xfs_log_recover.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_log_priv.h"
  42. #include "xfs_buf_item.h"
  43. #include "xfs_log_recover.h"
  44. #include "xfs_extfree_item.h"
  45. #include "xfs_trans_priv.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_utils.h"
  49. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  50. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  51. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  52. xlog_recover_item_t *item);
  53. #if defined(DEBUG)
  54. STATIC void xlog_recover_check_summary(xlog_t *);
  55. #else
  56. #define xlog_recover_check_summary(log)
  57. #endif
  58. /*
  59. * Sector aligned buffer routines for buffer create/read/write/access
  60. */
  61. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  62. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  63. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  64. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  65. xfs_buf_t *
  66. xlog_get_bp(
  67. xlog_t *log,
  68. int num_bblks)
  69. {
  70. ASSERT(num_bblks > 0);
  71. if (log->l_sectbb_log) {
  72. if (num_bblks > 1)
  73. num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  74. num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
  75. }
  76. return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
  77. }
  78. void
  79. xlog_put_bp(
  80. xfs_buf_t *bp)
  81. {
  82. xfs_buf_free(bp);
  83. }
  84. /*
  85. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  86. */
  87. int
  88. xlog_bread(
  89. xlog_t *log,
  90. xfs_daddr_t blk_no,
  91. int nbblks,
  92. xfs_buf_t *bp)
  93. {
  94. int error;
  95. if (log->l_sectbb_log) {
  96. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  97. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  98. }
  99. ASSERT(nbblks > 0);
  100. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  101. ASSERT(bp);
  102. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  103. XFS_BUF_READ(bp);
  104. XFS_BUF_BUSY(bp);
  105. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  106. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  107. xfsbdstrat(log->l_mp, bp);
  108. error = xfs_iowait(bp);
  109. if (error)
  110. xfs_ioerror_alert("xlog_bread", log->l_mp,
  111. bp, XFS_BUF_ADDR(bp));
  112. return error;
  113. }
  114. /*
  115. * Write out the buffer at the given block for the given number of blocks.
  116. * The buffer is kept locked across the write and is returned locked.
  117. * This can only be used for synchronous log writes.
  118. */
  119. STATIC int
  120. xlog_bwrite(
  121. xlog_t *log,
  122. xfs_daddr_t blk_no,
  123. int nbblks,
  124. xfs_buf_t *bp)
  125. {
  126. int error;
  127. if (log->l_sectbb_log) {
  128. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  129. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  130. }
  131. ASSERT(nbblks > 0);
  132. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  133. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  134. XFS_BUF_ZEROFLAGS(bp);
  135. XFS_BUF_BUSY(bp);
  136. XFS_BUF_HOLD(bp);
  137. XFS_BUF_PSEMA(bp, PRIBIO);
  138. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  139. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  140. if ((error = xfs_bwrite(log->l_mp, bp)))
  141. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  142. bp, XFS_BUF_ADDR(bp));
  143. return error;
  144. }
  145. STATIC xfs_caddr_t
  146. xlog_align(
  147. xlog_t *log,
  148. xfs_daddr_t blk_no,
  149. int nbblks,
  150. xfs_buf_t *bp)
  151. {
  152. xfs_caddr_t ptr;
  153. if (!log->l_sectbb_log)
  154. return XFS_BUF_PTR(bp);
  155. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  156. ASSERT(XFS_BUF_SIZE(bp) >=
  157. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  158. return ptr;
  159. }
  160. #ifdef DEBUG
  161. /*
  162. * dump debug superblock and log record information
  163. */
  164. STATIC void
  165. xlog_header_check_dump(
  166. xfs_mount_t *mp,
  167. xlog_rec_header_t *head)
  168. {
  169. int b;
  170. cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
  171. for (b = 0; b < 16; b++)
  172. cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
  173. cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
  174. cmn_err(CE_DEBUG, " log : uuid = ");
  175. for (b = 0; b < 16; b++)
  176. cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
  177. cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
  178. }
  179. #else
  180. #define xlog_header_check_dump(mp, head)
  181. #endif
  182. /*
  183. * check log record header for recovery
  184. */
  185. STATIC int
  186. xlog_header_check_recover(
  187. xfs_mount_t *mp,
  188. xlog_rec_header_t *head)
  189. {
  190. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  191. /*
  192. * IRIX doesn't write the h_fmt field and leaves it zeroed
  193. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  194. * a dirty log created in IRIX.
  195. */
  196. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  197. xlog_warn(
  198. "XFS: dirty log written in incompatible format - can't recover");
  199. xlog_header_check_dump(mp, head);
  200. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  201. XFS_ERRLEVEL_HIGH, mp);
  202. return XFS_ERROR(EFSCORRUPTED);
  203. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  204. xlog_warn(
  205. "XFS: dirty log entry has mismatched uuid - can't recover");
  206. xlog_header_check_dump(mp, head);
  207. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  208. XFS_ERRLEVEL_HIGH, mp);
  209. return XFS_ERROR(EFSCORRUPTED);
  210. }
  211. return 0;
  212. }
  213. /*
  214. * read the head block of the log and check the header
  215. */
  216. STATIC int
  217. xlog_header_check_mount(
  218. xfs_mount_t *mp,
  219. xlog_rec_header_t *head)
  220. {
  221. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  222. if (uuid_is_nil(&head->h_fs_uuid)) {
  223. /*
  224. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  225. * h_fs_uuid is nil, we assume this log was last mounted
  226. * by IRIX and continue.
  227. */
  228. xlog_warn("XFS: nil uuid in log - IRIX style log");
  229. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  230. xlog_warn("XFS: log has mismatched uuid - can't recover");
  231. xlog_header_check_dump(mp, head);
  232. XFS_ERROR_REPORT("xlog_header_check_mount",
  233. XFS_ERRLEVEL_HIGH, mp);
  234. return XFS_ERROR(EFSCORRUPTED);
  235. }
  236. return 0;
  237. }
  238. STATIC void
  239. xlog_recover_iodone(
  240. struct xfs_buf *bp)
  241. {
  242. if (XFS_BUF_GETERROR(bp)) {
  243. /*
  244. * We're not going to bother about retrying
  245. * this during recovery. One strike!
  246. */
  247. xfs_ioerror_alert("xlog_recover_iodone",
  248. bp->b_mount, bp, XFS_BUF_ADDR(bp));
  249. xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
  250. }
  251. bp->b_mount = NULL;
  252. XFS_BUF_CLR_IODONE_FUNC(bp);
  253. xfs_biodone(bp);
  254. }
  255. /*
  256. * This routine finds (to an approximation) the first block in the physical
  257. * log which contains the given cycle. It uses a binary search algorithm.
  258. * Note that the algorithm can not be perfect because the disk will not
  259. * necessarily be perfect.
  260. */
  261. STATIC int
  262. xlog_find_cycle_start(
  263. xlog_t *log,
  264. xfs_buf_t *bp,
  265. xfs_daddr_t first_blk,
  266. xfs_daddr_t *last_blk,
  267. uint cycle)
  268. {
  269. xfs_caddr_t offset;
  270. xfs_daddr_t mid_blk;
  271. uint mid_cycle;
  272. int error;
  273. mid_blk = BLK_AVG(first_blk, *last_blk);
  274. while (mid_blk != first_blk && mid_blk != *last_blk) {
  275. if ((error = xlog_bread(log, mid_blk, 1, bp)))
  276. return error;
  277. offset = xlog_align(log, mid_blk, 1, bp);
  278. mid_cycle = xlog_get_cycle(offset);
  279. if (mid_cycle == cycle) {
  280. *last_blk = mid_blk;
  281. /* last_half_cycle == mid_cycle */
  282. } else {
  283. first_blk = mid_blk;
  284. /* first_half_cycle == mid_cycle */
  285. }
  286. mid_blk = BLK_AVG(first_blk, *last_blk);
  287. }
  288. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  289. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  290. return 0;
  291. }
  292. /*
  293. * Check that the range of blocks does not contain the cycle number
  294. * given. The scan needs to occur from front to back and the ptr into the
  295. * region must be updated since a later routine will need to perform another
  296. * test. If the region is completely good, we end up returning the same
  297. * last block number.
  298. *
  299. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  300. * since we don't ever expect logs to get this large.
  301. */
  302. STATIC int
  303. xlog_find_verify_cycle(
  304. xlog_t *log,
  305. xfs_daddr_t start_blk,
  306. int nbblks,
  307. uint stop_on_cycle_no,
  308. xfs_daddr_t *new_blk)
  309. {
  310. xfs_daddr_t i, j;
  311. uint cycle;
  312. xfs_buf_t *bp;
  313. xfs_daddr_t bufblks;
  314. xfs_caddr_t buf = NULL;
  315. int error = 0;
  316. bufblks = 1 << ffs(nbblks);
  317. while (!(bp = xlog_get_bp(log, bufblks))) {
  318. /* can't get enough memory to do everything in one big buffer */
  319. bufblks >>= 1;
  320. if (bufblks <= log->l_sectbb_log)
  321. return ENOMEM;
  322. }
  323. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  324. int bcount;
  325. bcount = min(bufblks, (start_blk + nbblks - i));
  326. if ((error = xlog_bread(log, i, bcount, bp)))
  327. goto out;
  328. buf = xlog_align(log, i, bcount, bp);
  329. for (j = 0; j < bcount; j++) {
  330. cycle = xlog_get_cycle(buf);
  331. if (cycle == stop_on_cycle_no) {
  332. *new_blk = i+j;
  333. goto out;
  334. }
  335. buf += BBSIZE;
  336. }
  337. }
  338. *new_blk = -1;
  339. out:
  340. xlog_put_bp(bp);
  341. return error;
  342. }
  343. /*
  344. * Potentially backup over partial log record write.
  345. *
  346. * In the typical case, last_blk is the number of the block directly after
  347. * a good log record. Therefore, we subtract one to get the block number
  348. * of the last block in the given buffer. extra_bblks contains the number
  349. * of blocks we would have read on a previous read. This happens when the
  350. * last log record is split over the end of the physical log.
  351. *
  352. * extra_bblks is the number of blocks potentially verified on a previous
  353. * call to this routine.
  354. */
  355. STATIC int
  356. xlog_find_verify_log_record(
  357. xlog_t *log,
  358. xfs_daddr_t start_blk,
  359. xfs_daddr_t *last_blk,
  360. int extra_bblks)
  361. {
  362. xfs_daddr_t i;
  363. xfs_buf_t *bp;
  364. xfs_caddr_t offset = NULL;
  365. xlog_rec_header_t *head = NULL;
  366. int error = 0;
  367. int smallmem = 0;
  368. int num_blks = *last_blk - start_blk;
  369. int xhdrs;
  370. ASSERT(start_blk != 0 || *last_blk != start_blk);
  371. if (!(bp = xlog_get_bp(log, num_blks))) {
  372. if (!(bp = xlog_get_bp(log, 1)))
  373. return ENOMEM;
  374. smallmem = 1;
  375. } else {
  376. if ((error = xlog_bread(log, start_blk, num_blks, bp)))
  377. goto out;
  378. offset = xlog_align(log, start_blk, num_blks, bp);
  379. offset += ((num_blks - 1) << BBSHIFT);
  380. }
  381. for (i = (*last_blk) - 1; i >= 0; i--) {
  382. if (i < start_blk) {
  383. /* valid log record not found */
  384. xlog_warn(
  385. "XFS: Log inconsistent (didn't find previous header)");
  386. ASSERT(0);
  387. error = XFS_ERROR(EIO);
  388. goto out;
  389. }
  390. if (smallmem) {
  391. if ((error = xlog_bread(log, i, 1, bp)))
  392. goto out;
  393. offset = xlog_align(log, i, 1, bp);
  394. }
  395. head = (xlog_rec_header_t *)offset;
  396. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  397. break;
  398. if (!smallmem)
  399. offset -= BBSIZE;
  400. }
  401. /*
  402. * We hit the beginning of the physical log & still no header. Return
  403. * to caller. If caller can handle a return of -1, then this routine
  404. * will be called again for the end of the physical log.
  405. */
  406. if (i == -1) {
  407. error = -1;
  408. goto out;
  409. }
  410. /*
  411. * We have the final block of the good log (the first block
  412. * of the log record _before_ the head. So we check the uuid.
  413. */
  414. if ((error = xlog_header_check_mount(log->l_mp, head)))
  415. goto out;
  416. /*
  417. * We may have found a log record header before we expected one.
  418. * last_blk will be the 1st block # with a given cycle #. We may end
  419. * up reading an entire log record. In this case, we don't want to
  420. * reset last_blk. Only when last_blk points in the middle of a log
  421. * record do we update last_blk.
  422. */
  423. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  424. uint h_size = be32_to_cpu(head->h_size);
  425. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  426. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  427. xhdrs++;
  428. } else {
  429. xhdrs = 1;
  430. }
  431. if (*last_blk - i + extra_bblks !=
  432. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  433. *last_blk = i;
  434. out:
  435. xlog_put_bp(bp);
  436. return error;
  437. }
  438. /*
  439. * Head is defined to be the point of the log where the next log write
  440. * write could go. This means that incomplete LR writes at the end are
  441. * eliminated when calculating the head. We aren't guaranteed that previous
  442. * LR have complete transactions. We only know that a cycle number of
  443. * current cycle number -1 won't be present in the log if we start writing
  444. * from our current block number.
  445. *
  446. * last_blk contains the block number of the first block with a given
  447. * cycle number.
  448. *
  449. * Return: zero if normal, non-zero if error.
  450. */
  451. STATIC int
  452. xlog_find_head(
  453. xlog_t *log,
  454. xfs_daddr_t *return_head_blk)
  455. {
  456. xfs_buf_t *bp;
  457. xfs_caddr_t offset;
  458. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  459. int num_scan_bblks;
  460. uint first_half_cycle, last_half_cycle;
  461. uint stop_on_cycle;
  462. int error, log_bbnum = log->l_logBBsize;
  463. /* Is the end of the log device zeroed? */
  464. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  465. *return_head_blk = first_blk;
  466. /* Is the whole lot zeroed? */
  467. if (!first_blk) {
  468. /* Linux XFS shouldn't generate totally zeroed logs -
  469. * mkfs etc write a dummy unmount record to a fresh
  470. * log so we can store the uuid in there
  471. */
  472. xlog_warn("XFS: totally zeroed log");
  473. }
  474. return 0;
  475. } else if (error) {
  476. xlog_warn("XFS: empty log check failed");
  477. return error;
  478. }
  479. first_blk = 0; /* get cycle # of 1st block */
  480. bp = xlog_get_bp(log, 1);
  481. if (!bp)
  482. return ENOMEM;
  483. if ((error = xlog_bread(log, 0, 1, bp)))
  484. goto bp_err;
  485. offset = xlog_align(log, 0, 1, bp);
  486. first_half_cycle = xlog_get_cycle(offset);
  487. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  488. if ((error = xlog_bread(log, last_blk, 1, bp)))
  489. goto bp_err;
  490. offset = xlog_align(log, last_blk, 1, bp);
  491. last_half_cycle = xlog_get_cycle(offset);
  492. ASSERT(last_half_cycle != 0);
  493. /*
  494. * If the 1st half cycle number is equal to the last half cycle number,
  495. * then the entire log is stamped with the same cycle number. In this
  496. * case, head_blk can't be set to zero (which makes sense). The below
  497. * math doesn't work out properly with head_blk equal to zero. Instead,
  498. * we set it to log_bbnum which is an invalid block number, but this
  499. * value makes the math correct. If head_blk doesn't changed through
  500. * all the tests below, *head_blk is set to zero at the very end rather
  501. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  502. * in a circular file.
  503. */
  504. if (first_half_cycle == last_half_cycle) {
  505. /*
  506. * In this case we believe that the entire log should have
  507. * cycle number last_half_cycle. We need to scan backwards
  508. * from the end verifying that there are no holes still
  509. * containing last_half_cycle - 1. If we find such a hole,
  510. * then the start of that hole will be the new head. The
  511. * simple case looks like
  512. * x | x ... | x - 1 | x
  513. * Another case that fits this picture would be
  514. * x | x + 1 | x ... | x
  515. * In this case the head really is somewhere at the end of the
  516. * log, as one of the latest writes at the beginning was
  517. * incomplete.
  518. * One more case is
  519. * x | x + 1 | x ... | x - 1 | x
  520. * This is really the combination of the above two cases, and
  521. * the head has to end up at the start of the x-1 hole at the
  522. * end of the log.
  523. *
  524. * In the 256k log case, we will read from the beginning to the
  525. * end of the log and search for cycle numbers equal to x-1.
  526. * We don't worry about the x+1 blocks that we encounter,
  527. * because we know that they cannot be the head since the log
  528. * started with x.
  529. */
  530. head_blk = log_bbnum;
  531. stop_on_cycle = last_half_cycle - 1;
  532. } else {
  533. /*
  534. * In this case we want to find the first block with cycle
  535. * number matching last_half_cycle. We expect the log to be
  536. * some variation on
  537. * x + 1 ... | x ...
  538. * The first block with cycle number x (last_half_cycle) will
  539. * be where the new head belongs. First we do a binary search
  540. * for the first occurrence of last_half_cycle. The binary
  541. * search may not be totally accurate, so then we scan back
  542. * from there looking for occurrences of last_half_cycle before
  543. * us. If that backwards scan wraps around the beginning of
  544. * the log, then we look for occurrences of last_half_cycle - 1
  545. * at the end of the log. The cases we're looking for look
  546. * like
  547. * x + 1 ... | x | x + 1 | x ...
  548. * ^ binary search stopped here
  549. * or
  550. * x + 1 ... | x ... | x - 1 | x
  551. * <---------> less than scan distance
  552. */
  553. stop_on_cycle = last_half_cycle;
  554. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  555. &head_blk, last_half_cycle)))
  556. goto bp_err;
  557. }
  558. /*
  559. * Now validate the answer. Scan back some number of maximum possible
  560. * blocks and make sure each one has the expected cycle number. The
  561. * maximum is determined by the total possible amount of buffering
  562. * in the in-core log. The following number can be made tighter if
  563. * we actually look at the block size of the filesystem.
  564. */
  565. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  566. if (head_blk >= num_scan_bblks) {
  567. /*
  568. * We are guaranteed that the entire check can be performed
  569. * in one buffer.
  570. */
  571. start_blk = head_blk - num_scan_bblks;
  572. if ((error = xlog_find_verify_cycle(log,
  573. start_blk, num_scan_bblks,
  574. stop_on_cycle, &new_blk)))
  575. goto bp_err;
  576. if (new_blk != -1)
  577. head_blk = new_blk;
  578. } else { /* need to read 2 parts of log */
  579. /*
  580. * We are going to scan backwards in the log in two parts.
  581. * First we scan the physical end of the log. In this part
  582. * of the log, we are looking for blocks with cycle number
  583. * last_half_cycle - 1.
  584. * If we find one, then we know that the log starts there, as
  585. * we've found a hole that didn't get written in going around
  586. * the end of the physical log. The simple case for this is
  587. * x + 1 ... | x ... | x - 1 | x
  588. * <---------> less than scan distance
  589. * If all of the blocks at the end of the log have cycle number
  590. * last_half_cycle, then we check the blocks at the start of
  591. * the log looking for occurrences of last_half_cycle. If we
  592. * find one, then our current estimate for the location of the
  593. * first occurrence of last_half_cycle is wrong and we move
  594. * back to the hole we've found. This case looks like
  595. * x + 1 ... | x | x + 1 | x ...
  596. * ^ binary search stopped here
  597. * Another case we need to handle that only occurs in 256k
  598. * logs is
  599. * x + 1 ... | x ... | x+1 | x ...
  600. * ^ binary search stops here
  601. * In a 256k log, the scan at the end of the log will see the
  602. * x + 1 blocks. We need to skip past those since that is
  603. * certainly not the head of the log. By searching for
  604. * last_half_cycle-1 we accomplish that.
  605. */
  606. start_blk = log_bbnum - num_scan_bblks + head_blk;
  607. ASSERT(head_blk <= INT_MAX &&
  608. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  609. if ((error = xlog_find_verify_cycle(log, start_blk,
  610. num_scan_bblks - (int)head_blk,
  611. (stop_on_cycle - 1), &new_blk)))
  612. goto bp_err;
  613. if (new_blk != -1) {
  614. head_blk = new_blk;
  615. goto bad_blk;
  616. }
  617. /*
  618. * Scan beginning of log now. The last part of the physical
  619. * log is good. This scan needs to verify that it doesn't find
  620. * the last_half_cycle.
  621. */
  622. start_blk = 0;
  623. ASSERT(head_blk <= INT_MAX);
  624. if ((error = xlog_find_verify_cycle(log,
  625. start_blk, (int)head_blk,
  626. stop_on_cycle, &new_blk)))
  627. goto bp_err;
  628. if (new_blk != -1)
  629. head_blk = new_blk;
  630. }
  631. bad_blk:
  632. /*
  633. * Now we need to make sure head_blk is not pointing to a block in
  634. * the middle of a log record.
  635. */
  636. num_scan_bblks = XLOG_REC_SHIFT(log);
  637. if (head_blk >= num_scan_bblks) {
  638. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  639. /* start ptr at last block ptr before head_blk */
  640. if ((error = xlog_find_verify_log_record(log, start_blk,
  641. &head_blk, 0)) == -1) {
  642. error = XFS_ERROR(EIO);
  643. goto bp_err;
  644. } else if (error)
  645. goto bp_err;
  646. } else {
  647. start_blk = 0;
  648. ASSERT(head_blk <= INT_MAX);
  649. if ((error = xlog_find_verify_log_record(log, start_blk,
  650. &head_blk, 0)) == -1) {
  651. /* We hit the beginning of the log during our search */
  652. start_blk = log_bbnum - num_scan_bblks + head_blk;
  653. new_blk = log_bbnum;
  654. ASSERT(start_blk <= INT_MAX &&
  655. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  656. ASSERT(head_blk <= INT_MAX);
  657. if ((error = xlog_find_verify_log_record(log,
  658. start_blk, &new_blk,
  659. (int)head_blk)) == -1) {
  660. error = XFS_ERROR(EIO);
  661. goto bp_err;
  662. } else if (error)
  663. goto bp_err;
  664. if (new_blk != log_bbnum)
  665. head_blk = new_blk;
  666. } else if (error)
  667. goto bp_err;
  668. }
  669. xlog_put_bp(bp);
  670. if (head_blk == log_bbnum)
  671. *return_head_blk = 0;
  672. else
  673. *return_head_blk = head_blk;
  674. /*
  675. * When returning here, we have a good block number. Bad block
  676. * means that during a previous crash, we didn't have a clean break
  677. * from cycle number N to cycle number N-1. In this case, we need
  678. * to find the first block with cycle number N-1.
  679. */
  680. return 0;
  681. bp_err:
  682. xlog_put_bp(bp);
  683. if (error)
  684. xlog_warn("XFS: failed to find log head");
  685. return error;
  686. }
  687. /*
  688. * Find the sync block number or the tail of the log.
  689. *
  690. * This will be the block number of the last record to have its
  691. * associated buffers synced to disk. Every log record header has
  692. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  693. * to get a sync block number. The only concern is to figure out which
  694. * log record header to believe.
  695. *
  696. * The following algorithm uses the log record header with the largest
  697. * lsn. The entire log record does not need to be valid. We only care
  698. * that the header is valid.
  699. *
  700. * We could speed up search by using current head_blk buffer, but it is not
  701. * available.
  702. */
  703. int
  704. xlog_find_tail(
  705. xlog_t *log,
  706. xfs_daddr_t *head_blk,
  707. xfs_daddr_t *tail_blk)
  708. {
  709. xlog_rec_header_t *rhead;
  710. xlog_op_header_t *op_head;
  711. xfs_caddr_t offset = NULL;
  712. xfs_buf_t *bp;
  713. int error, i, found;
  714. xfs_daddr_t umount_data_blk;
  715. xfs_daddr_t after_umount_blk;
  716. xfs_lsn_t tail_lsn;
  717. int hblks;
  718. found = 0;
  719. /*
  720. * Find previous log record
  721. */
  722. if ((error = xlog_find_head(log, head_blk)))
  723. return error;
  724. bp = xlog_get_bp(log, 1);
  725. if (!bp)
  726. return ENOMEM;
  727. if (*head_blk == 0) { /* special case */
  728. if ((error = xlog_bread(log, 0, 1, bp)))
  729. goto bread_err;
  730. offset = xlog_align(log, 0, 1, bp);
  731. if (xlog_get_cycle(offset) == 0) {
  732. *tail_blk = 0;
  733. /* leave all other log inited values alone */
  734. goto exit;
  735. }
  736. }
  737. /*
  738. * Search backwards looking for log record header block
  739. */
  740. ASSERT(*head_blk < INT_MAX);
  741. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  742. if ((error = xlog_bread(log, i, 1, bp)))
  743. goto bread_err;
  744. offset = xlog_align(log, i, 1, bp);
  745. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  746. found = 1;
  747. break;
  748. }
  749. }
  750. /*
  751. * If we haven't found the log record header block, start looking
  752. * again from the end of the physical log. XXXmiken: There should be
  753. * a check here to make sure we didn't search more than N blocks in
  754. * the previous code.
  755. */
  756. if (!found) {
  757. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  758. if ((error = xlog_bread(log, i, 1, bp)))
  759. goto bread_err;
  760. offset = xlog_align(log, i, 1, bp);
  761. if (XLOG_HEADER_MAGIC_NUM ==
  762. be32_to_cpu(*(__be32 *)offset)) {
  763. found = 2;
  764. break;
  765. }
  766. }
  767. }
  768. if (!found) {
  769. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  770. ASSERT(0);
  771. return XFS_ERROR(EIO);
  772. }
  773. /* find blk_no of tail of log */
  774. rhead = (xlog_rec_header_t *)offset;
  775. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  776. /*
  777. * Reset log values according to the state of the log when we
  778. * crashed. In the case where head_blk == 0, we bump curr_cycle
  779. * one because the next write starts a new cycle rather than
  780. * continuing the cycle of the last good log record. At this
  781. * point we have guaranteed that all partial log records have been
  782. * accounted for. Therefore, we know that the last good log record
  783. * written was complete and ended exactly on the end boundary
  784. * of the physical log.
  785. */
  786. log->l_prev_block = i;
  787. log->l_curr_block = (int)*head_blk;
  788. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  789. if (found == 2)
  790. log->l_curr_cycle++;
  791. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  792. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  793. log->l_grant_reserve_cycle = log->l_curr_cycle;
  794. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  795. log->l_grant_write_cycle = log->l_curr_cycle;
  796. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  797. /*
  798. * Look for unmount record. If we find it, then we know there
  799. * was a clean unmount. Since 'i' could be the last block in
  800. * the physical log, we convert to a log block before comparing
  801. * to the head_blk.
  802. *
  803. * Save the current tail lsn to use to pass to
  804. * xlog_clear_stale_blocks() below. We won't want to clear the
  805. * unmount record if there is one, so we pass the lsn of the
  806. * unmount record rather than the block after it.
  807. */
  808. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  809. int h_size = be32_to_cpu(rhead->h_size);
  810. int h_version = be32_to_cpu(rhead->h_version);
  811. if ((h_version & XLOG_VERSION_2) &&
  812. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  813. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  814. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  815. hblks++;
  816. } else {
  817. hblks = 1;
  818. }
  819. } else {
  820. hblks = 1;
  821. }
  822. after_umount_blk = (i + hblks + (int)
  823. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  824. tail_lsn = log->l_tail_lsn;
  825. if (*head_blk == after_umount_blk &&
  826. be32_to_cpu(rhead->h_num_logops) == 1) {
  827. umount_data_blk = (i + hblks) % log->l_logBBsize;
  828. if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
  829. goto bread_err;
  830. }
  831. offset = xlog_align(log, umount_data_blk, 1, bp);
  832. op_head = (xlog_op_header_t *)offset;
  833. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  834. /*
  835. * Set tail and last sync so that newly written
  836. * log records will point recovery to after the
  837. * current unmount record.
  838. */
  839. log->l_tail_lsn =
  840. xlog_assign_lsn(log->l_curr_cycle,
  841. after_umount_blk);
  842. log->l_last_sync_lsn =
  843. xlog_assign_lsn(log->l_curr_cycle,
  844. after_umount_blk);
  845. *tail_blk = after_umount_blk;
  846. /*
  847. * Note that the unmount was clean. If the unmount
  848. * was not clean, we need to know this to rebuild the
  849. * superblock counters from the perag headers if we
  850. * have a filesystem using non-persistent counters.
  851. */
  852. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  853. }
  854. }
  855. /*
  856. * Make sure that there are no blocks in front of the head
  857. * with the same cycle number as the head. This can happen
  858. * because we allow multiple outstanding log writes concurrently,
  859. * and the later writes might make it out before earlier ones.
  860. *
  861. * We use the lsn from before modifying it so that we'll never
  862. * overwrite the unmount record after a clean unmount.
  863. *
  864. * Do this only if we are going to recover the filesystem
  865. *
  866. * NOTE: This used to say "if (!readonly)"
  867. * However on Linux, we can & do recover a read-only filesystem.
  868. * We only skip recovery if NORECOVERY is specified on mount,
  869. * in which case we would not be here.
  870. *
  871. * But... if the -device- itself is readonly, just skip this.
  872. * We can't recover this device anyway, so it won't matter.
  873. */
  874. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  875. error = xlog_clear_stale_blocks(log, tail_lsn);
  876. }
  877. bread_err:
  878. exit:
  879. xlog_put_bp(bp);
  880. if (error)
  881. xlog_warn("XFS: failed to locate log tail");
  882. return error;
  883. }
  884. /*
  885. * Is the log zeroed at all?
  886. *
  887. * The last binary search should be changed to perform an X block read
  888. * once X becomes small enough. You can then search linearly through
  889. * the X blocks. This will cut down on the number of reads we need to do.
  890. *
  891. * If the log is partially zeroed, this routine will pass back the blkno
  892. * of the first block with cycle number 0. It won't have a complete LR
  893. * preceding it.
  894. *
  895. * Return:
  896. * 0 => the log is completely written to
  897. * -1 => use *blk_no as the first block of the log
  898. * >0 => error has occurred
  899. */
  900. STATIC int
  901. xlog_find_zeroed(
  902. xlog_t *log,
  903. xfs_daddr_t *blk_no)
  904. {
  905. xfs_buf_t *bp;
  906. xfs_caddr_t offset;
  907. uint first_cycle, last_cycle;
  908. xfs_daddr_t new_blk, last_blk, start_blk;
  909. xfs_daddr_t num_scan_bblks;
  910. int error, log_bbnum = log->l_logBBsize;
  911. *blk_no = 0;
  912. /* check totally zeroed log */
  913. bp = xlog_get_bp(log, 1);
  914. if (!bp)
  915. return ENOMEM;
  916. if ((error = xlog_bread(log, 0, 1, bp)))
  917. goto bp_err;
  918. offset = xlog_align(log, 0, 1, bp);
  919. first_cycle = xlog_get_cycle(offset);
  920. if (first_cycle == 0) { /* completely zeroed log */
  921. *blk_no = 0;
  922. xlog_put_bp(bp);
  923. return -1;
  924. }
  925. /* check partially zeroed log */
  926. if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
  927. goto bp_err;
  928. offset = xlog_align(log, log_bbnum-1, 1, bp);
  929. last_cycle = xlog_get_cycle(offset);
  930. if (last_cycle != 0) { /* log completely written to */
  931. xlog_put_bp(bp);
  932. return 0;
  933. } else if (first_cycle != 1) {
  934. /*
  935. * If the cycle of the last block is zero, the cycle of
  936. * the first block must be 1. If it's not, maybe we're
  937. * not looking at a log... Bail out.
  938. */
  939. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  940. return XFS_ERROR(EINVAL);
  941. }
  942. /* we have a partially zeroed log */
  943. last_blk = log_bbnum-1;
  944. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  945. goto bp_err;
  946. /*
  947. * Validate the answer. Because there is no way to guarantee that
  948. * the entire log is made up of log records which are the same size,
  949. * we scan over the defined maximum blocks. At this point, the maximum
  950. * is not chosen to mean anything special. XXXmiken
  951. */
  952. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  953. ASSERT(num_scan_bblks <= INT_MAX);
  954. if (last_blk < num_scan_bblks)
  955. num_scan_bblks = last_blk;
  956. start_blk = last_blk - num_scan_bblks;
  957. /*
  958. * We search for any instances of cycle number 0 that occur before
  959. * our current estimate of the head. What we're trying to detect is
  960. * 1 ... | 0 | 1 | 0...
  961. * ^ binary search ends here
  962. */
  963. if ((error = xlog_find_verify_cycle(log, start_blk,
  964. (int)num_scan_bblks, 0, &new_blk)))
  965. goto bp_err;
  966. if (new_blk != -1)
  967. last_blk = new_blk;
  968. /*
  969. * Potentially backup over partial log record write. We don't need
  970. * to search the end of the log because we know it is zero.
  971. */
  972. if ((error = xlog_find_verify_log_record(log, start_blk,
  973. &last_blk, 0)) == -1) {
  974. error = XFS_ERROR(EIO);
  975. goto bp_err;
  976. } else if (error)
  977. goto bp_err;
  978. *blk_no = last_blk;
  979. bp_err:
  980. xlog_put_bp(bp);
  981. if (error)
  982. return error;
  983. return -1;
  984. }
  985. /*
  986. * These are simple subroutines used by xlog_clear_stale_blocks() below
  987. * to initialize a buffer full of empty log record headers and write
  988. * them into the log.
  989. */
  990. STATIC void
  991. xlog_add_record(
  992. xlog_t *log,
  993. xfs_caddr_t buf,
  994. int cycle,
  995. int block,
  996. int tail_cycle,
  997. int tail_block)
  998. {
  999. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1000. memset(buf, 0, BBSIZE);
  1001. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1002. recp->h_cycle = cpu_to_be32(cycle);
  1003. recp->h_version = cpu_to_be32(
  1004. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1005. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1006. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1007. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1008. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1009. }
  1010. STATIC int
  1011. xlog_write_log_records(
  1012. xlog_t *log,
  1013. int cycle,
  1014. int start_block,
  1015. int blocks,
  1016. int tail_cycle,
  1017. int tail_block)
  1018. {
  1019. xfs_caddr_t offset;
  1020. xfs_buf_t *bp;
  1021. int balign, ealign;
  1022. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1023. int end_block = start_block + blocks;
  1024. int bufblks;
  1025. int error = 0;
  1026. int i, j = 0;
  1027. bufblks = 1 << ffs(blocks);
  1028. while (!(bp = xlog_get_bp(log, bufblks))) {
  1029. bufblks >>= 1;
  1030. if (bufblks <= log->l_sectbb_log)
  1031. return ENOMEM;
  1032. }
  1033. /* We may need to do a read at the start to fill in part of
  1034. * the buffer in the starting sector not covered by the first
  1035. * write below.
  1036. */
  1037. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1038. if (balign != start_block) {
  1039. if ((error = xlog_bread(log, start_block, 1, bp))) {
  1040. xlog_put_bp(bp);
  1041. return error;
  1042. }
  1043. j = start_block - balign;
  1044. }
  1045. for (i = start_block; i < end_block; i += bufblks) {
  1046. int bcount, endcount;
  1047. bcount = min(bufblks, end_block - start_block);
  1048. endcount = bcount - j;
  1049. /* We may need to do a read at the end to fill in part of
  1050. * the buffer in the final sector not covered by the write.
  1051. * If this is the same sector as the above read, skip it.
  1052. */
  1053. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1054. if (j == 0 && (start_block + endcount > ealign)) {
  1055. offset = XFS_BUF_PTR(bp);
  1056. balign = BBTOB(ealign - start_block);
  1057. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1058. BBTOB(sectbb));
  1059. if (!error)
  1060. error = xlog_bread(log, ealign, sectbb, bp);
  1061. if (!error)
  1062. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1063. if (error)
  1064. break;
  1065. }
  1066. offset = xlog_align(log, start_block, endcount, bp);
  1067. for (; j < endcount; j++) {
  1068. xlog_add_record(log, offset, cycle, i+j,
  1069. tail_cycle, tail_block);
  1070. offset += BBSIZE;
  1071. }
  1072. error = xlog_bwrite(log, start_block, endcount, bp);
  1073. if (error)
  1074. break;
  1075. start_block += endcount;
  1076. j = 0;
  1077. }
  1078. xlog_put_bp(bp);
  1079. return error;
  1080. }
  1081. /*
  1082. * This routine is called to blow away any incomplete log writes out
  1083. * in front of the log head. We do this so that we won't become confused
  1084. * if we come up, write only a little bit more, and then crash again.
  1085. * If we leave the partial log records out there, this situation could
  1086. * cause us to think those partial writes are valid blocks since they
  1087. * have the current cycle number. We get rid of them by overwriting them
  1088. * with empty log records with the old cycle number rather than the
  1089. * current one.
  1090. *
  1091. * The tail lsn is passed in rather than taken from
  1092. * the log so that we will not write over the unmount record after a
  1093. * clean unmount in a 512 block log. Doing so would leave the log without
  1094. * any valid log records in it until a new one was written. If we crashed
  1095. * during that time we would not be able to recover.
  1096. */
  1097. STATIC int
  1098. xlog_clear_stale_blocks(
  1099. xlog_t *log,
  1100. xfs_lsn_t tail_lsn)
  1101. {
  1102. int tail_cycle, head_cycle;
  1103. int tail_block, head_block;
  1104. int tail_distance, max_distance;
  1105. int distance;
  1106. int error;
  1107. tail_cycle = CYCLE_LSN(tail_lsn);
  1108. tail_block = BLOCK_LSN(tail_lsn);
  1109. head_cycle = log->l_curr_cycle;
  1110. head_block = log->l_curr_block;
  1111. /*
  1112. * Figure out the distance between the new head of the log
  1113. * and the tail. We want to write over any blocks beyond the
  1114. * head that we may have written just before the crash, but
  1115. * we don't want to overwrite the tail of the log.
  1116. */
  1117. if (head_cycle == tail_cycle) {
  1118. /*
  1119. * The tail is behind the head in the physical log,
  1120. * so the distance from the head to the tail is the
  1121. * distance from the head to the end of the log plus
  1122. * the distance from the beginning of the log to the
  1123. * tail.
  1124. */
  1125. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1126. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1127. XFS_ERRLEVEL_LOW, log->l_mp);
  1128. return XFS_ERROR(EFSCORRUPTED);
  1129. }
  1130. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1131. } else {
  1132. /*
  1133. * The head is behind the tail in the physical log,
  1134. * so the distance from the head to the tail is just
  1135. * the tail block minus the head block.
  1136. */
  1137. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1138. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1139. XFS_ERRLEVEL_LOW, log->l_mp);
  1140. return XFS_ERROR(EFSCORRUPTED);
  1141. }
  1142. tail_distance = tail_block - head_block;
  1143. }
  1144. /*
  1145. * If the head is right up against the tail, we can't clear
  1146. * anything.
  1147. */
  1148. if (tail_distance <= 0) {
  1149. ASSERT(tail_distance == 0);
  1150. return 0;
  1151. }
  1152. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1153. /*
  1154. * Take the smaller of the maximum amount of outstanding I/O
  1155. * we could have and the distance to the tail to clear out.
  1156. * We take the smaller so that we don't overwrite the tail and
  1157. * we don't waste all day writing from the head to the tail
  1158. * for no reason.
  1159. */
  1160. max_distance = MIN(max_distance, tail_distance);
  1161. if ((head_block + max_distance) <= log->l_logBBsize) {
  1162. /*
  1163. * We can stomp all the blocks we need to without
  1164. * wrapping around the end of the log. Just do it
  1165. * in a single write. Use the cycle number of the
  1166. * current cycle minus one so that the log will look like:
  1167. * n ... | n - 1 ...
  1168. */
  1169. error = xlog_write_log_records(log, (head_cycle - 1),
  1170. head_block, max_distance, tail_cycle,
  1171. tail_block);
  1172. if (error)
  1173. return error;
  1174. } else {
  1175. /*
  1176. * We need to wrap around the end of the physical log in
  1177. * order to clear all the blocks. Do it in two separate
  1178. * I/Os. The first write should be from the head to the
  1179. * end of the physical log, and it should use the current
  1180. * cycle number minus one just like above.
  1181. */
  1182. distance = log->l_logBBsize - head_block;
  1183. error = xlog_write_log_records(log, (head_cycle - 1),
  1184. head_block, distance, tail_cycle,
  1185. tail_block);
  1186. if (error)
  1187. return error;
  1188. /*
  1189. * Now write the blocks at the start of the physical log.
  1190. * This writes the remainder of the blocks we want to clear.
  1191. * It uses the current cycle number since we're now on the
  1192. * same cycle as the head so that we get:
  1193. * n ... n ... | n - 1 ...
  1194. * ^^^^^ blocks we're writing
  1195. */
  1196. distance = max_distance - (log->l_logBBsize - head_block);
  1197. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1198. tail_cycle, tail_block);
  1199. if (error)
  1200. return error;
  1201. }
  1202. return 0;
  1203. }
  1204. /******************************************************************************
  1205. *
  1206. * Log recover routines
  1207. *
  1208. ******************************************************************************
  1209. */
  1210. STATIC xlog_recover_t *
  1211. xlog_recover_find_tid(
  1212. xlog_recover_t *q,
  1213. xlog_tid_t tid)
  1214. {
  1215. xlog_recover_t *p = q;
  1216. while (p != NULL) {
  1217. if (p->r_log_tid == tid)
  1218. break;
  1219. p = p->r_next;
  1220. }
  1221. return p;
  1222. }
  1223. STATIC void
  1224. xlog_recover_put_hashq(
  1225. xlog_recover_t **q,
  1226. xlog_recover_t *trans)
  1227. {
  1228. trans->r_next = *q;
  1229. *q = trans;
  1230. }
  1231. STATIC void
  1232. xlog_recover_add_item(
  1233. xlog_recover_item_t **itemq)
  1234. {
  1235. xlog_recover_item_t *item;
  1236. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1237. xlog_recover_insert_item_backq(itemq, item);
  1238. }
  1239. STATIC int
  1240. xlog_recover_add_to_cont_trans(
  1241. xlog_recover_t *trans,
  1242. xfs_caddr_t dp,
  1243. int len)
  1244. {
  1245. xlog_recover_item_t *item;
  1246. xfs_caddr_t ptr, old_ptr;
  1247. int old_len;
  1248. item = trans->r_itemq;
  1249. if (item == NULL) {
  1250. /* finish copying rest of trans header */
  1251. xlog_recover_add_item(&trans->r_itemq);
  1252. ptr = (xfs_caddr_t) &trans->r_theader +
  1253. sizeof(xfs_trans_header_t) - len;
  1254. memcpy(ptr, dp, len); /* d, s, l */
  1255. return 0;
  1256. }
  1257. item = item->ri_prev;
  1258. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1259. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1260. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1261. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1262. item->ri_buf[item->ri_cnt-1].i_len += len;
  1263. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1264. return 0;
  1265. }
  1266. /*
  1267. * The next region to add is the start of a new region. It could be
  1268. * a whole region or it could be the first part of a new region. Because
  1269. * of this, the assumption here is that the type and size fields of all
  1270. * format structures fit into the first 32 bits of the structure.
  1271. *
  1272. * This works because all regions must be 32 bit aligned. Therefore, we
  1273. * either have both fields or we have neither field. In the case we have
  1274. * neither field, the data part of the region is zero length. We only have
  1275. * a log_op_header and can throw away the header since a new one will appear
  1276. * later. If we have at least 4 bytes, then we can determine how many regions
  1277. * will appear in the current log item.
  1278. */
  1279. STATIC int
  1280. xlog_recover_add_to_trans(
  1281. xlog_recover_t *trans,
  1282. xfs_caddr_t dp,
  1283. int len)
  1284. {
  1285. xfs_inode_log_format_t *in_f; /* any will do */
  1286. xlog_recover_item_t *item;
  1287. xfs_caddr_t ptr;
  1288. if (!len)
  1289. return 0;
  1290. item = trans->r_itemq;
  1291. if (item == NULL) {
  1292. /* we need to catch log corruptions here */
  1293. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1294. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1295. "bad header magic number");
  1296. ASSERT(0);
  1297. return XFS_ERROR(EIO);
  1298. }
  1299. if (len == sizeof(xfs_trans_header_t))
  1300. xlog_recover_add_item(&trans->r_itemq);
  1301. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1302. return 0;
  1303. }
  1304. ptr = kmem_alloc(len, KM_SLEEP);
  1305. memcpy(ptr, dp, len);
  1306. in_f = (xfs_inode_log_format_t *)ptr;
  1307. if (item->ri_prev->ri_total != 0 &&
  1308. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1309. xlog_recover_add_item(&trans->r_itemq);
  1310. }
  1311. item = trans->r_itemq;
  1312. item = item->ri_prev;
  1313. if (item->ri_total == 0) { /* first region to be added */
  1314. item->ri_total = in_f->ilf_size;
  1315. ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
  1316. item->ri_buf = kmem_zalloc((item->ri_total *
  1317. sizeof(xfs_log_iovec_t)), KM_SLEEP);
  1318. }
  1319. ASSERT(item->ri_total > item->ri_cnt);
  1320. /* Description region is ri_buf[0] */
  1321. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1322. item->ri_buf[item->ri_cnt].i_len = len;
  1323. item->ri_cnt++;
  1324. return 0;
  1325. }
  1326. STATIC void
  1327. xlog_recover_new_tid(
  1328. xlog_recover_t **q,
  1329. xlog_tid_t tid,
  1330. xfs_lsn_t lsn)
  1331. {
  1332. xlog_recover_t *trans;
  1333. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1334. trans->r_log_tid = tid;
  1335. trans->r_lsn = lsn;
  1336. xlog_recover_put_hashq(q, trans);
  1337. }
  1338. STATIC int
  1339. xlog_recover_unlink_tid(
  1340. xlog_recover_t **q,
  1341. xlog_recover_t *trans)
  1342. {
  1343. xlog_recover_t *tp;
  1344. int found = 0;
  1345. ASSERT(trans != NULL);
  1346. if (trans == *q) {
  1347. *q = (*q)->r_next;
  1348. } else {
  1349. tp = *q;
  1350. while (tp) {
  1351. if (tp->r_next == trans) {
  1352. found = 1;
  1353. break;
  1354. }
  1355. tp = tp->r_next;
  1356. }
  1357. if (!found) {
  1358. xlog_warn(
  1359. "XFS: xlog_recover_unlink_tid: trans not found");
  1360. ASSERT(0);
  1361. return XFS_ERROR(EIO);
  1362. }
  1363. tp->r_next = tp->r_next->r_next;
  1364. }
  1365. return 0;
  1366. }
  1367. STATIC void
  1368. xlog_recover_insert_item_backq(
  1369. xlog_recover_item_t **q,
  1370. xlog_recover_item_t *item)
  1371. {
  1372. if (*q == NULL) {
  1373. item->ri_prev = item->ri_next = item;
  1374. *q = item;
  1375. } else {
  1376. item->ri_next = *q;
  1377. item->ri_prev = (*q)->ri_prev;
  1378. (*q)->ri_prev = item;
  1379. item->ri_prev->ri_next = item;
  1380. }
  1381. }
  1382. STATIC void
  1383. xlog_recover_insert_item_frontq(
  1384. xlog_recover_item_t **q,
  1385. xlog_recover_item_t *item)
  1386. {
  1387. xlog_recover_insert_item_backq(q, item);
  1388. *q = item;
  1389. }
  1390. STATIC int
  1391. xlog_recover_reorder_trans(
  1392. xlog_recover_t *trans)
  1393. {
  1394. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1395. xfs_buf_log_format_t *buf_f;
  1396. ushort flags = 0;
  1397. first_item = itemq = trans->r_itemq;
  1398. trans->r_itemq = NULL;
  1399. do {
  1400. itemq_next = itemq->ri_next;
  1401. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1402. switch (ITEM_TYPE(itemq)) {
  1403. case XFS_LI_BUF:
  1404. flags = buf_f->blf_flags;
  1405. if (!(flags & XFS_BLI_CANCEL)) {
  1406. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1407. itemq);
  1408. break;
  1409. }
  1410. case XFS_LI_INODE:
  1411. case XFS_LI_DQUOT:
  1412. case XFS_LI_QUOTAOFF:
  1413. case XFS_LI_EFD:
  1414. case XFS_LI_EFI:
  1415. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1416. break;
  1417. default:
  1418. xlog_warn(
  1419. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1420. ASSERT(0);
  1421. return XFS_ERROR(EIO);
  1422. }
  1423. itemq = itemq_next;
  1424. } while (first_item != itemq);
  1425. return 0;
  1426. }
  1427. /*
  1428. * Build up the table of buf cancel records so that we don't replay
  1429. * cancelled data in the second pass. For buffer records that are
  1430. * not cancel records, there is nothing to do here so we just return.
  1431. *
  1432. * If we get a cancel record which is already in the table, this indicates
  1433. * that the buffer was cancelled multiple times. In order to ensure
  1434. * that during pass 2 we keep the record in the table until we reach its
  1435. * last occurrence in the log, we keep a reference count in the cancel
  1436. * record in the table to tell us how many times we expect to see this
  1437. * record during the second pass.
  1438. */
  1439. STATIC void
  1440. xlog_recover_do_buffer_pass1(
  1441. xlog_t *log,
  1442. xfs_buf_log_format_t *buf_f)
  1443. {
  1444. xfs_buf_cancel_t *bcp;
  1445. xfs_buf_cancel_t *nextp;
  1446. xfs_buf_cancel_t *prevp;
  1447. xfs_buf_cancel_t **bucket;
  1448. xfs_daddr_t blkno = 0;
  1449. uint len = 0;
  1450. ushort flags = 0;
  1451. switch (buf_f->blf_type) {
  1452. case XFS_LI_BUF:
  1453. blkno = buf_f->blf_blkno;
  1454. len = buf_f->blf_len;
  1455. flags = buf_f->blf_flags;
  1456. break;
  1457. }
  1458. /*
  1459. * If this isn't a cancel buffer item, then just return.
  1460. */
  1461. if (!(flags & XFS_BLI_CANCEL))
  1462. return;
  1463. /*
  1464. * Insert an xfs_buf_cancel record into the hash table of
  1465. * them. If there is already an identical record, bump
  1466. * its reference count.
  1467. */
  1468. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1469. XLOG_BC_TABLE_SIZE];
  1470. /*
  1471. * If the hash bucket is empty then just insert a new record into
  1472. * the bucket.
  1473. */
  1474. if (*bucket == NULL) {
  1475. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1476. KM_SLEEP);
  1477. bcp->bc_blkno = blkno;
  1478. bcp->bc_len = len;
  1479. bcp->bc_refcount = 1;
  1480. bcp->bc_next = NULL;
  1481. *bucket = bcp;
  1482. return;
  1483. }
  1484. /*
  1485. * The hash bucket is not empty, so search for duplicates of our
  1486. * record. If we find one them just bump its refcount. If not
  1487. * then add us at the end of the list.
  1488. */
  1489. prevp = NULL;
  1490. nextp = *bucket;
  1491. while (nextp != NULL) {
  1492. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1493. nextp->bc_refcount++;
  1494. return;
  1495. }
  1496. prevp = nextp;
  1497. nextp = nextp->bc_next;
  1498. }
  1499. ASSERT(prevp != NULL);
  1500. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1501. KM_SLEEP);
  1502. bcp->bc_blkno = blkno;
  1503. bcp->bc_len = len;
  1504. bcp->bc_refcount = 1;
  1505. bcp->bc_next = NULL;
  1506. prevp->bc_next = bcp;
  1507. }
  1508. /*
  1509. * Check to see whether the buffer being recovered has a corresponding
  1510. * entry in the buffer cancel record table. If it does then return 1
  1511. * so that it will be cancelled, otherwise return 0. If the buffer is
  1512. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1513. * the refcount on the entry in the table and remove it from the table
  1514. * if this is the last reference.
  1515. *
  1516. * We remove the cancel record from the table when we encounter its
  1517. * last occurrence in the log so that if the same buffer is re-used
  1518. * again after its last cancellation we actually replay the changes
  1519. * made at that point.
  1520. */
  1521. STATIC int
  1522. xlog_check_buffer_cancelled(
  1523. xlog_t *log,
  1524. xfs_daddr_t blkno,
  1525. uint len,
  1526. ushort flags)
  1527. {
  1528. xfs_buf_cancel_t *bcp;
  1529. xfs_buf_cancel_t *prevp;
  1530. xfs_buf_cancel_t **bucket;
  1531. if (log->l_buf_cancel_table == NULL) {
  1532. /*
  1533. * There is nothing in the table built in pass one,
  1534. * so this buffer must not be cancelled.
  1535. */
  1536. ASSERT(!(flags & XFS_BLI_CANCEL));
  1537. return 0;
  1538. }
  1539. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1540. XLOG_BC_TABLE_SIZE];
  1541. bcp = *bucket;
  1542. if (bcp == NULL) {
  1543. /*
  1544. * There is no corresponding entry in the table built
  1545. * in pass one, so this buffer has not been cancelled.
  1546. */
  1547. ASSERT(!(flags & XFS_BLI_CANCEL));
  1548. return 0;
  1549. }
  1550. /*
  1551. * Search for an entry in the buffer cancel table that
  1552. * matches our buffer.
  1553. */
  1554. prevp = NULL;
  1555. while (bcp != NULL) {
  1556. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1557. /*
  1558. * We've go a match, so return 1 so that the
  1559. * recovery of this buffer is cancelled.
  1560. * If this buffer is actually a buffer cancel
  1561. * log item, then decrement the refcount on the
  1562. * one in the table and remove it if this is the
  1563. * last reference.
  1564. */
  1565. if (flags & XFS_BLI_CANCEL) {
  1566. bcp->bc_refcount--;
  1567. if (bcp->bc_refcount == 0) {
  1568. if (prevp == NULL) {
  1569. *bucket = bcp->bc_next;
  1570. } else {
  1571. prevp->bc_next = bcp->bc_next;
  1572. }
  1573. kmem_free(bcp);
  1574. }
  1575. }
  1576. return 1;
  1577. }
  1578. prevp = bcp;
  1579. bcp = bcp->bc_next;
  1580. }
  1581. /*
  1582. * We didn't find a corresponding entry in the table, so
  1583. * return 0 so that the buffer is NOT cancelled.
  1584. */
  1585. ASSERT(!(flags & XFS_BLI_CANCEL));
  1586. return 0;
  1587. }
  1588. STATIC int
  1589. xlog_recover_do_buffer_pass2(
  1590. xlog_t *log,
  1591. xfs_buf_log_format_t *buf_f)
  1592. {
  1593. xfs_daddr_t blkno = 0;
  1594. ushort flags = 0;
  1595. uint len = 0;
  1596. switch (buf_f->blf_type) {
  1597. case XFS_LI_BUF:
  1598. blkno = buf_f->blf_blkno;
  1599. flags = buf_f->blf_flags;
  1600. len = buf_f->blf_len;
  1601. break;
  1602. }
  1603. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1604. }
  1605. /*
  1606. * Perform recovery for a buffer full of inodes. In these buffers,
  1607. * the only data which should be recovered is that which corresponds
  1608. * to the di_next_unlinked pointers in the on disk inode structures.
  1609. * The rest of the data for the inodes is always logged through the
  1610. * inodes themselves rather than the inode buffer and is recovered
  1611. * in xlog_recover_do_inode_trans().
  1612. *
  1613. * The only time when buffers full of inodes are fully recovered is
  1614. * when the buffer is full of newly allocated inodes. In this case
  1615. * the buffer will not be marked as an inode buffer and so will be
  1616. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1617. */
  1618. STATIC int
  1619. xlog_recover_do_inode_buffer(
  1620. xfs_mount_t *mp,
  1621. xlog_recover_item_t *item,
  1622. xfs_buf_t *bp,
  1623. xfs_buf_log_format_t *buf_f)
  1624. {
  1625. int i;
  1626. int item_index;
  1627. int bit;
  1628. int nbits;
  1629. int reg_buf_offset;
  1630. int reg_buf_bytes;
  1631. int next_unlinked_offset;
  1632. int inodes_per_buf;
  1633. xfs_agino_t *logged_nextp;
  1634. xfs_agino_t *buffer_nextp;
  1635. unsigned int *data_map = NULL;
  1636. unsigned int map_size = 0;
  1637. switch (buf_f->blf_type) {
  1638. case XFS_LI_BUF:
  1639. data_map = buf_f->blf_data_map;
  1640. map_size = buf_f->blf_map_size;
  1641. break;
  1642. }
  1643. /*
  1644. * Set the variables corresponding to the current region to
  1645. * 0 so that we'll initialize them on the first pass through
  1646. * the loop.
  1647. */
  1648. reg_buf_offset = 0;
  1649. reg_buf_bytes = 0;
  1650. bit = 0;
  1651. nbits = 0;
  1652. item_index = 0;
  1653. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1654. for (i = 0; i < inodes_per_buf; i++) {
  1655. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1656. offsetof(xfs_dinode_t, di_next_unlinked);
  1657. while (next_unlinked_offset >=
  1658. (reg_buf_offset + reg_buf_bytes)) {
  1659. /*
  1660. * The next di_next_unlinked field is beyond
  1661. * the current logged region. Find the next
  1662. * logged region that contains or is beyond
  1663. * the current di_next_unlinked field.
  1664. */
  1665. bit += nbits;
  1666. bit = xfs_next_bit(data_map, map_size, bit);
  1667. /*
  1668. * If there are no more logged regions in the
  1669. * buffer, then we're done.
  1670. */
  1671. if (bit == -1) {
  1672. return 0;
  1673. }
  1674. nbits = xfs_contig_bits(data_map, map_size,
  1675. bit);
  1676. ASSERT(nbits > 0);
  1677. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1678. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1679. item_index++;
  1680. }
  1681. /*
  1682. * If the current logged region starts after the current
  1683. * di_next_unlinked field, then move on to the next
  1684. * di_next_unlinked field.
  1685. */
  1686. if (next_unlinked_offset < reg_buf_offset) {
  1687. continue;
  1688. }
  1689. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1690. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1691. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1692. /*
  1693. * The current logged region contains a copy of the
  1694. * current di_next_unlinked field. Extract its value
  1695. * and copy it to the buffer copy.
  1696. */
  1697. logged_nextp = (xfs_agino_t *)
  1698. ((char *)(item->ri_buf[item_index].i_addr) +
  1699. (next_unlinked_offset - reg_buf_offset));
  1700. if (unlikely(*logged_nextp == 0)) {
  1701. xfs_fs_cmn_err(CE_ALERT, mp,
  1702. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1703. item, bp);
  1704. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1705. XFS_ERRLEVEL_LOW, mp);
  1706. return XFS_ERROR(EFSCORRUPTED);
  1707. }
  1708. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1709. next_unlinked_offset);
  1710. *buffer_nextp = *logged_nextp;
  1711. }
  1712. return 0;
  1713. }
  1714. /*
  1715. * Perform a 'normal' buffer recovery. Each logged region of the
  1716. * buffer should be copied over the corresponding region in the
  1717. * given buffer. The bitmap in the buf log format structure indicates
  1718. * where to place the logged data.
  1719. */
  1720. /*ARGSUSED*/
  1721. STATIC void
  1722. xlog_recover_do_reg_buffer(
  1723. xlog_recover_item_t *item,
  1724. xfs_buf_t *bp,
  1725. xfs_buf_log_format_t *buf_f)
  1726. {
  1727. int i;
  1728. int bit;
  1729. int nbits;
  1730. unsigned int *data_map = NULL;
  1731. unsigned int map_size = 0;
  1732. int error;
  1733. switch (buf_f->blf_type) {
  1734. case XFS_LI_BUF:
  1735. data_map = buf_f->blf_data_map;
  1736. map_size = buf_f->blf_map_size;
  1737. break;
  1738. }
  1739. bit = 0;
  1740. i = 1; /* 0 is the buf format structure */
  1741. while (1) {
  1742. bit = xfs_next_bit(data_map, map_size, bit);
  1743. if (bit == -1)
  1744. break;
  1745. nbits = xfs_contig_bits(data_map, map_size, bit);
  1746. ASSERT(nbits > 0);
  1747. ASSERT(item->ri_buf[i].i_addr != NULL);
  1748. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1749. ASSERT(XFS_BUF_COUNT(bp) >=
  1750. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1751. /*
  1752. * Do a sanity check if this is a dquot buffer. Just checking
  1753. * the first dquot in the buffer should do. XXXThis is
  1754. * probably a good thing to do for other buf types also.
  1755. */
  1756. error = 0;
  1757. if (buf_f->blf_flags &
  1758. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1759. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1760. item->ri_buf[i].i_addr,
  1761. -1, 0, XFS_QMOPT_DOWARN,
  1762. "dquot_buf_recover");
  1763. }
  1764. if (!error)
  1765. memcpy(xfs_buf_offset(bp,
  1766. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1767. item->ri_buf[i].i_addr, /* source */
  1768. nbits<<XFS_BLI_SHIFT); /* length */
  1769. i++;
  1770. bit += nbits;
  1771. }
  1772. /* Shouldn't be any more regions */
  1773. ASSERT(i == item->ri_total);
  1774. }
  1775. /*
  1776. * Do some primitive error checking on ondisk dquot data structures.
  1777. */
  1778. int
  1779. xfs_qm_dqcheck(
  1780. xfs_disk_dquot_t *ddq,
  1781. xfs_dqid_t id,
  1782. uint type, /* used only when IO_dorepair is true */
  1783. uint flags,
  1784. char *str)
  1785. {
  1786. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1787. int errs = 0;
  1788. /*
  1789. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1790. * 1. If we crash while deleting the quotainode(s), and those blks got
  1791. * used for user data. This is because we take the path of regular
  1792. * file deletion; however, the size field of quotainodes is never
  1793. * updated, so all the tricks that we play in itruncate_finish
  1794. * don't quite matter.
  1795. *
  1796. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1797. * But the allocation will be replayed so we'll end up with an
  1798. * uninitialized quota block.
  1799. *
  1800. * This is all fine; things are still consistent, and we haven't lost
  1801. * any quota information. Just don't complain about bad dquot blks.
  1802. */
  1803. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1804. if (flags & XFS_QMOPT_DOWARN)
  1805. cmn_err(CE_ALERT,
  1806. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1807. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1808. errs++;
  1809. }
  1810. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1811. if (flags & XFS_QMOPT_DOWARN)
  1812. cmn_err(CE_ALERT,
  1813. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1814. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1815. errs++;
  1816. }
  1817. if (ddq->d_flags != XFS_DQ_USER &&
  1818. ddq->d_flags != XFS_DQ_PROJ &&
  1819. ddq->d_flags != XFS_DQ_GROUP) {
  1820. if (flags & XFS_QMOPT_DOWARN)
  1821. cmn_err(CE_ALERT,
  1822. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1823. str, id, ddq->d_flags);
  1824. errs++;
  1825. }
  1826. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1827. if (flags & XFS_QMOPT_DOWARN)
  1828. cmn_err(CE_ALERT,
  1829. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1830. "0x%x expected, found id 0x%x",
  1831. str, ddq, id, be32_to_cpu(ddq->d_id));
  1832. errs++;
  1833. }
  1834. if (!errs && ddq->d_id) {
  1835. if (ddq->d_blk_softlimit &&
  1836. be64_to_cpu(ddq->d_bcount) >=
  1837. be64_to_cpu(ddq->d_blk_softlimit)) {
  1838. if (!ddq->d_btimer) {
  1839. if (flags & XFS_QMOPT_DOWARN)
  1840. cmn_err(CE_ALERT,
  1841. "%s : Dquot ID 0x%x (0x%p) "
  1842. "BLK TIMER NOT STARTED",
  1843. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1844. errs++;
  1845. }
  1846. }
  1847. if (ddq->d_ino_softlimit &&
  1848. be64_to_cpu(ddq->d_icount) >=
  1849. be64_to_cpu(ddq->d_ino_softlimit)) {
  1850. if (!ddq->d_itimer) {
  1851. if (flags & XFS_QMOPT_DOWARN)
  1852. cmn_err(CE_ALERT,
  1853. "%s : Dquot ID 0x%x (0x%p) "
  1854. "INODE TIMER NOT STARTED",
  1855. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1856. errs++;
  1857. }
  1858. }
  1859. if (ddq->d_rtb_softlimit &&
  1860. be64_to_cpu(ddq->d_rtbcount) >=
  1861. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1862. if (!ddq->d_rtbtimer) {
  1863. if (flags & XFS_QMOPT_DOWARN)
  1864. cmn_err(CE_ALERT,
  1865. "%s : Dquot ID 0x%x (0x%p) "
  1866. "RTBLK TIMER NOT STARTED",
  1867. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1868. errs++;
  1869. }
  1870. }
  1871. }
  1872. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1873. return errs;
  1874. if (flags & XFS_QMOPT_DOWARN)
  1875. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1876. /*
  1877. * Typically, a repair is only requested by quotacheck.
  1878. */
  1879. ASSERT(id != -1);
  1880. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1881. memset(d, 0, sizeof(xfs_dqblk_t));
  1882. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1883. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1884. d->dd_diskdq.d_flags = type;
  1885. d->dd_diskdq.d_id = cpu_to_be32(id);
  1886. return errs;
  1887. }
  1888. /*
  1889. * Perform a dquot buffer recovery.
  1890. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1891. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1892. * Else, treat it as a regular buffer and do recovery.
  1893. */
  1894. STATIC void
  1895. xlog_recover_do_dquot_buffer(
  1896. xfs_mount_t *mp,
  1897. xlog_t *log,
  1898. xlog_recover_item_t *item,
  1899. xfs_buf_t *bp,
  1900. xfs_buf_log_format_t *buf_f)
  1901. {
  1902. uint type;
  1903. /*
  1904. * Filesystems are required to send in quota flags at mount time.
  1905. */
  1906. if (mp->m_qflags == 0) {
  1907. return;
  1908. }
  1909. type = 0;
  1910. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1911. type |= XFS_DQ_USER;
  1912. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1913. type |= XFS_DQ_PROJ;
  1914. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1915. type |= XFS_DQ_GROUP;
  1916. /*
  1917. * This type of quotas was turned off, so ignore this buffer
  1918. */
  1919. if (log->l_quotaoffs_flag & type)
  1920. return;
  1921. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1922. }
  1923. /*
  1924. * This routine replays a modification made to a buffer at runtime.
  1925. * There are actually two types of buffer, regular and inode, which
  1926. * are handled differently. Inode buffers are handled differently
  1927. * in that we only recover a specific set of data from them, namely
  1928. * the inode di_next_unlinked fields. This is because all other inode
  1929. * data is actually logged via inode records and any data we replay
  1930. * here which overlaps that may be stale.
  1931. *
  1932. * When meta-data buffers are freed at run time we log a buffer item
  1933. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1934. * of the buffer in the log should not be replayed at recovery time.
  1935. * This is so that if the blocks covered by the buffer are reused for
  1936. * file data before we crash we don't end up replaying old, freed
  1937. * meta-data into a user's file.
  1938. *
  1939. * To handle the cancellation of buffer log items, we make two passes
  1940. * over the log during recovery. During the first we build a table of
  1941. * those buffers which have been cancelled, and during the second we
  1942. * only replay those buffers which do not have corresponding cancel
  1943. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1944. * for more details on the implementation of the table of cancel records.
  1945. */
  1946. STATIC int
  1947. xlog_recover_do_buffer_trans(
  1948. xlog_t *log,
  1949. xlog_recover_item_t *item,
  1950. int pass)
  1951. {
  1952. xfs_buf_log_format_t *buf_f;
  1953. xfs_mount_t *mp;
  1954. xfs_buf_t *bp;
  1955. int error;
  1956. int cancel;
  1957. xfs_daddr_t blkno;
  1958. int len;
  1959. ushort flags;
  1960. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1961. if (pass == XLOG_RECOVER_PASS1) {
  1962. /*
  1963. * In this pass we're only looking for buf items
  1964. * with the XFS_BLI_CANCEL bit set.
  1965. */
  1966. xlog_recover_do_buffer_pass1(log, buf_f);
  1967. return 0;
  1968. } else {
  1969. /*
  1970. * In this pass we want to recover all the buffers
  1971. * which have not been cancelled and are not
  1972. * cancellation buffers themselves. The routine
  1973. * we call here will tell us whether or not to
  1974. * continue with the replay of this buffer.
  1975. */
  1976. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  1977. if (cancel) {
  1978. return 0;
  1979. }
  1980. }
  1981. switch (buf_f->blf_type) {
  1982. case XFS_LI_BUF:
  1983. blkno = buf_f->blf_blkno;
  1984. len = buf_f->blf_len;
  1985. flags = buf_f->blf_flags;
  1986. break;
  1987. default:
  1988. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  1989. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  1990. buf_f->blf_type, log->l_mp->m_logname ?
  1991. log->l_mp->m_logname : "internal");
  1992. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  1993. XFS_ERRLEVEL_LOW, log->l_mp);
  1994. return XFS_ERROR(EFSCORRUPTED);
  1995. }
  1996. mp = log->l_mp;
  1997. if (flags & XFS_BLI_INODE_BUF) {
  1998. bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
  1999. XFS_BUF_LOCK);
  2000. } else {
  2001. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
  2002. }
  2003. if (XFS_BUF_ISERROR(bp)) {
  2004. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2005. bp, blkno);
  2006. error = XFS_BUF_GETERROR(bp);
  2007. xfs_buf_relse(bp);
  2008. return error;
  2009. }
  2010. error = 0;
  2011. if (flags & XFS_BLI_INODE_BUF) {
  2012. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2013. } else if (flags &
  2014. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2015. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2016. } else {
  2017. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2018. }
  2019. if (error)
  2020. return XFS_ERROR(error);
  2021. /*
  2022. * Perform delayed write on the buffer. Asynchronous writes will be
  2023. * slower when taking into account all the buffers to be flushed.
  2024. *
  2025. * Also make sure that only inode buffers with good sizes stay in
  2026. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2027. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2028. * buffers in the log can be a different size if the log was generated
  2029. * by an older kernel using unclustered inode buffers or a newer kernel
  2030. * running with a different inode cluster size. Regardless, if the
  2031. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2032. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2033. * the buffer out of the buffer cache so that the buffer won't
  2034. * overlap with future reads of those inodes.
  2035. */
  2036. if (XFS_DINODE_MAGIC ==
  2037. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2038. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2039. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2040. XFS_BUF_STALE(bp);
  2041. error = xfs_bwrite(mp, bp);
  2042. } else {
  2043. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2044. bp->b_mount = mp;
  2045. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2046. xfs_bdwrite(mp, bp);
  2047. }
  2048. return (error);
  2049. }
  2050. STATIC int
  2051. xlog_recover_do_inode_trans(
  2052. xlog_t *log,
  2053. xlog_recover_item_t *item,
  2054. int pass)
  2055. {
  2056. xfs_inode_log_format_t *in_f;
  2057. xfs_mount_t *mp;
  2058. xfs_buf_t *bp;
  2059. xfs_dinode_t *dip;
  2060. xfs_ino_t ino;
  2061. int len;
  2062. xfs_caddr_t src;
  2063. xfs_caddr_t dest;
  2064. int error;
  2065. int attr_index;
  2066. uint fields;
  2067. xfs_icdinode_t *dicp;
  2068. int need_free = 0;
  2069. if (pass == XLOG_RECOVER_PASS1) {
  2070. return 0;
  2071. }
  2072. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2073. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2074. } else {
  2075. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2076. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2077. need_free = 1;
  2078. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2079. if (error)
  2080. goto error;
  2081. }
  2082. ino = in_f->ilf_ino;
  2083. mp = log->l_mp;
  2084. /*
  2085. * Inode buffers can be freed, look out for it,
  2086. * and do not replay the inode.
  2087. */
  2088. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2089. in_f->ilf_len, 0)) {
  2090. error = 0;
  2091. goto error;
  2092. }
  2093. bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
  2094. in_f->ilf_len, XFS_BUF_LOCK);
  2095. if (XFS_BUF_ISERROR(bp)) {
  2096. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2097. bp, in_f->ilf_blkno);
  2098. error = XFS_BUF_GETERROR(bp);
  2099. xfs_buf_relse(bp);
  2100. goto error;
  2101. }
  2102. error = 0;
  2103. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2104. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2105. /*
  2106. * Make sure the place we're flushing out to really looks
  2107. * like an inode!
  2108. */
  2109. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2110. xfs_buf_relse(bp);
  2111. xfs_fs_cmn_err(CE_ALERT, mp,
  2112. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2113. dip, bp, ino);
  2114. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2115. XFS_ERRLEVEL_LOW, mp);
  2116. error = EFSCORRUPTED;
  2117. goto error;
  2118. }
  2119. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2120. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2121. xfs_buf_relse(bp);
  2122. xfs_fs_cmn_err(CE_ALERT, mp,
  2123. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2124. item, ino);
  2125. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2126. XFS_ERRLEVEL_LOW, mp);
  2127. error = EFSCORRUPTED;
  2128. goto error;
  2129. }
  2130. /* Skip replay when the on disk inode is newer than the log one */
  2131. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2132. /*
  2133. * Deal with the wrap case, DI_MAX_FLUSH is less
  2134. * than smaller numbers
  2135. */
  2136. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2137. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2138. /* do nothing */
  2139. } else {
  2140. xfs_buf_relse(bp);
  2141. error = 0;
  2142. goto error;
  2143. }
  2144. }
  2145. /* Take the opportunity to reset the flush iteration count */
  2146. dicp->di_flushiter = 0;
  2147. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2148. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2149. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2150. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2151. XFS_ERRLEVEL_LOW, mp, dicp);
  2152. xfs_buf_relse(bp);
  2153. xfs_fs_cmn_err(CE_ALERT, mp,
  2154. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2155. item, dip, bp, ino);
  2156. error = EFSCORRUPTED;
  2157. goto error;
  2158. }
  2159. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2160. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2161. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2162. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2163. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2164. XFS_ERRLEVEL_LOW, mp, dicp);
  2165. xfs_buf_relse(bp);
  2166. xfs_fs_cmn_err(CE_ALERT, mp,
  2167. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2168. item, dip, bp, ino);
  2169. error = EFSCORRUPTED;
  2170. goto error;
  2171. }
  2172. }
  2173. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2174. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2175. XFS_ERRLEVEL_LOW, mp, dicp);
  2176. xfs_buf_relse(bp);
  2177. xfs_fs_cmn_err(CE_ALERT, mp,
  2178. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2179. item, dip, bp, ino,
  2180. dicp->di_nextents + dicp->di_anextents,
  2181. dicp->di_nblocks);
  2182. error = EFSCORRUPTED;
  2183. goto error;
  2184. }
  2185. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2186. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2187. XFS_ERRLEVEL_LOW, mp, dicp);
  2188. xfs_buf_relse(bp);
  2189. xfs_fs_cmn_err(CE_ALERT, mp,
  2190. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2191. item, dip, bp, ino, dicp->di_forkoff);
  2192. error = EFSCORRUPTED;
  2193. goto error;
  2194. }
  2195. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2196. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2197. XFS_ERRLEVEL_LOW, mp, dicp);
  2198. xfs_buf_relse(bp);
  2199. xfs_fs_cmn_err(CE_ALERT, mp,
  2200. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2201. item->ri_buf[1].i_len, item);
  2202. error = EFSCORRUPTED;
  2203. goto error;
  2204. }
  2205. /* The core is in in-core format */
  2206. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2207. /* the rest is in on-disk format */
  2208. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2209. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2210. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2211. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2212. }
  2213. fields = in_f->ilf_fields;
  2214. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2215. case XFS_ILOG_DEV:
  2216. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2217. break;
  2218. case XFS_ILOG_UUID:
  2219. memcpy(XFS_DFORK_DPTR(dip),
  2220. &in_f->ilf_u.ilfu_uuid,
  2221. sizeof(uuid_t));
  2222. break;
  2223. }
  2224. if (in_f->ilf_size == 2)
  2225. goto write_inode_buffer;
  2226. len = item->ri_buf[2].i_len;
  2227. src = item->ri_buf[2].i_addr;
  2228. ASSERT(in_f->ilf_size <= 4);
  2229. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2230. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2231. (len == in_f->ilf_dsize));
  2232. switch (fields & XFS_ILOG_DFORK) {
  2233. case XFS_ILOG_DDATA:
  2234. case XFS_ILOG_DEXT:
  2235. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2236. break;
  2237. case XFS_ILOG_DBROOT:
  2238. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2239. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2240. XFS_DFORK_DSIZE(dip, mp));
  2241. break;
  2242. default:
  2243. /*
  2244. * There are no data fork flags set.
  2245. */
  2246. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2247. break;
  2248. }
  2249. /*
  2250. * If we logged any attribute data, recover it. There may or
  2251. * may not have been any other non-core data logged in this
  2252. * transaction.
  2253. */
  2254. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2255. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2256. attr_index = 3;
  2257. } else {
  2258. attr_index = 2;
  2259. }
  2260. len = item->ri_buf[attr_index].i_len;
  2261. src = item->ri_buf[attr_index].i_addr;
  2262. ASSERT(len == in_f->ilf_asize);
  2263. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2264. case XFS_ILOG_ADATA:
  2265. case XFS_ILOG_AEXT:
  2266. dest = XFS_DFORK_APTR(dip);
  2267. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2268. memcpy(dest, src, len);
  2269. break;
  2270. case XFS_ILOG_ABROOT:
  2271. dest = XFS_DFORK_APTR(dip);
  2272. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2273. len, (xfs_bmdr_block_t*)dest,
  2274. XFS_DFORK_ASIZE(dip, mp));
  2275. break;
  2276. default:
  2277. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2278. ASSERT(0);
  2279. xfs_buf_relse(bp);
  2280. error = EIO;
  2281. goto error;
  2282. }
  2283. }
  2284. write_inode_buffer:
  2285. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2286. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2287. bp->b_mount = mp;
  2288. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2289. xfs_bdwrite(mp, bp);
  2290. } else {
  2291. XFS_BUF_STALE(bp);
  2292. error = xfs_bwrite(mp, bp);
  2293. }
  2294. error:
  2295. if (need_free)
  2296. kmem_free(in_f);
  2297. return XFS_ERROR(error);
  2298. }
  2299. /*
  2300. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2301. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2302. * of that type.
  2303. */
  2304. STATIC int
  2305. xlog_recover_do_quotaoff_trans(
  2306. xlog_t *log,
  2307. xlog_recover_item_t *item,
  2308. int pass)
  2309. {
  2310. xfs_qoff_logformat_t *qoff_f;
  2311. if (pass == XLOG_RECOVER_PASS2) {
  2312. return (0);
  2313. }
  2314. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2315. ASSERT(qoff_f);
  2316. /*
  2317. * The logitem format's flag tells us if this was user quotaoff,
  2318. * group/project quotaoff or both.
  2319. */
  2320. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2321. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2322. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2323. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2324. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2325. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2326. return (0);
  2327. }
  2328. /*
  2329. * Recover a dquot record
  2330. */
  2331. STATIC int
  2332. xlog_recover_do_dquot_trans(
  2333. xlog_t *log,
  2334. xlog_recover_item_t *item,
  2335. int pass)
  2336. {
  2337. xfs_mount_t *mp;
  2338. xfs_buf_t *bp;
  2339. struct xfs_disk_dquot *ddq, *recddq;
  2340. int error;
  2341. xfs_dq_logformat_t *dq_f;
  2342. uint type;
  2343. if (pass == XLOG_RECOVER_PASS1) {
  2344. return 0;
  2345. }
  2346. mp = log->l_mp;
  2347. /*
  2348. * Filesystems are required to send in quota flags at mount time.
  2349. */
  2350. if (mp->m_qflags == 0)
  2351. return (0);
  2352. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2353. ASSERT(recddq);
  2354. /*
  2355. * This type of quotas was turned off, so ignore this record.
  2356. */
  2357. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2358. ASSERT(type);
  2359. if (log->l_quotaoffs_flag & type)
  2360. return (0);
  2361. /*
  2362. * At this point we know that quota was _not_ turned off.
  2363. * Since the mount flags are not indicating to us otherwise, this
  2364. * must mean that quota is on, and the dquot needs to be replayed.
  2365. * Remember that we may not have fully recovered the superblock yet,
  2366. * so we can't do the usual trick of looking at the SB quota bits.
  2367. *
  2368. * The other possibility, of course, is that the quota subsystem was
  2369. * removed since the last mount - ENOSYS.
  2370. */
  2371. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2372. ASSERT(dq_f);
  2373. if ((error = xfs_qm_dqcheck(recddq,
  2374. dq_f->qlf_id,
  2375. 0, XFS_QMOPT_DOWARN,
  2376. "xlog_recover_do_dquot_trans (log copy)"))) {
  2377. return XFS_ERROR(EIO);
  2378. }
  2379. ASSERT(dq_f->qlf_len == 1);
  2380. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2381. dq_f->qlf_blkno,
  2382. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2383. 0, &bp);
  2384. if (error) {
  2385. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2386. bp, dq_f->qlf_blkno);
  2387. return error;
  2388. }
  2389. ASSERT(bp);
  2390. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2391. /*
  2392. * At least the magic num portion should be on disk because this
  2393. * was among a chunk of dquots created earlier, and we did some
  2394. * minimal initialization then.
  2395. */
  2396. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2397. "xlog_recover_do_dquot_trans")) {
  2398. xfs_buf_relse(bp);
  2399. return XFS_ERROR(EIO);
  2400. }
  2401. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2402. ASSERT(dq_f->qlf_size == 2);
  2403. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2404. bp->b_mount = mp;
  2405. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2406. xfs_bdwrite(mp, bp);
  2407. return (0);
  2408. }
  2409. /*
  2410. * This routine is called to create an in-core extent free intent
  2411. * item from the efi format structure which was logged on disk.
  2412. * It allocates an in-core efi, copies the extents from the format
  2413. * structure into it, and adds the efi to the AIL with the given
  2414. * LSN.
  2415. */
  2416. STATIC int
  2417. xlog_recover_do_efi_trans(
  2418. xlog_t *log,
  2419. xlog_recover_item_t *item,
  2420. xfs_lsn_t lsn,
  2421. int pass)
  2422. {
  2423. int error;
  2424. xfs_mount_t *mp;
  2425. xfs_efi_log_item_t *efip;
  2426. xfs_efi_log_format_t *efi_formatp;
  2427. if (pass == XLOG_RECOVER_PASS1) {
  2428. return 0;
  2429. }
  2430. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2431. mp = log->l_mp;
  2432. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2433. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2434. &(efip->efi_format)))) {
  2435. xfs_efi_item_free(efip);
  2436. return error;
  2437. }
  2438. efip->efi_next_extent = efi_formatp->efi_nextents;
  2439. efip->efi_flags |= XFS_EFI_COMMITTED;
  2440. spin_lock(&log->l_ailp->xa_lock);
  2441. /*
  2442. * xfs_trans_ail_update() drops the AIL lock.
  2443. */
  2444. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2445. return 0;
  2446. }
  2447. /*
  2448. * This routine is called when an efd format structure is found in
  2449. * a committed transaction in the log. It's purpose is to cancel
  2450. * the corresponding efi if it was still in the log. To do this
  2451. * it searches the AIL for the efi with an id equal to that in the
  2452. * efd format structure. If we find it, we remove the efi from the
  2453. * AIL and free it.
  2454. */
  2455. STATIC void
  2456. xlog_recover_do_efd_trans(
  2457. xlog_t *log,
  2458. xlog_recover_item_t *item,
  2459. int pass)
  2460. {
  2461. xfs_efd_log_format_t *efd_formatp;
  2462. xfs_efi_log_item_t *efip = NULL;
  2463. xfs_log_item_t *lip;
  2464. __uint64_t efi_id;
  2465. struct xfs_ail_cursor cur;
  2466. struct xfs_ail *ailp = log->l_ailp;
  2467. if (pass == XLOG_RECOVER_PASS1) {
  2468. return;
  2469. }
  2470. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2471. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2472. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2473. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2474. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2475. efi_id = efd_formatp->efd_efi_id;
  2476. /*
  2477. * Search for the efi with the id in the efd format structure
  2478. * in the AIL.
  2479. */
  2480. spin_lock(&ailp->xa_lock);
  2481. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2482. while (lip != NULL) {
  2483. if (lip->li_type == XFS_LI_EFI) {
  2484. efip = (xfs_efi_log_item_t *)lip;
  2485. if (efip->efi_format.efi_id == efi_id) {
  2486. /*
  2487. * xfs_trans_ail_delete() drops the
  2488. * AIL lock.
  2489. */
  2490. xfs_trans_ail_delete(ailp, lip);
  2491. xfs_efi_item_free(efip);
  2492. spin_lock(&ailp->xa_lock);
  2493. break;
  2494. }
  2495. }
  2496. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2497. }
  2498. xfs_trans_ail_cursor_done(ailp, &cur);
  2499. spin_unlock(&ailp->xa_lock);
  2500. }
  2501. /*
  2502. * Perform the transaction
  2503. *
  2504. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2505. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2506. */
  2507. STATIC int
  2508. xlog_recover_do_trans(
  2509. xlog_t *log,
  2510. xlog_recover_t *trans,
  2511. int pass)
  2512. {
  2513. int error = 0;
  2514. xlog_recover_item_t *item, *first_item;
  2515. if ((error = xlog_recover_reorder_trans(trans)))
  2516. return error;
  2517. first_item = item = trans->r_itemq;
  2518. do {
  2519. /*
  2520. * we don't need to worry about the block number being
  2521. * truncated in > 1 TB buffers because in user-land,
  2522. * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
  2523. * the blknos will get through the user-mode buffer
  2524. * cache properly. The only bad case is o32 kernels
  2525. * where xfs_daddr_t is 32-bits but mount will warn us
  2526. * off a > 1 TB filesystem before we get here.
  2527. */
  2528. if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
  2529. if ((error = xlog_recover_do_buffer_trans(log, item,
  2530. pass)))
  2531. break;
  2532. } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
  2533. if ((error = xlog_recover_do_inode_trans(log, item,
  2534. pass)))
  2535. break;
  2536. } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
  2537. if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
  2538. pass)))
  2539. break;
  2540. } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
  2541. xlog_recover_do_efd_trans(log, item, pass);
  2542. } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
  2543. if ((error = xlog_recover_do_dquot_trans(log, item,
  2544. pass)))
  2545. break;
  2546. } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
  2547. if ((error = xlog_recover_do_quotaoff_trans(log, item,
  2548. pass)))
  2549. break;
  2550. } else {
  2551. xlog_warn("XFS: xlog_recover_do_trans");
  2552. ASSERT(0);
  2553. error = XFS_ERROR(EIO);
  2554. break;
  2555. }
  2556. item = item->ri_next;
  2557. } while (first_item != item);
  2558. return error;
  2559. }
  2560. /*
  2561. * Free up any resources allocated by the transaction
  2562. *
  2563. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2564. */
  2565. STATIC void
  2566. xlog_recover_free_trans(
  2567. xlog_recover_t *trans)
  2568. {
  2569. xlog_recover_item_t *first_item, *item, *free_item;
  2570. int i;
  2571. item = first_item = trans->r_itemq;
  2572. do {
  2573. free_item = item;
  2574. item = item->ri_next;
  2575. /* Free the regions in the item. */
  2576. for (i = 0; i < free_item->ri_cnt; i++) {
  2577. kmem_free(free_item->ri_buf[i].i_addr);
  2578. }
  2579. /* Free the item itself */
  2580. kmem_free(free_item->ri_buf);
  2581. kmem_free(free_item);
  2582. } while (first_item != item);
  2583. /* Free the transaction recover structure */
  2584. kmem_free(trans);
  2585. }
  2586. STATIC int
  2587. xlog_recover_commit_trans(
  2588. xlog_t *log,
  2589. xlog_recover_t **q,
  2590. xlog_recover_t *trans,
  2591. int pass)
  2592. {
  2593. int error;
  2594. if ((error = xlog_recover_unlink_tid(q, trans)))
  2595. return error;
  2596. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2597. return error;
  2598. xlog_recover_free_trans(trans); /* no error */
  2599. return 0;
  2600. }
  2601. STATIC int
  2602. xlog_recover_unmount_trans(
  2603. xlog_recover_t *trans)
  2604. {
  2605. /* Do nothing now */
  2606. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2607. return 0;
  2608. }
  2609. /*
  2610. * There are two valid states of the r_state field. 0 indicates that the
  2611. * transaction structure is in a normal state. We have either seen the
  2612. * start of the transaction or the last operation we added was not a partial
  2613. * operation. If the last operation we added to the transaction was a
  2614. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2615. *
  2616. * NOTE: skip LRs with 0 data length.
  2617. */
  2618. STATIC int
  2619. xlog_recover_process_data(
  2620. xlog_t *log,
  2621. xlog_recover_t *rhash[],
  2622. xlog_rec_header_t *rhead,
  2623. xfs_caddr_t dp,
  2624. int pass)
  2625. {
  2626. xfs_caddr_t lp;
  2627. int num_logops;
  2628. xlog_op_header_t *ohead;
  2629. xlog_recover_t *trans;
  2630. xlog_tid_t tid;
  2631. int error;
  2632. unsigned long hash;
  2633. uint flags;
  2634. lp = dp + be32_to_cpu(rhead->h_len);
  2635. num_logops = be32_to_cpu(rhead->h_num_logops);
  2636. /* check the log format matches our own - else we can't recover */
  2637. if (xlog_header_check_recover(log->l_mp, rhead))
  2638. return (XFS_ERROR(EIO));
  2639. while ((dp < lp) && num_logops) {
  2640. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2641. ohead = (xlog_op_header_t *)dp;
  2642. dp += sizeof(xlog_op_header_t);
  2643. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2644. ohead->oh_clientid != XFS_LOG) {
  2645. xlog_warn(
  2646. "XFS: xlog_recover_process_data: bad clientid");
  2647. ASSERT(0);
  2648. return (XFS_ERROR(EIO));
  2649. }
  2650. tid = be32_to_cpu(ohead->oh_tid);
  2651. hash = XLOG_RHASH(tid);
  2652. trans = xlog_recover_find_tid(rhash[hash], tid);
  2653. if (trans == NULL) { /* not found; add new tid */
  2654. if (ohead->oh_flags & XLOG_START_TRANS)
  2655. xlog_recover_new_tid(&rhash[hash], tid,
  2656. be64_to_cpu(rhead->h_lsn));
  2657. } else {
  2658. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2659. xlog_warn(
  2660. "XFS: xlog_recover_process_data: bad length");
  2661. WARN_ON(1);
  2662. return (XFS_ERROR(EIO));
  2663. }
  2664. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2665. if (flags & XLOG_WAS_CONT_TRANS)
  2666. flags &= ~XLOG_CONTINUE_TRANS;
  2667. switch (flags) {
  2668. case XLOG_COMMIT_TRANS:
  2669. error = xlog_recover_commit_trans(log,
  2670. &rhash[hash], trans, pass);
  2671. break;
  2672. case XLOG_UNMOUNT_TRANS:
  2673. error = xlog_recover_unmount_trans(trans);
  2674. break;
  2675. case XLOG_WAS_CONT_TRANS:
  2676. error = xlog_recover_add_to_cont_trans(trans,
  2677. dp, be32_to_cpu(ohead->oh_len));
  2678. break;
  2679. case XLOG_START_TRANS:
  2680. xlog_warn(
  2681. "XFS: xlog_recover_process_data: bad transaction");
  2682. ASSERT(0);
  2683. error = XFS_ERROR(EIO);
  2684. break;
  2685. case 0:
  2686. case XLOG_CONTINUE_TRANS:
  2687. error = xlog_recover_add_to_trans(trans,
  2688. dp, be32_to_cpu(ohead->oh_len));
  2689. break;
  2690. default:
  2691. xlog_warn(
  2692. "XFS: xlog_recover_process_data: bad flag");
  2693. ASSERT(0);
  2694. error = XFS_ERROR(EIO);
  2695. break;
  2696. }
  2697. if (error)
  2698. return error;
  2699. }
  2700. dp += be32_to_cpu(ohead->oh_len);
  2701. num_logops--;
  2702. }
  2703. return 0;
  2704. }
  2705. /*
  2706. * Process an extent free intent item that was recovered from
  2707. * the log. We need to free the extents that it describes.
  2708. */
  2709. STATIC int
  2710. xlog_recover_process_efi(
  2711. xfs_mount_t *mp,
  2712. xfs_efi_log_item_t *efip)
  2713. {
  2714. xfs_efd_log_item_t *efdp;
  2715. xfs_trans_t *tp;
  2716. int i;
  2717. int error = 0;
  2718. xfs_extent_t *extp;
  2719. xfs_fsblock_t startblock_fsb;
  2720. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2721. /*
  2722. * First check the validity of the extents described by the
  2723. * EFI. If any are bad, then assume that all are bad and
  2724. * just toss the EFI.
  2725. */
  2726. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2727. extp = &(efip->efi_format.efi_extents[i]);
  2728. startblock_fsb = XFS_BB_TO_FSB(mp,
  2729. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2730. if ((startblock_fsb == 0) ||
  2731. (extp->ext_len == 0) ||
  2732. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2733. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2734. /*
  2735. * This will pull the EFI from the AIL and
  2736. * free the memory associated with it.
  2737. */
  2738. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2739. return XFS_ERROR(EIO);
  2740. }
  2741. }
  2742. tp = xfs_trans_alloc(mp, 0);
  2743. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2744. if (error)
  2745. goto abort_error;
  2746. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2747. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2748. extp = &(efip->efi_format.efi_extents[i]);
  2749. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2750. if (error)
  2751. goto abort_error;
  2752. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2753. extp->ext_len);
  2754. }
  2755. efip->efi_flags |= XFS_EFI_RECOVERED;
  2756. error = xfs_trans_commit(tp, 0);
  2757. return error;
  2758. abort_error:
  2759. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2760. return error;
  2761. }
  2762. /*
  2763. * When this is called, all of the EFIs which did not have
  2764. * corresponding EFDs should be in the AIL. What we do now
  2765. * is free the extents associated with each one.
  2766. *
  2767. * Since we process the EFIs in normal transactions, they
  2768. * will be removed at some point after the commit. This prevents
  2769. * us from just walking down the list processing each one.
  2770. * We'll use a flag in the EFI to skip those that we've already
  2771. * processed and use the AIL iteration mechanism's generation
  2772. * count to try to speed this up at least a bit.
  2773. *
  2774. * When we start, we know that the EFIs are the only things in
  2775. * the AIL. As we process them, however, other items are added
  2776. * to the AIL. Since everything added to the AIL must come after
  2777. * everything already in the AIL, we stop processing as soon as
  2778. * we see something other than an EFI in the AIL.
  2779. */
  2780. STATIC int
  2781. xlog_recover_process_efis(
  2782. xlog_t *log)
  2783. {
  2784. xfs_log_item_t *lip;
  2785. xfs_efi_log_item_t *efip;
  2786. int error = 0;
  2787. struct xfs_ail_cursor cur;
  2788. struct xfs_ail *ailp;
  2789. ailp = log->l_ailp;
  2790. spin_lock(&ailp->xa_lock);
  2791. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2792. while (lip != NULL) {
  2793. /*
  2794. * We're done when we see something other than an EFI.
  2795. * There should be no EFIs left in the AIL now.
  2796. */
  2797. if (lip->li_type != XFS_LI_EFI) {
  2798. #ifdef DEBUG
  2799. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2800. ASSERT(lip->li_type != XFS_LI_EFI);
  2801. #endif
  2802. break;
  2803. }
  2804. /*
  2805. * Skip EFIs that we've already processed.
  2806. */
  2807. efip = (xfs_efi_log_item_t *)lip;
  2808. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2809. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2810. continue;
  2811. }
  2812. spin_unlock(&ailp->xa_lock);
  2813. error = xlog_recover_process_efi(log->l_mp, efip);
  2814. spin_lock(&ailp->xa_lock);
  2815. if (error)
  2816. goto out;
  2817. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2818. }
  2819. out:
  2820. xfs_trans_ail_cursor_done(ailp, &cur);
  2821. spin_unlock(&ailp->xa_lock);
  2822. return error;
  2823. }
  2824. /*
  2825. * This routine performs a transaction to null out a bad inode pointer
  2826. * in an agi unlinked inode hash bucket.
  2827. */
  2828. STATIC void
  2829. xlog_recover_clear_agi_bucket(
  2830. xfs_mount_t *mp,
  2831. xfs_agnumber_t agno,
  2832. int bucket)
  2833. {
  2834. xfs_trans_t *tp;
  2835. xfs_agi_t *agi;
  2836. xfs_buf_t *agibp;
  2837. int offset;
  2838. int error;
  2839. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2840. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2841. 0, 0, 0);
  2842. if (error)
  2843. goto out_abort;
  2844. error = xfs_read_agi(mp, tp, agno, &agibp);
  2845. if (error)
  2846. goto out_abort;
  2847. agi = XFS_BUF_TO_AGI(agibp);
  2848. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2849. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2850. (sizeof(xfs_agino_t) * bucket);
  2851. xfs_trans_log_buf(tp, agibp, offset,
  2852. (offset + sizeof(xfs_agino_t) - 1));
  2853. error = xfs_trans_commit(tp, 0);
  2854. if (error)
  2855. goto out_error;
  2856. return;
  2857. out_abort:
  2858. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2859. out_error:
  2860. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2861. "failed to clear agi %d. Continuing.", agno);
  2862. return;
  2863. }
  2864. STATIC xfs_agino_t
  2865. xlog_recover_process_one_iunlink(
  2866. struct xfs_mount *mp,
  2867. xfs_agnumber_t agno,
  2868. xfs_agino_t agino,
  2869. int bucket)
  2870. {
  2871. struct xfs_buf *ibp;
  2872. struct xfs_dinode *dip;
  2873. struct xfs_inode *ip;
  2874. xfs_ino_t ino;
  2875. int error;
  2876. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2877. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2878. if (error)
  2879. goto fail;
  2880. /*
  2881. * Get the on disk inode to find the next inode in the bucket.
  2882. */
  2883. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
  2884. if (error)
  2885. goto fail_iput;
  2886. ASSERT(ip->i_d.di_nlink == 0);
  2887. ASSERT(ip->i_d.di_mode != 0);
  2888. /* setup for the next pass */
  2889. agino = be32_to_cpu(dip->di_next_unlinked);
  2890. xfs_buf_relse(ibp);
  2891. /*
  2892. * Prevent any DMAPI event from being sent when the reference on
  2893. * the inode is dropped.
  2894. */
  2895. ip->i_d.di_dmevmask = 0;
  2896. IRELE(ip);
  2897. return agino;
  2898. fail_iput:
  2899. IRELE(ip);
  2900. fail:
  2901. /*
  2902. * We can't read in the inode this bucket points to, or this inode
  2903. * is messed up. Just ditch this bucket of inodes. We will lose
  2904. * some inodes and space, but at least we won't hang.
  2905. *
  2906. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2907. * clear the inode pointer in the bucket.
  2908. */
  2909. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2910. return NULLAGINO;
  2911. }
  2912. /*
  2913. * xlog_iunlink_recover
  2914. *
  2915. * This is called during recovery to process any inodes which
  2916. * we unlinked but not freed when the system crashed. These
  2917. * inodes will be on the lists in the AGI blocks. What we do
  2918. * here is scan all the AGIs and fully truncate and free any
  2919. * inodes found on the lists. Each inode is removed from the
  2920. * lists when it has been fully truncated and is freed. The
  2921. * freeing of the inode and its removal from the list must be
  2922. * atomic.
  2923. */
  2924. void
  2925. xlog_recover_process_iunlinks(
  2926. xlog_t *log)
  2927. {
  2928. xfs_mount_t *mp;
  2929. xfs_agnumber_t agno;
  2930. xfs_agi_t *agi;
  2931. xfs_buf_t *agibp;
  2932. xfs_agino_t agino;
  2933. int bucket;
  2934. int error;
  2935. uint mp_dmevmask;
  2936. mp = log->l_mp;
  2937. /*
  2938. * Prevent any DMAPI event from being sent while in this function.
  2939. */
  2940. mp_dmevmask = mp->m_dmevmask;
  2941. mp->m_dmevmask = 0;
  2942. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2943. /*
  2944. * Find the agi for this ag.
  2945. */
  2946. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2947. if (error) {
  2948. /*
  2949. * AGI is b0rked. Don't process it.
  2950. *
  2951. * We should probably mark the filesystem as corrupt
  2952. * after we've recovered all the ag's we can....
  2953. */
  2954. continue;
  2955. }
  2956. agi = XFS_BUF_TO_AGI(agibp);
  2957. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2958. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2959. while (agino != NULLAGINO) {
  2960. /*
  2961. * Release the agi buffer so that it can
  2962. * be acquired in the normal course of the
  2963. * transaction to truncate and free the inode.
  2964. */
  2965. xfs_buf_relse(agibp);
  2966. agino = xlog_recover_process_one_iunlink(mp,
  2967. agno, agino, bucket);
  2968. /*
  2969. * Reacquire the agibuffer and continue around
  2970. * the loop. This should never fail as we know
  2971. * the buffer was good earlier on.
  2972. */
  2973. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2974. ASSERT(error == 0);
  2975. agi = XFS_BUF_TO_AGI(agibp);
  2976. }
  2977. }
  2978. /*
  2979. * Release the buffer for the current agi so we can
  2980. * go on to the next one.
  2981. */
  2982. xfs_buf_relse(agibp);
  2983. }
  2984. mp->m_dmevmask = mp_dmevmask;
  2985. }
  2986. #ifdef DEBUG
  2987. STATIC void
  2988. xlog_pack_data_checksum(
  2989. xlog_t *log,
  2990. xlog_in_core_t *iclog,
  2991. int size)
  2992. {
  2993. int i;
  2994. __be32 *up;
  2995. uint chksum = 0;
  2996. up = (__be32 *)iclog->ic_datap;
  2997. /* divide length by 4 to get # words */
  2998. for (i = 0; i < (size >> 2); i++) {
  2999. chksum ^= be32_to_cpu(*up);
  3000. up++;
  3001. }
  3002. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3003. }
  3004. #else
  3005. #define xlog_pack_data_checksum(log, iclog, size)
  3006. #endif
  3007. /*
  3008. * Stamp cycle number in every block
  3009. */
  3010. void
  3011. xlog_pack_data(
  3012. xlog_t *log,
  3013. xlog_in_core_t *iclog,
  3014. int roundoff)
  3015. {
  3016. int i, j, k;
  3017. int size = iclog->ic_offset + roundoff;
  3018. __be32 cycle_lsn;
  3019. xfs_caddr_t dp;
  3020. xlog_pack_data_checksum(log, iclog, size);
  3021. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3022. dp = iclog->ic_datap;
  3023. for (i = 0; i < BTOBB(size) &&
  3024. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3025. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3026. *(__be32 *)dp = cycle_lsn;
  3027. dp += BBSIZE;
  3028. }
  3029. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3030. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3031. for ( ; i < BTOBB(size); i++) {
  3032. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3033. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3034. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3035. *(__be32 *)dp = cycle_lsn;
  3036. dp += BBSIZE;
  3037. }
  3038. for (i = 1; i < log->l_iclog_heads; i++) {
  3039. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3040. }
  3041. }
  3042. }
  3043. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3044. STATIC void
  3045. xlog_unpack_data_checksum(
  3046. xlog_rec_header_t *rhead,
  3047. xfs_caddr_t dp,
  3048. xlog_t *log)
  3049. {
  3050. __be32 *up = (__be32 *)dp;
  3051. uint chksum = 0;
  3052. int i;
  3053. /* divide length by 4 to get # words */
  3054. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3055. chksum ^= be32_to_cpu(*up);
  3056. up++;
  3057. }
  3058. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3059. if (rhead->h_chksum ||
  3060. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3061. cmn_err(CE_DEBUG,
  3062. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3063. be32_to_cpu(rhead->h_chksum), chksum);
  3064. cmn_err(CE_DEBUG,
  3065. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3066. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3067. cmn_err(CE_DEBUG,
  3068. "XFS: LogR this is a LogV2 filesystem\n");
  3069. }
  3070. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3071. }
  3072. }
  3073. }
  3074. #else
  3075. #define xlog_unpack_data_checksum(rhead, dp, log)
  3076. #endif
  3077. STATIC void
  3078. xlog_unpack_data(
  3079. xlog_rec_header_t *rhead,
  3080. xfs_caddr_t dp,
  3081. xlog_t *log)
  3082. {
  3083. int i, j, k;
  3084. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3085. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3086. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3087. dp += BBSIZE;
  3088. }
  3089. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3090. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3091. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3092. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3093. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3094. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3095. dp += BBSIZE;
  3096. }
  3097. }
  3098. xlog_unpack_data_checksum(rhead, dp, log);
  3099. }
  3100. STATIC int
  3101. xlog_valid_rec_header(
  3102. xlog_t *log,
  3103. xlog_rec_header_t *rhead,
  3104. xfs_daddr_t blkno)
  3105. {
  3106. int hlen;
  3107. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3108. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3109. XFS_ERRLEVEL_LOW, log->l_mp);
  3110. return XFS_ERROR(EFSCORRUPTED);
  3111. }
  3112. if (unlikely(
  3113. (!rhead->h_version ||
  3114. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3115. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3116. __func__, be32_to_cpu(rhead->h_version));
  3117. return XFS_ERROR(EIO);
  3118. }
  3119. /* LR body must have data or it wouldn't have been written */
  3120. hlen = be32_to_cpu(rhead->h_len);
  3121. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3122. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3123. XFS_ERRLEVEL_LOW, log->l_mp);
  3124. return XFS_ERROR(EFSCORRUPTED);
  3125. }
  3126. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3127. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3128. XFS_ERRLEVEL_LOW, log->l_mp);
  3129. return XFS_ERROR(EFSCORRUPTED);
  3130. }
  3131. return 0;
  3132. }
  3133. /*
  3134. * Read the log from tail to head and process the log records found.
  3135. * Handle the two cases where the tail and head are in the same cycle
  3136. * and where the active portion of the log wraps around the end of
  3137. * the physical log separately. The pass parameter is passed through
  3138. * to the routines called to process the data and is not looked at
  3139. * here.
  3140. */
  3141. STATIC int
  3142. xlog_do_recovery_pass(
  3143. xlog_t *log,
  3144. xfs_daddr_t head_blk,
  3145. xfs_daddr_t tail_blk,
  3146. int pass)
  3147. {
  3148. xlog_rec_header_t *rhead;
  3149. xfs_daddr_t blk_no;
  3150. xfs_caddr_t bufaddr, offset;
  3151. xfs_buf_t *hbp, *dbp;
  3152. int error = 0, h_size;
  3153. int bblks, split_bblks;
  3154. int hblks, split_hblks, wrapped_hblks;
  3155. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3156. ASSERT(head_blk != tail_blk);
  3157. /*
  3158. * Read the header of the tail block and get the iclog buffer size from
  3159. * h_size. Use this to tell how many sectors make up the log header.
  3160. */
  3161. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3162. /*
  3163. * When using variable length iclogs, read first sector of
  3164. * iclog header and extract the header size from it. Get a
  3165. * new hbp that is the correct size.
  3166. */
  3167. hbp = xlog_get_bp(log, 1);
  3168. if (!hbp)
  3169. return ENOMEM;
  3170. if ((error = xlog_bread(log, tail_blk, 1, hbp)))
  3171. goto bread_err1;
  3172. offset = xlog_align(log, tail_blk, 1, hbp);
  3173. rhead = (xlog_rec_header_t *)offset;
  3174. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3175. if (error)
  3176. goto bread_err1;
  3177. h_size = be32_to_cpu(rhead->h_size);
  3178. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3179. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3180. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3181. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3182. hblks++;
  3183. xlog_put_bp(hbp);
  3184. hbp = xlog_get_bp(log, hblks);
  3185. } else {
  3186. hblks = 1;
  3187. }
  3188. } else {
  3189. ASSERT(log->l_sectbb_log == 0);
  3190. hblks = 1;
  3191. hbp = xlog_get_bp(log, 1);
  3192. h_size = XLOG_BIG_RECORD_BSIZE;
  3193. }
  3194. if (!hbp)
  3195. return ENOMEM;
  3196. dbp = xlog_get_bp(log, BTOBB(h_size));
  3197. if (!dbp) {
  3198. xlog_put_bp(hbp);
  3199. return ENOMEM;
  3200. }
  3201. memset(rhash, 0, sizeof(rhash));
  3202. if (tail_blk <= head_blk) {
  3203. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3204. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3205. goto bread_err2;
  3206. offset = xlog_align(log, blk_no, hblks, hbp);
  3207. rhead = (xlog_rec_header_t *)offset;
  3208. error = xlog_valid_rec_header(log, rhead, blk_no);
  3209. if (error)
  3210. goto bread_err2;
  3211. /* blocks in data section */
  3212. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3213. error = xlog_bread(log, blk_no + hblks, bblks, dbp);
  3214. if (error)
  3215. goto bread_err2;
  3216. offset = xlog_align(log, blk_no + hblks, bblks, dbp);
  3217. xlog_unpack_data(rhead, offset, log);
  3218. if ((error = xlog_recover_process_data(log,
  3219. rhash, rhead, offset, pass)))
  3220. goto bread_err2;
  3221. blk_no += bblks + hblks;
  3222. }
  3223. } else {
  3224. /*
  3225. * Perform recovery around the end of the physical log.
  3226. * When the head is not on the same cycle number as the tail,
  3227. * we can't do a sequential recovery as above.
  3228. */
  3229. blk_no = tail_blk;
  3230. while (blk_no < log->l_logBBsize) {
  3231. /*
  3232. * Check for header wrapping around physical end-of-log
  3233. */
  3234. offset = NULL;
  3235. split_hblks = 0;
  3236. wrapped_hblks = 0;
  3237. if (blk_no + hblks <= log->l_logBBsize) {
  3238. /* Read header in one read */
  3239. error = xlog_bread(log, blk_no, hblks, hbp);
  3240. if (error)
  3241. goto bread_err2;
  3242. offset = xlog_align(log, blk_no, hblks, hbp);
  3243. } else {
  3244. /* This LR is split across physical log end */
  3245. if (blk_no != log->l_logBBsize) {
  3246. /* some data before physical log end */
  3247. ASSERT(blk_no <= INT_MAX);
  3248. split_hblks = log->l_logBBsize - (int)blk_no;
  3249. ASSERT(split_hblks > 0);
  3250. if ((error = xlog_bread(log, blk_no,
  3251. split_hblks, hbp)))
  3252. goto bread_err2;
  3253. offset = xlog_align(log, blk_no,
  3254. split_hblks, hbp);
  3255. }
  3256. /*
  3257. * Note: this black magic still works with
  3258. * large sector sizes (non-512) only because:
  3259. * - we increased the buffer size originally
  3260. * by 1 sector giving us enough extra space
  3261. * for the second read;
  3262. * - the log start is guaranteed to be sector
  3263. * aligned;
  3264. * - we read the log end (LR header start)
  3265. * _first_, then the log start (LR header end)
  3266. * - order is important.
  3267. */
  3268. wrapped_hblks = hblks - split_hblks;
  3269. bufaddr = XFS_BUF_PTR(hbp);
  3270. error = XFS_BUF_SET_PTR(hbp,
  3271. bufaddr + BBTOB(split_hblks),
  3272. BBTOB(hblks - split_hblks));
  3273. if (!error)
  3274. error = xlog_bread(log, 0,
  3275. wrapped_hblks, hbp);
  3276. if (!error)
  3277. error = XFS_BUF_SET_PTR(hbp, bufaddr,
  3278. BBTOB(hblks));
  3279. if (error)
  3280. goto bread_err2;
  3281. if (!offset)
  3282. offset = xlog_align(log, 0,
  3283. wrapped_hblks, hbp);
  3284. }
  3285. rhead = (xlog_rec_header_t *)offset;
  3286. error = xlog_valid_rec_header(log, rhead,
  3287. split_hblks ? blk_no : 0);
  3288. if (error)
  3289. goto bread_err2;
  3290. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3291. blk_no += hblks;
  3292. /* Read in data for log record */
  3293. if (blk_no + bblks <= log->l_logBBsize) {
  3294. error = xlog_bread(log, blk_no, bblks, dbp);
  3295. if (error)
  3296. goto bread_err2;
  3297. offset = xlog_align(log, blk_no, bblks, dbp);
  3298. } else {
  3299. /* This log record is split across the
  3300. * physical end of log */
  3301. offset = NULL;
  3302. split_bblks = 0;
  3303. if (blk_no != log->l_logBBsize) {
  3304. /* some data is before the physical
  3305. * end of log */
  3306. ASSERT(!wrapped_hblks);
  3307. ASSERT(blk_no <= INT_MAX);
  3308. split_bblks =
  3309. log->l_logBBsize - (int)blk_no;
  3310. ASSERT(split_bblks > 0);
  3311. if ((error = xlog_bread(log, blk_no,
  3312. split_bblks, dbp)))
  3313. goto bread_err2;
  3314. offset = xlog_align(log, blk_no,
  3315. split_bblks, dbp);
  3316. }
  3317. /*
  3318. * Note: this black magic still works with
  3319. * large sector sizes (non-512) only because:
  3320. * - we increased the buffer size originally
  3321. * by 1 sector giving us enough extra space
  3322. * for the second read;
  3323. * - the log start is guaranteed to be sector
  3324. * aligned;
  3325. * - we read the log end (LR header start)
  3326. * _first_, then the log start (LR header end)
  3327. * - order is important.
  3328. */
  3329. bufaddr = XFS_BUF_PTR(dbp);
  3330. error = XFS_BUF_SET_PTR(dbp,
  3331. bufaddr + BBTOB(split_bblks),
  3332. BBTOB(bblks - split_bblks));
  3333. if (!error)
  3334. error = xlog_bread(log, wrapped_hblks,
  3335. bblks - split_bblks,
  3336. dbp);
  3337. if (!error)
  3338. error = XFS_BUF_SET_PTR(dbp, bufaddr,
  3339. h_size);
  3340. if (error)
  3341. goto bread_err2;
  3342. if (!offset)
  3343. offset = xlog_align(log, wrapped_hblks,
  3344. bblks - split_bblks, dbp);
  3345. }
  3346. xlog_unpack_data(rhead, offset, log);
  3347. if ((error = xlog_recover_process_data(log, rhash,
  3348. rhead, offset, pass)))
  3349. goto bread_err2;
  3350. blk_no += bblks;
  3351. }
  3352. ASSERT(blk_no >= log->l_logBBsize);
  3353. blk_no -= log->l_logBBsize;
  3354. /* read first part of physical log */
  3355. while (blk_no < head_blk) {
  3356. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3357. goto bread_err2;
  3358. offset = xlog_align(log, blk_no, hblks, hbp);
  3359. rhead = (xlog_rec_header_t *)offset;
  3360. error = xlog_valid_rec_header(log, rhead, blk_no);
  3361. if (error)
  3362. goto bread_err2;
  3363. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3364. if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
  3365. goto bread_err2;
  3366. offset = xlog_align(log, blk_no+hblks, bblks, dbp);
  3367. xlog_unpack_data(rhead, offset, log);
  3368. if ((error = xlog_recover_process_data(log, rhash,
  3369. rhead, offset, pass)))
  3370. goto bread_err2;
  3371. blk_no += bblks + hblks;
  3372. }
  3373. }
  3374. bread_err2:
  3375. xlog_put_bp(dbp);
  3376. bread_err1:
  3377. xlog_put_bp(hbp);
  3378. return error;
  3379. }
  3380. /*
  3381. * Do the recovery of the log. We actually do this in two phases.
  3382. * The two passes are necessary in order to implement the function
  3383. * of cancelling a record written into the log. The first pass
  3384. * determines those things which have been cancelled, and the
  3385. * second pass replays log items normally except for those which
  3386. * have been cancelled. The handling of the replay and cancellations
  3387. * takes place in the log item type specific routines.
  3388. *
  3389. * The table of items which have cancel records in the log is allocated
  3390. * and freed at this level, since only here do we know when all of
  3391. * the log recovery has been completed.
  3392. */
  3393. STATIC int
  3394. xlog_do_log_recovery(
  3395. xlog_t *log,
  3396. xfs_daddr_t head_blk,
  3397. xfs_daddr_t tail_blk)
  3398. {
  3399. int error;
  3400. ASSERT(head_blk != tail_blk);
  3401. /*
  3402. * First do a pass to find all of the cancelled buf log items.
  3403. * Store them in the buf_cancel_table for use in the second pass.
  3404. */
  3405. log->l_buf_cancel_table =
  3406. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3407. sizeof(xfs_buf_cancel_t*),
  3408. KM_SLEEP);
  3409. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3410. XLOG_RECOVER_PASS1);
  3411. if (error != 0) {
  3412. kmem_free(log->l_buf_cancel_table);
  3413. log->l_buf_cancel_table = NULL;
  3414. return error;
  3415. }
  3416. /*
  3417. * Then do a second pass to actually recover the items in the log.
  3418. * When it is complete free the table of buf cancel items.
  3419. */
  3420. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3421. XLOG_RECOVER_PASS2);
  3422. #ifdef DEBUG
  3423. if (!error) {
  3424. int i;
  3425. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3426. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3427. }
  3428. #endif /* DEBUG */
  3429. kmem_free(log->l_buf_cancel_table);
  3430. log->l_buf_cancel_table = NULL;
  3431. return error;
  3432. }
  3433. /*
  3434. * Do the actual recovery
  3435. */
  3436. STATIC int
  3437. xlog_do_recover(
  3438. xlog_t *log,
  3439. xfs_daddr_t head_blk,
  3440. xfs_daddr_t tail_blk)
  3441. {
  3442. int error;
  3443. xfs_buf_t *bp;
  3444. xfs_sb_t *sbp;
  3445. /*
  3446. * First replay the images in the log.
  3447. */
  3448. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3449. if (error) {
  3450. return error;
  3451. }
  3452. XFS_bflush(log->l_mp->m_ddev_targp);
  3453. /*
  3454. * If IO errors happened during recovery, bail out.
  3455. */
  3456. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3457. return (EIO);
  3458. }
  3459. /*
  3460. * We now update the tail_lsn since much of the recovery has completed
  3461. * and there may be space available to use. If there were no extent
  3462. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3463. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3464. * lsn of the last known good LR on disk. If there are extent frees
  3465. * or iunlinks they will have some entries in the AIL; so we look at
  3466. * the AIL to determine how to set the tail_lsn.
  3467. */
  3468. xlog_assign_tail_lsn(log->l_mp);
  3469. /*
  3470. * Now that we've finished replaying all buffer and inode
  3471. * updates, re-read in the superblock.
  3472. */
  3473. bp = xfs_getsb(log->l_mp, 0);
  3474. XFS_BUF_UNDONE(bp);
  3475. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3476. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3477. XFS_BUF_READ(bp);
  3478. XFS_BUF_UNASYNC(bp);
  3479. xfsbdstrat(log->l_mp, bp);
  3480. error = xfs_iowait(bp);
  3481. if (error) {
  3482. xfs_ioerror_alert("xlog_do_recover",
  3483. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3484. ASSERT(0);
  3485. xfs_buf_relse(bp);
  3486. return error;
  3487. }
  3488. /* Convert superblock from on-disk format */
  3489. sbp = &log->l_mp->m_sb;
  3490. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3491. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3492. ASSERT(xfs_sb_good_version(sbp));
  3493. xfs_buf_relse(bp);
  3494. /* We've re-read the superblock so re-initialize per-cpu counters */
  3495. xfs_icsb_reinit_counters(log->l_mp);
  3496. xlog_recover_check_summary(log);
  3497. /* Normal transactions can now occur */
  3498. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3499. return 0;
  3500. }
  3501. /*
  3502. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3503. *
  3504. * Return error or zero.
  3505. */
  3506. int
  3507. xlog_recover(
  3508. xlog_t *log)
  3509. {
  3510. xfs_daddr_t head_blk, tail_blk;
  3511. int error;
  3512. /* find the tail of the log */
  3513. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3514. return error;
  3515. if (tail_blk != head_blk) {
  3516. /* There used to be a comment here:
  3517. *
  3518. * disallow recovery on read-only mounts. note -- mount
  3519. * checks for ENOSPC and turns it into an intelligent
  3520. * error message.
  3521. * ...but this is no longer true. Now, unless you specify
  3522. * NORECOVERY (in which case this function would never be
  3523. * called), we just go ahead and recover. We do this all
  3524. * under the vfs layer, so we can get away with it unless
  3525. * the device itself is read-only, in which case we fail.
  3526. */
  3527. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3528. return error;
  3529. }
  3530. cmn_err(CE_NOTE,
  3531. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3532. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3533. log->l_mp->m_logname : "internal");
  3534. error = xlog_do_recover(log, head_blk, tail_blk);
  3535. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3536. }
  3537. return error;
  3538. }
  3539. /*
  3540. * In the first part of recovery we replay inodes and buffers and build
  3541. * up the list of extent free items which need to be processed. Here
  3542. * we process the extent free items and clean up the on disk unlinked
  3543. * inode lists. This is separated from the first part of recovery so
  3544. * that the root and real-time bitmap inodes can be read in from disk in
  3545. * between the two stages. This is necessary so that we can free space
  3546. * in the real-time portion of the file system.
  3547. */
  3548. int
  3549. xlog_recover_finish(
  3550. xlog_t *log)
  3551. {
  3552. /*
  3553. * Now we're ready to do the transactions needed for the
  3554. * rest of recovery. Start with completing all the extent
  3555. * free intent records and then process the unlinked inode
  3556. * lists. At this point, we essentially run in normal mode
  3557. * except that we're still performing recovery actions
  3558. * rather than accepting new requests.
  3559. */
  3560. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3561. int error;
  3562. error = xlog_recover_process_efis(log);
  3563. if (error) {
  3564. cmn_err(CE_ALERT,
  3565. "Failed to recover EFIs on filesystem: %s",
  3566. log->l_mp->m_fsname);
  3567. return error;
  3568. }
  3569. /*
  3570. * Sync the log to get all the EFIs out of the AIL.
  3571. * This isn't absolutely necessary, but it helps in
  3572. * case the unlink transactions would have problems
  3573. * pushing the EFIs out of the way.
  3574. */
  3575. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3576. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3577. xlog_recover_process_iunlinks(log);
  3578. xlog_recover_check_summary(log);
  3579. cmn_err(CE_NOTE,
  3580. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3581. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3582. log->l_mp->m_logname : "internal");
  3583. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3584. } else {
  3585. cmn_err(CE_DEBUG,
  3586. "!Ending clean XFS mount for filesystem: %s\n",
  3587. log->l_mp->m_fsname);
  3588. }
  3589. return 0;
  3590. }
  3591. #if defined(DEBUG)
  3592. /*
  3593. * Read all of the agf and agi counters and check that they
  3594. * are consistent with the superblock counters.
  3595. */
  3596. void
  3597. xlog_recover_check_summary(
  3598. xlog_t *log)
  3599. {
  3600. xfs_mount_t *mp;
  3601. xfs_agf_t *agfp;
  3602. xfs_buf_t *agfbp;
  3603. xfs_buf_t *agibp;
  3604. xfs_buf_t *sbbp;
  3605. #ifdef XFS_LOUD_RECOVERY
  3606. xfs_sb_t *sbp;
  3607. #endif
  3608. xfs_agnumber_t agno;
  3609. __uint64_t freeblks;
  3610. __uint64_t itotal;
  3611. __uint64_t ifree;
  3612. int error;
  3613. mp = log->l_mp;
  3614. freeblks = 0LL;
  3615. itotal = 0LL;
  3616. ifree = 0LL;
  3617. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3618. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3619. if (error) {
  3620. xfs_fs_cmn_err(CE_ALERT, mp,
  3621. "xlog_recover_check_summary(agf)"
  3622. "agf read failed agno %d error %d",
  3623. agno, error);
  3624. } else {
  3625. agfp = XFS_BUF_TO_AGF(agfbp);
  3626. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3627. be32_to_cpu(agfp->agf_flcount);
  3628. xfs_buf_relse(agfbp);
  3629. }
  3630. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3631. if (!error) {
  3632. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3633. itotal += be32_to_cpu(agi->agi_count);
  3634. ifree += be32_to_cpu(agi->agi_freecount);
  3635. xfs_buf_relse(agibp);
  3636. }
  3637. }
  3638. sbbp = xfs_getsb(mp, 0);
  3639. #ifdef XFS_LOUD_RECOVERY
  3640. sbp = &mp->m_sb;
  3641. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3642. cmn_err(CE_NOTE,
  3643. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3644. sbp->sb_icount, itotal);
  3645. cmn_err(CE_NOTE,
  3646. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3647. sbp->sb_ifree, ifree);
  3648. cmn_err(CE_NOTE,
  3649. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3650. sbp->sb_fdblocks, freeblks);
  3651. #if 0
  3652. /*
  3653. * This is turned off until I account for the allocation
  3654. * btree blocks which live in free space.
  3655. */
  3656. ASSERT(sbp->sb_icount == itotal);
  3657. ASSERT(sbp->sb_ifree == ifree);
  3658. ASSERT(sbp->sb_fdblocks == freeblks);
  3659. #endif
  3660. #endif
  3661. xfs_buf_relse(sbbp);
  3662. }
  3663. #endif /* DEBUG */