sched_fair.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. static inline struct task_struct *task_of(struct sched_entity *se)
  72. {
  73. return container_of(se, struct task_struct, se);
  74. }
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. /* Walk up scheduling entities hierarchy */
  84. #define for_each_sched_entity(se) \
  85. for (; se; se = se->parent)
  86. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  87. {
  88. return p->se.cfs_rq;
  89. }
  90. /* runqueue on which this entity is (to be) queued */
  91. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  92. {
  93. return se->cfs_rq;
  94. }
  95. /* runqueue "owned" by this group */
  96. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  97. {
  98. return grp->my_q;
  99. }
  100. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  101. * another cpu ('this_cpu')
  102. */
  103. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  104. {
  105. return cfs_rq->tg->cfs_rq[this_cpu];
  106. }
  107. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  108. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  109. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  110. /* Do the two (enqueued) entities belong to the same group ? */
  111. static inline int
  112. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  113. {
  114. if (se->cfs_rq == pse->cfs_rq)
  115. return 1;
  116. return 0;
  117. }
  118. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  119. {
  120. return se->parent;
  121. }
  122. /* return depth at which a sched entity is present in the hierarchy */
  123. static inline int depth_se(struct sched_entity *se)
  124. {
  125. int depth = 0;
  126. for_each_sched_entity(se)
  127. depth++;
  128. return depth;
  129. }
  130. static void
  131. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  132. {
  133. int se_depth, pse_depth;
  134. /*
  135. * preemption test can be made between sibling entities who are in the
  136. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  137. * both tasks until we find their ancestors who are siblings of common
  138. * parent.
  139. */
  140. /* First walk up until both entities are at same depth */
  141. se_depth = depth_se(*se);
  142. pse_depth = depth_se(*pse);
  143. while (se_depth > pse_depth) {
  144. se_depth--;
  145. *se = parent_entity(*se);
  146. }
  147. while (pse_depth > se_depth) {
  148. pse_depth--;
  149. *pse = parent_entity(*pse);
  150. }
  151. while (!is_same_group(*se, *pse)) {
  152. *se = parent_entity(*se);
  153. *pse = parent_entity(*pse);
  154. }
  155. }
  156. #else /* CONFIG_FAIR_GROUP_SCHED */
  157. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  158. {
  159. return container_of(cfs_rq, struct rq, cfs);
  160. }
  161. #define entity_is_task(se) 1
  162. #define for_each_sched_entity(se) \
  163. for (; se; se = NULL)
  164. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  165. {
  166. return &task_rq(p)->cfs;
  167. }
  168. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  169. {
  170. struct task_struct *p = task_of(se);
  171. struct rq *rq = task_rq(p);
  172. return &rq->cfs;
  173. }
  174. /* runqueue "owned" by this group */
  175. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  176. {
  177. return NULL;
  178. }
  179. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  180. {
  181. return &cpu_rq(this_cpu)->cfs;
  182. }
  183. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  184. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  185. static inline int
  186. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  187. {
  188. return 1;
  189. }
  190. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  191. {
  192. return NULL;
  193. }
  194. static inline void
  195. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  196. {
  197. }
  198. #endif /* CONFIG_FAIR_GROUP_SCHED */
  199. /**************************************************************
  200. * Scheduling class tree data structure manipulation methods:
  201. */
  202. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  203. {
  204. s64 delta = (s64)(vruntime - min_vruntime);
  205. if (delta > 0)
  206. min_vruntime = vruntime;
  207. return min_vruntime;
  208. }
  209. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta < 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  217. {
  218. return se->vruntime - cfs_rq->min_vruntime;
  219. }
  220. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  221. {
  222. u64 vruntime = cfs_rq->min_vruntime;
  223. if (cfs_rq->curr)
  224. vruntime = cfs_rq->curr->vruntime;
  225. if (cfs_rq->rb_leftmost) {
  226. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  227. struct sched_entity,
  228. run_node);
  229. if (vruntime == cfs_rq->min_vruntime)
  230. vruntime = se->vruntime;
  231. else
  232. vruntime = min_vruntime(vruntime, se->vruntime);
  233. }
  234. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  235. }
  236. /*
  237. * Enqueue an entity into the rb-tree:
  238. */
  239. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  240. {
  241. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  242. struct rb_node *parent = NULL;
  243. struct sched_entity *entry;
  244. s64 key = entity_key(cfs_rq, se);
  245. int leftmost = 1;
  246. /*
  247. * Find the right place in the rbtree:
  248. */
  249. while (*link) {
  250. parent = *link;
  251. entry = rb_entry(parent, struct sched_entity, run_node);
  252. /*
  253. * We dont care about collisions. Nodes with
  254. * the same key stay together.
  255. */
  256. if (key < entity_key(cfs_rq, entry)) {
  257. link = &parent->rb_left;
  258. } else {
  259. link = &parent->rb_right;
  260. leftmost = 0;
  261. }
  262. }
  263. /*
  264. * Maintain a cache of leftmost tree entries (it is frequently
  265. * used):
  266. */
  267. if (leftmost)
  268. cfs_rq->rb_leftmost = &se->run_node;
  269. rb_link_node(&se->run_node, parent, link);
  270. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  271. }
  272. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  273. {
  274. if (cfs_rq->rb_leftmost == &se->run_node) {
  275. struct rb_node *next_node;
  276. next_node = rb_next(&se->run_node);
  277. cfs_rq->rb_leftmost = next_node;
  278. }
  279. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  280. }
  281. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  282. {
  283. struct rb_node *left = cfs_rq->rb_leftmost;
  284. if (!left)
  285. return NULL;
  286. return rb_entry(left, struct sched_entity, run_node);
  287. }
  288. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  289. {
  290. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  291. if (!last)
  292. return NULL;
  293. return rb_entry(last, struct sched_entity, run_node);
  294. }
  295. /**************************************************************
  296. * Scheduling class statistics methods:
  297. */
  298. #ifdef CONFIG_SCHED_DEBUG
  299. int sched_nr_latency_handler(struct ctl_table *table, int write,
  300. struct file *filp, void __user *buffer, size_t *lenp,
  301. loff_t *ppos)
  302. {
  303. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  304. if (ret || !write)
  305. return ret;
  306. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  307. sysctl_sched_min_granularity);
  308. return 0;
  309. }
  310. #endif
  311. /*
  312. * delta *= P[w / rw]
  313. */
  314. static inline unsigned long
  315. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  316. {
  317. for_each_sched_entity(se) {
  318. delta = calc_delta_mine(delta,
  319. se->load.weight, &cfs_rq_of(se)->load);
  320. }
  321. return delta;
  322. }
  323. /*
  324. * delta /= w
  325. */
  326. static inline unsigned long
  327. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  328. {
  329. if (unlikely(se->load.weight != NICE_0_LOAD))
  330. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  331. return delta;
  332. }
  333. /*
  334. * The idea is to set a period in which each task runs once.
  335. *
  336. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  337. * this period because otherwise the slices get too small.
  338. *
  339. * p = (nr <= nl) ? l : l*nr/nl
  340. */
  341. static u64 __sched_period(unsigned long nr_running)
  342. {
  343. u64 period = sysctl_sched_latency;
  344. unsigned long nr_latency = sched_nr_latency;
  345. if (unlikely(nr_running > nr_latency)) {
  346. period = sysctl_sched_min_granularity;
  347. period *= nr_running;
  348. }
  349. return period;
  350. }
  351. /*
  352. * We calculate the wall-time slice from the period by taking a part
  353. * proportional to the weight.
  354. *
  355. * s = p*P[w/rw]
  356. */
  357. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  358. {
  359. unsigned long nr_running = cfs_rq->nr_running;
  360. if (unlikely(!se->on_rq))
  361. nr_running++;
  362. return calc_delta_weight(__sched_period(nr_running), se);
  363. }
  364. /*
  365. * We calculate the vruntime slice of a to be inserted task
  366. *
  367. * vs = s/w
  368. */
  369. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  370. {
  371. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  372. }
  373. /*
  374. * Update the current task's runtime statistics. Skip current tasks that
  375. * are not in our scheduling class.
  376. */
  377. static inline void
  378. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  379. unsigned long delta_exec)
  380. {
  381. unsigned long delta_exec_weighted;
  382. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  383. curr->sum_exec_runtime += delta_exec;
  384. schedstat_add(cfs_rq, exec_clock, delta_exec);
  385. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  386. curr->vruntime += delta_exec_weighted;
  387. update_min_vruntime(cfs_rq);
  388. }
  389. static void update_curr(struct cfs_rq *cfs_rq)
  390. {
  391. struct sched_entity *curr = cfs_rq->curr;
  392. u64 now = rq_of(cfs_rq)->clock;
  393. unsigned long delta_exec;
  394. if (unlikely(!curr))
  395. return;
  396. /*
  397. * Get the amount of time the current task was running
  398. * since the last time we changed load (this cannot
  399. * overflow on 32 bits):
  400. */
  401. delta_exec = (unsigned long)(now - curr->exec_start);
  402. if (!delta_exec)
  403. return;
  404. __update_curr(cfs_rq, curr, delta_exec);
  405. curr->exec_start = now;
  406. if (entity_is_task(curr)) {
  407. struct task_struct *curtask = task_of(curr);
  408. cpuacct_charge(curtask, delta_exec);
  409. account_group_exec_runtime(curtask, delta_exec);
  410. }
  411. }
  412. static inline void
  413. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  414. {
  415. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  416. }
  417. /*
  418. * Task is being enqueued - update stats:
  419. */
  420. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  421. {
  422. /*
  423. * Are we enqueueing a waiting task? (for current tasks
  424. * a dequeue/enqueue event is a NOP)
  425. */
  426. if (se != cfs_rq->curr)
  427. update_stats_wait_start(cfs_rq, se);
  428. }
  429. static void
  430. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  431. {
  432. schedstat_set(se->wait_max, max(se->wait_max,
  433. rq_of(cfs_rq)->clock - se->wait_start));
  434. schedstat_set(se->wait_count, se->wait_count + 1);
  435. schedstat_set(se->wait_sum, se->wait_sum +
  436. rq_of(cfs_rq)->clock - se->wait_start);
  437. schedstat_set(se->wait_start, 0);
  438. }
  439. static inline void
  440. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. /*
  443. * Mark the end of the wait period if dequeueing a
  444. * waiting task:
  445. */
  446. if (se != cfs_rq->curr)
  447. update_stats_wait_end(cfs_rq, se);
  448. }
  449. /*
  450. * We are picking a new current task - update its stats:
  451. */
  452. static inline void
  453. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  454. {
  455. /*
  456. * We are starting a new run period:
  457. */
  458. se->exec_start = rq_of(cfs_rq)->clock;
  459. }
  460. /**************************************************
  461. * Scheduling class queueing methods:
  462. */
  463. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  464. static void
  465. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  466. {
  467. cfs_rq->task_weight += weight;
  468. }
  469. #else
  470. static inline void
  471. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  472. {
  473. }
  474. #endif
  475. static void
  476. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  477. {
  478. update_load_add(&cfs_rq->load, se->load.weight);
  479. if (!parent_entity(se))
  480. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  481. if (entity_is_task(se)) {
  482. add_cfs_task_weight(cfs_rq, se->load.weight);
  483. list_add(&se->group_node, &cfs_rq->tasks);
  484. }
  485. cfs_rq->nr_running++;
  486. se->on_rq = 1;
  487. }
  488. static void
  489. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  490. {
  491. update_load_sub(&cfs_rq->load, se->load.weight);
  492. if (!parent_entity(se))
  493. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  494. if (entity_is_task(se)) {
  495. add_cfs_task_weight(cfs_rq, -se->load.weight);
  496. list_del_init(&se->group_node);
  497. }
  498. cfs_rq->nr_running--;
  499. se->on_rq = 0;
  500. }
  501. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  502. {
  503. #ifdef CONFIG_SCHEDSTATS
  504. if (se->sleep_start) {
  505. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  506. struct task_struct *tsk = task_of(se);
  507. if ((s64)delta < 0)
  508. delta = 0;
  509. if (unlikely(delta > se->sleep_max))
  510. se->sleep_max = delta;
  511. se->sleep_start = 0;
  512. se->sum_sleep_runtime += delta;
  513. account_scheduler_latency(tsk, delta >> 10, 1);
  514. }
  515. if (se->block_start) {
  516. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  517. struct task_struct *tsk = task_of(se);
  518. if ((s64)delta < 0)
  519. delta = 0;
  520. if (unlikely(delta > se->block_max))
  521. se->block_max = delta;
  522. se->block_start = 0;
  523. se->sum_sleep_runtime += delta;
  524. /*
  525. * Blocking time is in units of nanosecs, so shift by 20 to
  526. * get a milliseconds-range estimation of the amount of
  527. * time that the task spent sleeping:
  528. */
  529. if (unlikely(prof_on == SLEEP_PROFILING)) {
  530. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  531. delta >> 20);
  532. }
  533. account_scheduler_latency(tsk, delta >> 10, 0);
  534. }
  535. #endif
  536. }
  537. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  538. {
  539. #ifdef CONFIG_SCHED_DEBUG
  540. s64 d = se->vruntime - cfs_rq->min_vruntime;
  541. if (d < 0)
  542. d = -d;
  543. if (d > 3*sysctl_sched_latency)
  544. schedstat_inc(cfs_rq, nr_spread_over);
  545. #endif
  546. }
  547. static void
  548. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  549. {
  550. u64 vruntime = cfs_rq->min_vruntime;
  551. /*
  552. * The 'current' period is already promised to the current tasks,
  553. * however the extra weight of the new task will slow them down a
  554. * little, place the new task so that it fits in the slot that
  555. * stays open at the end.
  556. */
  557. if (initial && sched_feat(START_DEBIT))
  558. vruntime += sched_vslice(cfs_rq, se);
  559. if (!initial) {
  560. /* sleeps upto a single latency don't count. */
  561. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  562. unsigned long thresh = sysctl_sched_latency;
  563. /*
  564. * convert the sleeper threshold into virtual time
  565. */
  566. if (sched_feat(NORMALIZED_SLEEPER))
  567. thresh = calc_delta_fair(thresh, se);
  568. vruntime -= thresh;
  569. }
  570. /* ensure we never gain time by being placed backwards. */
  571. vruntime = max_vruntime(se->vruntime, vruntime);
  572. }
  573. se->vruntime = vruntime;
  574. }
  575. static void
  576. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  577. {
  578. /*
  579. * Update run-time statistics of the 'current'.
  580. */
  581. update_curr(cfs_rq);
  582. account_entity_enqueue(cfs_rq, se);
  583. if (wakeup) {
  584. place_entity(cfs_rq, se, 0);
  585. enqueue_sleeper(cfs_rq, se);
  586. }
  587. update_stats_enqueue(cfs_rq, se);
  588. check_spread(cfs_rq, se);
  589. if (se != cfs_rq->curr)
  590. __enqueue_entity(cfs_rq, se);
  591. }
  592. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  593. {
  594. if (cfs_rq->last == se)
  595. cfs_rq->last = NULL;
  596. if (cfs_rq->next == se)
  597. cfs_rq->next = NULL;
  598. }
  599. static void
  600. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  601. {
  602. /*
  603. * Update run-time statistics of the 'current'.
  604. */
  605. update_curr(cfs_rq);
  606. update_stats_dequeue(cfs_rq, se);
  607. if (sleep) {
  608. #ifdef CONFIG_SCHEDSTATS
  609. if (entity_is_task(se)) {
  610. struct task_struct *tsk = task_of(se);
  611. if (tsk->state & TASK_INTERRUPTIBLE)
  612. se->sleep_start = rq_of(cfs_rq)->clock;
  613. if (tsk->state & TASK_UNINTERRUPTIBLE)
  614. se->block_start = rq_of(cfs_rq)->clock;
  615. }
  616. #endif
  617. }
  618. clear_buddies(cfs_rq, se);
  619. if (se != cfs_rq->curr)
  620. __dequeue_entity(cfs_rq, se);
  621. account_entity_dequeue(cfs_rq, se);
  622. update_min_vruntime(cfs_rq);
  623. }
  624. /*
  625. * Preempt the current task with a newly woken task if needed:
  626. */
  627. static void
  628. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  629. {
  630. unsigned long ideal_runtime, delta_exec;
  631. ideal_runtime = sched_slice(cfs_rq, curr);
  632. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  633. if (delta_exec > ideal_runtime)
  634. resched_task(rq_of(cfs_rq)->curr);
  635. }
  636. static void
  637. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  638. {
  639. /* 'current' is not kept within the tree. */
  640. if (se->on_rq) {
  641. /*
  642. * Any task has to be enqueued before it get to execute on
  643. * a CPU. So account for the time it spent waiting on the
  644. * runqueue.
  645. */
  646. update_stats_wait_end(cfs_rq, se);
  647. __dequeue_entity(cfs_rq, se);
  648. }
  649. update_stats_curr_start(cfs_rq, se);
  650. cfs_rq->curr = se;
  651. #ifdef CONFIG_SCHEDSTATS
  652. /*
  653. * Track our maximum slice length, if the CPU's load is at
  654. * least twice that of our own weight (i.e. dont track it
  655. * when there are only lesser-weight tasks around):
  656. */
  657. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  658. se->slice_max = max(se->slice_max,
  659. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  660. }
  661. #endif
  662. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  663. }
  664. static int
  665. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  666. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  667. {
  668. struct sched_entity *se = __pick_next_entity(cfs_rq);
  669. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  670. return cfs_rq->next;
  671. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  672. return cfs_rq->last;
  673. return se;
  674. }
  675. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  676. {
  677. /*
  678. * If still on the runqueue then deactivate_task()
  679. * was not called and update_curr() has to be done:
  680. */
  681. if (prev->on_rq)
  682. update_curr(cfs_rq);
  683. check_spread(cfs_rq, prev);
  684. if (prev->on_rq) {
  685. update_stats_wait_start(cfs_rq, prev);
  686. /* Put 'current' back into the tree. */
  687. __enqueue_entity(cfs_rq, prev);
  688. }
  689. cfs_rq->curr = NULL;
  690. }
  691. static void
  692. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  693. {
  694. /*
  695. * Update run-time statistics of the 'current'.
  696. */
  697. update_curr(cfs_rq);
  698. #ifdef CONFIG_SCHED_HRTICK
  699. /*
  700. * queued ticks are scheduled to match the slice, so don't bother
  701. * validating it and just reschedule.
  702. */
  703. if (queued) {
  704. resched_task(rq_of(cfs_rq)->curr);
  705. return;
  706. }
  707. /*
  708. * don't let the period tick interfere with the hrtick preemption
  709. */
  710. if (!sched_feat(DOUBLE_TICK) &&
  711. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  712. return;
  713. #endif
  714. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  715. check_preempt_tick(cfs_rq, curr);
  716. }
  717. /**************************************************
  718. * CFS operations on tasks:
  719. */
  720. #ifdef CONFIG_SCHED_HRTICK
  721. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  722. {
  723. struct sched_entity *se = &p->se;
  724. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  725. WARN_ON(task_rq(p) != rq);
  726. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  727. u64 slice = sched_slice(cfs_rq, se);
  728. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  729. s64 delta = slice - ran;
  730. if (delta < 0) {
  731. if (rq->curr == p)
  732. resched_task(p);
  733. return;
  734. }
  735. /*
  736. * Don't schedule slices shorter than 10000ns, that just
  737. * doesn't make sense. Rely on vruntime for fairness.
  738. */
  739. if (rq->curr != p)
  740. delta = max_t(s64, 10000LL, delta);
  741. hrtick_start(rq, delta);
  742. }
  743. }
  744. /*
  745. * called from enqueue/dequeue and updates the hrtick when the
  746. * current task is from our class and nr_running is low enough
  747. * to matter.
  748. */
  749. static void hrtick_update(struct rq *rq)
  750. {
  751. struct task_struct *curr = rq->curr;
  752. if (curr->sched_class != &fair_sched_class)
  753. return;
  754. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  755. hrtick_start_fair(rq, curr);
  756. }
  757. #else /* !CONFIG_SCHED_HRTICK */
  758. static inline void
  759. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  760. {
  761. }
  762. static inline void hrtick_update(struct rq *rq)
  763. {
  764. }
  765. #endif
  766. /*
  767. * The enqueue_task method is called before nr_running is
  768. * increased. Here we update the fair scheduling stats and
  769. * then put the task into the rbtree:
  770. */
  771. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  772. {
  773. struct cfs_rq *cfs_rq;
  774. struct sched_entity *se = &p->se;
  775. for_each_sched_entity(se) {
  776. if (se->on_rq)
  777. break;
  778. cfs_rq = cfs_rq_of(se);
  779. enqueue_entity(cfs_rq, se, wakeup);
  780. wakeup = 1;
  781. }
  782. hrtick_update(rq);
  783. }
  784. /*
  785. * The dequeue_task method is called before nr_running is
  786. * decreased. We remove the task from the rbtree and
  787. * update the fair scheduling stats:
  788. */
  789. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  790. {
  791. struct cfs_rq *cfs_rq;
  792. struct sched_entity *se = &p->se;
  793. for_each_sched_entity(se) {
  794. cfs_rq = cfs_rq_of(se);
  795. dequeue_entity(cfs_rq, se, sleep);
  796. /* Don't dequeue parent if it has other entities besides us */
  797. if (cfs_rq->load.weight)
  798. break;
  799. sleep = 1;
  800. }
  801. hrtick_update(rq);
  802. }
  803. /*
  804. * sched_yield() support is very simple - we dequeue and enqueue.
  805. *
  806. * If compat_yield is turned on then we requeue to the end of the tree.
  807. */
  808. static void yield_task_fair(struct rq *rq)
  809. {
  810. struct task_struct *curr = rq->curr;
  811. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  812. struct sched_entity *rightmost, *se = &curr->se;
  813. /*
  814. * Are we the only task in the tree?
  815. */
  816. if (unlikely(cfs_rq->nr_running == 1))
  817. return;
  818. clear_buddies(cfs_rq, se);
  819. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  820. update_rq_clock(rq);
  821. /*
  822. * Update run-time statistics of the 'current'.
  823. */
  824. update_curr(cfs_rq);
  825. return;
  826. }
  827. /*
  828. * Find the rightmost entry in the rbtree:
  829. */
  830. rightmost = __pick_last_entity(cfs_rq);
  831. /*
  832. * Already in the rightmost position?
  833. */
  834. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  835. return;
  836. /*
  837. * Minimally necessary key value to be last in the tree:
  838. * Upon rescheduling, sched_class::put_prev_task() will place
  839. * 'current' within the tree based on its new key value.
  840. */
  841. se->vruntime = rightmost->vruntime + 1;
  842. }
  843. /*
  844. * wake_idle() will wake a task on an idle cpu if task->cpu is
  845. * not idle and an idle cpu is available. The span of cpus to
  846. * search starts with cpus closest then further out as needed,
  847. * so we always favor a closer, idle cpu.
  848. * Domains may include CPUs that are not usable for migration,
  849. * hence we need to mask them out (cpu_active_mask)
  850. *
  851. * Returns the CPU we should wake onto.
  852. */
  853. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  854. static int wake_idle(int cpu, struct task_struct *p)
  855. {
  856. struct sched_domain *sd;
  857. int i;
  858. unsigned int chosen_wakeup_cpu;
  859. int this_cpu;
  860. /*
  861. * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
  862. * are idle and this is not a kernel thread and this task's affinity
  863. * allows it to be moved to preferred cpu, then just move!
  864. */
  865. this_cpu = smp_processor_id();
  866. chosen_wakeup_cpu =
  867. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
  868. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
  869. idle_cpu(cpu) && idle_cpu(this_cpu) &&
  870. p->mm && !(p->flags & PF_KTHREAD) &&
  871. cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
  872. return chosen_wakeup_cpu;
  873. /*
  874. * If it is idle, then it is the best cpu to run this task.
  875. *
  876. * This cpu is also the best, if it has more than one task already.
  877. * Siblings must be also busy(in most cases) as they didn't already
  878. * pickup the extra load from this cpu and hence we need not check
  879. * sibling runqueue info. This will avoid the checks and cache miss
  880. * penalities associated with that.
  881. */
  882. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  883. return cpu;
  884. for_each_domain(cpu, sd) {
  885. if ((sd->flags & SD_WAKE_IDLE)
  886. || ((sd->flags & SD_WAKE_IDLE_FAR)
  887. && !task_hot(p, task_rq(p)->clock, sd))) {
  888. for_each_cpu_and(i, sched_domain_span(sd),
  889. &p->cpus_allowed) {
  890. if (cpu_active(i) && idle_cpu(i)) {
  891. if (i != task_cpu(p)) {
  892. schedstat_inc(p,
  893. se.nr_wakeups_idle);
  894. }
  895. return i;
  896. }
  897. }
  898. } else {
  899. break;
  900. }
  901. }
  902. return cpu;
  903. }
  904. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  905. static inline int wake_idle(int cpu, struct task_struct *p)
  906. {
  907. return cpu;
  908. }
  909. #endif
  910. #ifdef CONFIG_SMP
  911. #ifdef CONFIG_FAIR_GROUP_SCHED
  912. /*
  913. * effective_load() calculates the load change as seen from the root_task_group
  914. *
  915. * Adding load to a group doesn't make a group heavier, but can cause movement
  916. * of group shares between cpus. Assuming the shares were perfectly aligned one
  917. * can calculate the shift in shares.
  918. *
  919. * The problem is that perfectly aligning the shares is rather expensive, hence
  920. * we try to avoid doing that too often - see update_shares(), which ratelimits
  921. * this change.
  922. *
  923. * We compensate this by not only taking the current delta into account, but
  924. * also considering the delta between when the shares were last adjusted and
  925. * now.
  926. *
  927. * We still saw a performance dip, some tracing learned us that between
  928. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  929. * significantly. Therefore try to bias the error in direction of failing
  930. * the affine wakeup.
  931. *
  932. */
  933. static long effective_load(struct task_group *tg, int cpu,
  934. long wl, long wg)
  935. {
  936. struct sched_entity *se = tg->se[cpu];
  937. if (!tg->parent)
  938. return wl;
  939. /*
  940. * By not taking the decrease of shares on the other cpu into
  941. * account our error leans towards reducing the affine wakeups.
  942. */
  943. if (!wl && sched_feat(ASYM_EFF_LOAD))
  944. return wl;
  945. for_each_sched_entity(se) {
  946. long S, rw, s, a, b;
  947. long more_w;
  948. /*
  949. * Instead of using this increment, also add the difference
  950. * between when the shares were last updated and now.
  951. */
  952. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  953. wl += more_w;
  954. wg += more_w;
  955. S = se->my_q->tg->shares;
  956. s = se->my_q->shares;
  957. rw = se->my_q->rq_weight;
  958. a = S*(rw + wl);
  959. b = S*rw + s*wg;
  960. wl = s*(a-b);
  961. if (likely(b))
  962. wl /= b;
  963. /*
  964. * Assume the group is already running and will
  965. * thus already be accounted for in the weight.
  966. *
  967. * That is, moving shares between CPUs, does not
  968. * alter the group weight.
  969. */
  970. wg = 0;
  971. }
  972. return wl;
  973. }
  974. #else
  975. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  976. unsigned long wl, unsigned long wg)
  977. {
  978. return wl;
  979. }
  980. #endif
  981. static int
  982. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  983. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  984. int idx, unsigned long load, unsigned long this_load,
  985. unsigned int imbalance)
  986. {
  987. struct task_struct *curr = this_rq->curr;
  988. struct task_group *tg;
  989. unsigned long tl = this_load;
  990. unsigned long tl_per_task;
  991. unsigned long weight;
  992. int balanced;
  993. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  994. return 0;
  995. if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  996. p->se.avg_overlap > sysctl_sched_migration_cost))
  997. sync = 0;
  998. /*
  999. * If sync wakeup then subtract the (maximum possible)
  1000. * effect of the currently running task from the load
  1001. * of the current CPU:
  1002. */
  1003. if (sync) {
  1004. tg = task_group(current);
  1005. weight = current->se.load.weight;
  1006. tl += effective_load(tg, this_cpu, -weight, -weight);
  1007. load += effective_load(tg, prev_cpu, 0, -weight);
  1008. }
  1009. tg = task_group(p);
  1010. weight = p->se.load.weight;
  1011. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1012. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1013. /*
  1014. * If the currently running task will sleep within
  1015. * a reasonable amount of time then attract this newly
  1016. * woken task:
  1017. */
  1018. if (sync && balanced)
  1019. return 1;
  1020. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1021. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1022. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  1023. tl_per_task)) {
  1024. /*
  1025. * This domain has SD_WAKE_AFFINE and
  1026. * p is cache cold in this domain, and
  1027. * there is no bad imbalance.
  1028. */
  1029. schedstat_inc(this_sd, ttwu_move_affine);
  1030. schedstat_inc(p, se.nr_wakeups_affine);
  1031. return 1;
  1032. }
  1033. return 0;
  1034. }
  1035. static int select_task_rq_fair(struct task_struct *p, int sync)
  1036. {
  1037. struct sched_domain *sd, *this_sd = NULL;
  1038. int prev_cpu, this_cpu, new_cpu;
  1039. unsigned long load, this_load;
  1040. struct rq *this_rq;
  1041. unsigned int imbalance;
  1042. int idx;
  1043. prev_cpu = task_cpu(p);
  1044. this_cpu = smp_processor_id();
  1045. this_rq = cpu_rq(this_cpu);
  1046. new_cpu = prev_cpu;
  1047. if (prev_cpu == this_cpu)
  1048. goto out;
  1049. /*
  1050. * 'this_sd' is the first domain that both
  1051. * this_cpu and prev_cpu are present in:
  1052. */
  1053. for_each_domain(this_cpu, sd) {
  1054. if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
  1055. this_sd = sd;
  1056. break;
  1057. }
  1058. }
  1059. if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
  1060. goto out;
  1061. /*
  1062. * Check for affine wakeup and passive balancing possibilities.
  1063. */
  1064. if (!this_sd)
  1065. goto out;
  1066. idx = this_sd->wake_idx;
  1067. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1068. load = source_load(prev_cpu, idx);
  1069. this_load = target_load(this_cpu, idx);
  1070. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1071. load, this_load, imbalance))
  1072. return this_cpu;
  1073. /*
  1074. * Start passive balancing when half the imbalance_pct
  1075. * limit is reached.
  1076. */
  1077. if (this_sd->flags & SD_WAKE_BALANCE) {
  1078. if (imbalance*this_load <= 100*load) {
  1079. schedstat_inc(this_sd, ttwu_move_balance);
  1080. schedstat_inc(p, se.nr_wakeups_passive);
  1081. return this_cpu;
  1082. }
  1083. }
  1084. out:
  1085. return wake_idle(new_cpu, p);
  1086. }
  1087. #endif /* CONFIG_SMP */
  1088. static unsigned long wakeup_gran(struct sched_entity *se)
  1089. {
  1090. unsigned long gran = sysctl_sched_wakeup_granularity;
  1091. /*
  1092. * More easily preempt - nice tasks, while not making it harder for
  1093. * + nice tasks.
  1094. */
  1095. if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
  1096. gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
  1097. return gran;
  1098. }
  1099. /*
  1100. * Should 'se' preempt 'curr'.
  1101. *
  1102. * |s1
  1103. * |s2
  1104. * |s3
  1105. * g
  1106. * |<--->|c
  1107. *
  1108. * w(c, s1) = -1
  1109. * w(c, s2) = 0
  1110. * w(c, s3) = 1
  1111. *
  1112. */
  1113. static int
  1114. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1115. {
  1116. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1117. if (vdiff <= 0)
  1118. return -1;
  1119. gran = wakeup_gran(curr);
  1120. if (vdiff > gran)
  1121. return 1;
  1122. return 0;
  1123. }
  1124. static void set_last_buddy(struct sched_entity *se)
  1125. {
  1126. for_each_sched_entity(se)
  1127. cfs_rq_of(se)->last = se;
  1128. }
  1129. static void set_next_buddy(struct sched_entity *se)
  1130. {
  1131. for_each_sched_entity(se)
  1132. cfs_rq_of(se)->next = se;
  1133. }
  1134. /*
  1135. * Preempt the current task with a newly woken task if needed:
  1136. */
  1137. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1138. {
  1139. struct task_struct *curr = rq->curr;
  1140. struct sched_entity *se = &curr->se, *pse = &p->se;
  1141. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1142. update_curr(cfs_rq);
  1143. if (unlikely(rt_prio(p->prio))) {
  1144. resched_task(curr);
  1145. return;
  1146. }
  1147. if (unlikely(p->sched_class != &fair_sched_class))
  1148. return;
  1149. if (unlikely(se == pse))
  1150. return;
  1151. /*
  1152. * Only set the backward buddy when the current task is still on the
  1153. * rq. This can happen when a wakeup gets interleaved with schedule on
  1154. * the ->pre_schedule() or idle_balance() point, either of which can
  1155. * drop the rq lock.
  1156. *
  1157. * Also, during early boot the idle thread is in the fair class, for
  1158. * obvious reasons its a bad idea to schedule back to the idle thread.
  1159. */
  1160. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1161. set_last_buddy(se);
  1162. set_next_buddy(pse);
  1163. /*
  1164. * We can come here with TIF_NEED_RESCHED already set from new task
  1165. * wake up path.
  1166. */
  1167. if (test_tsk_need_resched(curr))
  1168. return;
  1169. /*
  1170. * Batch tasks do not preempt (their preemption is driven by
  1171. * the tick):
  1172. */
  1173. if (unlikely(p->policy == SCHED_BATCH))
  1174. return;
  1175. if (!sched_feat(WAKEUP_PREEMPT))
  1176. return;
  1177. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1178. (se->avg_overlap < sysctl_sched_migration_cost &&
  1179. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1180. resched_task(curr);
  1181. return;
  1182. }
  1183. find_matching_se(&se, &pse);
  1184. while (se) {
  1185. BUG_ON(!pse);
  1186. if (wakeup_preempt_entity(se, pse) == 1) {
  1187. resched_task(curr);
  1188. break;
  1189. }
  1190. se = parent_entity(se);
  1191. pse = parent_entity(pse);
  1192. }
  1193. }
  1194. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1195. {
  1196. struct task_struct *p;
  1197. struct cfs_rq *cfs_rq = &rq->cfs;
  1198. struct sched_entity *se;
  1199. if (unlikely(!cfs_rq->nr_running))
  1200. return NULL;
  1201. do {
  1202. se = pick_next_entity(cfs_rq);
  1203. set_next_entity(cfs_rq, se);
  1204. cfs_rq = group_cfs_rq(se);
  1205. } while (cfs_rq);
  1206. p = task_of(se);
  1207. hrtick_start_fair(rq, p);
  1208. return p;
  1209. }
  1210. /*
  1211. * Account for a descheduled task:
  1212. */
  1213. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1214. {
  1215. struct sched_entity *se = &prev->se;
  1216. struct cfs_rq *cfs_rq;
  1217. for_each_sched_entity(se) {
  1218. cfs_rq = cfs_rq_of(se);
  1219. put_prev_entity(cfs_rq, se);
  1220. }
  1221. }
  1222. #ifdef CONFIG_SMP
  1223. /**************************************************
  1224. * Fair scheduling class load-balancing methods:
  1225. */
  1226. /*
  1227. * Load-balancing iterator. Note: while the runqueue stays locked
  1228. * during the whole iteration, the current task might be
  1229. * dequeued so the iterator has to be dequeue-safe. Here we
  1230. * achieve that by always pre-iterating before returning
  1231. * the current task:
  1232. */
  1233. static struct task_struct *
  1234. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1235. {
  1236. struct task_struct *p = NULL;
  1237. struct sched_entity *se;
  1238. if (next == &cfs_rq->tasks)
  1239. return NULL;
  1240. se = list_entry(next, struct sched_entity, group_node);
  1241. p = task_of(se);
  1242. cfs_rq->balance_iterator = next->next;
  1243. return p;
  1244. }
  1245. static struct task_struct *load_balance_start_fair(void *arg)
  1246. {
  1247. struct cfs_rq *cfs_rq = arg;
  1248. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1249. }
  1250. static struct task_struct *load_balance_next_fair(void *arg)
  1251. {
  1252. struct cfs_rq *cfs_rq = arg;
  1253. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1254. }
  1255. static unsigned long
  1256. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1257. unsigned long max_load_move, struct sched_domain *sd,
  1258. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1259. struct cfs_rq *cfs_rq)
  1260. {
  1261. struct rq_iterator cfs_rq_iterator;
  1262. cfs_rq_iterator.start = load_balance_start_fair;
  1263. cfs_rq_iterator.next = load_balance_next_fair;
  1264. cfs_rq_iterator.arg = cfs_rq;
  1265. return balance_tasks(this_rq, this_cpu, busiest,
  1266. max_load_move, sd, idle, all_pinned,
  1267. this_best_prio, &cfs_rq_iterator);
  1268. }
  1269. #ifdef CONFIG_FAIR_GROUP_SCHED
  1270. static unsigned long
  1271. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1272. unsigned long max_load_move,
  1273. struct sched_domain *sd, enum cpu_idle_type idle,
  1274. int *all_pinned, int *this_best_prio)
  1275. {
  1276. long rem_load_move = max_load_move;
  1277. int busiest_cpu = cpu_of(busiest);
  1278. struct task_group *tg;
  1279. rcu_read_lock();
  1280. update_h_load(busiest_cpu);
  1281. list_for_each_entry_rcu(tg, &task_groups, list) {
  1282. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1283. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1284. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1285. u64 rem_load, moved_load;
  1286. /*
  1287. * empty group
  1288. */
  1289. if (!busiest_cfs_rq->task_weight)
  1290. continue;
  1291. rem_load = (u64)rem_load_move * busiest_weight;
  1292. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1293. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1294. rem_load, sd, idle, all_pinned, this_best_prio,
  1295. tg->cfs_rq[busiest_cpu]);
  1296. if (!moved_load)
  1297. continue;
  1298. moved_load *= busiest_h_load;
  1299. moved_load = div_u64(moved_load, busiest_weight + 1);
  1300. rem_load_move -= moved_load;
  1301. if (rem_load_move < 0)
  1302. break;
  1303. }
  1304. rcu_read_unlock();
  1305. return max_load_move - rem_load_move;
  1306. }
  1307. #else
  1308. static unsigned long
  1309. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1310. unsigned long max_load_move,
  1311. struct sched_domain *sd, enum cpu_idle_type idle,
  1312. int *all_pinned, int *this_best_prio)
  1313. {
  1314. return __load_balance_fair(this_rq, this_cpu, busiest,
  1315. max_load_move, sd, idle, all_pinned,
  1316. this_best_prio, &busiest->cfs);
  1317. }
  1318. #endif
  1319. static int
  1320. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1321. struct sched_domain *sd, enum cpu_idle_type idle)
  1322. {
  1323. struct cfs_rq *busy_cfs_rq;
  1324. struct rq_iterator cfs_rq_iterator;
  1325. cfs_rq_iterator.start = load_balance_start_fair;
  1326. cfs_rq_iterator.next = load_balance_next_fair;
  1327. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1328. /*
  1329. * pass busy_cfs_rq argument into
  1330. * load_balance_[start|next]_fair iterators
  1331. */
  1332. cfs_rq_iterator.arg = busy_cfs_rq;
  1333. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1334. &cfs_rq_iterator))
  1335. return 1;
  1336. }
  1337. return 0;
  1338. }
  1339. #endif /* CONFIG_SMP */
  1340. /*
  1341. * scheduler tick hitting a task of our scheduling class:
  1342. */
  1343. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1344. {
  1345. struct cfs_rq *cfs_rq;
  1346. struct sched_entity *se = &curr->se;
  1347. for_each_sched_entity(se) {
  1348. cfs_rq = cfs_rq_of(se);
  1349. entity_tick(cfs_rq, se, queued);
  1350. }
  1351. }
  1352. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1353. /*
  1354. * Share the fairness runtime between parent and child, thus the
  1355. * total amount of pressure for CPU stays equal - new tasks
  1356. * get a chance to run but frequent forkers are not allowed to
  1357. * monopolize the CPU. Note: the parent runqueue is locked,
  1358. * the child is not running yet.
  1359. */
  1360. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1361. {
  1362. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1363. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1364. int this_cpu = smp_processor_id();
  1365. sched_info_queued(p);
  1366. update_curr(cfs_rq);
  1367. place_entity(cfs_rq, se, 1);
  1368. /* 'curr' will be NULL if the child belongs to a different group */
  1369. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1370. curr && curr->vruntime < se->vruntime) {
  1371. /*
  1372. * Upon rescheduling, sched_class::put_prev_task() will place
  1373. * 'current' within the tree based on its new key value.
  1374. */
  1375. swap(curr->vruntime, se->vruntime);
  1376. resched_task(rq->curr);
  1377. }
  1378. enqueue_task_fair(rq, p, 0);
  1379. }
  1380. /*
  1381. * Priority of the task has changed. Check to see if we preempt
  1382. * the current task.
  1383. */
  1384. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1385. int oldprio, int running)
  1386. {
  1387. /*
  1388. * Reschedule if we are currently running on this runqueue and
  1389. * our priority decreased, or if we are not currently running on
  1390. * this runqueue and our priority is higher than the current's
  1391. */
  1392. if (running) {
  1393. if (p->prio > oldprio)
  1394. resched_task(rq->curr);
  1395. } else
  1396. check_preempt_curr(rq, p, 0);
  1397. }
  1398. /*
  1399. * We switched to the sched_fair class.
  1400. */
  1401. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1402. int running)
  1403. {
  1404. /*
  1405. * We were most likely switched from sched_rt, so
  1406. * kick off the schedule if running, otherwise just see
  1407. * if we can still preempt the current task.
  1408. */
  1409. if (running)
  1410. resched_task(rq->curr);
  1411. else
  1412. check_preempt_curr(rq, p, 0);
  1413. }
  1414. /* Account for a task changing its policy or group.
  1415. *
  1416. * This routine is mostly called to set cfs_rq->curr field when a task
  1417. * migrates between groups/classes.
  1418. */
  1419. static void set_curr_task_fair(struct rq *rq)
  1420. {
  1421. struct sched_entity *se = &rq->curr->se;
  1422. for_each_sched_entity(se)
  1423. set_next_entity(cfs_rq_of(se), se);
  1424. }
  1425. #ifdef CONFIG_FAIR_GROUP_SCHED
  1426. static void moved_group_fair(struct task_struct *p)
  1427. {
  1428. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1429. update_curr(cfs_rq);
  1430. place_entity(cfs_rq, &p->se, 1);
  1431. }
  1432. #endif
  1433. /*
  1434. * All the scheduling class methods:
  1435. */
  1436. static const struct sched_class fair_sched_class = {
  1437. .next = &idle_sched_class,
  1438. .enqueue_task = enqueue_task_fair,
  1439. .dequeue_task = dequeue_task_fair,
  1440. .yield_task = yield_task_fair,
  1441. .check_preempt_curr = check_preempt_wakeup,
  1442. .pick_next_task = pick_next_task_fair,
  1443. .put_prev_task = put_prev_task_fair,
  1444. #ifdef CONFIG_SMP
  1445. .select_task_rq = select_task_rq_fair,
  1446. .load_balance = load_balance_fair,
  1447. .move_one_task = move_one_task_fair,
  1448. #endif
  1449. .set_curr_task = set_curr_task_fair,
  1450. .task_tick = task_tick_fair,
  1451. .task_new = task_new_fair,
  1452. .prio_changed = prio_changed_fair,
  1453. .switched_to = switched_to_fair,
  1454. #ifdef CONFIG_FAIR_GROUP_SCHED
  1455. .moved_group = moved_group_fair,
  1456. #endif
  1457. };
  1458. #ifdef CONFIG_SCHED_DEBUG
  1459. static void print_cfs_stats(struct seq_file *m, int cpu)
  1460. {
  1461. struct cfs_rq *cfs_rq;
  1462. rcu_read_lock();
  1463. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1464. print_cfs_rq(m, cpu, cfs_rq);
  1465. rcu_read_unlock();
  1466. }
  1467. #endif