fork.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/iocontext.h>
  25. #include <linux/key.h>
  26. #include <linux/binfmts.h>
  27. #include <linux/mman.h>
  28. #include <linux/mmu_notifier.h>
  29. #include <linux/fs.h>
  30. #include <linux/nsproxy.h>
  31. #include <linux/capability.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cgroup.h>
  34. #include <linux/security.h>
  35. #include <linux/hugetlb.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/tracehook.h>
  40. #include <linux/futex.h>
  41. #include <linux/compat.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/profile.h>
  50. #include <linux/rmap.h>
  51. #include <linux/acct.h>
  52. #include <linux/tsacct_kern.h>
  53. #include <linux/cn_proc.h>
  54. #include <linux/freezer.h>
  55. #include <linux/delayacct.h>
  56. #include <linux/taskstats_kern.h>
  57. #include <linux/random.h>
  58. #include <linux/tty.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/blkdev.h>
  61. #include <trace/sched.h>
  62. #include <asm/pgtable.h>
  63. #include <asm/pgalloc.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/mmu_context.h>
  66. #include <asm/cacheflush.h>
  67. #include <asm/tlbflush.h>
  68. /*
  69. * Protected counters by write_lock_irq(&tasklist_lock)
  70. */
  71. unsigned long total_forks; /* Handle normal Linux uptimes. */
  72. int nr_threads; /* The idle threads do not count.. */
  73. int max_threads; /* tunable limit on nr_threads */
  74. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  75. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  76. DEFINE_TRACE(sched_process_fork);
  77. int nr_processes(void)
  78. {
  79. int cpu;
  80. int total = 0;
  81. for_each_online_cpu(cpu)
  82. total += per_cpu(process_counts, cpu);
  83. return total;
  84. }
  85. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  86. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  87. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  88. static struct kmem_cache *task_struct_cachep;
  89. #endif
  90. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  91. static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
  92. {
  93. #ifdef CONFIG_DEBUG_STACK_USAGE
  94. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  95. #else
  96. gfp_t mask = GFP_KERNEL;
  97. #endif
  98. return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
  99. }
  100. static inline void free_thread_info(struct thread_info *ti)
  101. {
  102. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  103. }
  104. #endif
  105. /* SLAB cache for signal_struct structures (tsk->signal) */
  106. static struct kmem_cache *signal_cachep;
  107. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  108. struct kmem_cache *sighand_cachep;
  109. /* SLAB cache for files_struct structures (tsk->files) */
  110. struct kmem_cache *files_cachep;
  111. /* SLAB cache for fs_struct structures (tsk->fs) */
  112. struct kmem_cache *fs_cachep;
  113. /* SLAB cache for vm_area_struct structures */
  114. struct kmem_cache *vm_area_cachep;
  115. /* SLAB cache for mm_struct structures (tsk->mm) */
  116. static struct kmem_cache *mm_cachep;
  117. void free_task(struct task_struct *tsk)
  118. {
  119. prop_local_destroy_single(&tsk->dirties);
  120. free_thread_info(tsk->stack);
  121. rt_mutex_debug_task_free(tsk);
  122. ftrace_graph_exit_task(tsk);
  123. free_task_struct(tsk);
  124. }
  125. EXPORT_SYMBOL(free_task);
  126. void __put_task_struct(struct task_struct *tsk)
  127. {
  128. WARN_ON(!tsk->exit_state);
  129. WARN_ON(atomic_read(&tsk->usage));
  130. WARN_ON(tsk == current);
  131. put_cred(tsk->real_cred);
  132. put_cred(tsk->cred);
  133. delayacct_tsk_free(tsk);
  134. if (!profile_handoff_task(tsk))
  135. free_task(tsk);
  136. }
  137. /*
  138. * macro override instead of weak attribute alias, to workaround
  139. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  140. */
  141. #ifndef arch_task_cache_init
  142. #define arch_task_cache_init()
  143. #endif
  144. void __init fork_init(unsigned long mempages)
  145. {
  146. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  147. #ifndef ARCH_MIN_TASKALIGN
  148. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  149. #endif
  150. /* create a slab on which task_structs can be allocated */
  151. task_struct_cachep =
  152. kmem_cache_create("task_struct", sizeof(struct task_struct),
  153. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  154. #endif
  155. /* do the arch specific task caches init */
  156. arch_task_cache_init();
  157. /*
  158. * The default maximum number of threads is set to a safe
  159. * value: the thread structures can take up at most half
  160. * of memory.
  161. */
  162. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  163. /*
  164. * we need to allow at least 20 threads to boot a system
  165. */
  166. if(max_threads < 20)
  167. max_threads = 20;
  168. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  169. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  170. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  171. init_task.signal->rlim[RLIMIT_NPROC];
  172. }
  173. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  174. struct task_struct *src)
  175. {
  176. *dst = *src;
  177. return 0;
  178. }
  179. static struct task_struct *dup_task_struct(struct task_struct *orig)
  180. {
  181. struct task_struct *tsk;
  182. struct thread_info *ti;
  183. int err;
  184. prepare_to_copy(orig);
  185. tsk = alloc_task_struct();
  186. if (!tsk)
  187. return NULL;
  188. ti = alloc_thread_info(tsk);
  189. if (!ti) {
  190. free_task_struct(tsk);
  191. return NULL;
  192. }
  193. err = arch_dup_task_struct(tsk, orig);
  194. if (err)
  195. goto out;
  196. tsk->stack = ti;
  197. err = prop_local_init_single(&tsk->dirties);
  198. if (err)
  199. goto out;
  200. setup_thread_stack(tsk, orig);
  201. #ifdef CONFIG_CC_STACKPROTECTOR
  202. tsk->stack_canary = get_random_int();
  203. #endif
  204. /* One for us, one for whoever does the "release_task()" (usually parent) */
  205. atomic_set(&tsk->usage,2);
  206. atomic_set(&tsk->fs_excl, 0);
  207. #ifdef CONFIG_BLK_DEV_IO_TRACE
  208. tsk->btrace_seq = 0;
  209. #endif
  210. tsk->splice_pipe = NULL;
  211. return tsk;
  212. out:
  213. free_thread_info(ti);
  214. free_task_struct(tsk);
  215. return NULL;
  216. }
  217. #ifdef CONFIG_MMU
  218. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  219. {
  220. struct vm_area_struct *mpnt, *tmp, **pprev;
  221. struct rb_node **rb_link, *rb_parent;
  222. int retval;
  223. unsigned long charge;
  224. struct mempolicy *pol;
  225. down_write(&oldmm->mmap_sem);
  226. flush_cache_dup_mm(oldmm);
  227. /*
  228. * Not linked in yet - no deadlock potential:
  229. */
  230. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  231. mm->locked_vm = 0;
  232. mm->mmap = NULL;
  233. mm->mmap_cache = NULL;
  234. mm->free_area_cache = oldmm->mmap_base;
  235. mm->cached_hole_size = ~0UL;
  236. mm->map_count = 0;
  237. cpus_clear(mm->cpu_vm_mask);
  238. mm->mm_rb = RB_ROOT;
  239. rb_link = &mm->mm_rb.rb_node;
  240. rb_parent = NULL;
  241. pprev = &mm->mmap;
  242. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  243. struct file *file;
  244. if (mpnt->vm_flags & VM_DONTCOPY) {
  245. long pages = vma_pages(mpnt);
  246. mm->total_vm -= pages;
  247. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  248. -pages);
  249. continue;
  250. }
  251. charge = 0;
  252. if (mpnt->vm_flags & VM_ACCOUNT) {
  253. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  254. if (security_vm_enough_memory(len))
  255. goto fail_nomem;
  256. charge = len;
  257. }
  258. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  259. if (!tmp)
  260. goto fail_nomem;
  261. *tmp = *mpnt;
  262. pol = mpol_dup(vma_policy(mpnt));
  263. retval = PTR_ERR(pol);
  264. if (IS_ERR(pol))
  265. goto fail_nomem_policy;
  266. vma_set_policy(tmp, pol);
  267. tmp->vm_flags &= ~VM_LOCKED;
  268. tmp->vm_mm = mm;
  269. tmp->vm_next = NULL;
  270. anon_vma_link(tmp);
  271. file = tmp->vm_file;
  272. if (file) {
  273. struct inode *inode = file->f_path.dentry->d_inode;
  274. struct address_space *mapping = file->f_mapping;
  275. get_file(file);
  276. if (tmp->vm_flags & VM_DENYWRITE)
  277. atomic_dec(&inode->i_writecount);
  278. spin_lock(&mapping->i_mmap_lock);
  279. if (tmp->vm_flags & VM_SHARED)
  280. mapping->i_mmap_writable++;
  281. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  282. flush_dcache_mmap_lock(mapping);
  283. /* insert tmp into the share list, just after mpnt */
  284. vma_prio_tree_add(tmp, mpnt);
  285. flush_dcache_mmap_unlock(mapping);
  286. spin_unlock(&mapping->i_mmap_lock);
  287. }
  288. /*
  289. * Clear hugetlb-related page reserves for children. This only
  290. * affects MAP_PRIVATE mappings. Faults generated by the child
  291. * are not guaranteed to succeed, even if read-only
  292. */
  293. if (is_vm_hugetlb_page(tmp))
  294. reset_vma_resv_huge_pages(tmp);
  295. /*
  296. * Link in the new vma and copy the page table entries.
  297. */
  298. *pprev = tmp;
  299. pprev = &tmp->vm_next;
  300. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  301. rb_link = &tmp->vm_rb.rb_right;
  302. rb_parent = &tmp->vm_rb;
  303. mm->map_count++;
  304. retval = copy_page_range(mm, oldmm, mpnt);
  305. if (tmp->vm_ops && tmp->vm_ops->open)
  306. tmp->vm_ops->open(tmp);
  307. if (retval)
  308. goto out;
  309. }
  310. /* a new mm has just been created */
  311. arch_dup_mmap(oldmm, mm);
  312. retval = 0;
  313. out:
  314. up_write(&mm->mmap_sem);
  315. flush_tlb_mm(oldmm);
  316. up_write(&oldmm->mmap_sem);
  317. return retval;
  318. fail_nomem_policy:
  319. kmem_cache_free(vm_area_cachep, tmp);
  320. fail_nomem:
  321. retval = -ENOMEM;
  322. vm_unacct_memory(charge);
  323. goto out;
  324. }
  325. static inline int mm_alloc_pgd(struct mm_struct * mm)
  326. {
  327. mm->pgd = pgd_alloc(mm);
  328. if (unlikely(!mm->pgd))
  329. return -ENOMEM;
  330. return 0;
  331. }
  332. static inline void mm_free_pgd(struct mm_struct * mm)
  333. {
  334. pgd_free(mm, mm->pgd);
  335. }
  336. #else
  337. #define dup_mmap(mm, oldmm) (0)
  338. #define mm_alloc_pgd(mm) (0)
  339. #define mm_free_pgd(mm)
  340. #endif /* CONFIG_MMU */
  341. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  342. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  343. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  344. #include <linux/init_task.h>
  345. static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
  346. {
  347. atomic_set(&mm->mm_users, 1);
  348. atomic_set(&mm->mm_count, 1);
  349. init_rwsem(&mm->mmap_sem);
  350. INIT_LIST_HEAD(&mm->mmlist);
  351. mm->flags = (current->mm) ? current->mm->flags
  352. : MMF_DUMP_FILTER_DEFAULT;
  353. mm->core_state = NULL;
  354. mm->nr_ptes = 0;
  355. set_mm_counter(mm, file_rss, 0);
  356. set_mm_counter(mm, anon_rss, 0);
  357. spin_lock_init(&mm->page_table_lock);
  358. spin_lock_init(&mm->ioctx_lock);
  359. INIT_HLIST_HEAD(&mm->ioctx_list);
  360. mm->free_area_cache = TASK_UNMAPPED_BASE;
  361. mm->cached_hole_size = ~0UL;
  362. mm_init_owner(mm, p);
  363. if (likely(!mm_alloc_pgd(mm))) {
  364. mm->def_flags = 0;
  365. mmu_notifier_mm_init(mm);
  366. return mm;
  367. }
  368. free_mm(mm);
  369. return NULL;
  370. }
  371. /*
  372. * Allocate and initialize an mm_struct.
  373. */
  374. struct mm_struct * mm_alloc(void)
  375. {
  376. struct mm_struct * mm;
  377. mm = allocate_mm();
  378. if (mm) {
  379. memset(mm, 0, sizeof(*mm));
  380. mm = mm_init(mm, current);
  381. }
  382. return mm;
  383. }
  384. /*
  385. * Called when the last reference to the mm
  386. * is dropped: either by a lazy thread or by
  387. * mmput. Free the page directory and the mm.
  388. */
  389. void __mmdrop(struct mm_struct *mm)
  390. {
  391. BUG_ON(mm == &init_mm);
  392. mm_free_pgd(mm);
  393. destroy_context(mm);
  394. mmu_notifier_mm_destroy(mm);
  395. free_mm(mm);
  396. }
  397. EXPORT_SYMBOL_GPL(__mmdrop);
  398. /*
  399. * Decrement the use count and release all resources for an mm.
  400. */
  401. void mmput(struct mm_struct *mm)
  402. {
  403. might_sleep();
  404. if (atomic_dec_and_test(&mm->mm_users)) {
  405. exit_aio(mm);
  406. exit_mmap(mm);
  407. set_mm_exe_file(mm, NULL);
  408. if (!list_empty(&mm->mmlist)) {
  409. spin_lock(&mmlist_lock);
  410. list_del(&mm->mmlist);
  411. spin_unlock(&mmlist_lock);
  412. }
  413. put_swap_token(mm);
  414. mmdrop(mm);
  415. }
  416. }
  417. EXPORT_SYMBOL_GPL(mmput);
  418. /**
  419. * get_task_mm - acquire a reference to the task's mm
  420. *
  421. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  422. * this kernel workthread has transiently adopted a user mm with use_mm,
  423. * to do its AIO) is not set and if so returns a reference to it, after
  424. * bumping up the use count. User must release the mm via mmput()
  425. * after use. Typically used by /proc and ptrace.
  426. */
  427. struct mm_struct *get_task_mm(struct task_struct *task)
  428. {
  429. struct mm_struct *mm;
  430. task_lock(task);
  431. mm = task->mm;
  432. if (mm) {
  433. if (task->flags & PF_KTHREAD)
  434. mm = NULL;
  435. else
  436. atomic_inc(&mm->mm_users);
  437. }
  438. task_unlock(task);
  439. return mm;
  440. }
  441. EXPORT_SYMBOL_GPL(get_task_mm);
  442. /* Please note the differences between mmput and mm_release.
  443. * mmput is called whenever we stop holding onto a mm_struct,
  444. * error success whatever.
  445. *
  446. * mm_release is called after a mm_struct has been removed
  447. * from the current process.
  448. *
  449. * This difference is important for error handling, when we
  450. * only half set up a mm_struct for a new process and need to restore
  451. * the old one. Because we mmput the new mm_struct before
  452. * restoring the old one. . .
  453. * Eric Biederman 10 January 1998
  454. */
  455. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  456. {
  457. struct completion *vfork_done = tsk->vfork_done;
  458. /* Get rid of any futexes when releasing the mm */
  459. #ifdef CONFIG_FUTEX
  460. if (unlikely(tsk->robust_list))
  461. exit_robust_list(tsk);
  462. #ifdef CONFIG_COMPAT
  463. if (unlikely(tsk->compat_robust_list))
  464. compat_exit_robust_list(tsk);
  465. #endif
  466. #endif
  467. /* Get rid of any cached register state */
  468. deactivate_mm(tsk, mm);
  469. /* notify parent sleeping on vfork() */
  470. if (vfork_done) {
  471. tsk->vfork_done = NULL;
  472. complete(vfork_done);
  473. }
  474. /*
  475. * If we're exiting normally, clear a user-space tid field if
  476. * requested. We leave this alone when dying by signal, to leave
  477. * the value intact in a core dump, and to save the unnecessary
  478. * trouble otherwise. Userland only wants this done for a sys_exit.
  479. */
  480. if (tsk->clear_child_tid
  481. && !(tsk->flags & PF_SIGNALED)
  482. && atomic_read(&mm->mm_users) > 1) {
  483. u32 __user * tidptr = tsk->clear_child_tid;
  484. tsk->clear_child_tid = NULL;
  485. /*
  486. * We don't check the error code - if userspace has
  487. * not set up a proper pointer then tough luck.
  488. */
  489. put_user(0, tidptr);
  490. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  491. }
  492. }
  493. /*
  494. * Allocate a new mm structure and copy contents from the
  495. * mm structure of the passed in task structure.
  496. */
  497. struct mm_struct *dup_mm(struct task_struct *tsk)
  498. {
  499. struct mm_struct *mm, *oldmm = current->mm;
  500. int err;
  501. if (!oldmm)
  502. return NULL;
  503. mm = allocate_mm();
  504. if (!mm)
  505. goto fail_nomem;
  506. memcpy(mm, oldmm, sizeof(*mm));
  507. /* Initializing for Swap token stuff */
  508. mm->token_priority = 0;
  509. mm->last_interval = 0;
  510. if (!mm_init(mm, tsk))
  511. goto fail_nomem;
  512. if (init_new_context(tsk, mm))
  513. goto fail_nocontext;
  514. dup_mm_exe_file(oldmm, mm);
  515. err = dup_mmap(mm, oldmm);
  516. if (err)
  517. goto free_pt;
  518. mm->hiwater_rss = get_mm_rss(mm);
  519. mm->hiwater_vm = mm->total_vm;
  520. return mm;
  521. free_pt:
  522. mmput(mm);
  523. fail_nomem:
  524. return NULL;
  525. fail_nocontext:
  526. /*
  527. * If init_new_context() failed, we cannot use mmput() to free the mm
  528. * because it calls destroy_context()
  529. */
  530. mm_free_pgd(mm);
  531. free_mm(mm);
  532. return NULL;
  533. }
  534. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  535. {
  536. struct mm_struct * mm, *oldmm;
  537. int retval;
  538. tsk->min_flt = tsk->maj_flt = 0;
  539. tsk->nvcsw = tsk->nivcsw = 0;
  540. tsk->mm = NULL;
  541. tsk->active_mm = NULL;
  542. /*
  543. * Are we cloning a kernel thread?
  544. *
  545. * We need to steal a active VM for that..
  546. */
  547. oldmm = current->mm;
  548. if (!oldmm)
  549. return 0;
  550. if (clone_flags & CLONE_VM) {
  551. atomic_inc(&oldmm->mm_users);
  552. mm = oldmm;
  553. goto good_mm;
  554. }
  555. retval = -ENOMEM;
  556. mm = dup_mm(tsk);
  557. if (!mm)
  558. goto fail_nomem;
  559. good_mm:
  560. /* Initializing for Swap token stuff */
  561. mm->token_priority = 0;
  562. mm->last_interval = 0;
  563. tsk->mm = mm;
  564. tsk->active_mm = mm;
  565. return 0;
  566. fail_nomem:
  567. return retval;
  568. }
  569. static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  570. {
  571. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  572. /* We don't need to lock fs - think why ;-) */
  573. if (fs) {
  574. atomic_set(&fs->count, 1);
  575. rwlock_init(&fs->lock);
  576. fs->umask = old->umask;
  577. read_lock(&old->lock);
  578. fs->root = old->root;
  579. path_get(&old->root);
  580. fs->pwd = old->pwd;
  581. path_get(&old->pwd);
  582. read_unlock(&old->lock);
  583. }
  584. return fs;
  585. }
  586. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  587. {
  588. return __copy_fs_struct(old);
  589. }
  590. EXPORT_SYMBOL_GPL(copy_fs_struct);
  591. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  592. {
  593. if (clone_flags & CLONE_FS) {
  594. atomic_inc(&current->fs->count);
  595. return 0;
  596. }
  597. tsk->fs = __copy_fs_struct(current->fs);
  598. if (!tsk->fs)
  599. return -ENOMEM;
  600. return 0;
  601. }
  602. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  603. {
  604. struct files_struct *oldf, *newf;
  605. int error = 0;
  606. /*
  607. * A background process may not have any files ...
  608. */
  609. oldf = current->files;
  610. if (!oldf)
  611. goto out;
  612. if (clone_flags & CLONE_FILES) {
  613. atomic_inc(&oldf->count);
  614. goto out;
  615. }
  616. newf = dup_fd(oldf, &error);
  617. if (!newf)
  618. goto out;
  619. tsk->files = newf;
  620. error = 0;
  621. out:
  622. return error;
  623. }
  624. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  625. {
  626. #ifdef CONFIG_BLOCK
  627. struct io_context *ioc = current->io_context;
  628. if (!ioc)
  629. return 0;
  630. /*
  631. * Share io context with parent, if CLONE_IO is set
  632. */
  633. if (clone_flags & CLONE_IO) {
  634. tsk->io_context = ioc_task_link(ioc);
  635. if (unlikely(!tsk->io_context))
  636. return -ENOMEM;
  637. } else if (ioprio_valid(ioc->ioprio)) {
  638. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  639. if (unlikely(!tsk->io_context))
  640. return -ENOMEM;
  641. tsk->io_context->ioprio = ioc->ioprio;
  642. }
  643. #endif
  644. return 0;
  645. }
  646. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  647. {
  648. struct sighand_struct *sig;
  649. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  650. atomic_inc(&current->sighand->count);
  651. return 0;
  652. }
  653. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  654. rcu_assign_pointer(tsk->sighand, sig);
  655. if (!sig)
  656. return -ENOMEM;
  657. atomic_set(&sig->count, 1);
  658. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  659. return 0;
  660. }
  661. void __cleanup_sighand(struct sighand_struct *sighand)
  662. {
  663. if (atomic_dec_and_test(&sighand->count))
  664. kmem_cache_free(sighand_cachep, sighand);
  665. }
  666. /*
  667. * Initialize POSIX timer handling for a thread group.
  668. */
  669. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  670. {
  671. /* Thread group counters. */
  672. thread_group_cputime_init(sig);
  673. /* Expiration times and increments. */
  674. sig->it_virt_expires = cputime_zero;
  675. sig->it_virt_incr = cputime_zero;
  676. sig->it_prof_expires = cputime_zero;
  677. sig->it_prof_incr = cputime_zero;
  678. /* Cached expiration times. */
  679. sig->cputime_expires.prof_exp = cputime_zero;
  680. sig->cputime_expires.virt_exp = cputime_zero;
  681. sig->cputime_expires.sched_exp = 0;
  682. /* The timer lists. */
  683. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  684. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  685. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  686. }
  687. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  688. {
  689. struct signal_struct *sig;
  690. int ret;
  691. if (clone_flags & CLONE_THREAD) {
  692. ret = thread_group_cputime_clone_thread(current);
  693. if (likely(!ret)) {
  694. atomic_inc(&current->signal->count);
  695. atomic_inc(&current->signal->live);
  696. }
  697. return ret;
  698. }
  699. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  700. tsk->signal = sig;
  701. if (!sig)
  702. return -ENOMEM;
  703. atomic_set(&sig->count, 1);
  704. atomic_set(&sig->live, 1);
  705. init_waitqueue_head(&sig->wait_chldexit);
  706. sig->flags = 0;
  707. sig->group_exit_code = 0;
  708. sig->group_exit_task = NULL;
  709. sig->group_stop_count = 0;
  710. sig->curr_target = tsk;
  711. init_sigpending(&sig->shared_pending);
  712. INIT_LIST_HEAD(&sig->posix_timers);
  713. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  714. sig->it_real_incr.tv64 = 0;
  715. sig->real_timer.function = it_real_fn;
  716. sig->leader = 0; /* session leadership doesn't inherit */
  717. sig->tty_old_pgrp = NULL;
  718. sig->tty = NULL;
  719. sig->cutime = sig->cstime = cputime_zero;
  720. sig->gtime = cputime_zero;
  721. sig->cgtime = cputime_zero;
  722. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  723. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  724. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  725. task_io_accounting_init(&sig->ioac);
  726. taskstats_tgid_init(sig);
  727. task_lock(current->group_leader);
  728. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  729. task_unlock(current->group_leader);
  730. posix_cpu_timers_init_group(sig);
  731. acct_init_pacct(&sig->pacct);
  732. tty_audit_fork(sig);
  733. return 0;
  734. }
  735. void __cleanup_signal(struct signal_struct *sig)
  736. {
  737. thread_group_cputime_free(sig);
  738. tty_kref_put(sig->tty);
  739. kmem_cache_free(signal_cachep, sig);
  740. }
  741. static void cleanup_signal(struct task_struct *tsk)
  742. {
  743. struct signal_struct *sig = tsk->signal;
  744. atomic_dec(&sig->live);
  745. if (atomic_dec_and_test(&sig->count))
  746. __cleanup_signal(sig);
  747. }
  748. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  749. {
  750. unsigned long new_flags = p->flags;
  751. new_flags &= ~PF_SUPERPRIV;
  752. new_flags |= PF_FORKNOEXEC;
  753. new_flags |= PF_STARTING;
  754. p->flags = new_flags;
  755. clear_freeze_flag(p);
  756. }
  757. asmlinkage long sys_set_tid_address(int __user *tidptr)
  758. {
  759. current->clear_child_tid = tidptr;
  760. return task_pid_vnr(current);
  761. }
  762. static void rt_mutex_init_task(struct task_struct *p)
  763. {
  764. spin_lock_init(&p->pi_lock);
  765. #ifdef CONFIG_RT_MUTEXES
  766. plist_head_init(&p->pi_waiters, &p->pi_lock);
  767. p->pi_blocked_on = NULL;
  768. #endif
  769. }
  770. #ifdef CONFIG_MM_OWNER
  771. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  772. {
  773. mm->owner = p;
  774. }
  775. #endif /* CONFIG_MM_OWNER */
  776. /*
  777. * Initialize POSIX timer handling for a single task.
  778. */
  779. static void posix_cpu_timers_init(struct task_struct *tsk)
  780. {
  781. tsk->cputime_expires.prof_exp = cputime_zero;
  782. tsk->cputime_expires.virt_exp = cputime_zero;
  783. tsk->cputime_expires.sched_exp = 0;
  784. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  785. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  786. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  787. }
  788. /*
  789. * This creates a new process as a copy of the old one,
  790. * but does not actually start it yet.
  791. *
  792. * It copies the registers, and all the appropriate
  793. * parts of the process environment (as per the clone
  794. * flags). The actual kick-off is left to the caller.
  795. */
  796. static struct task_struct *copy_process(unsigned long clone_flags,
  797. unsigned long stack_start,
  798. struct pt_regs *regs,
  799. unsigned long stack_size,
  800. int __user *child_tidptr,
  801. struct pid *pid,
  802. int trace)
  803. {
  804. int retval;
  805. struct task_struct *p;
  806. int cgroup_callbacks_done = 0;
  807. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  808. return ERR_PTR(-EINVAL);
  809. /*
  810. * Thread groups must share signals as well, and detached threads
  811. * can only be started up within the thread group.
  812. */
  813. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  814. return ERR_PTR(-EINVAL);
  815. /*
  816. * Shared signal handlers imply shared VM. By way of the above,
  817. * thread groups also imply shared VM. Blocking this case allows
  818. * for various simplifications in other code.
  819. */
  820. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  821. return ERR_PTR(-EINVAL);
  822. retval = security_task_create(clone_flags);
  823. if (retval)
  824. goto fork_out;
  825. retval = -ENOMEM;
  826. p = dup_task_struct(current);
  827. if (!p)
  828. goto fork_out;
  829. rt_mutex_init_task(p);
  830. #ifdef CONFIG_PROVE_LOCKING
  831. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  832. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  833. #endif
  834. retval = -EAGAIN;
  835. if (atomic_read(&p->real_cred->user->processes) >=
  836. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  837. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  838. p->real_cred->user != INIT_USER)
  839. goto bad_fork_free;
  840. }
  841. retval = copy_creds(p, clone_flags);
  842. if (retval < 0)
  843. goto bad_fork_free;
  844. /*
  845. * If multiple threads are within copy_process(), then this check
  846. * triggers too late. This doesn't hurt, the check is only there
  847. * to stop root fork bombs.
  848. */
  849. if (nr_threads >= max_threads)
  850. goto bad_fork_cleanup_count;
  851. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  852. goto bad_fork_cleanup_count;
  853. if (p->binfmt && !try_module_get(p->binfmt->module))
  854. goto bad_fork_cleanup_put_domain;
  855. p->did_exec = 0;
  856. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  857. copy_flags(clone_flags, p);
  858. INIT_LIST_HEAD(&p->children);
  859. INIT_LIST_HEAD(&p->sibling);
  860. #ifdef CONFIG_PREEMPT_RCU
  861. p->rcu_read_lock_nesting = 0;
  862. p->rcu_flipctr_idx = 0;
  863. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  864. p->vfork_done = NULL;
  865. spin_lock_init(&p->alloc_lock);
  866. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  867. init_sigpending(&p->pending);
  868. p->utime = cputime_zero;
  869. p->stime = cputime_zero;
  870. p->gtime = cputime_zero;
  871. p->utimescaled = cputime_zero;
  872. p->stimescaled = cputime_zero;
  873. p->prev_utime = cputime_zero;
  874. p->prev_stime = cputime_zero;
  875. p->default_timer_slack_ns = current->timer_slack_ns;
  876. #ifdef CONFIG_DETECT_SOFTLOCKUP
  877. p->last_switch_count = 0;
  878. p->last_switch_timestamp = 0;
  879. #endif
  880. task_io_accounting_init(&p->ioac);
  881. acct_clear_integrals(p);
  882. posix_cpu_timers_init(p);
  883. p->lock_depth = -1; /* -1 = no lock */
  884. do_posix_clock_monotonic_gettime(&p->start_time);
  885. p->real_start_time = p->start_time;
  886. monotonic_to_bootbased(&p->real_start_time);
  887. p->io_context = NULL;
  888. p->audit_context = NULL;
  889. cgroup_fork(p);
  890. #ifdef CONFIG_NUMA
  891. p->mempolicy = mpol_dup(p->mempolicy);
  892. if (IS_ERR(p->mempolicy)) {
  893. retval = PTR_ERR(p->mempolicy);
  894. p->mempolicy = NULL;
  895. goto bad_fork_cleanup_cgroup;
  896. }
  897. mpol_fix_fork_child_flag(p);
  898. #endif
  899. #ifdef CONFIG_TRACE_IRQFLAGS
  900. p->irq_events = 0;
  901. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  902. p->hardirqs_enabled = 1;
  903. #else
  904. p->hardirqs_enabled = 0;
  905. #endif
  906. p->hardirq_enable_ip = 0;
  907. p->hardirq_enable_event = 0;
  908. p->hardirq_disable_ip = _THIS_IP_;
  909. p->hardirq_disable_event = 0;
  910. p->softirqs_enabled = 1;
  911. p->softirq_enable_ip = _THIS_IP_;
  912. p->softirq_enable_event = 0;
  913. p->softirq_disable_ip = 0;
  914. p->softirq_disable_event = 0;
  915. p->hardirq_context = 0;
  916. p->softirq_context = 0;
  917. #endif
  918. #ifdef CONFIG_LOCKDEP
  919. p->lockdep_depth = 0; /* no locks held yet */
  920. p->curr_chain_key = 0;
  921. p->lockdep_recursion = 0;
  922. #endif
  923. #ifdef CONFIG_DEBUG_MUTEXES
  924. p->blocked_on = NULL; /* not blocked yet */
  925. #endif
  926. if (unlikely(ptrace_reparented(current)))
  927. ptrace_fork(p, clone_flags);
  928. /* Perform scheduler related setup. Assign this task to a CPU. */
  929. sched_fork(p, clone_flags);
  930. if ((retval = audit_alloc(p)))
  931. goto bad_fork_cleanup_policy;
  932. /* copy all the process information */
  933. if ((retval = copy_semundo(clone_flags, p)))
  934. goto bad_fork_cleanup_audit;
  935. if ((retval = copy_files(clone_flags, p)))
  936. goto bad_fork_cleanup_semundo;
  937. if ((retval = copy_fs(clone_flags, p)))
  938. goto bad_fork_cleanup_files;
  939. if ((retval = copy_sighand(clone_flags, p)))
  940. goto bad_fork_cleanup_fs;
  941. if ((retval = copy_signal(clone_flags, p)))
  942. goto bad_fork_cleanup_sighand;
  943. if ((retval = copy_mm(clone_flags, p)))
  944. goto bad_fork_cleanup_signal;
  945. if ((retval = copy_namespaces(clone_flags, p)))
  946. goto bad_fork_cleanup_mm;
  947. if ((retval = copy_io(clone_flags, p)))
  948. goto bad_fork_cleanup_namespaces;
  949. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  950. if (retval)
  951. goto bad_fork_cleanup_io;
  952. if (pid != &init_struct_pid) {
  953. retval = -ENOMEM;
  954. pid = alloc_pid(task_active_pid_ns(p));
  955. if (!pid)
  956. goto bad_fork_cleanup_io;
  957. if (clone_flags & CLONE_NEWPID) {
  958. retval = pid_ns_prepare_proc(task_active_pid_ns(p));
  959. if (retval < 0)
  960. goto bad_fork_free_pid;
  961. }
  962. }
  963. ftrace_graph_init_task(p);
  964. p->pid = pid_nr(pid);
  965. p->tgid = p->pid;
  966. if (clone_flags & CLONE_THREAD)
  967. p->tgid = current->tgid;
  968. if (current->nsproxy != p->nsproxy) {
  969. retval = ns_cgroup_clone(p, pid);
  970. if (retval)
  971. goto bad_fork_free_graph;
  972. }
  973. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  974. /*
  975. * Clear TID on mm_release()?
  976. */
  977. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  978. #ifdef CONFIG_FUTEX
  979. p->robust_list = NULL;
  980. #ifdef CONFIG_COMPAT
  981. p->compat_robust_list = NULL;
  982. #endif
  983. INIT_LIST_HEAD(&p->pi_state_list);
  984. p->pi_state_cache = NULL;
  985. #endif
  986. /*
  987. * sigaltstack should be cleared when sharing the same VM
  988. */
  989. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  990. p->sas_ss_sp = p->sas_ss_size = 0;
  991. /*
  992. * Syscall tracing should be turned off in the child regardless
  993. * of CLONE_PTRACE.
  994. */
  995. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  996. #ifdef TIF_SYSCALL_EMU
  997. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  998. #endif
  999. clear_all_latency_tracing(p);
  1000. /* Our parent execution domain becomes current domain
  1001. These must match for thread signalling to apply */
  1002. p->parent_exec_id = p->self_exec_id;
  1003. /* ok, now we should be set up.. */
  1004. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1005. p->pdeath_signal = 0;
  1006. p->exit_state = 0;
  1007. /*
  1008. * Ok, make it visible to the rest of the system.
  1009. * We dont wake it up yet.
  1010. */
  1011. p->group_leader = p;
  1012. INIT_LIST_HEAD(&p->thread_group);
  1013. /* Now that the task is set up, run cgroup callbacks if
  1014. * necessary. We need to run them before the task is visible
  1015. * on the tasklist. */
  1016. cgroup_fork_callbacks(p);
  1017. cgroup_callbacks_done = 1;
  1018. /* Need tasklist lock for parent etc handling! */
  1019. write_lock_irq(&tasklist_lock);
  1020. /*
  1021. * The task hasn't been attached yet, so its cpus_allowed mask will
  1022. * not be changed, nor will its assigned CPU.
  1023. *
  1024. * The cpus_allowed mask of the parent may have changed after it was
  1025. * copied first time - so re-copy it here, then check the child's CPU
  1026. * to ensure it is on a valid CPU (and if not, just force it back to
  1027. * parent's CPU). This avoids alot of nasty races.
  1028. */
  1029. p->cpus_allowed = current->cpus_allowed;
  1030. p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
  1031. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1032. !cpu_online(task_cpu(p))))
  1033. set_task_cpu(p, smp_processor_id());
  1034. /* CLONE_PARENT re-uses the old parent */
  1035. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1036. p->real_parent = current->real_parent;
  1037. else
  1038. p->real_parent = current;
  1039. spin_lock(&current->sighand->siglock);
  1040. /*
  1041. * Process group and session signals need to be delivered to just the
  1042. * parent before the fork or both the parent and the child after the
  1043. * fork. Restart if a signal comes in before we add the new process to
  1044. * it's process group.
  1045. * A fatal signal pending means that current will exit, so the new
  1046. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1047. */
  1048. recalc_sigpending();
  1049. if (signal_pending(current)) {
  1050. spin_unlock(&current->sighand->siglock);
  1051. write_unlock_irq(&tasklist_lock);
  1052. retval = -ERESTARTNOINTR;
  1053. goto bad_fork_free_graph;
  1054. }
  1055. if (clone_flags & CLONE_THREAD) {
  1056. p->group_leader = current->group_leader;
  1057. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1058. }
  1059. if (likely(p->pid)) {
  1060. list_add_tail(&p->sibling, &p->real_parent->children);
  1061. tracehook_finish_clone(p, clone_flags, trace);
  1062. if (thread_group_leader(p)) {
  1063. if (clone_flags & CLONE_NEWPID)
  1064. p->nsproxy->pid_ns->child_reaper = p;
  1065. p->signal->leader_pid = pid;
  1066. tty_kref_put(p->signal->tty);
  1067. p->signal->tty = tty_kref_get(current->signal->tty);
  1068. set_task_pgrp(p, task_pgrp_nr(current));
  1069. set_task_session(p, task_session_nr(current));
  1070. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1071. attach_pid(p, PIDTYPE_SID, task_session(current));
  1072. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1073. __get_cpu_var(process_counts)++;
  1074. }
  1075. attach_pid(p, PIDTYPE_PID, pid);
  1076. nr_threads++;
  1077. }
  1078. total_forks++;
  1079. spin_unlock(&current->sighand->siglock);
  1080. write_unlock_irq(&tasklist_lock);
  1081. proc_fork_connector(p);
  1082. cgroup_post_fork(p);
  1083. return p;
  1084. bad_fork_free_graph:
  1085. ftrace_graph_exit_task(p);
  1086. bad_fork_free_pid:
  1087. if (pid != &init_struct_pid)
  1088. free_pid(pid);
  1089. bad_fork_cleanup_io:
  1090. put_io_context(p->io_context);
  1091. bad_fork_cleanup_namespaces:
  1092. exit_task_namespaces(p);
  1093. bad_fork_cleanup_mm:
  1094. if (p->mm)
  1095. mmput(p->mm);
  1096. bad_fork_cleanup_signal:
  1097. cleanup_signal(p);
  1098. bad_fork_cleanup_sighand:
  1099. __cleanup_sighand(p->sighand);
  1100. bad_fork_cleanup_fs:
  1101. exit_fs(p); /* blocking */
  1102. bad_fork_cleanup_files:
  1103. exit_files(p); /* blocking */
  1104. bad_fork_cleanup_semundo:
  1105. exit_sem(p);
  1106. bad_fork_cleanup_audit:
  1107. audit_free(p);
  1108. bad_fork_cleanup_policy:
  1109. #ifdef CONFIG_NUMA
  1110. mpol_put(p->mempolicy);
  1111. bad_fork_cleanup_cgroup:
  1112. #endif
  1113. cgroup_exit(p, cgroup_callbacks_done);
  1114. delayacct_tsk_free(p);
  1115. if (p->binfmt)
  1116. module_put(p->binfmt->module);
  1117. bad_fork_cleanup_put_domain:
  1118. module_put(task_thread_info(p)->exec_domain->module);
  1119. bad_fork_cleanup_count:
  1120. atomic_dec(&p->cred->user->processes);
  1121. put_cred(p->real_cred);
  1122. put_cred(p->cred);
  1123. bad_fork_free:
  1124. free_task(p);
  1125. fork_out:
  1126. return ERR_PTR(retval);
  1127. }
  1128. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1129. {
  1130. memset(regs, 0, sizeof(struct pt_regs));
  1131. return regs;
  1132. }
  1133. struct task_struct * __cpuinit fork_idle(int cpu)
  1134. {
  1135. struct task_struct *task;
  1136. struct pt_regs regs;
  1137. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1138. &init_struct_pid, 0);
  1139. if (!IS_ERR(task))
  1140. init_idle(task, cpu);
  1141. return task;
  1142. }
  1143. /*
  1144. * Ok, this is the main fork-routine.
  1145. *
  1146. * It copies the process, and if successful kick-starts
  1147. * it and waits for it to finish using the VM if required.
  1148. */
  1149. long do_fork(unsigned long clone_flags,
  1150. unsigned long stack_start,
  1151. struct pt_regs *regs,
  1152. unsigned long stack_size,
  1153. int __user *parent_tidptr,
  1154. int __user *child_tidptr)
  1155. {
  1156. struct task_struct *p;
  1157. int trace = 0;
  1158. long nr;
  1159. /*
  1160. * Do some preliminary argument and permissions checking before we
  1161. * actually start allocating stuff
  1162. */
  1163. if (clone_flags & CLONE_NEWUSER) {
  1164. if (clone_flags & CLONE_THREAD)
  1165. return -EINVAL;
  1166. /* hopefully this check will go away when userns support is
  1167. * complete
  1168. */
  1169. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1170. !capable(CAP_SETGID))
  1171. return -EPERM;
  1172. }
  1173. /*
  1174. * We hope to recycle these flags after 2.6.26
  1175. */
  1176. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1177. static int __read_mostly count = 100;
  1178. if (count > 0 && printk_ratelimit()) {
  1179. char comm[TASK_COMM_LEN];
  1180. count--;
  1181. printk(KERN_INFO "fork(): process `%s' used deprecated "
  1182. "clone flags 0x%lx\n",
  1183. get_task_comm(comm, current),
  1184. clone_flags & CLONE_STOPPED);
  1185. }
  1186. }
  1187. /*
  1188. * When called from kernel_thread, don't do user tracing stuff.
  1189. */
  1190. if (likely(user_mode(regs)))
  1191. trace = tracehook_prepare_clone(clone_flags);
  1192. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1193. child_tidptr, NULL, trace);
  1194. /*
  1195. * Do this prior waking up the new thread - the thread pointer
  1196. * might get invalid after that point, if the thread exits quickly.
  1197. */
  1198. if (!IS_ERR(p)) {
  1199. struct completion vfork;
  1200. trace_sched_process_fork(current, p);
  1201. nr = task_pid_vnr(p);
  1202. if (clone_flags & CLONE_PARENT_SETTID)
  1203. put_user(nr, parent_tidptr);
  1204. if (clone_flags & CLONE_VFORK) {
  1205. p->vfork_done = &vfork;
  1206. init_completion(&vfork);
  1207. }
  1208. audit_finish_fork(p);
  1209. tracehook_report_clone(trace, regs, clone_flags, nr, p);
  1210. /*
  1211. * We set PF_STARTING at creation in case tracing wants to
  1212. * use this to distinguish a fully live task from one that
  1213. * hasn't gotten to tracehook_report_clone() yet. Now we
  1214. * clear it and set the child going.
  1215. */
  1216. p->flags &= ~PF_STARTING;
  1217. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1218. /*
  1219. * We'll start up with an immediate SIGSTOP.
  1220. */
  1221. sigaddset(&p->pending.signal, SIGSTOP);
  1222. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1223. __set_task_state(p, TASK_STOPPED);
  1224. } else {
  1225. wake_up_new_task(p, clone_flags);
  1226. }
  1227. tracehook_report_clone_complete(trace, regs,
  1228. clone_flags, nr, p);
  1229. if (clone_flags & CLONE_VFORK) {
  1230. freezer_do_not_count();
  1231. wait_for_completion(&vfork);
  1232. freezer_count();
  1233. tracehook_report_vfork_done(p, nr);
  1234. }
  1235. } else {
  1236. nr = PTR_ERR(p);
  1237. }
  1238. return nr;
  1239. }
  1240. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1241. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1242. #endif
  1243. static void sighand_ctor(void *data)
  1244. {
  1245. struct sighand_struct *sighand = data;
  1246. spin_lock_init(&sighand->siglock);
  1247. init_waitqueue_head(&sighand->signalfd_wqh);
  1248. }
  1249. void __init proc_caches_init(void)
  1250. {
  1251. sighand_cachep = kmem_cache_create("sighand_cache",
  1252. sizeof(struct sighand_struct), 0,
  1253. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1254. sighand_ctor);
  1255. signal_cachep = kmem_cache_create("signal_cache",
  1256. sizeof(struct signal_struct), 0,
  1257. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1258. files_cachep = kmem_cache_create("files_cache",
  1259. sizeof(struct files_struct), 0,
  1260. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1261. fs_cachep = kmem_cache_create("fs_cache",
  1262. sizeof(struct fs_struct), 0,
  1263. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1264. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1265. sizeof(struct vm_area_struct), 0,
  1266. SLAB_PANIC, NULL);
  1267. mm_cachep = kmem_cache_create("mm_struct",
  1268. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1269. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1270. }
  1271. /*
  1272. * Check constraints on flags passed to the unshare system call and
  1273. * force unsharing of additional process context as appropriate.
  1274. */
  1275. static void check_unshare_flags(unsigned long *flags_ptr)
  1276. {
  1277. /*
  1278. * If unsharing a thread from a thread group, must also
  1279. * unshare vm.
  1280. */
  1281. if (*flags_ptr & CLONE_THREAD)
  1282. *flags_ptr |= CLONE_VM;
  1283. /*
  1284. * If unsharing vm, must also unshare signal handlers.
  1285. */
  1286. if (*flags_ptr & CLONE_VM)
  1287. *flags_ptr |= CLONE_SIGHAND;
  1288. /*
  1289. * If unsharing signal handlers and the task was created
  1290. * using CLONE_THREAD, then must unshare the thread
  1291. */
  1292. if ((*flags_ptr & CLONE_SIGHAND) &&
  1293. (atomic_read(&current->signal->count) > 1))
  1294. *flags_ptr |= CLONE_THREAD;
  1295. /*
  1296. * If unsharing namespace, must also unshare filesystem information.
  1297. */
  1298. if (*flags_ptr & CLONE_NEWNS)
  1299. *flags_ptr |= CLONE_FS;
  1300. }
  1301. /*
  1302. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1303. */
  1304. static int unshare_thread(unsigned long unshare_flags)
  1305. {
  1306. if (unshare_flags & CLONE_THREAD)
  1307. return -EINVAL;
  1308. return 0;
  1309. }
  1310. /*
  1311. * Unshare the filesystem structure if it is being shared
  1312. */
  1313. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1314. {
  1315. struct fs_struct *fs = current->fs;
  1316. if ((unshare_flags & CLONE_FS) &&
  1317. (fs && atomic_read(&fs->count) > 1)) {
  1318. *new_fsp = __copy_fs_struct(current->fs);
  1319. if (!*new_fsp)
  1320. return -ENOMEM;
  1321. }
  1322. return 0;
  1323. }
  1324. /*
  1325. * Unsharing of sighand is not supported yet
  1326. */
  1327. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1328. {
  1329. struct sighand_struct *sigh = current->sighand;
  1330. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1331. return -EINVAL;
  1332. else
  1333. return 0;
  1334. }
  1335. /*
  1336. * Unshare vm if it is being shared
  1337. */
  1338. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1339. {
  1340. struct mm_struct *mm = current->mm;
  1341. if ((unshare_flags & CLONE_VM) &&
  1342. (mm && atomic_read(&mm->mm_users) > 1)) {
  1343. return -EINVAL;
  1344. }
  1345. return 0;
  1346. }
  1347. /*
  1348. * Unshare file descriptor table if it is being shared
  1349. */
  1350. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1351. {
  1352. struct files_struct *fd = current->files;
  1353. int error = 0;
  1354. if ((unshare_flags & CLONE_FILES) &&
  1355. (fd && atomic_read(&fd->count) > 1)) {
  1356. *new_fdp = dup_fd(fd, &error);
  1357. if (!*new_fdp)
  1358. return error;
  1359. }
  1360. return 0;
  1361. }
  1362. /*
  1363. * unshare allows a process to 'unshare' part of the process
  1364. * context which was originally shared using clone. copy_*
  1365. * functions used by do_fork() cannot be used here directly
  1366. * because they modify an inactive task_struct that is being
  1367. * constructed. Here we are modifying the current, active,
  1368. * task_struct.
  1369. */
  1370. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1371. {
  1372. int err = 0;
  1373. struct fs_struct *fs, *new_fs = NULL;
  1374. struct sighand_struct *new_sigh = NULL;
  1375. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1376. struct files_struct *fd, *new_fd = NULL;
  1377. struct nsproxy *new_nsproxy = NULL;
  1378. int do_sysvsem = 0;
  1379. check_unshare_flags(&unshare_flags);
  1380. /* Return -EINVAL for all unsupported flags */
  1381. err = -EINVAL;
  1382. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1383. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1384. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1385. goto bad_unshare_out;
  1386. /*
  1387. * CLONE_NEWIPC must also detach from the undolist: after switching
  1388. * to a new ipc namespace, the semaphore arrays from the old
  1389. * namespace are unreachable.
  1390. */
  1391. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1392. do_sysvsem = 1;
  1393. if ((err = unshare_thread(unshare_flags)))
  1394. goto bad_unshare_out;
  1395. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1396. goto bad_unshare_cleanup_thread;
  1397. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1398. goto bad_unshare_cleanup_fs;
  1399. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1400. goto bad_unshare_cleanup_sigh;
  1401. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1402. goto bad_unshare_cleanup_vm;
  1403. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1404. new_fs)))
  1405. goto bad_unshare_cleanup_fd;
  1406. if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
  1407. if (do_sysvsem) {
  1408. /*
  1409. * CLONE_SYSVSEM is equivalent to sys_exit().
  1410. */
  1411. exit_sem(current);
  1412. }
  1413. if (new_nsproxy) {
  1414. switch_task_namespaces(current, new_nsproxy);
  1415. new_nsproxy = NULL;
  1416. }
  1417. task_lock(current);
  1418. if (new_fs) {
  1419. fs = current->fs;
  1420. current->fs = new_fs;
  1421. new_fs = fs;
  1422. }
  1423. if (new_mm) {
  1424. mm = current->mm;
  1425. active_mm = current->active_mm;
  1426. current->mm = new_mm;
  1427. current->active_mm = new_mm;
  1428. activate_mm(active_mm, new_mm);
  1429. new_mm = mm;
  1430. }
  1431. if (new_fd) {
  1432. fd = current->files;
  1433. current->files = new_fd;
  1434. new_fd = fd;
  1435. }
  1436. task_unlock(current);
  1437. }
  1438. if (new_nsproxy)
  1439. put_nsproxy(new_nsproxy);
  1440. bad_unshare_cleanup_fd:
  1441. if (new_fd)
  1442. put_files_struct(new_fd);
  1443. bad_unshare_cleanup_vm:
  1444. if (new_mm)
  1445. mmput(new_mm);
  1446. bad_unshare_cleanup_sigh:
  1447. if (new_sigh)
  1448. if (atomic_dec_and_test(&new_sigh->count))
  1449. kmem_cache_free(sighand_cachep, new_sigh);
  1450. bad_unshare_cleanup_fs:
  1451. if (new_fs)
  1452. put_fs_struct(new_fs);
  1453. bad_unshare_cleanup_thread:
  1454. bad_unshare_out:
  1455. return err;
  1456. }
  1457. /*
  1458. * Helper to unshare the files of the current task.
  1459. * We don't want to expose copy_files internals to
  1460. * the exec layer of the kernel.
  1461. */
  1462. int unshare_files(struct files_struct **displaced)
  1463. {
  1464. struct task_struct *task = current;
  1465. struct files_struct *copy = NULL;
  1466. int error;
  1467. error = unshare_fd(CLONE_FILES, &copy);
  1468. if (error || !copy) {
  1469. *displaced = NULL;
  1470. return error;
  1471. }
  1472. *displaced = task->files;
  1473. task_lock(task);
  1474. task->files = copy;
  1475. task_unlock(task);
  1476. return 0;
  1477. }