bio.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/blktrace_api.h>
  29. #include <trace/block.h>
  30. #include <scsi/sg.h> /* for struct sg_iovec */
  31. DEFINE_TRACE(block_split);
  32. /*
  33. * Test patch to inline a certain number of bi_io_vec's inside the bio
  34. * itself, to shrink a bio data allocation from two mempool calls to one
  35. */
  36. #define BIO_INLINE_VECS 4
  37. static mempool_t *bio_split_pool __read_mostly;
  38. /*
  39. * if you change this list, also change bvec_alloc or things will
  40. * break badly! cannot be bigger than what you can fit into an
  41. * unsigned short
  42. */
  43. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  44. struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  45. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  46. };
  47. #undef BV
  48. /*
  49. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  50. * IO code that does not need private memory pools.
  51. */
  52. struct bio_set *fs_bio_set;
  53. /*
  54. * Our slab pool management
  55. */
  56. struct bio_slab {
  57. struct kmem_cache *slab;
  58. unsigned int slab_ref;
  59. unsigned int slab_size;
  60. char name[8];
  61. };
  62. static DEFINE_MUTEX(bio_slab_lock);
  63. static struct bio_slab *bio_slabs;
  64. static unsigned int bio_slab_nr, bio_slab_max;
  65. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  66. {
  67. unsigned int sz = sizeof(struct bio) + extra_size;
  68. struct kmem_cache *slab = NULL;
  69. struct bio_slab *bslab;
  70. unsigned int i, entry = -1;
  71. mutex_lock(&bio_slab_lock);
  72. i = 0;
  73. while (i < bio_slab_nr) {
  74. struct bio_slab *bslab = &bio_slabs[i];
  75. if (!bslab->slab && entry == -1)
  76. entry = i;
  77. else if (bslab->slab_size == sz) {
  78. slab = bslab->slab;
  79. bslab->slab_ref++;
  80. break;
  81. }
  82. i++;
  83. }
  84. if (slab)
  85. goto out_unlock;
  86. if (bio_slab_nr == bio_slab_max && entry == -1) {
  87. bio_slab_max <<= 1;
  88. bio_slabs = krealloc(bio_slabs,
  89. bio_slab_max * sizeof(struct bio_slab),
  90. GFP_KERNEL);
  91. if (!bio_slabs)
  92. goto out_unlock;
  93. }
  94. if (entry == -1)
  95. entry = bio_slab_nr++;
  96. bslab = &bio_slabs[entry];
  97. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  98. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  99. if (!slab)
  100. goto out_unlock;
  101. printk("bio: create slab <%s> at %d\n", bslab->name, entry);
  102. bslab->slab = slab;
  103. bslab->slab_ref = 1;
  104. bslab->slab_size = sz;
  105. out_unlock:
  106. mutex_unlock(&bio_slab_lock);
  107. return slab;
  108. }
  109. static void bio_put_slab(struct bio_set *bs)
  110. {
  111. struct bio_slab *bslab = NULL;
  112. unsigned int i;
  113. mutex_lock(&bio_slab_lock);
  114. for (i = 0; i < bio_slab_nr; i++) {
  115. if (bs->bio_slab == bio_slabs[i].slab) {
  116. bslab = &bio_slabs[i];
  117. break;
  118. }
  119. }
  120. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  121. goto out;
  122. WARN_ON(!bslab->slab_ref);
  123. if (--bslab->slab_ref)
  124. goto out;
  125. kmem_cache_destroy(bslab->slab);
  126. bslab->slab = NULL;
  127. out:
  128. mutex_unlock(&bio_slab_lock);
  129. }
  130. unsigned int bvec_nr_vecs(unsigned short idx)
  131. {
  132. return bvec_slabs[idx].nr_vecs;
  133. }
  134. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  135. {
  136. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  137. if (idx == BIOVEC_MAX_IDX)
  138. mempool_free(bv, bs->bvec_pool);
  139. else {
  140. struct biovec_slab *bvs = bvec_slabs + idx;
  141. kmem_cache_free(bvs->slab, bv);
  142. }
  143. }
  144. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  145. struct bio_set *bs)
  146. {
  147. struct bio_vec *bvl;
  148. /*
  149. * If 'bs' is given, lookup the pool and do the mempool alloc.
  150. * If not, this is a bio_kmalloc() allocation and just do a
  151. * kzalloc() for the exact number of vecs right away.
  152. */
  153. if (!bs)
  154. bvl = kmalloc(nr * sizeof(struct bio_vec), gfp_mask);
  155. /*
  156. * see comment near bvec_array define!
  157. */
  158. switch (nr) {
  159. case 1:
  160. *idx = 0;
  161. break;
  162. case 2 ... 4:
  163. *idx = 1;
  164. break;
  165. case 5 ... 16:
  166. *idx = 2;
  167. break;
  168. case 17 ... 64:
  169. *idx = 3;
  170. break;
  171. case 65 ... 128:
  172. *idx = 4;
  173. break;
  174. case 129 ... BIO_MAX_PAGES:
  175. *idx = 5;
  176. break;
  177. default:
  178. return NULL;
  179. }
  180. /*
  181. * idx now points to the pool we want to allocate from. only the
  182. * 1-vec entry pool is mempool backed.
  183. */
  184. if (*idx == BIOVEC_MAX_IDX) {
  185. fallback:
  186. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  187. } else {
  188. struct biovec_slab *bvs = bvec_slabs + *idx;
  189. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  190. /*
  191. * Make this allocation restricted and don't dump info on
  192. * allocation failures, since we'll fallback to the mempool
  193. * in case of failure.
  194. */
  195. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  196. /*
  197. * Try a slab allocation. If this fails and __GFP_WAIT
  198. * is set, retry with the 1-entry mempool
  199. */
  200. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  201. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  202. *idx = BIOVEC_MAX_IDX;
  203. goto fallback;
  204. }
  205. }
  206. return bvl;
  207. }
  208. void bio_free(struct bio *bio, struct bio_set *bs)
  209. {
  210. void *p;
  211. if (bio_has_allocated_vec(bio))
  212. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  213. if (bio_integrity(bio))
  214. bio_integrity_free(bio, bs);
  215. /*
  216. * If we have front padding, adjust the bio pointer before freeing
  217. */
  218. p = bio;
  219. if (bs->front_pad)
  220. p -= bs->front_pad;
  221. mempool_free(p, bs->bio_pool);
  222. }
  223. /*
  224. * default destructor for a bio allocated with bio_alloc_bioset()
  225. */
  226. static void bio_fs_destructor(struct bio *bio)
  227. {
  228. bio_free(bio, fs_bio_set);
  229. }
  230. static void bio_kmalloc_destructor(struct bio *bio)
  231. {
  232. if (bio_has_allocated_vec(bio))
  233. kfree(bio->bi_io_vec);
  234. kfree(bio);
  235. }
  236. void bio_init(struct bio *bio)
  237. {
  238. memset(bio, 0, sizeof(*bio));
  239. bio->bi_flags = 1 << BIO_UPTODATE;
  240. bio->bi_comp_cpu = -1;
  241. atomic_set(&bio->bi_cnt, 1);
  242. }
  243. /**
  244. * bio_alloc_bioset - allocate a bio for I/O
  245. * @gfp_mask: the GFP_ mask given to the slab allocator
  246. * @nr_iovecs: number of iovecs to pre-allocate
  247. * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
  248. *
  249. * Description:
  250. * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
  251. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  252. * for a &struct bio to become free. If a %NULL @bs is passed in, we will
  253. * fall back to just using @kmalloc to allocate the required memory.
  254. *
  255. * Note that the caller must set ->bi_destructor on succesful return
  256. * of a bio, to do the appropriate freeing of the bio once the reference
  257. * count drops to zero.
  258. **/
  259. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  260. {
  261. struct bio *bio = NULL;
  262. if (bs) {
  263. void *p = mempool_alloc(bs->bio_pool, gfp_mask);
  264. if (p)
  265. bio = p + bs->front_pad;
  266. } else
  267. bio = kmalloc(sizeof(*bio), gfp_mask);
  268. if (likely(bio)) {
  269. struct bio_vec *bvl = NULL;
  270. bio_init(bio);
  271. if (likely(nr_iovecs)) {
  272. unsigned long uninitialized_var(idx);
  273. if (nr_iovecs <= BIO_INLINE_VECS) {
  274. idx = 0;
  275. bvl = bio->bi_inline_vecs;
  276. nr_iovecs = BIO_INLINE_VECS;
  277. } else {
  278. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx,
  279. bs);
  280. nr_iovecs = bvec_nr_vecs(idx);
  281. }
  282. if (unlikely(!bvl)) {
  283. if (bs)
  284. mempool_free(bio, bs->bio_pool);
  285. else
  286. kfree(bio);
  287. bio = NULL;
  288. goto out;
  289. }
  290. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  291. bio->bi_max_vecs = nr_iovecs;
  292. }
  293. bio->bi_io_vec = bvl;
  294. }
  295. out:
  296. return bio;
  297. }
  298. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  299. {
  300. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  301. if (bio)
  302. bio->bi_destructor = bio_fs_destructor;
  303. return bio;
  304. }
  305. /*
  306. * Like bio_alloc(), but doesn't use a mempool backing. This means that
  307. * it CAN fail, but while bio_alloc() can only be used for allocations
  308. * that have a short (finite) life span, bio_kmalloc() should be used
  309. * for more permanent bio allocations (like allocating some bio's for
  310. * initalization or setup purposes).
  311. */
  312. struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
  313. {
  314. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
  315. if (bio)
  316. bio->bi_destructor = bio_kmalloc_destructor;
  317. return bio;
  318. }
  319. void zero_fill_bio(struct bio *bio)
  320. {
  321. unsigned long flags;
  322. struct bio_vec *bv;
  323. int i;
  324. bio_for_each_segment(bv, bio, i) {
  325. char *data = bvec_kmap_irq(bv, &flags);
  326. memset(data, 0, bv->bv_len);
  327. flush_dcache_page(bv->bv_page);
  328. bvec_kunmap_irq(data, &flags);
  329. }
  330. }
  331. EXPORT_SYMBOL(zero_fill_bio);
  332. /**
  333. * bio_put - release a reference to a bio
  334. * @bio: bio to release reference to
  335. *
  336. * Description:
  337. * Put a reference to a &struct bio, either one you have gotten with
  338. * bio_alloc or bio_get. The last put of a bio will free it.
  339. **/
  340. void bio_put(struct bio *bio)
  341. {
  342. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  343. /*
  344. * last put frees it
  345. */
  346. if (atomic_dec_and_test(&bio->bi_cnt)) {
  347. bio->bi_next = NULL;
  348. bio->bi_destructor(bio);
  349. }
  350. }
  351. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  352. {
  353. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  354. blk_recount_segments(q, bio);
  355. return bio->bi_phys_segments;
  356. }
  357. /**
  358. * __bio_clone - clone a bio
  359. * @bio: destination bio
  360. * @bio_src: bio to clone
  361. *
  362. * Clone a &bio. Caller will own the returned bio, but not
  363. * the actual data it points to. Reference count of returned
  364. * bio will be one.
  365. */
  366. void __bio_clone(struct bio *bio, struct bio *bio_src)
  367. {
  368. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  369. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  370. /*
  371. * most users will be overriding ->bi_bdev with a new target,
  372. * so we don't set nor calculate new physical/hw segment counts here
  373. */
  374. bio->bi_sector = bio_src->bi_sector;
  375. bio->bi_bdev = bio_src->bi_bdev;
  376. bio->bi_flags |= 1 << BIO_CLONED;
  377. bio->bi_rw = bio_src->bi_rw;
  378. bio->bi_vcnt = bio_src->bi_vcnt;
  379. bio->bi_size = bio_src->bi_size;
  380. bio->bi_idx = bio_src->bi_idx;
  381. }
  382. /**
  383. * bio_clone - clone a bio
  384. * @bio: bio to clone
  385. * @gfp_mask: allocation priority
  386. *
  387. * Like __bio_clone, only also allocates the returned bio
  388. */
  389. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  390. {
  391. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  392. if (!b)
  393. return NULL;
  394. b->bi_destructor = bio_fs_destructor;
  395. __bio_clone(b, bio);
  396. if (bio_integrity(bio)) {
  397. int ret;
  398. ret = bio_integrity_clone(b, bio, fs_bio_set);
  399. if (ret < 0)
  400. return NULL;
  401. }
  402. return b;
  403. }
  404. /**
  405. * bio_get_nr_vecs - return approx number of vecs
  406. * @bdev: I/O target
  407. *
  408. * Return the approximate number of pages we can send to this target.
  409. * There's no guarantee that you will be able to fit this number of pages
  410. * into a bio, it does not account for dynamic restrictions that vary
  411. * on offset.
  412. */
  413. int bio_get_nr_vecs(struct block_device *bdev)
  414. {
  415. struct request_queue *q = bdev_get_queue(bdev);
  416. int nr_pages;
  417. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  418. if (nr_pages > q->max_phys_segments)
  419. nr_pages = q->max_phys_segments;
  420. if (nr_pages > q->max_hw_segments)
  421. nr_pages = q->max_hw_segments;
  422. return nr_pages;
  423. }
  424. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  425. *page, unsigned int len, unsigned int offset,
  426. unsigned short max_sectors)
  427. {
  428. int retried_segments = 0;
  429. struct bio_vec *bvec;
  430. /*
  431. * cloned bio must not modify vec list
  432. */
  433. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  434. return 0;
  435. if (((bio->bi_size + len) >> 9) > max_sectors)
  436. return 0;
  437. /*
  438. * For filesystems with a blocksize smaller than the pagesize
  439. * we will often be called with the same page as last time and
  440. * a consecutive offset. Optimize this special case.
  441. */
  442. if (bio->bi_vcnt > 0) {
  443. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  444. if (page == prev->bv_page &&
  445. offset == prev->bv_offset + prev->bv_len) {
  446. prev->bv_len += len;
  447. if (q->merge_bvec_fn) {
  448. struct bvec_merge_data bvm = {
  449. .bi_bdev = bio->bi_bdev,
  450. .bi_sector = bio->bi_sector,
  451. .bi_size = bio->bi_size,
  452. .bi_rw = bio->bi_rw,
  453. };
  454. if (q->merge_bvec_fn(q, &bvm, prev) < len) {
  455. prev->bv_len -= len;
  456. return 0;
  457. }
  458. }
  459. goto done;
  460. }
  461. }
  462. if (bio->bi_vcnt >= bio->bi_max_vecs)
  463. return 0;
  464. /*
  465. * we might lose a segment or two here, but rather that than
  466. * make this too complex.
  467. */
  468. while (bio->bi_phys_segments >= q->max_phys_segments
  469. || bio->bi_phys_segments >= q->max_hw_segments) {
  470. if (retried_segments)
  471. return 0;
  472. retried_segments = 1;
  473. blk_recount_segments(q, bio);
  474. }
  475. /*
  476. * setup the new entry, we might clear it again later if we
  477. * cannot add the page
  478. */
  479. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  480. bvec->bv_page = page;
  481. bvec->bv_len = len;
  482. bvec->bv_offset = offset;
  483. /*
  484. * if queue has other restrictions (eg varying max sector size
  485. * depending on offset), it can specify a merge_bvec_fn in the
  486. * queue to get further control
  487. */
  488. if (q->merge_bvec_fn) {
  489. struct bvec_merge_data bvm = {
  490. .bi_bdev = bio->bi_bdev,
  491. .bi_sector = bio->bi_sector,
  492. .bi_size = bio->bi_size,
  493. .bi_rw = bio->bi_rw,
  494. };
  495. /*
  496. * merge_bvec_fn() returns number of bytes it can accept
  497. * at this offset
  498. */
  499. if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
  500. bvec->bv_page = NULL;
  501. bvec->bv_len = 0;
  502. bvec->bv_offset = 0;
  503. return 0;
  504. }
  505. }
  506. /* If we may be able to merge these biovecs, force a recount */
  507. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  508. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  509. bio->bi_vcnt++;
  510. bio->bi_phys_segments++;
  511. done:
  512. bio->bi_size += len;
  513. return len;
  514. }
  515. /**
  516. * bio_add_pc_page - attempt to add page to bio
  517. * @q: the target queue
  518. * @bio: destination bio
  519. * @page: page to add
  520. * @len: vec entry length
  521. * @offset: vec entry offset
  522. *
  523. * Attempt to add a page to the bio_vec maplist. This can fail for a
  524. * number of reasons, such as the bio being full or target block
  525. * device limitations. The target block device must allow bio's
  526. * smaller than PAGE_SIZE, so it is always possible to add a single
  527. * page to an empty bio. This should only be used by REQ_PC bios.
  528. */
  529. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  530. unsigned int len, unsigned int offset)
  531. {
  532. return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
  533. }
  534. /**
  535. * bio_add_page - attempt to add page to bio
  536. * @bio: destination bio
  537. * @page: page to add
  538. * @len: vec entry length
  539. * @offset: vec entry offset
  540. *
  541. * Attempt to add a page to the bio_vec maplist. This can fail for a
  542. * number of reasons, such as the bio being full or target block
  543. * device limitations. The target block device must allow bio's
  544. * smaller than PAGE_SIZE, so it is always possible to add a single
  545. * page to an empty bio.
  546. */
  547. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  548. unsigned int offset)
  549. {
  550. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  551. return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
  552. }
  553. struct bio_map_data {
  554. struct bio_vec *iovecs;
  555. struct sg_iovec *sgvecs;
  556. int nr_sgvecs;
  557. int is_our_pages;
  558. };
  559. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  560. struct sg_iovec *iov, int iov_count,
  561. int is_our_pages)
  562. {
  563. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  564. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  565. bmd->nr_sgvecs = iov_count;
  566. bmd->is_our_pages = is_our_pages;
  567. bio->bi_private = bmd;
  568. }
  569. static void bio_free_map_data(struct bio_map_data *bmd)
  570. {
  571. kfree(bmd->iovecs);
  572. kfree(bmd->sgvecs);
  573. kfree(bmd);
  574. }
  575. static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
  576. gfp_t gfp_mask)
  577. {
  578. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
  579. if (!bmd)
  580. return NULL;
  581. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  582. if (!bmd->iovecs) {
  583. kfree(bmd);
  584. return NULL;
  585. }
  586. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  587. if (bmd->sgvecs)
  588. return bmd;
  589. kfree(bmd->iovecs);
  590. kfree(bmd);
  591. return NULL;
  592. }
  593. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  594. struct sg_iovec *iov, int iov_count, int uncopy,
  595. int do_free_page)
  596. {
  597. int ret = 0, i;
  598. struct bio_vec *bvec;
  599. int iov_idx = 0;
  600. unsigned int iov_off = 0;
  601. int read = bio_data_dir(bio) == READ;
  602. __bio_for_each_segment(bvec, bio, i, 0) {
  603. char *bv_addr = page_address(bvec->bv_page);
  604. unsigned int bv_len = iovecs[i].bv_len;
  605. while (bv_len && iov_idx < iov_count) {
  606. unsigned int bytes;
  607. char *iov_addr;
  608. bytes = min_t(unsigned int,
  609. iov[iov_idx].iov_len - iov_off, bv_len);
  610. iov_addr = iov[iov_idx].iov_base + iov_off;
  611. if (!ret) {
  612. if (!read && !uncopy)
  613. ret = copy_from_user(bv_addr, iov_addr,
  614. bytes);
  615. if (read && uncopy)
  616. ret = copy_to_user(iov_addr, bv_addr,
  617. bytes);
  618. if (ret)
  619. ret = -EFAULT;
  620. }
  621. bv_len -= bytes;
  622. bv_addr += bytes;
  623. iov_addr += bytes;
  624. iov_off += bytes;
  625. if (iov[iov_idx].iov_len == iov_off) {
  626. iov_idx++;
  627. iov_off = 0;
  628. }
  629. }
  630. if (do_free_page)
  631. __free_page(bvec->bv_page);
  632. }
  633. return ret;
  634. }
  635. /**
  636. * bio_uncopy_user - finish previously mapped bio
  637. * @bio: bio being terminated
  638. *
  639. * Free pages allocated from bio_copy_user() and write back data
  640. * to user space in case of a read.
  641. */
  642. int bio_uncopy_user(struct bio *bio)
  643. {
  644. struct bio_map_data *bmd = bio->bi_private;
  645. int ret = 0;
  646. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  647. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  648. bmd->nr_sgvecs, 1, bmd->is_our_pages);
  649. bio_free_map_data(bmd);
  650. bio_put(bio);
  651. return ret;
  652. }
  653. /**
  654. * bio_copy_user_iov - copy user data to bio
  655. * @q: destination block queue
  656. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  657. * @iov: the iovec.
  658. * @iov_count: number of elements in the iovec
  659. * @write_to_vm: bool indicating writing to pages or not
  660. * @gfp_mask: memory allocation flags
  661. *
  662. * Prepares and returns a bio for indirect user io, bouncing data
  663. * to/from kernel pages as necessary. Must be paired with
  664. * call bio_uncopy_user() on io completion.
  665. */
  666. struct bio *bio_copy_user_iov(struct request_queue *q,
  667. struct rq_map_data *map_data,
  668. struct sg_iovec *iov, int iov_count,
  669. int write_to_vm, gfp_t gfp_mask)
  670. {
  671. struct bio_map_data *bmd;
  672. struct bio_vec *bvec;
  673. struct page *page;
  674. struct bio *bio;
  675. int i, ret;
  676. int nr_pages = 0;
  677. unsigned int len = 0;
  678. for (i = 0; i < iov_count; i++) {
  679. unsigned long uaddr;
  680. unsigned long end;
  681. unsigned long start;
  682. uaddr = (unsigned long)iov[i].iov_base;
  683. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  684. start = uaddr >> PAGE_SHIFT;
  685. nr_pages += end - start;
  686. len += iov[i].iov_len;
  687. }
  688. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  689. if (!bmd)
  690. return ERR_PTR(-ENOMEM);
  691. ret = -ENOMEM;
  692. bio = bio_alloc(gfp_mask, nr_pages);
  693. if (!bio)
  694. goto out_bmd;
  695. bio->bi_rw |= (!write_to_vm << BIO_RW);
  696. ret = 0;
  697. i = 0;
  698. while (len) {
  699. unsigned int bytes;
  700. if (map_data)
  701. bytes = 1U << (PAGE_SHIFT + map_data->page_order);
  702. else
  703. bytes = PAGE_SIZE;
  704. if (bytes > len)
  705. bytes = len;
  706. if (map_data) {
  707. if (i == map_data->nr_entries) {
  708. ret = -ENOMEM;
  709. break;
  710. }
  711. page = map_data->pages[i++];
  712. } else
  713. page = alloc_page(q->bounce_gfp | gfp_mask);
  714. if (!page) {
  715. ret = -ENOMEM;
  716. break;
  717. }
  718. if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
  719. break;
  720. len -= bytes;
  721. }
  722. if (ret)
  723. goto cleanup;
  724. /*
  725. * success
  726. */
  727. if (!write_to_vm) {
  728. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
  729. if (ret)
  730. goto cleanup;
  731. }
  732. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  733. return bio;
  734. cleanup:
  735. if (!map_data)
  736. bio_for_each_segment(bvec, bio, i)
  737. __free_page(bvec->bv_page);
  738. bio_put(bio);
  739. out_bmd:
  740. bio_free_map_data(bmd);
  741. return ERR_PTR(ret);
  742. }
  743. /**
  744. * bio_copy_user - copy user data to bio
  745. * @q: destination block queue
  746. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  747. * @uaddr: start of user address
  748. * @len: length in bytes
  749. * @write_to_vm: bool indicating writing to pages or not
  750. * @gfp_mask: memory allocation flags
  751. *
  752. * Prepares and returns a bio for indirect user io, bouncing data
  753. * to/from kernel pages as necessary. Must be paired with
  754. * call bio_uncopy_user() on io completion.
  755. */
  756. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  757. unsigned long uaddr, unsigned int len,
  758. int write_to_vm, gfp_t gfp_mask)
  759. {
  760. struct sg_iovec iov;
  761. iov.iov_base = (void __user *)uaddr;
  762. iov.iov_len = len;
  763. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  764. }
  765. static struct bio *__bio_map_user_iov(struct request_queue *q,
  766. struct block_device *bdev,
  767. struct sg_iovec *iov, int iov_count,
  768. int write_to_vm, gfp_t gfp_mask)
  769. {
  770. int i, j;
  771. int nr_pages = 0;
  772. struct page **pages;
  773. struct bio *bio;
  774. int cur_page = 0;
  775. int ret, offset;
  776. for (i = 0; i < iov_count; i++) {
  777. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  778. unsigned long len = iov[i].iov_len;
  779. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  780. unsigned long start = uaddr >> PAGE_SHIFT;
  781. nr_pages += end - start;
  782. /*
  783. * buffer must be aligned to at least hardsector size for now
  784. */
  785. if (uaddr & queue_dma_alignment(q))
  786. return ERR_PTR(-EINVAL);
  787. }
  788. if (!nr_pages)
  789. return ERR_PTR(-EINVAL);
  790. bio = bio_alloc(gfp_mask, nr_pages);
  791. if (!bio)
  792. return ERR_PTR(-ENOMEM);
  793. ret = -ENOMEM;
  794. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  795. if (!pages)
  796. goto out;
  797. for (i = 0; i < iov_count; i++) {
  798. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  799. unsigned long len = iov[i].iov_len;
  800. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  801. unsigned long start = uaddr >> PAGE_SHIFT;
  802. const int local_nr_pages = end - start;
  803. const int page_limit = cur_page + local_nr_pages;
  804. ret = get_user_pages_fast(uaddr, local_nr_pages,
  805. write_to_vm, &pages[cur_page]);
  806. if (ret < local_nr_pages) {
  807. ret = -EFAULT;
  808. goto out_unmap;
  809. }
  810. offset = uaddr & ~PAGE_MASK;
  811. for (j = cur_page; j < page_limit; j++) {
  812. unsigned int bytes = PAGE_SIZE - offset;
  813. if (len <= 0)
  814. break;
  815. if (bytes > len)
  816. bytes = len;
  817. /*
  818. * sorry...
  819. */
  820. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  821. bytes)
  822. break;
  823. len -= bytes;
  824. offset = 0;
  825. }
  826. cur_page = j;
  827. /*
  828. * release the pages we didn't map into the bio, if any
  829. */
  830. while (j < page_limit)
  831. page_cache_release(pages[j++]);
  832. }
  833. kfree(pages);
  834. /*
  835. * set data direction, and check if mapped pages need bouncing
  836. */
  837. if (!write_to_vm)
  838. bio->bi_rw |= (1 << BIO_RW);
  839. bio->bi_bdev = bdev;
  840. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  841. return bio;
  842. out_unmap:
  843. for (i = 0; i < nr_pages; i++) {
  844. if(!pages[i])
  845. break;
  846. page_cache_release(pages[i]);
  847. }
  848. out:
  849. kfree(pages);
  850. bio_put(bio);
  851. return ERR_PTR(ret);
  852. }
  853. /**
  854. * bio_map_user - map user address into bio
  855. * @q: the struct request_queue for the bio
  856. * @bdev: destination block device
  857. * @uaddr: start of user address
  858. * @len: length in bytes
  859. * @write_to_vm: bool indicating writing to pages or not
  860. * @gfp_mask: memory allocation flags
  861. *
  862. * Map the user space address into a bio suitable for io to a block
  863. * device. Returns an error pointer in case of error.
  864. */
  865. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  866. unsigned long uaddr, unsigned int len, int write_to_vm,
  867. gfp_t gfp_mask)
  868. {
  869. struct sg_iovec iov;
  870. iov.iov_base = (void __user *)uaddr;
  871. iov.iov_len = len;
  872. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  873. }
  874. /**
  875. * bio_map_user_iov - map user sg_iovec table into bio
  876. * @q: the struct request_queue for the bio
  877. * @bdev: destination block device
  878. * @iov: the iovec.
  879. * @iov_count: number of elements in the iovec
  880. * @write_to_vm: bool indicating writing to pages or not
  881. * @gfp_mask: memory allocation flags
  882. *
  883. * Map the user space address into a bio suitable for io to a block
  884. * device. Returns an error pointer in case of error.
  885. */
  886. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  887. struct sg_iovec *iov, int iov_count,
  888. int write_to_vm, gfp_t gfp_mask)
  889. {
  890. struct bio *bio;
  891. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  892. gfp_mask);
  893. if (IS_ERR(bio))
  894. return bio;
  895. /*
  896. * subtle -- if __bio_map_user() ended up bouncing a bio,
  897. * it would normally disappear when its bi_end_io is run.
  898. * however, we need it for the unmap, so grab an extra
  899. * reference to it
  900. */
  901. bio_get(bio);
  902. return bio;
  903. }
  904. static void __bio_unmap_user(struct bio *bio)
  905. {
  906. struct bio_vec *bvec;
  907. int i;
  908. /*
  909. * make sure we dirty pages we wrote to
  910. */
  911. __bio_for_each_segment(bvec, bio, i, 0) {
  912. if (bio_data_dir(bio) == READ)
  913. set_page_dirty_lock(bvec->bv_page);
  914. page_cache_release(bvec->bv_page);
  915. }
  916. bio_put(bio);
  917. }
  918. /**
  919. * bio_unmap_user - unmap a bio
  920. * @bio: the bio being unmapped
  921. *
  922. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  923. * a process context.
  924. *
  925. * bio_unmap_user() may sleep.
  926. */
  927. void bio_unmap_user(struct bio *bio)
  928. {
  929. __bio_unmap_user(bio);
  930. bio_put(bio);
  931. }
  932. static void bio_map_kern_endio(struct bio *bio, int err)
  933. {
  934. bio_put(bio);
  935. }
  936. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  937. unsigned int len, gfp_t gfp_mask)
  938. {
  939. unsigned long kaddr = (unsigned long)data;
  940. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  941. unsigned long start = kaddr >> PAGE_SHIFT;
  942. const int nr_pages = end - start;
  943. int offset, i;
  944. struct bio *bio;
  945. bio = bio_alloc(gfp_mask, nr_pages);
  946. if (!bio)
  947. return ERR_PTR(-ENOMEM);
  948. offset = offset_in_page(kaddr);
  949. for (i = 0; i < nr_pages; i++) {
  950. unsigned int bytes = PAGE_SIZE - offset;
  951. if (len <= 0)
  952. break;
  953. if (bytes > len)
  954. bytes = len;
  955. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  956. offset) < bytes)
  957. break;
  958. data += bytes;
  959. len -= bytes;
  960. offset = 0;
  961. }
  962. bio->bi_end_io = bio_map_kern_endio;
  963. return bio;
  964. }
  965. /**
  966. * bio_map_kern - map kernel address into bio
  967. * @q: the struct request_queue for the bio
  968. * @data: pointer to buffer to map
  969. * @len: length in bytes
  970. * @gfp_mask: allocation flags for bio allocation
  971. *
  972. * Map the kernel address into a bio suitable for io to a block
  973. * device. Returns an error pointer in case of error.
  974. */
  975. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  976. gfp_t gfp_mask)
  977. {
  978. struct bio *bio;
  979. bio = __bio_map_kern(q, data, len, gfp_mask);
  980. if (IS_ERR(bio))
  981. return bio;
  982. if (bio->bi_size == len)
  983. return bio;
  984. /*
  985. * Don't support partial mappings.
  986. */
  987. bio_put(bio);
  988. return ERR_PTR(-EINVAL);
  989. }
  990. static void bio_copy_kern_endio(struct bio *bio, int err)
  991. {
  992. struct bio_vec *bvec;
  993. const int read = bio_data_dir(bio) == READ;
  994. struct bio_map_data *bmd = bio->bi_private;
  995. int i;
  996. char *p = bmd->sgvecs[0].iov_base;
  997. __bio_for_each_segment(bvec, bio, i, 0) {
  998. char *addr = page_address(bvec->bv_page);
  999. int len = bmd->iovecs[i].bv_len;
  1000. if (read && !err)
  1001. memcpy(p, addr, len);
  1002. __free_page(bvec->bv_page);
  1003. p += len;
  1004. }
  1005. bio_free_map_data(bmd);
  1006. bio_put(bio);
  1007. }
  1008. /**
  1009. * bio_copy_kern - copy kernel address into bio
  1010. * @q: the struct request_queue for the bio
  1011. * @data: pointer to buffer to copy
  1012. * @len: length in bytes
  1013. * @gfp_mask: allocation flags for bio and page allocation
  1014. * @reading: data direction is READ
  1015. *
  1016. * copy the kernel address into a bio suitable for io to a block
  1017. * device. Returns an error pointer in case of error.
  1018. */
  1019. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1020. gfp_t gfp_mask, int reading)
  1021. {
  1022. struct bio *bio;
  1023. struct bio_vec *bvec;
  1024. int i;
  1025. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1026. if (IS_ERR(bio))
  1027. return bio;
  1028. if (!reading) {
  1029. void *p = data;
  1030. bio_for_each_segment(bvec, bio, i) {
  1031. char *addr = page_address(bvec->bv_page);
  1032. memcpy(addr, p, bvec->bv_len);
  1033. p += bvec->bv_len;
  1034. }
  1035. }
  1036. bio->bi_end_io = bio_copy_kern_endio;
  1037. return bio;
  1038. }
  1039. /*
  1040. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1041. * for performing direct-IO in BIOs.
  1042. *
  1043. * The problem is that we cannot run set_page_dirty() from interrupt context
  1044. * because the required locks are not interrupt-safe. So what we can do is to
  1045. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1046. * check that the pages are still dirty. If so, fine. If not, redirty them
  1047. * in process context.
  1048. *
  1049. * We special-case compound pages here: normally this means reads into hugetlb
  1050. * pages. The logic in here doesn't really work right for compound pages
  1051. * because the VM does not uniformly chase down the head page in all cases.
  1052. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1053. * handle them at all. So we skip compound pages here at an early stage.
  1054. *
  1055. * Note that this code is very hard to test under normal circumstances because
  1056. * direct-io pins the pages with get_user_pages(). This makes
  1057. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1058. * But other code (eg, pdflush) could clean the pages if they are mapped
  1059. * pagecache.
  1060. *
  1061. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1062. * deferred bio dirtying paths.
  1063. */
  1064. /*
  1065. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1066. */
  1067. void bio_set_pages_dirty(struct bio *bio)
  1068. {
  1069. struct bio_vec *bvec = bio->bi_io_vec;
  1070. int i;
  1071. for (i = 0; i < bio->bi_vcnt; i++) {
  1072. struct page *page = bvec[i].bv_page;
  1073. if (page && !PageCompound(page))
  1074. set_page_dirty_lock(page);
  1075. }
  1076. }
  1077. static void bio_release_pages(struct bio *bio)
  1078. {
  1079. struct bio_vec *bvec = bio->bi_io_vec;
  1080. int i;
  1081. for (i = 0; i < bio->bi_vcnt; i++) {
  1082. struct page *page = bvec[i].bv_page;
  1083. if (page)
  1084. put_page(page);
  1085. }
  1086. }
  1087. /*
  1088. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1089. * If they are, then fine. If, however, some pages are clean then they must
  1090. * have been written out during the direct-IO read. So we take another ref on
  1091. * the BIO and the offending pages and re-dirty the pages in process context.
  1092. *
  1093. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1094. * here on. It will run one page_cache_release() against each page and will
  1095. * run one bio_put() against the BIO.
  1096. */
  1097. static void bio_dirty_fn(struct work_struct *work);
  1098. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1099. static DEFINE_SPINLOCK(bio_dirty_lock);
  1100. static struct bio *bio_dirty_list;
  1101. /*
  1102. * This runs in process context
  1103. */
  1104. static void bio_dirty_fn(struct work_struct *work)
  1105. {
  1106. unsigned long flags;
  1107. struct bio *bio;
  1108. spin_lock_irqsave(&bio_dirty_lock, flags);
  1109. bio = bio_dirty_list;
  1110. bio_dirty_list = NULL;
  1111. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1112. while (bio) {
  1113. struct bio *next = bio->bi_private;
  1114. bio_set_pages_dirty(bio);
  1115. bio_release_pages(bio);
  1116. bio_put(bio);
  1117. bio = next;
  1118. }
  1119. }
  1120. void bio_check_pages_dirty(struct bio *bio)
  1121. {
  1122. struct bio_vec *bvec = bio->bi_io_vec;
  1123. int nr_clean_pages = 0;
  1124. int i;
  1125. for (i = 0; i < bio->bi_vcnt; i++) {
  1126. struct page *page = bvec[i].bv_page;
  1127. if (PageDirty(page) || PageCompound(page)) {
  1128. page_cache_release(page);
  1129. bvec[i].bv_page = NULL;
  1130. } else {
  1131. nr_clean_pages++;
  1132. }
  1133. }
  1134. if (nr_clean_pages) {
  1135. unsigned long flags;
  1136. spin_lock_irqsave(&bio_dirty_lock, flags);
  1137. bio->bi_private = bio_dirty_list;
  1138. bio_dirty_list = bio;
  1139. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1140. schedule_work(&bio_dirty_work);
  1141. } else {
  1142. bio_put(bio);
  1143. }
  1144. }
  1145. /**
  1146. * bio_endio - end I/O on a bio
  1147. * @bio: bio
  1148. * @error: error, if any
  1149. *
  1150. * Description:
  1151. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1152. * preferred way to end I/O on a bio, it takes care of clearing
  1153. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1154. * established -Exxxx (-EIO, for instance) error values in case
  1155. * something went wrong. Noone should call bi_end_io() directly on a
  1156. * bio unless they own it and thus know that it has an end_io
  1157. * function.
  1158. **/
  1159. void bio_endio(struct bio *bio, int error)
  1160. {
  1161. if (error)
  1162. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1163. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1164. error = -EIO;
  1165. if (bio->bi_end_io)
  1166. bio->bi_end_io(bio, error);
  1167. }
  1168. void bio_pair_release(struct bio_pair *bp)
  1169. {
  1170. if (atomic_dec_and_test(&bp->cnt)) {
  1171. struct bio *master = bp->bio1.bi_private;
  1172. bio_endio(master, bp->error);
  1173. mempool_free(bp, bp->bio2.bi_private);
  1174. }
  1175. }
  1176. static void bio_pair_end_1(struct bio *bi, int err)
  1177. {
  1178. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1179. if (err)
  1180. bp->error = err;
  1181. bio_pair_release(bp);
  1182. }
  1183. static void bio_pair_end_2(struct bio *bi, int err)
  1184. {
  1185. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1186. if (err)
  1187. bp->error = err;
  1188. bio_pair_release(bp);
  1189. }
  1190. /*
  1191. * split a bio - only worry about a bio with a single page
  1192. * in it's iovec
  1193. */
  1194. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1195. {
  1196. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1197. if (!bp)
  1198. return bp;
  1199. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1200. bi->bi_sector + first_sectors);
  1201. BUG_ON(bi->bi_vcnt != 1);
  1202. BUG_ON(bi->bi_idx != 0);
  1203. atomic_set(&bp->cnt, 3);
  1204. bp->error = 0;
  1205. bp->bio1 = *bi;
  1206. bp->bio2 = *bi;
  1207. bp->bio2.bi_sector += first_sectors;
  1208. bp->bio2.bi_size -= first_sectors << 9;
  1209. bp->bio1.bi_size = first_sectors << 9;
  1210. bp->bv1 = bi->bi_io_vec[0];
  1211. bp->bv2 = bi->bi_io_vec[0];
  1212. bp->bv2.bv_offset += first_sectors << 9;
  1213. bp->bv2.bv_len -= first_sectors << 9;
  1214. bp->bv1.bv_len = first_sectors << 9;
  1215. bp->bio1.bi_io_vec = &bp->bv1;
  1216. bp->bio2.bi_io_vec = &bp->bv2;
  1217. bp->bio1.bi_max_vecs = 1;
  1218. bp->bio2.bi_max_vecs = 1;
  1219. bp->bio1.bi_end_io = bio_pair_end_1;
  1220. bp->bio2.bi_end_io = bio_pair_end_2;
  1221. bp->bio1.bi_private = bi;
  1222. bp->bio2.bi_private = bio_split_pool;
  1223. if (bio_integrity(bi))
  1224. bio_integrity_split(bi, bp, first_sectors);
  1225. return bp;
  1226. }
  1227. /**
  1228. * bio_sector_offset - Find hardware sector offset in bio
  1229. * @bio: bio to inspect
  1230. * @index: bio_vec index
  1231. * @offset: offset in bv_page
  1232. *
  1233. * Return the number of hardware sectors between beginning of bio
  1234. * and an end point indicated by a bio_vec index and an offset
  1235. * within that vector's page.
  1236. */
  1237. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1238. unsigned int offset)
  1239. {
  1240. unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
  1241. struct bio_vec *bv;
  1242. sector_t sectors;
  1243. int i;
  1244. sectors = 0;
  1245. if (index >= bio->bi_idx)
  1246. index = bio->bi_vcnt - 1;
  1247. __bio_for_each_segment(bv, bio, i, 0) {
  1248. if (i == index) {
  1249. if (offset > bv->bv_offset)
  1250. sectors += (offset - bv->bv_offset) / sector_sz;
  1251. break;
  1252. }
  1253. sectors += bv->bv_len / sector_sz;
  1254. }
  1255. return sectors;
  1256. }
  1257. EXPORT_SYMBOL(bio_sector_offset);
  1258. /*
  1259. * create memory pools for biovec's in a bio_set.
  1260. * use the global biovec slabs created for general use.
  1261. */
  1262. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1263. {
  1264. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1265. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1266. if (!bs->bvec_pool)
  1267. return -ENOMEM;
  1268. return 0;
  1269. }
  1270. static void biovec_free_pools(struct bio_set *bs)
  1271. {
  1272. mempool_destroy(bs->bvec_pool);
  1273. }
  1274. void bioset_free(struct bio_set *bs)
  1275. {
  1276. if (bs->bio_pool)
  1277. mempool_destroy(bs->bio_pool);
  1278. bioset_integrity_free(bs);
  1279. biovec_free_pools(bs);
  1280. bio_put_slab(bs);
  1281. kfree(bs);
  1282. }
  1283. /**
  1284. * bioset_create - Create a bio_set
  1285. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1286. * @front_pad: Number of bytes to allocate in front of the returned bio
  1287. *
  1288. * Description:
  1289. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1290. * to ask for a number of bytes to be allocated in front of the bio.
  1291. * Front pad allocation is useful for embedding the bio inside
  1292. * another structure, to avoid allocating extra data to go with the bio.
  1293. * Note that the bio must be embedded at the END of that structure always,
  1294. * or things will break badly.
  1295. */
  1296. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1297. {
  1298. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1299. struct bio_set *bs;
  1300. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1301. if (!bs)
  1302. return NULL;
  1303. bs->front_pad = front_pad;
  1304. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1305. if (!bs->bio_slab) {
  1306. kfree(bs);
  1307. return NULL;
  1308. }
  1309. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1310. if (!bs->bio_pool)
  1311. goto bad;
  1312. if (bioset_integrity_create(bs, pool_size))
  1313. goto bad;
  1314. if (!biovec_create_pools(bs, pool_size))
  1315. return bs;
  1316. bad:
  1317. bioset_free(bs);
  1318. return NULL;
  1319. }
  1320. static void __init biovec_init_slabs(void)
  1321. {
  1322. int i;
  1323. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1324. int size;
  1325. struct biovec_slab *bvs = bvec_slabs + i;
  1326. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1327. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1328. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1329. }
  1330. }
  1331. static int __init init_bio(void)
  1332. {
  1333. bio_slab_max = 2;
  1334. bio_slab_nr = 0;
  1335. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1336. if (!bio_slabs)
  1337. panic("bio: can't allocate bios\n");
  1338. bio_integrity_init_slab();
  1339. biovec_init_slabs();
  1340. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1341. if (!fs_bio_set)
  1342. panic("bio: can't allocate bios\n");
  1343. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1344. sizeof(struct bio_pair));
  1345. if (!bio_split_pool)
  1346. panic("bio: can't create split pool\n");
  1347. return 0;
  1348. }
  1349. subsys_initcall(init_bio);
  1350. EXPORT_SYMBOL(bio_alloc);
  1351. EXPORT_SYMBOL(bio_kmalloc);
  1352. EXPORT_SYMBOL(bio_put);
  1353. EXPORT_SYMBOL(bio_free);
  1354. EXPORT_SYMBOL(bio_endio);
  1355. EXPORT_SYMBOL(bio_init);
  1356. EXPORT_SYMBOL(__bio_clone);
  1357. EXPORT_SYMBOL(bio_clone);
  1358. EXPORT_SYMBOL(bio_phys_segments);
  1359. EXPORT_SYMBOL(bio_add_page);
  1360. EXPORT_SYMBOL(bio_add_pc_page);
  1361. EXPORT_SYMBOL(bio_get_nr_vecs);
  1362. EXPORT_SYMBOL(bio_map_user);
  1363. EXPORT_SYMBOL(bio_unmap_user);
  1364. EXPORT_SYMBOL(bio_map_kern);
  1365. EXPORT_SYMBOL(bio_copy_kern);
  1366. EXPORT_SYMBOL(bio_pair_release);
  1367. EXPORT_SYMBOL(bio_split);
  1368. EXPORT_SYMBOL(bio_copy_user);
  1369. EXPORT_SYMBOL(bio_uncopy_user);
  1370. EXPORT_SYMBOL(bioset_create);
  1371. EXPORT_SYMBOL(bioset_free);
  1372. EXPORT_SYMBOL(bio_alloc_bioset);