io.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation.
  5. * Copyright (C) 2006, 2007 University of Szeged, Hungary
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along with
  17. * this program; if not, write to the Free Software Foundation, Inc., 51
  18. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Authors: Artem Bityutskiy (Битюцкий Артём)
  21. * Adrian Hunter
  22. * Zoltan Sogor
  23. */
  24. /*
  25. * This file implements UBIFS I/O subsystem which provides various I/O-related
  26. * helper functions (reading/writing/checking/validating nodes) and implements
  27. * write-buffering support. Write buffers help to save space which otherwise
  28. * would have been wasted for padding to the nearest minimal I/O unit boundary.
  29. * Instead, data first goes to the write-buffer and is flushed when the
  30. * buffer is full or when it is not used for some time (by timer). This is
  31. * similarto the mechanism is used by JFFS2.
  32. *
  33. * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
  34. * mutexes defined inside these objects. Since sometimes upper-level code
  35. * has to lock the write-buffer (e.g. journal space reservation code), many
  36. * functions related to write-buffers have "nolock" suffix which means that the
  37. * caller has to lock the write-buffer before calling this function.
  38. *
  39. * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
  40. * aligned, UBIFS starts the next node from the aligned address, and the padded
  41. * bytes may contain any rubbish. In other words, UBIFS does not put padding
  42. * bytes in those small gaps. Common headers of nodes store real node lengths,
  43. * not aligned lengths. Indexing nodes also store real lengths in branches.
  44. *
  45. * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
  46. * uses padding nodes or padding bytes, if the padding node does not fit.
  47. *
  48. * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
  49. * every time they are read from the flash media.
  50. */
  51. #include <linux/crc32.h>
  52. #include "ubifs.h"
  53. /**
  54. * ubifs_ro_mode - switch UBIFS to read read-only mode.
  55. * @c: UBIFS file-system description object
  56. * @err: error code which is the reason of switching to R/O mode
  57. */
  58. void ubifs_ro_mode(struct ubifs_info *c, int err)
  59. {
  60. if (!c->ro_media) {
  61. c->ro_media = 1;
  62. c->no_chk_data_crc = 0;
  63. ubifs_warn("switched to read-only mode, error %d", err);
  64. dbg_dump_stack();
  65. }
  66. }
  67. /**
  68. * ubifs_check_node - check node.
  69. * @c: UBIFS file-system description object
  70. * @buf: node to check
  71. * @lnum: logical eraseblock number
  72. * @offs: offset within the logical eraseblock
  73. * @quiet: print no messages
  74. * @chk_crc: indicates whether to always check the CRC
  75. *
  76. * This function checks node magic number and CRC checksum. This function also
  77. * validates node length to prevent UBIFS from becoming crazy when an attacker
  78. * feeds it a file-system image with incorrect nodes. For example, too large
  79. * node length in the common header could cause UBIFS to read memory outside of
  80. * allocated buffer when checking the CRC checksum.
  81. *
  82. * This function returns zero in case of success %-EUCLEAN in case of bad CRC
  83. * or magic.
  84. */
  85. int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
  86. int offs, int quiet, int chk_crc)
  87. {
  88. int err = -EINVAL, type, node_len;
  89. uint32_t crc, node_crc, magic;
  90. const struct ubifs_ch *ch = buf;
  91. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  92. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  93. magic = le32_to_cpu(ch->magic);
  94. if (magic != UBIFS_NODE_MAGIC) {
  95. if (!quiet)
  96. ubifs_err("bad magic %#08x, expected %#08x",
  97. magic, UBIFS_NODE_MAGIC);
  98. err = -EUCLEAN;
  99. goto out;
  100. }
  101. type = ch->node_type;
  102. if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
  103. if (!quiet)
  104. ubifs_err("bad node type %d", type);
  105. goto out;
  106. }
  107. node_len = le32_to_cpu(ch->len);
  108. if (node_len + offs > c->leb_size)
  109. goto out_len;
  110. if (c->ranges[type].max_len == 0) {
  111. if (node_len != c->ranges[type].len)
  112. goto out_len;
  113. } else if (node_len < c->ranges[type].min_len ||
  114. node_len > c->ranges[type].max_len)
  115. goto out_len;
  116. if (!chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc)
  117. if (c->no_chk_data_crc)
  118. return 0;
  119. crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
  120. node_crc = le32_to_cpu(ch->crc);
  121. if (crc != node_crc) {
  122. if (!quiet)
  123. ubifs_err("bad CRC: calculated %#08x, read %#08x",
  124. crc, node_crc);
  125. err = -EUCLEAN;
  126. goto out;
  127. }
  128. return 0;
  129. out_len:
  130. if (!quiet)
  131. ubifs_err("bad node length %d", node_len);
  132. out:
  133. if (!quiet) {
  134. ubifs_err("bad node at LEB %d:%d", lnum, offs);
  135. dbg_dump_node(c, buf);
  136. dbg_dump_stack();
  137. }
  138. return err;
  139. }
  140. /**
  141. * ubifs_pad - pad flash space.
  142. * @c: UBIFS file-system description object
  143. * @buf: buffer to put padding to
  144. * @pad: how many bytes to pad
  145. *
  146. * The flash media obliges us to write only in chunks of %c->min_io_size and
  147. * when we have to write less data we add padding node to the write-buffer and
  148. * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
  149. * media is being scanned. If the amount of wasted space is not enough to fit a
  150. * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
  151. * pattern (%UBIFS_PADDING_BYTE).
  152. *
  153. * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
  154. * used.
  155. */
  156. void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
  157. {
  158. uint32_t crc;
  159. ubifs_assert(pad >= 0 && !(pad & 7));
  160. if (pad >= UBIFS_PAD_NODE_SZ) {
  161. struct ubifs_ch *ch = buf;
  162. struct ubifs_pad_node *pad_node = buf;
  163. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  164. ch->node_type = UBIFS_PAD_NODE;
  165. ch->group_type = UBIFS_NO_NODE_GROUP;
  166. ch->padding[0] = ch->padding[1] = 0;
  167. ch->sqnum = 0;
  168. ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
  169. pad -= UBIFS_PAD_NODE_SZ;
  170. pad_node->pad_len = cpu_to_le32(pad);
  171. crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
  172. ch->crc = cpu_to_le32(crc);
  173. memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
  174. } else if (pad > 0)
  175. /* Too little space, padding node won't fit */
  176. memset(buf, UBIFS_PADDING_BYTE, pad);
  177. }
  178. /**
  179. * next_sqnum - get next sequence number.
  180. * @c: UBIFS file-system description object
  181. */
  182. static unsigned long long next_sqnum(struct ubifs_info *c)
  183. {
  184. unsigned long long sqnum;
  185. spin_lock(&c->cnt_lock);
  186. sqnum = ++c->max_sqnum;
  187. spin_unlock(&c->cnt_lock);
  188. if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
  189. if (sqnum >= SQNUM_WATERMARK) {
  190. ubifs_err("sequence number overflow %llu, end of life",
  191. sqnum);
  192. ubifs_ro_mode(c, -EINVAL);
  193. }
  194. ubifs_warn("running out of sequence numbers, end of life soon");
  195. }
  196. return sqnum;
  197. }
  198. /**
  199. * ubifs_prepare_node - prepare node to be written to flash.
  200. * @c: UBIFS file-system description object
  201. * @node: the node to pad
  202. * @len: node length
  203. * @pad: if the buffer has to be padded
  204. *
  205. * This function prepares node at @node to be written to the media - it
  206. * calculates node CRC, fills the common header, and adds proper padding up to
  207. * the next minimum I/O unit if @pad is not zero.
  208. */
  209. void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
  210. {
  211. uint32_t crc;
  212. struct ubifs_ch *ch = node;
  213. unsigned long long sqnum = next_sqnum(c);
  214. ubifs_assert(len >= UBIFS_CH_SZ);
  215. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  216. ch->len = cpu_to_le32(len);
  217. ch->group_type = UBIFS_NO_NODE_GROUP;
  218. ch->sqnum = cpu_to_le64(sqnum);
  219. ch->padding[0] = ch->padding[1] = 0;
  220. crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
  221. ch->crc = cpu_to_le32(crc);
  222. if (pad) {
  223. len = ALIGN(len, 8);
  224. pad = ALIGN(len, c->min_io_size) - len;
  225. ubifs_pad(c, node + len, pad);
  226. }
  227. }
  228. /**
  229. * ubifs_prep_grp_node - prepare node of a group to be written to flash.
  230. * @c: UBIFS file-system description object
  231. * @node: the node to pad
  232. * @len: node length
  233. * @last: indicates the last node of the group
  234. *
  235. * This function prepares node at @node to be written to the media - it
  236. * calculates node CRC and fills the common header.
  237. */
  238. void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
  239. {
  240. uint32_t crc;
  241. struct ubifs_ch *ch = node;
  242. unsigned long long sqnum = next_sqnum(c);
  243. ubifs_assert(len >= UBIFS_CH_SZ);
  244. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  245. ch->len = cpu_to_le32(len);
  246. if (last)
  247. ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
  248. else
  249. ch->group_type = UBIFS_IN_NODE_GROUP;
  250. ch->sqnum = cpu_to_le64(sqnum);
  251. ch->padding[0] = ch->padding[1] = 0;
  252. crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
  253. ch->crc = cpu_to_le32(crc);
  254. }
  255. /**
  256. * wbuf_timer_callback - write-buffer timer callback function.
  257. * @data: timer data (write-buffer descriptor)
  258. *
  259. * This function is called when the write-buffer timer expires.
  260. */
  261. static void wbuf_timer_callback_nolock(unsigned long data)
  262. {
  263. struct ubifs_wbuf *wbuf = (struct ubifs_wbuf *)data;
  264. wbuf->need_sync = 1;
  265. wbuf->c->need_wbuf_sync = 1;
  266. ubifs_wake_up_bgt(wbuf->c);
  267. }
  268. /**
  269. * new_wbuf_timer - start new write-buffer timer.
  270. * @wbuf: write-buffer descriptor
  271. */
  272. static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
  273. {
  274. ubifs_assert(!timer_pending(&wbuf->timer));
  275. if (!wbuf->timeout)
  276. return;
  277. wbuf->timer.expires = jiffies + wbuf->timeout;
  278. add_timer(&wbuf->timer);
  279. }
  280. /**
  281. * cancel_wbuf_timer - cancel write-buffer timer.
  282. * @wbuf: write-buffer descriptor
  283. */
  284. static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
  285. {
  286. /*
  287. * If the syncer is waiting for the lock (from the background thread's
  288. * context) and another task is changing write-buffer then the syncing
  289. * should be canceled.
  290. */
  291. wbuf->need_sync = 0;
  292. del_timer(&wbuf->timer);
  293. }
  294. /**
  295. * ubifs_wbuf_sync_nolock - synchronize write-buffer.
  296. * @wbuf: write-buffer to synchronize
  297. *
  298. * This function synchronizes write-buffer @buf and returns zero in case of
  299. * success or a negative error code in case of failure.
  300. */
  301. int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
  302. {
  303. struct ubifs_info *c = wbuf->c;
  304. int err, dirt;
  305. cancel_wbuf_timer_nolock(wbuf);
  306. if (!wbuf->used || wbuf->lnum == -1)
  307. /* Write-buffer is empty or not seeked */
  308. return 0;
  309. dbg_io("LEB %d:%d, %d bytes",
  310. wbuf->lnum, wbuf->offs, wbuf->used);
  311. ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
  312. ubifs_assert(!(wbuf->avail & 7));
  313. ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
  314. if (c->ro_media)
  315. return -EROFS;
  316. ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
  317. err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
  318. c->min_io_size, wbuf->dtype);
  319. if (err) {
  320. ubifs_err("cannot write %d bytes to LEB %d:%d",
  321. c->min_io_size, wbuf->lnum, wbuf->offs);
  322. dbg_dump_stack();
  323. return err;
  324. }
  325. dirt = wbuf->avail;
  326. spin_lock(&wbuf->lock);
  327. wbuf->offs += c->min_io_size;
  328. wbuf->avail = c->min_io_size;
  329. wbuf->used = 0;
  330. wbuf->next_ino = 0;
  331. spin_unlock(&wbuf->lock);
  332. if (wbuf->sync_callback)
  333. err = wbuf->sync_callback(c, wbuf->lnum,
  334. c->leb_size - wbuf->offs, dirt);
  335. return err;
  336. }
  337. /**
  338. * ubifs_wbuf_seek_nolock - seek write-buffer.
  339. * @wbuf: write-buffer
  340. * @lnum: logical eraseblock number to seek to
  341. * @offs: logical eraseblock offset to seek to
  342. * @dtype: data type
  343. *
  344. * This function targets the write buffer to logical eraseblock @lnum:@offs.
  345. * The write-buffer is synchronized if it is not empty. Returns zero in case of
  346. * success and a negative error code in case of failure.
  347. */
  348. int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
  349. int dtype)
  350. {
  351. const struct ubifs_info *c = wbuf->c;
  352. dbg_io("LEB %d:%d", lnum, offs);
  353. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
  354. ubifs_assert(offs >= 0 && offs <= c->leb_size);
  355. ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
  356. ubifs_assert(lnum != wbuf->lnum);
  357. if (wbuf->used > 0) {
  358. int err = ubifs_wbuf_sync_nolock(wbuf);
  359. if (err)
  360. return err;
  361. }
  362. spin_lock(&wbuf->lock);
  363. wbuf->lnum = lnum;
  364. wbuf->offs = offs;
  365. wbuf->avail = c->min_io_size;
  366. wbuf->used = 0;
  367. spin_unlock(&wbuf->lock);
  368. wbuf->dtype = dtype;
  369. return 0;
  370. }
  371. /**
  372. * ubifs_bg_wbufs_sync - synchronize write-buffers.
  373. * @c: UBIFS file-system description object
  374. *
  375. * This function is called by background thread to synchronize write-buffers.
  376. * Returns zero in case of success and a negative error code in case of
  377. * failure.
  378. */
  379. int ubifs_bg_wbufs_sync(struct ubifs_info *c)
  380. {
  381. int err, i;
  382. if (!c->need_wbuf_sync)
  383. return 0;
  384. c->need_wbuf_sync = 0;
  385. if (c->ro_media) {
  386. err = -EROFS;
  387. goto out_timers;
  388. }
  389. dbg_io("synchronize");
  390. for (i = 0; i < c->jhead_cnt; i++) {
  391. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  392. cond_resched();
  393. /*
  394. * If the mutex is locked then wbuf is being changed, so
  395. * synchronization is not necessary.
  396. */
  397. if (mutex_is_locked(&wbuf->io_mutex))
  398. continue;
  399. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  400. if (!wbuf->need_sync) {
  401. mutex_unlock(&wbuf->io_mutex);
  402. continue;
  403. }
  404. err = ubifs_wbuf_sync_nolock(wbuf);
  405. mutex_unlock(&wbuf->io_mutex);
  406. if (err) {
  407. ubifs_err("cannot sync write-buffer, error %d", err);
  408. ubifs_ro_mode(c, err);
  409. goto out_timers;
  410. }
  411. }
  412. return 0;
  413. out_timers:
  414. /* Cancel all timers to prevent repeated errors */
  415. for (i = 0; i < c->jhead_cnt; i++) {
  416. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  417. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  418. cancel_wbuf_timer_nolock(wbuf);
  419. mutex_unlock(&wbuf->io_mutex);
  420. }
  421. return err;
  422. }
  423. /**
  424. * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
  425. * @wbuf: write-buffer
  426. * @buf: node to write
  427. * @len: node length
  428. *
  429. * This function writes data to flash via write-buffer @wbuf. This means that
  430. * the last piece of the node won't reach the flash media immediately if it
  431. * does not take whole minimal I/O unit. Instead, the node will sit in RAM
  432. * until the write-buffer is synchronized (e.g., by timer).
  433. *
  434. * This function returns zero in case of success and a negative error code in
  435. * case of failure. If the node cannot be written because there is no more
  436. * space in this logical eraseblock, %-ENOSPC is returned.
  437. */
  438. int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
  439. {
  440. struct ubifs_info *c = wbuf->c;
  441. int err, written, n, aligned_len = ALIGN(len, 8), offs;
  442. dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len,
  443. dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->lnum,
  444. wbuf->offs + wbuf->used);
  445. ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
  446. ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
  447. ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
  448. ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
  449. ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
  450. if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
  451. err = -ENOSPC;
  452. goto out;
  453. }
  454. cancel_wbuf_timer_nolock(wbuf);
  455. if (c->ro_media)
  456. return -EROFS;
  457. if (aligned_len <= wbuf->avail) {
  458. /*
  459. * The node is not very large and fits entirely within
  460. * write-buffer.
  461. */
  462. memcpy(wbuf->buf + wbuf->used, buf, len);
  463. if (aligned_len == wbuf->avail) {
  464. dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum,
  465. wbuf->offs);
  466. err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
  467. wbuf->offs, c->min_io_size,
  468. wbuf->dtype);
  469. if (err)
  470. goto out;
  471. spin_lock(&wbuf->lock);
  472. wbuf->offs += c->min_io_size;
  473. wbuf->avail = c->min_io_size;
  474. wbuf->used = 0;
  475. wbuf->next_ino = 0;
  476. spin_unlock(&wbuf->lock);
  477. } else {
  478. spin_lock(&wbuf->lock);
  479. wbuf->avail -= aligned_len;
  480. wbuf->used += aligned_len;
  481. spin_unlock(&wbuf->lock);
  482. }
  483. goto exit;
  484. }
  485. /*
  486. * The node is large enough and does not fit entirely within current
  487. * minimal I/O unit. We have to fill and flush write-buffer and switch
  488. * to the next min. I/O unit.
  489. */
  490. dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, wbuf->offs);
  491. memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
  492. err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
  493. c->min_io_size, wbuf->dtype);
  494. if (err)
  495. goto out;
  496. offs = wbuf->offs + c->min_io_size;
  497. len -= wbuf->avail;
  498. aligned_len -= wbuf->avail;
  499. written = wbuf->avail;
  500. /*
  501. * The remaining data may take more whole min. I/O units, so write the
  502. * remains multiple to min. I/O unit size directly to the flash media.
  503. * We align node length to 8-byte boundary because we anyway flash wbuf
  504. * if the remaining space is less than 8 bytes.
  505. */
  506. n = aligned_len >> c->min_io_shift;
  507. if (n) {
  508. n <<= c->min_io_shift;
  509. dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
  510. err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
  511. wbuf->dtype);
  512. if (err)
  513. goto out;
  514. offs += n;
  515. aligned_len -= n;
  516. len -= n;
  517. written += n;
  518. }
  519. spin_lock(&wbuf->lock);
  520. if (aligned_len)
  521. /*
  522. * And now we have what's left and what does not take whole
  523. * min. I/O unit, so write it to the write-buffer and we are
  524. * done.
  525. */
  526. memcpy(wbuf->buf, buf + written, len);
  527. wbuf->offs = offs;
  528. wbuf->used = aligned_len;
  529. wbuf->avail = c->min_io_size - aligned_len;
  530. wbuf->next_ino = 0;
  531. spin_unlock(&wbuf->lock);
  532. exit:
  533. if (wbuf->sync_callback) {
  534. int free = c->leb_size - wbuf->offs - wbuf->used;
  535. err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
  536. if (err)
  537. goto out;
  538. }
  539. if (wbuf->used)
  540. new_wbuf_timer_nolock(wbuf);
  541. return 0;
  542. out:
  543. ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
  544. len, wbuf->lnum, wbuf->offs, err);
  545. dbg_dump_node(c, buf);
  546. dbg_dump_stack();
  547. dbg_dump_leb(c, wbuf->lnum);
  548. return err;
  549. }
  550. /**
  551. * ubifs_write_node - write node to the media.
  552. * @c: UBIFS file-system description object
  553. * @buf: the node to write
  554. * @len: node length
  555. * @lnum: logical eraseblock number
  556. * @offs: offset within the logical eraseblock
  557. * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
  558. *
  559. * This function automatically fills node magic number, assigns sequence
  560. * number, and calculates node CRC checksum. The length of the @buf buffer has
  561. * to be aligned to the minimal I/O unit size. This function automatically
  562. * appends padding node and padding bytes if needed. Returns zero in case of
  563. * success and a negative error code in case of failure.
  564. */
  565. int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
  566. int offs, int dtype)
  567. {
  568. int err, buf_len = ALIGN(len, c->min_io_size);
  569. dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
  570. lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
  571. buf_len);
  572. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  573. ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
  574. if (c->ro_media)
  575. return -EROFS;
  576. ubifs_prepare_node(c, buf, len, 1);
  577. err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
  578. if (err) {
  579. ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
  580. buf_len, lnum, offs, err);
  581. dbg_dump_node(c, buf);
  582. dbg_dump_stack();
  583. }
  584. return err;
  585. }
  586. /**
  587. * ubifs_read_node_wbuf - read node from the media or write-buffer.
  588. * @wbuf: wbuf to check for un-written data
  589. * @buf: buffer to read to
  590. * @type: node type
  591. * @len: node length
  592. * @lnum: logical eraseblock number
  593. * @offs: offset within the logical eraseblock
  594. *
  595. * This function reads a node of known type and length, checks it and stores
  596. * in @buf. If the node partially or fully sits in the write-buffer, this
  597. * function takes data from the buffer, otherwise it reads the flash media.
  598. * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
  599. * error code in case of failure.
  600. */
  601. int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
  602. int lnum, int offs)
  603. {
  604. const struct ubifs_info *c = wbuf->c;
  605. int err, rlen, overlap;
  606. struct ubifs_ch *ch = buf;
  607. dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
  608. ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  609. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  610. ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
  611. spin_lock(&wbuf->lock);
  612. overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
  613. if (!overlap) {
  614. /* We may safely unlock the write-buffer and read the data */
  615. spin_unlock(&wbuf->lock);
  616. return ubifs_read_node(c, buf, type, len, lnum, offs);
  617. }
  618. /* Don't read under wbuf */
  619. rlen = wbuf->offs - offs;
  620. if (rlen < 0)
  621. rlen = 0;
  622. /* Copy the rest from the write-buffer */
  623. memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
  624. spin_unlock(&wbuf->lock);
  625. if (rlen > 0) {
  626. /* Read everything that goes before write-buffer */
  627. err = ubi_read(c->ubi, lnum, buf, offs, rlen);
  628. if (err && err != -EBADMSG) {
  629. ubifs_err("failed to read node %d from LEB %d:%d, "
  630. "error %d", type, lnum, offs, err);
  631. dbg_dump_stack();
  632. return err;
  633. }
  634. }
  635. if (type != ch->node_type) {
  636. ubifs_err("bad node type (%d but expected %d)",
  637. ch->node_type, type);
  638. goto out;
  639. }
  640. err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
  641. if (err) {
  642. ubifs_err("expected node type %d", type);
  643. return err;
  644. }
  645. rlen = le32_to_cpu(ch->len);
  646. if (rlen != len) {
  647. ubifs_err("bad node length %d, expected %d", rlen, len);
  648. goto out;
  649. }
  650. return 0;
  651. out:
  652. ubifs_err("bad node at LEB %d:%d", lnum, offs);
  653. dbg_dump_node(c, buf);
  654. dbg_dump_stack();
  655. return -EINVAL;
  656. }
  657. /**
  658. * ubifs_read_node - read node.
  659. * @c: UBIFS file-system description object
  660. * @buf: buffer to read to
  661. * @type: node type
  662. * @len: node length (not aligned)
  663. * @lnum: logical eraseblock number
  664. * @offs: offset within the logical eraseblock
  665. *
  666. * This function reads a node of known type and and length, checks it and
  667. * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
  668. * and a negative error code in case of failure.
  669. */
  670. int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
  671. int lnum, int offs)
  672. {
  673. int err, l;
  674. struct ubifs_ch *ch = buf;
  675. dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
  676. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  677. ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
  678. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  679. ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
  680. err = ubi_read(c->ubi, lnum, buf, offs, len);
  681. if (err && err != -EBADMSG) {
  682. ubifs_err("cannot read node %d from LEB %d:%d, error %d",
  683. type, lnum, offs, err);
  684. return err;
  685. }
  686. if (type != ch->node_type) {
  687. ubifs_err("bad node type (%d but expected %d)",
  688. ch->node_type, type);
  689. goto out;
  690. }
  691. err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
  692. if (err) {
  693. ubifs_err("expected node type %d", type);
  694. return err;
  695. }
  696. l = le32_to_cpu(ch->len);
  697. if (l != len) {
  698. ubifs_err("bad node length %d, expected %d", l, len);
  699. goto out;
  700. }
  701. return 0;
  702. out:
  703. ubifs_err("bad node at LEB %d:%d", lnum, offs);
  704. dbg_dump_node(c, buf);
  705. dbg_dump_stack();
  706. return -EINVAL;
  707. }
  708. /**
  709. * ubifs_wbuf_init - initialize write-buffer.
  710. * @c: UBIFS file-system description object
  711. * @wbuf: write-buffer to initialize
  712. *
  713. * This function initializes write buffer. Returns zero in case of success
  714. * %-ENOMEM in case of failure.
  715. */
  716. int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
  717. {
  718. size_t size;
  719. wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
  720. if (!wbuf->buf)
  721. return -ENOMEM;
  722. size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
  723. wbuf->inodes = kmalloc(size, GFP_KERNEL);
  724. if (!wbuf->inodes) {
  725. kfree(wbuf->buf);
  726. wbuf->buf = NULL;
  727. return -ENOMEM;
  728. }
  729. wbuf->used = 0;
  730. wbuf->lnum = wbuf->offs = -1;
  731. wbuf->avail = c->min_io_size;
  732. wbuf->dtype = UBI_UNKNOWN;
  733. wbuf->sync_callback = NULL;
  734. mutex_init(&wbuf->io_mutex);
  735. spin_lock_init(&wbuf->lock);
  736. wbuf->c = c;
  737. init_timer(&wbuf->timer);
  738. wbuf->timer.function = wbuf_timer_callback_nolock;
  739. wbuf->timer.data = (unsigned long)wbuf;
  740. wbuf->timeout = DEFAULT_WBUF_TIMEOUT;
  741. wbuf->next_ino = 0;
  742. return 0;
  743. }
  744. /**
  745. * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
  746. * @wbuf: the write-buffer whereto add
  747. * @inum: the inode number
  748. *
  749. * This function adds an inode number to the inode array of the write-buffer.
  750. */
  751. void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
  752. {
  753. if (!wbuf->buf)
  754. /* NOR flash or something similar */
  755. return;
  756. spin_lock(&wbuf->lock);
  757. if (wbuf->used)
  758. wbuf->inodes[wbuf->next_ino++] = inum;
  759. spin_unlock(&wbuf->lock);
  760. }
  761. /**
  762. * wbuf_has_ino - returns if the wbuf contains data from the inode.
  763. * @wbuf: the write-buffer
  764. * @inum: the inode number
  765. *
  766. * This function returns with %1 if the write-buffer contains some data from the
  767. * given inode otherwise it returns with %0.
  768. */
  769. static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
  770. {
  771. int i, ret = 0;
  772. spin_lock(&wbuf->lock);
  773. for (i = 0; i < wbuf->next_ino; i++)
  774. if (inum == wbuf->inodes[i]) {
  775. ret = 1;
  776. break;
  777. }
  778. spin_unlock(&wbuf->lock);
  779. return ret;
  780. }
  781. /**
  782. * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
  783. * @c: UBIFS file-system description object
  784. * @inode: inode to synchronize
  785. *
  786. * This function synchronizes write-buffers which contain nodes belonging to
  787. * @inode. Returns zero in case of success and a negative error code in case of
  788. * failure.
  789. */
  790. int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
  791. {
  792. int i, err = 0;
  793. for (i = 0; i < c->jhead_cnt; i++) {
  794. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  795. if (i == GCHD)
  796. /*
  797. * GC head is special, do not look at it. Even if the
  798. * head contains something related to this inode, it is
  799. * a _copy_ of corresponding on-flash node which sits
  800. * somewhere else.
  801. */
  802. continue;
  803. if (!wbuf_has_ino(wbuf, inode->i_ino))
  804. continue;
  805. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  806. if (wbuf_has_ino(wbuf, inode->i_ino))
  807. err = ubifs_wbuf_sync_nolock(wbuf);
  808. mutex_unlock(&wbuf->io_mutex);
  809. if (err) {
  810. ubifs_ro_mode(c, err);
  811. return err;
  812. }
  813. }
  814. return 0;
  815. }