpu_buffer = buffer->buffers[cpu];
  1257. atomic_dec(&cpu_buffer->record_disabled);
  1258. }
  1259. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  1260. /**
  1261. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1262. * @buffer: The ring buffer
  1263. * @cpu: The per CPU buffer to get the entries from.
  1264. */
  1265. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1266. {
  1267. struct ring_buffer_per_cpu *cpu_buffer;
  1268. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1269. return 0;
  1270. cpu_buffer = buffer->buffers[cpu];
  1271. return cpu_buffer->entries;
  1272. }
  1273. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  1274. /**
  1275. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1276. * @buffer: The ring buffer
  1277. * @cpu: The per CPU buffer to get the number of overruns from
  1278. */
  1279. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1280. {
  1281. struct ring_buffer_per_cpu *cpu_buffer;
  1282. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1283. return 0;
  1284. cpu_buffer = buffer->buffers[cpu];
  1285. return cpu_buffer->overrun;
  1286. }
  1287. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  1288. /**
  1289. * ring_buffer_entries - get the number of entries in a buffer
  1290. * @buffer: The ring buffer
  1291. *
  1292. * Returns the total number of entries in the ring buffer
  1293. * (all CPU entries)
  1294. */
  1295. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1296. {
  1297. struct ring_buffer_per_cpu *cpu_buffer;
  1298. unsigned long entries = 0;
  1299. int cpu;
  1300. /* if you care about this being correct, lock the buffer */
  1301. for_each_buffer_cpu(buffer, cpu) {
  1302. cpu_buffer = buffer->buffers[cpu];
  1303. entries += cpu_buffer->entries;
  1304. }
  1305. return entries;
  1306. }
  1307. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  1308. /**
  1309. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1310. * @buffer: The ring buffer
  1311. *
  1312. * Returns the total number of overruns in the ring buffer
  1313. * (all CPU entries)
  1314. */
  1315. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1316. {
  1317. struct ring_buffer_per_cpu *cpu_buffer;
  1318. unsigned long overruns = 0;
  1319. int cpu;
  1320. /* if you care about this being correct, lock the buffer */
  1321. for_each_buffer_cpu(buffer, cpu) {
  1322. cpu_buffer = buffer->buffers[cpu];
  1323. overruns += cpu_buffer->overrun;
  1324. }
  1325. return overruns;
  1326. }
  1327. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  1328. static void rb_iter_reset(struct ring_buffer_iter *iter)
  1329. {
  1330. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1331. /* Iterator usage is expected to have record disabled */
  1332. if (list_empty(&cpu_buffer->reader_page->list)) {
  1333. iter->head_page = cpu_buffer->head_page;
  1334. iter->head = cpu_buffer->head_page->read;
  1335. } else {
  1336. iter->head_page = cpu_buffer->reader_page;
  1337. iter->head = cpu_buffer->reader_page->read;
  1338. }
  1339. if (iter->head)
  1340. iter->read_stamp = cpu_buffer->read_stamp;
  1341. else
  1342. iter->read_stamp = iter->head_page->page->time_stamp;
  1343. }
  1344. /**
  1345. * ring_buffer_iter_reset - reset an iterator
  1346. * @iter: The iterator to reset
  1347. *
  1348. * Resets the iterator, so that it will start from the beginning
  1349. * again.
  1350. */
  1351. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1352. {
  1353. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1354. unsigned long flags;
  1355. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1356. rb_iter_reset(iter);
  1357. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1358. }
  1359. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  1360. /**
  1361. * ring_buffer_iter_empty - check if an iterator has no more to read
  1362. * @iter: The iterator to check
  1363. */
  1364. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1365. {
  1366. struct ring_buffer_per_cpu *cpu_buffer;
  1367. cpu_buffer = iter->cpu_buffer;
  1368. return iter->head_page == cpu_buffer->commit_page &&
  1369. iter->head == rb_commit_index(cpu_buffer);
  1370. }
  1371. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  1372. static void
  1373. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1374. struct ring_buffer_event *event)
  1375. {
  1376. u64 delta;
  1377. switch (event->type) {
  1378. case RINGBUF_TYPE_PADDING:
  1379. return;
  1380. case RINGBUF_TYPE_TIME_EXTEND:
  1381. delta = event->array[0];
  1382. delta <<= TS_SHIFT;
  1383. delta += event->time_delta;
  1384. cpu_buffer->read_stamp += delta;
  1385. return;
  1386. case RINGBUF_TYPE_TIME_STAMP:
  1387. /* FIXME: not implemented */
  1388. return;
  1389. case RINGBUF_TYPE_DATA:
  1390. cpu_buffer->read_stamp += event->time_delta;
  1391. return;
  1392. default:
  1393. BUG();
  1394. }
  1395. return;
  1396. }
  1397. static void
  1398. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1399. struct ring_buffer_event *event)
  1400. {
  1401. u64 delta;
  1402. switch (event->type) {
  1403. case RINGBUF_TYPE_PADDING:
  1404. return;
  1405. case RINGBUF_TYPE_TIME_EXTEND:
  1406. delta = event->array[0];
  1407. delta <<= TS_SHIFT;
  1408. delta += event->time_delta;
  1409. iter->read_stamp += delta;
  1410. return;
  1411. case RINGBUF_TYPE_TIME_STAMP:
  1412. /* FIXME: not implemented */
  1413. return;
  1414. case RINGBUF_TYPE_DATA:
  1415. iter->read_stamp += event->time_delta;
  1416. return;
  1417. default:
  1418. BUG();
  1419. }
  1420. return;
  1421. }
  1422. static struct buffer_page *
  1423. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1424. {
  1425. struct buffer_page *reader = NULL;
  1426. unsigned long flags;
  1427. int nr_loops = 0;
  1428. local_irq_save(flags);
  1429. __raw_spin_lock(&cpu_buffer->lock);
  1430. again:
  1431. /*
  1432. * This should normally only loop twice. But because the
  1433. * start of the reader inserts an empty page, it causes
  1434. * a case where we will loop three times. There should be no
  1435. * reason to loop four times (that I know of).
  1436. */
  1437. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  1438. reader = NULL;
  1439. goto out;
  1440. }
  1441. reader = cpu_buffer->reader_page;
  1442. /* If there's more to read, return this page */
  1443. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1444. goto out;
  1445. /* Never should we have an index greater than the size */
  1446. if (RB_WARN_ON(cpu_buffer,
  1447. cpu_buffer->reader_page->read > rb_page_size(reader)))
  1448. goto out;
  1449. /* check if we caught up to the tail */
  1450. reader = NULL;
  1451. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1452. goto out;
  1453. /*
  1454. * Splice the empty reader page into the list around the head.
  1455. * Reset the reader page to size zero.
  1456. */
  1457. reader = cpu_buffer->head_page;
  1458. cpu_buffer->reader_page->list.next = reader->list.next;
  1459. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1460. local_set(&cpu_buffer->reader_page->write, 0);
  1461. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1462. /* Make the reader page now replace the head */
  1463. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1464. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1465. /*
  1466. * If the tail is on the reader, then we must set the head
  1467. * to the inserted page, otherwise we set it one before.
  1468. */
  1469. cpu_buffer->head_page = cpu_buffer->reader_page;
  1470. if (cpu_buffer->commit_page != reader)
  1471. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1472. /* Finally update the reader page to the new head */
  1473. cpu_buffer->reader_page = reader;
  1474. rb_reset_reader_page(cpu_buffer);
  1475. goto again;
  1476. out:
  1477. __raw_spin_unlock(&cpu_buffer->lock);
  1478. local_irq_restore(flags);
  1479. return reader;
  1480. }
  1481. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1482. {
  1483. struct ring_buffer_event *event;
  1484. struct buffer_page *reader;
  1485. unsigned length;
  1486. reader = rb_get_reader_page(cpu_buffer);
  1487. /* This function should not be called when buffer is empty */
  1488. if (RB_WARN_ON(cpu_buffer, !reader))
  1489. return;
  1490. event = rb_reader_event(cpu_buffer);
  1491. if (event->type == RINGBUF_TYPE_DATA)
  1492. cpu_buffer->entries--;
  1493. rb_update_read_stamp(cpu_buffer, event);
  1494. length = rb_event_length(event);
  1495. cpu_buffer->reader_page->read += length;
  1496. }
  1497. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1498. {
  1499. struct ring_buffer *buffer;
  1500. struct ring_buffer_per_cpu *cpu_buffer;
  1501. struct ring_buffer_event *event;
  1502. unsigned length;
  1503. cpu_buffer = iter->cpu_buffer;
  1504. buffer = cpu_buffer->buffer;
  1505. /*
  1506. * Check if we are at the end of the buffer.
  1507. */
  1508. if (iter->head >= rb_page_size(iter->head_page)) {
  1509. if (RB_WARN_ON(buffer,
  1510. iter->head_page == cpu_buffer->commit_page))
  1511. return;
  1512. rb_inc_iter(iter);
  1513. return;
  1514. }
  1515. event = rb_iter_head_event(iter);
  1516. length = rb_event_length(event);
  1517. /*
  1518. * This should not be called to advance the header if we are
  1519. * at the tail of the buffer.
  1520. */
  1521. if (RB_WARN_ON(cpu_buffer,
  1522. (iter->head_page == cpu_buffer->commit_page) &&
  1523. (iter->head + length > rb_commit_index(cpu_buffer))))
  1524. return;
  1525. rb_update_iter_read_stamp(iter, event);
  1526. iter->head += length;
  1527. /* check for end of page padding */
  1528. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1529. (iter->head_page != cpu_buffer->commit_page))
  1530. rb_advance_iter(iter);
  1531. }
  1532. static struct ring_buffer_event *
  1533. rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1534. {
  1535. struct ring_buffer_per_cpu *cpu_buffer;
  1536. struct ring_buffer_event *event;
  1537. struct buffer_page *reader;
  1538. int nr_loops = 0;
  1539. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1540. return NULL;
  1541. cpu_buffer = buffer->buffers[cpu];
  1542. again:
  1543. /*
  1544. * We repeat when a timestamp is encountered. It is possible
  1545. * to get multiple timestamps from an interrupt entering just
  1546. * as one timestamp is about to be written. The max times
  1547. * that this can happen is the number of nested interrupts we
  1548. * can have. Nesting 10 deep of interrupts is clearly
  1549. * an anomaly.
  1550. */
  1551. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1552. return NULL;
  1553. reader = rb_get_reader_page(cpu_buffer);
  1554. if (!reader)
  1555. return NULL;
  1556. event = rb_reader_event(cpu_buffer);
  1557. switch (event->type) {
  1558. case RINGBUF_TYPE_PADDING:
  1559. RB_WARN_ON(cpu_buffer, 1);
  1560. rb_advance_reader(cpu_buffer);
  1561. return NULL;
  1562. case RINGBUF_TYPE_TIME_EXTEND:
  1563. /* Internal data, OK to advance */
  1564. rb_advance_reader(cpu_buffer);
  1565. goto again;
  1566. case RINGBUF_TYPE_TIME_STAMP:
  1567. /* FIXME: not implemented */
  1568. rb_advance_reader(cpu_buffer);
  1569. goto again;
  1570. case RINGBUF_TYPE_DATA:
  1571. if (ts) {
  1572. *ts = cpu_buffer->read_stamp + event->time_delta;
  1573. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1574. }
  1575. return event;
  1576. default:
  1577. BUG();
  1578. }
  1579. return NULL;
  1580. }
  1581. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  1582. static struct ring_buffer_event *
  1583. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1584. {
  1585. struct ring_buffer *buffer;
  1586. struct ring_buffer_per_cpu *cpu_buffer;
  1587. struct ring_buffer_event *event;
  1588. int nr_loops = 0;
  1589. if (ring_buffer_iter_empty(iter))
  1590. return NULL;
  1591. cpu_buffer = iter->cpu_buffer;
  1592. buffer = cpu_buffer->buffer;
  1593. again:
  1594. /*
  1595. * We repeat when a timestamp is encountered. It is possible
  1596. * to get multiple timestamps from an interrupt entering just
  1597. * as one timestamp is about to be written. The max times
  1598. * that this can happen is the number of nested interrupts we
  1599. * can have. Nesting 10 deep of interrupts is clearly
  1600. * an anomaly.
  1601. */
  1602. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1603. return NULL;
  1604. if (rb_per_cpu_empty(cpu_buffer))
  1605. return NULL;
  1606. event = rb_iter_head_event(iter);
  1607. switch (event->type) {
  1608. case RINGBUF_TYPE_PADDING:
  1609. rb_inc_iter(iter);
  1610. goto again;
  1611. case RINGBUF_TYPE_TIME_EXTEND:
  1612. /* Internal data, OK to advance */
  1613. rb_advance_iter(iter);
  1614. goto again;
  1615. case RINGBUF_TYPE_TIME_STAMP:
  1616. /* FIXME: not implemented */
  1617. rb_advance_iter(iter);
  1618. goto again;
  1619. case RINGBUF_TYPE_DATA:
  1620. if (ts) {
  1621. *ts = iter->read_stamp + event->time_delta;
  1622. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1623. }
  1624. return event;
  1625. default:
  1626. BUG();
  1627. }
  1628. return NULL;
  1629. }
  1630. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  1631. /**
  1632. * ring_buffer_peek - peek at the next event to be read
  1633. * @buffer: The ring buffer to read
  1634. * @cpu: The cpu to peak at
  1635. * @ts: The timestamp counter of this event.
  1636. *
  1637. * This will return the event that will be read next, but does
  1638. * not consume the data.
  1639. */
  1640. struct ring_buffer_event *
  1641. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1642. {
  1643. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1644. struct ring_buffer_event *event;
  1645. unsigned long flags;
  1646. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1647. event = rb_buffer_peek(buffer, cpu, ts);
  1648. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1649. return event;
  1650. }
  1651. /**
  1652. * ring_buffer_iter_peek - peek at the next event to be read
  1653. * @iter: The ring buffer iterator
  1654. * @ts: The timestamp counter of this event.
  1655. *
  1656. * This will return the event that will be read next, but does
  1657. * not increment the iterator.
  1658. */
  1659. struct ring_buffer_event *
  1660. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1661. {
  1662. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1663. struct ring_buffer_event *event;
  1664. unsigned long flags;
  1665. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1666. event = rb_iter_peek(iter, ts);
  1667. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1668. return event;
  1669. }
  1670. /**
  1671. * ring_buffer_consume - return an event and consume it
  1672. * @buffer: The ring buffer to get the next event from
  1673. *
  1674. * Returns the next event in the ring buffer, and that event is consumed.
  1675. * Meaning, that sequential reads will keep returning a different event,
  1676. * and eventually empty the ring buffer if the producer is slower.
  1677. */
  1678. struct ring_buffer_event *
  1679. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1680. {
  1681. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1682. struct ring_buffer_event *event;
  1683. unsigned long flags;
  1684. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1685. return NULL;
  1686. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1687. event = rb_buffer_peek(buffer, cpu, ts);
  1688. if (!event)
  1689. goto out;
  1690. rb_advance_reader(cpu_buffer);
  1691. out:
  1692. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1693. return event;
  1694. }
  1695. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  1696. /**
  1697. * ring_buffer_read_start - start a non consuming read of the buffer
  1698. * @buffer: The ring buffer to read from
  1699. * @cpu: The cpu buffer to iterate over
  1700. *
  1701. * This starts up an iteration through the buffer. It also disables
  1702. * the recording to the buffer until the reading is finished.
  1703. * This prevents the reading from being corrupted. This is not
  1704. * a consuming read, so a producer is not expected.
  1705. *
  1706. * Must be paired with ring_buffer_finish.
  1707. */
  1708. struct ring_buffer_iter *
  1709. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1710. {
  1711. struct ring_buffer_per_cpu *cpu_buffer;
  1712. struct ring_buffer_iter *iter;
  1713. unsigned long flags;
  1714. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1715. return NULL;
  1716. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1717. if (!iter)
  1718. return NULL;
  1719. cpu_buffer = buffer->buffers[cpu];
  1720. iter->cpu_buffer = cpu_buffer;
  1721. atomic_inc(&cpu_buffer->record_disabled);
  1722. synchronize_sched();
  1723. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1724. __raw_spin_lock(&cpu_buffer->lock);
  1725. rb_iter_reset(iter);
  1726. __raw_spin_unlock(&cpu_buffer->lock);
  1727. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1728. return iter;
  1729. }
  1730. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  1731. /**
  1732. * ring_buffer_finish - finish reading the iterator of the buffer
  1733. * @iter: The iterator retrieved by ring_buffer_start
  1734. *
  1735. * This re-enables the recording to the buffer, and frees the
  1736. * iterator.
  1737. */
  1738. void
  1739. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1740. {
  1741. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1742. atomic_dec(&cpu_buffer->record_disabled);
  1743. kfree(iter);
  1744. }
  1745. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  1746. /**
  1747. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1748. * @iter: The ring buffer iterator
  1749. * @ts: The time stamp of the event read.
  1750. *
  1751. * This reads the next event in the ring buffer and increments the iterator.
  1752. */
  1753. struct ring_buffer_event *
  1754. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1755. {
  1756. struct ring_buffer_event *event;
  1757. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1758. unsigned long flags;
  1759. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1760. event = rb_iter_peek(iter, ts);
  1761. if (!event)
  1762. goto out;
  1763. rb_advance_iter(iter);
  1764. out:
  1765. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1766. return event;
  1767. }
  1768. EXPORT_SYMBOL_GPL(ring_buffer_read);
  1769. /**
  1770. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1771. * @buffer: The ring buffer.
  1772. */
  1773. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1774. {
  1775. return BUF_PAGE_SIZE * buffer->pages;
  1776. }
  1777. EXPORT_SYMBOL_GPL(ring_buffer_size);
  1778. static void
  1779. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1780. {
  1781. cpu_buffer->head_page
  1782. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1783. local_set(&cpu_buffer->head_page->write, 0);
  1784. local_set(&cpu_buffer->head_page->page->commit, 0);
  1785. cpu_buffer->head_page->read = 0;
  1786. cpu_buffer->tail_page = cpu_buffer->head_page;
  1787. cpu_buffer->commit_page = cpu_buffer->head_page;
  1788. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1789. local_set(&cpu_buffer->reader_page->write, 0);
  1790. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1791. cpu_buffer->reader_page->read = 0;
  1792. cpu_buffer->overrun = 0;
  1793. cpu_buffer->entries = 0;
  1794. }
  1795. /**
  1796. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1797. * @buffer: The ring buffer to reset a per cpu buffer of
  1798. * @cpu: The CPU buffer to be reset
  1799. */
  1800. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1801. {
  1802. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1803. unsigned long flags;
  1804. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1805. return;
  1806. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1807. __raw_spin_lock(&cpu_buffer->lock);
  1808. rb_reset_cpu(cpu_buffer);
  1809. __raw_spin_unlock(&cpu_buffer->lock);
  1810. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1811. }
  1812. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  1813. /**
  1814. * ring_buffer_reset - reset a ring buffer
  1815. * @buffer: The ring buffer to reset all cpu buffers
  1816. */
  1817. void ring_buffer_reset(struct ring_buffer *buffer)
  1818. {
  1819. int cpu;
  1820. for_each_buffer_cpu(buffer, cpu)
  1821. ring_buffer_reset_cpu(buffer, cpu);
  1822. }
  1823. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  1824. /**
  1825. * rind_buffer_empty - is the ring buffer empty?
  1826. * @buffer: The ring buffer to test
  1827. */
  1828. int ring_buffer_empty(struct ring_buffer *buffer)
  1829. {
  1830. struct ring_buffer_per_cpu *cpu_buffer;
  1831. int cpu;
  1832. /* yes this is racy, but if you don't like the race, lock the buffer */
  1833. for_each_buffer_cpu(buffer, cpu) {
  1834. cpu_buffer = buffer->buffers[cpu];
  1835. if (!rb_per_cpu_empty(cpu_buffer))
  1836. return 0;
  1837. }
  1838. return 1;
  1839. }
  1840. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  1841. /**
  1842. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1843. * @buffer: The ring buffer
  1844. * @cpu: The CPU buffer to test
  1845. */
  1846. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1847. {
  1848. struct ring_buffer_per_cpu *cpu_buffer;
  1849. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1850. return 1;
  1851. cpu_buffer = buffer->buffers[cpu];
  1852. return rb_per_cpu_empty(cpu_buffer);
  1853. }
  1854. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  1855. /**
  1856. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1857. * @buffer_a: One buffer to swap with
  1858. * @buffer_b: The other buffer to swap with
  1859. *
  1860. * This function is useful for tracers that want to take a "snapshot"
  1861. * of a CPU buffer and has another back up buffer lying around.
  1862. * it is expected that the tracer handles the cpu buffer not being
  1863. * used at the moment.
  1864. */
  1865. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1866. struct ring_buffer *buffer_b, int cpu)
  1867. {
  1868. struct ring_buffer_per_cpu *cpu_buffer_a;
  1869. struct ring_buffer_per_cpu *cpu_buffer_b;
  1870. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  1871. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  1872. return -EINVAL;
  1873. /* At least make sure the two buffers are somewhat the same */
  1874. if (buffer_a->pages != buffer_b->pages)
  1875. return -EINVAL;
  1876. cpu_buffer_a = buffer_a->buffers[cpu];
  1877. cpu_buffer_b = buffer_b->buffers[cpu];
  1878. /*
  1879. * We can't do a synchronize_sched here because this
  1880. * function can be called in atomic context.
  1881. * Normally this will be called from the same CPU as cpu.
  1882. * If not it's up to the caller to protect this.
  1883. */
  1884. atomic_inc(&cpu_buffer_a->record_disabled);
  1885. atomic_inc(&cpu_buffer_b->record_disabled);
  1886. buffer_a->buffers[cpu] = cpu_buffer_b;
  1887. buffer_b->buffers[cpu] = cpu_buffer_a;
  1888. cpu_buffer_b->buffer = buffer_a;
  1889. cpu_buffer_a->buffer = buffer_b;
  1890. atomic_dec(&cpu_buffer_a->record_disabled);
  1891. atomic_dec(&cpu_buffer_b->record_disabled);
  1892. return 0;
  1893. }
  1894. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  1895. static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
  1896. struct buffer_data_page *bpage)
  1897. {
  1898. struct ring_buffer_event *event;
  1899. unsigned long head;
  1900. __raw_spin_lock(&cpu_buffer->lock);
  1901. for (head = 0; head < local_read(&bpage->commit);
  1902. head += rb_event_length(event)) {
  1903. event = __rb_data_page_index(bpage, head);
  1904. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  1905. return;
  1906. /* Only count data entries */
  1907. if (event->type != RINGBUF_TYPE_DATA)
  1908. continue;
  1909. cpu_buffer->entries--;
  1910. }
  1911. __raw_spin_unlock(&cpu_buffer->lock);
  1912. }
  1913. /**
  1914. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  1915. * @buffer: the buffer to allocate for.
  1916. *
  1917. * This function is used in conjunction with ring_buffer_read_page.
  1918. * When reading a full page from the ring buffer, these functions
  1919. * can be used to speed up the process. The calling function should
  1920. * allocate a few pages first with this function. Then when it
  1921. * needs to get pages from the ring buffer, it passes the result
  1922. * of this function into ring_buffer_read_page, which will swap
  1923. * the page that was allocated, with the read page of the buffer.
  1924. *
  1925. * Returns:
  1926. * The page allocated, or NULL on error.
  1927. */
  1928. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
  1929. {
  1930. unsigned long addr;
  1931. struct buffer_data_page *bpage;
  1932. addr = __get_free_page(GFP_KERNEL);
  1933. if (!addr)
  1934. return NULL;
  1935. bpage = (void *)addr;
  1936. return bpage;
  1937. }
  1938. /**
  1939. * ring_buffer_free_read_page - free an allocated read page
  1940. * @buffer: the buffer the page was allocate for
  1941. * @data: the page to free
  1942. *
  1943. * Free a page allocated from ring_buffer_alloc_read_page.
  1944. */
  1945. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  1946. {
  1947. free_page((unsigned long)data);
  1948. }
  1949. /**
  1950. * ring_buffer_read_page - extract a page from the ring buffer
  1951. * @buffer: buffer to extract from
  1952. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  1953. * @cpu: the cpu of the buffer to extract
  1954. * @full: should the extraction only happen when the page is full.
  1955. *
  1956. * This function will pull out a page from the ring buffer and consume it.
  1957. * @data_page must be the address of the variable that was returned
  1958. * from ring_buffer_alloc_read_page. This is because the page might be used
  1959. * to swap with a page in the ring buffer.
  1960. *
  1961. * for example:
  1962. * rpage = ring_buffer_alloc_page(buffer);
  1963. * if (!rpage)
  1964. * return error;
  1965. * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
  1966. * if (ret)
  1967. * process_page(rpage);
  1968. *
  1969. * When @full is set, the function will not return true unless
  1970. * the writer is off the reader page.
  1971. *
  1972. * Note: it is up to the calling functions to handle sleeps and wakeups.
  1973. * The ring buffer can be used anywhere in the kernel and can not
  1974. * blindly call wake_up. The layer that uses the ring buffer must be
  1975. * responsible for that.
  1976. *
  1977. * Returns:
  1978. * 1 if data has been transferred
  1979. * 0 if no data has been transferred.
  1980. */
  1981. int ring_buffer_read_page(struct ring_buffer *buffer,
  1982. void **data_page, int cpu, int full)
  1983. {
  1984. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1985. struct ring_buffer_event *event;
  1986. struct buffer_data_page *bpage;
  1987. unsigned long flags;
  1988. int ret = 0;
  1989. if (!data_page)
  1990. return 0;
  1991. bpage = *data_page;
  1992. if (!bpage)
  1993. return 0;
  1994. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1995. /*
  1996. * rb_buffer_peek will get the next ring buffer if
  1997. * the current reader page is empty.
  1998. */
  1999. event = rb_buffer_peek(buffer, cpu, NULL);
  2000. if (!event)
  2001. goto out;
  2002. /* check for data */
  2003. if (!local_read(&cpu_buffer->reader_page->page->commit))
  2004. goto out;
  2005. /*
  2006. * If the writer is already off of the read page, then simply
  2007. * switch the read page with the given page. Otherwise
  2008. * we need to copy the data from the reader to the writer.
  2009. */
  2010. if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
  2011. unsigned int read = cpu_buffer->reader_page->read;
  2012. if (full)
  2013. goto out;
  2014. /* The writer is still on the reader page, we must copy */
  2015. bpage = cpu_buffer->reader_page->page;
  2016. memcpy(bpage->data,
  2017. cpu_buffer->reader_page->page->data + read,
  2018. local_read(&bpage->commit) - read);
  2019. /* consume what was read */
  2020. cpu_buffer->reader_page += read;
  2021. } else {
  2022. /* swap the pages */
  2023. rb_init_page(bpage);
  2024. bpage = cpu_buffer->reader_page->page;
  2025. cpu_buffer->reader_page->page = *data_page;
  2026. cpu_buffer->reader_page->read = 0;
  2027. *data_page = bpage;
  2028. }
  2029. ret = 1;
  2030. /* update the entry counter */
  2031. rb_remove_entries(cpu_buffer, bpage);
  2032. out:
  2033. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2034. return ret;
  2035. }
  2036. static ssize_t
  2037. rb_simple_read(struct file *filp, char __user *ubuf,
  2038. size_t cnt, loff_t *ppos)
  2039. {
  2040. long *p = filp->private_data;
  2041. char buf[64];
  2042. int r;
  2043. if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
  2044. r = sprintf(buf, "permanently disabled\n");
  2045. else
  2046. r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
  2047. return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  2048. }
  2049. static ssize_t
  2050. rb_simple_write(struct file *filp, const char __user *ubuf,
  2051. size_t cnt, loff_t *ppos)
  2052. {
  2053. long *p = filp->private_data;
  2054. char buf[64];
  2055. long val;
  2056. int ret;
  2057. if (cnt >= sizeof(buf))
  2058. return -EINVAL;
  2059. if (copy_from_user(&buf, ubuf, cnt))
  2060. return -EFAULT;
  2061. buf[cnt] = 0;
  2062. ret = strict_strtoul(buf, 10, &val);
  2063. if (ret < 0)
  2064. return ret;
  2065. if (val)
  2066. set_bit(RB_BUFFERS_ON_BIT, p);
  2067. else
  2068. clear_bit(RB_BUFFERS_ON_BIT, p);
  2069. (*ppos)++;
  2070. return cnt;
  2071. }
  2072. static struct file_operations rb_simple_fops = {
  2073. .open = tracing_open_generic,
  2074. .read = rb_simple_read,
  2075. .write = rb_simple_write,
  2076. };
  2077. static __init int rb_init_debugfs(void)
  2078. {
  2079. struct dentry *d_tracer;
  2080. struct dentry *entry;
  2081. d_tracer = tracing_init_dentry();
  2082. entry = debugfs_create_file("tracing_on", 0644, d_tracer,
  2083. &ring_buffer_flags, &rb_simple_fops);
  2084. if (!entry)
  2085. pr_warning("Could not create debugfs 'tracing_on' entry\n");
  2086. return 0;
  2087. }
  2088. fs_initcall(rb_init_debugfs);