intelfbhw.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/interrupt.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, /* I8xx */
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } /* I9xx */
  58. };
  59. int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  60. {
  61. u32 tmp;
  62. if (!pdev || !dinfo)
  63. return 1;
  64. switch (pdev->device) {
  65. case PCI_DEVICE_ID_INTEL_830M:
  66. dinfo->name = "Intel(R) 830M";
  67. dinfo->chipset = INTEL_830M;
  68. dinfo->mobile = 1;
  69. dinfo->pll_index = PLLS_I8xx;
  70. return 0;
  71. case PCI_DEVICE_ID_INTEL_845G:
  72. dinfo->name = "Intel(R) 845G";
  73. dinfo->chipset = INTEL_845G;
  74. dinfo->mobile = 0;
  75. dinfo->pll_index = PLLS_I8xx;
  76. return 0;
  77. case PCI_DEVICE_ID_INTEL_85XGM:
  78. tmp = 0;
  79. dinfo->mobile = 1;
  80. dinfo->pll_index = PLLS_I8xx;
  81. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  82. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  83. INTEL_85X_VARIANT_MASK) {
  84. case INTEL_VAR_855GME:
  85. dinfo->name = "Intel(R) 855GME";
  86. dinfo->chipset = INTEL_855GME;
  87. return 0;
  88. case INTEL_VAR_855GM:
  89. dinfo->name = "Intel(R) 855GM";
  90. dinfo->chipset = INTEL_855GM;
  91. return 0;
  92. case INTEL_VAR_852GME:
  93. dinfo->name = "Intel(R) 852GME";
  94. dinfo->chipset = INTEL_852GME;
  95. return 0;
  96. case INTEL_VAR_852GM:
  97. dinfo->name = "Intel(R) 852GM";
  98. dinfo->chipset = INTEL_852GM;
  99. return 0;
  100. default:
  101. dinfo->name = "Intel(R) 852GM/855GM";
  102. dinfo->chipset = INTEL_85XGM;
  103. return 0;
  104. }
  105. break;
  106. case PCI_DEVICE_ID_INTEL_865G:
  107. dinfo->name = "Intel(R) 865G";
  108. dinfo->chipset = INTEL_865G;
  109. dinfo->mobile = 0;
  110. dinfo->pll_index = PLLS_I8xx;
  111. return 0;
  112. case PCI_DEVICE_ID_INTEL_915G:
  113. dinfo->name = "Intel(R) 915G";
  114. dinfo->chipset = INTEL_915G;
  115. dinfo->mobile = 0;
  116. dinfo->pll_index = PLLS_I9xx;
  117. return 0;
  118. case PCI_DEVICE_ID_INTEL_915GM:
  119. dinfo->name = "Intel(R) 915GM";
  120. dinfo->chipset = INTEL_915GM;
  121. dinfo->mobile = 1;
  122. dinfo->pll_index = PLLS_I9xx;
  123. return 0;
  124. case PCI_DEVICE_ID_INTEL_945G:
  125. dinfo->name = "Intel(R) 945G";
  126. dinfo->chipset = INTEL_945G;
  127. dinfo->mobile = 0;
  128. dinfo->pll_index = PLLS_I9xx;
  129. return 0;
  130. case PCI_DEVICE_ID_INTEL_945GM:
  131. dinfo->name = "Intel(R) 945GM";
  132. dinfo->chipset = INTEL_945GM;
  133. dinfo->mobile = 1;
  134. dinfo->pll_index = PLLS_I9xx;
  135. return 0;
  136. case PCI_DEVICE_ID_INTEL_945GME:
  137. dinfo->name = "Intel(R) 945GME";
  138. dinfo->chipset = INTEL_945GME;
  139. dinfo->mobile = 1;
  140. dinfo->pll_index = PLLS_I9xx;
  141. return 0;
  142. case PCI_DEVICE_ID_INTEL_965G:
  143. dinfo->name = "Intel(R) 965G";
  144. dinfo->chipset = INTEL_965G;
  145. dinfo->mobile = 0;
  146. dinfo->pll_index = PLLS_I9xx;
  147. return 0;
  148. case PCI_DEVICE_ID_INTEL_965GM:
  149. dinfo->name = "Intel(R) 965GM";
  150. dinfo->chipset = INTEL_965GM;
  151. dinfo->mobile = 1;
  152. dinfo->pll_index = PLLS_I9xx;
  153. return 0;
  154. default:
  155. return 1;
  156. }
  157. }
  158. int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  159. int *stolen_size)
  160. {
  161. struct pci_dev *bridge_dev;
  162. u16 tmp;
  163. int stolen_overhead;
  164. if (!pdev || !aperture_size || !stolen_size)
  165. return 1;
  166. /* Find the bridge device. It is always 0:0.0 */
  167. if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
  168. ERR_MSG("cannot find bridge device\n");
  169. return 1;
  170. }
  171. /* Get the fb aperture size and "stolen" memory amount. */
  172. tmp = 0;
  173. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  174. pci_dev_put(bridge_dev);
  175. switch (pdev->device) {
  176. case PCI_DEVICE_ID_INTEL_915G:
  177. case PCI_DEVICE_ID_INTEL_915GM:
  178. case PCI_DEVICE_ID_INTEL_945G:
  179. case PCI_DEVICE_ID_INTEL_945GM:
  180. case PCI_DEVICE_ID_INTEL_945GME:
  181. case PCI_DEVICE_ID_INTEL_965G:
  182. case PCI_DEVICE_ID_INTEL_965GM:
  183. /* 915, 945 and 965 chipsets support a 256MB aperture.
  184. Aperture size is determined by inspected the
  185. base address of the aperture. */
  186. if (pci_resource_start(pdev, 2) & 0x08000000)
  187. *aperture_size = MB(128);
  188. else
  189. *aperture_size = MB(256);
  190. break;
  191. default:
  192. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  193. *aperture_size = MB(64);
  194. else
  195. *aperture_size = MB(128);
  196. break;
  197. }
  198. /* Stolen memory size is reduced by the GTT and the popup.
  199. GTT is 1K per MB of aperture size, and popup is 4K. */
  200. stolen_overhead = (*aperture_size / MB(1)) + 4;
  201. switch(pdev->device) {
  202. case PCI_DEVICE_ID_INTEL_830M:
  203. case PCI_DEVICE_ID_INTEL_845G:
  204. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  205. case INTEL_830_GMCH_GMS_STOLEN_512:
  206. *stolen_size = KB(512) - KB(stolen_overhead);
  207. return 0;
  208. case INTEL_830_GMCH_GMS_STOLEN_1024:
  209. *stolen_size = MB(1) - KB(stolen_overhead);
  210. return 0;
  211. case INTEL_830_GMCH_GMS_STOLEN_8192:
  212. *stolen_size = MB(8) - KB(stolen_overhead);
  213. return 0;
  214. case INTEL_830_GMCH_GMS_LOCAL:
  215. ERR_MSG("only local memory found\n");
  216. return 1;
  217. case INTEL_830_GMCH_GMS_DISABLED:
  218. ERR_MSG("video memory is disabled\n");
  219. return 1;
  220. default:
  221. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  222. tmp & INTEL_830_GMCH_GMS_MASK);
  223. return 1;
  224. }
  225. break;
  226. default:
  227. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  228. case INTEL_855_GMCH_GMS_STOLEN_1M:
  229. *stolen_size = MB(1) - KB(stolen_overhead);
  230. return 0;
  231. case INTEL_855_GMCH_GMS_STOLEN_4M:
  232. *stolen_size = MB(4) - KB(stolen_overhead);
  233. return 0;
  234. case INTEL_855_GMCH_GMS_STOLEN_8M:
  235. *stolen_size = MB(8) - KB(stolen_overhead);
  236. return 0;
  237. case INTEL_855_GMCH_GMS_STOLEN_16M:
  238. *stolen_size = MB(16) - KB(stolen_overhead);
  239. return 0;
  240. case INTEL_855_GMCH_GMS_STOLEN_32M:
  241. *stolen_size = MB(32) - KB(stolen_overhead);
  242. return 0;
  243. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  244. *stolen_size = MB(48) - KB(stolen_overhead);
  245. return 0;
  246. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  247. *stolen_size = MB(64) - KB(stolen_overhead);
  248. return 0;
  249. case INTEL_855_GMCH_GMS_DISABLED:
  250. ERR_MSG("video memory is disabled\n");
  251. return 0;
  252. default:
  253. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  254. tmp & INTEL_855_GMCH_GMS_MASK);
  255. return 1;
  256. }
  257. }
  258. }
  259. int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  260. {
  261. int dvo = 0;
  262. if (INREG(LVDS) & PORT_ENABLE)
  263. dvo |= LVDS_PORT;
  264. if (INREG(DVOA) & PORT_ENABLE)
  265. dvo |= DVOA_PORT;
  266. if (INREG(DVOB) & PORT_ENABLE)
  267. dvo |= DVOB_PORT;
  268. if (INREG(DVOC) & PORT_ENABLE)
  269. dvo |= DVOC_PORT;
  270. return dvo;
  271. }
  272. const char * intelfbhw_dvo_to_string(int dvo)
  273. {
  274. if (dvo & DVOA_PORT)
  275. return "DVO port A";
  276. else if (dvo & DVOB_PORT)
  277. return "DVO port B";
  278. else if (dvo & DVOC_PORT)
  279. return "DVO port C";
  280. else if (dvo & LVDS_PORT)
  281. return "LVDS port";
  282. else
  283. return NULL;
  284. }
  285. int intelfbhw_validate_mode(struct intelfb_info *dinfo,
  286. struct fb_var_screeninfo *var)
  287. {
  288. int bytes_per_pixel;
  289. int tmp;
  290. #if VERBOSE > 0
  291. DBG_MSG("intelfbhw_validate_mode\n");
  292. #endif
  293. bytes_per_pixel = var->bits_per_pixel / 8;
  294. if (bytes_per_pixel == 3)
  295. bytes_per_pixel = 4;
  296. /* Check if enough video memory. */
  297. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  298. if (tmp > dinfo->fb.size) {
  299. WRN_MSG("Not enough video ram for mode "
  300. "(%d KByte vs %d KByte).\n",
  301. BtoKB(tmp), BtoKB(dinfo->fb.size));
  302. return 1;
  303. }
  304. /* Check if x/y limits are OK. */
  305. if (var->xres - 1 > HACTIVE_MASK) {
  306. WRN_MSG("X resolution too large (%d vs %d).\n",
  307. var->xres, HACTIVE_MASK + 1);
  308. return 1;
  309. }
  310. if (var->yres - 1 > VACTIVE_MASK) {
  311. WRN_MSG("Y resolution too large (%d vs %d).\n",
  312. var->yres, VACTIVE_MASK + 1);
  313. return 1;
  314. }
  315. if (var->xres < 4) {
  316. WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
  317. return 1;
  318. }
  319. if (var->yres < 4) {
  320. WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
  321. return 1;
  322. }
  323. /* Check for doublescan modes. */
  324. if (var->vmode & FB_VMODE_DOUBLE) {
  325. WRN_MSG("Mode is double-scan.\n");
  326. return 1;
  327. }
  328. if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
  329. WRN_MSG("Odd number of lines in interlaced mode\n");
  330. return 1;
  331. }
  332. /* Check if clock is OK. */
  333. tmp = 1000000000 / var->pixclock;
  334. if (tmp < MIN_CLOCK) {
  335. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  336. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  337. return 1;
  338. }
  339. if (tmp > MAX_CLOCK) {
  340. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  341. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  342. return 1;
  343. }
  344. return 0;
  345. }
  346. int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  347. {
  348. struct intelfb_info *dinfo = GET_DINFO(info);
  349. u32 offset, xoffset, yoffset;
  350. #if VERBOSE > 0
  351. DBG_MSG("intelfbhw_pan_display\n");
  352. #endif
  353. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  354. yoffset = var->yoffset;
  355. if ((xoffset + var->xres > var->xres_virtual) ||
  356. (yoffset + var->yres > var->yres_virtual))
  357. return -EINVAL;
  358. offset = (yoffset * dinfo->pitch) +
  359. (xoffset * var->bits_per_pixel) / 8;
  360. offset += dinfo->fb.offset << 12;
  361. dinfo->vsync.pan_offset = offset;
  362. if ((var->activate & FB_ACTIVATE_VBL) &&
  363. !intelfbhw_enable_irq(dinfo))
  364. dinfo->vsync.pan_display = 1;
  365. else {
  366. dinfo->vsync.pan_display = 0;
  367. OUTREG(DSPABASE, offset);
  368. }
  369. return 0;
  370. }
  371. /* Blank the screen. */
  372. void intelfbhw_do_blank(int blank, struct fb_info *info)
  373. {
  374. struct intelfb_info *dinfo = GET_DINFO(info);
  375. u32 tmp;
  376. #if VERBOSE > 0
  377. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  378. #endif
  379. /* Turn plane A on or off */
  380. tmp = INREG(DSPACNTR);
  381. if (blank)
  382. tmp &= ~DISPPLANE_PLANE_ENABLE;
  383. else
  384. tmp |= DISPPLANE_PLANE_ENABLE;
  385. OUTREG(DSPACNTR, tmp);
  386. /* Flush */
  387. tmp = INREG(DSPABASE);
  388. OUTREG(DSPABASE, tmp);
  389. /* Turn off/on the HW cursor */
  390. #if VERBOSE > 0
  391. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  392. #endif
  393. if (dinfo->cursor_on) {
  394. if (blank)
  395. intelfbhw_cursor_hide(dinfo);
  396. else
  397. intelfbhw_cursor_show(dinfo);
  398. dinfo->cursor_on = 1;
  399. }
  400. dinfo->cursor_blanked = blank;
  401. /* Set DPMS level */
  402. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  403. switch (blank) {
  404. case FB_BLANK_UNBLANK:
  405. case FB_BLANK_NORMAL:
  406. tmp |= ADPA_DPMS_D0;
  407. break;
  408. case FB_BLANK_VSYNC_SUSPEND:
  409. tmp |= ADPA_DPMS_D1;
  410. break;
  411. case FB_BLANK_HSYNC_SUSPEND:
  412. tmp |= ADPA_DPMS_D2;
  413. break;
  414. case FB_BLANK_POWERDOWN:
  415. tmp |= ADPA_DPMS_D3;
  416. break;
  417. }
  418. OUTREG(ADPA, tmp);
  419. return;
  420. }
  421. void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  422. unsigned red, unsigned green, unsigned blue,
  423. unsigned transp)
  424. {
  425. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  426. PALETTE_A : PALETTE_B;
  427. #if VERBOSE > 0
  428. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  429. regno, red, green, blue);
  430. #endif
  431. OUTREG(palette_reg + (regno << 2),
  432. (red << PALETTE_8_RED_SHIFT) |
  433. (green << PALETTE_8_GREEN_SHIFT) |
  434. (blue << PALETTE_8_BLUE_SHIFT));
  435. }
  436. int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
  437. struct intelfb_hwstate *hw, int flag)
  438. {
  439. int i;
  440. #if VERBOSE > 0
  441. DBG_MSG("intelfbhw_read_hw_state\n");
  442. #endif
  443. if (!hw || !dinfo)
  444. return -1;
  445. /* Read in as much of the HW state as possible. */
  446. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  447. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  448. hw->vga_pd = INREG(VGAPD);
  449. hw->dpll_a = INREG(DPLL_A);
  450. hw->dpll_b = INREG(DPLL_B);
  451. hw->fpa0 = INREG(FPA0);
  452. hw->fpa1 = INREG(FPA1);
  453. hw->fpb0 = INREG(FPB0);
  454. hw->fpb1 = INREG(FPB1);
  455. if (flag == 1)
  456. return flag;
  457. #if 0
  458. /* This seems to be a problem with the 852GM/855GM */
  459. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  460. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  461. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  462. }
  463. #endif
  464. if (flag == 2)
  465. return flag;
  466. hw->htotal_a = INREG(HTOTAL_A);
  467. hw->hblank_a = INREG(HBLANK_A);
  468. hw->hsync_a = INREG(HSYNC_A);
  469. hw->vtotal_a = INREG(VTOTAL_A);
  470. hw->vblank_a = INREG(VBLANK_A);
  471. hw->vsync_a = INREG(VSYNC_A);
  472. hw->src_size_a = INREG(SRC_SIZE_A);
  473. hw->bclrpat_a = INREG(BCLRPAT_A);
  474. hw->htotal_b = INREG(HTOTAL_B);
  475. hw->hblank_b = INREG(HBLANK_B);
  476. hw->hsync_b = INREG(HSYNC_B);
  477. hw->vtotal_b = INREG(VTOTAL_B);
  478. hw->vblank_b = INREG(VBLANK_B);
  479. hw->vsync_b = INREG(VSYNC_B);
  480. hw->src_size_b = INREG(SRC_SIZE_B);
  481. hw->bclrpat_b = INREG(BCLRPAT_B);
  482. if (flag == 3)
  483. return flag;
  484. hw->adpa = INREG(ADPA);
  485. hw->dvoa = INREG(DVOA);
  486. hw->dvob = INREG(DVOB);
  487. hw->dvoc = INREG(DVOC);
  488. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  489. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  490. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  491. hw->lvds = INREG(LVDS);
  492. if (flag == 4)
  493. return flag;
  494. hw->pipe_a_conf = INREG(PIPEACONF);
  495. hw->pipe_b_conf = INREG(PIPEBCONF);
  496. hw->disp_arb = INREG(DISPARB);
  497. if (flag == 5)
  498. return flag;
  499. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  500. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  501. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  502. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  503. if (flag == 6)
  504. return flag;
  505. for (i = 0; i < 4; i++) {
  506. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  507. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  508. }
  509. if (flag == 7)
  510. return flag;
  511. hw->cursor_size = INREG(CURSOR_SIZE);
  512. if (flag == 8)
  513. return flag;
  514. hw->disp_a_ctrl = INREG(DSPACNTR);
  515. hw->disp_b_ctrl = INREG(DSPBCNTR);
  516. hw->disp_a_base = INREG(DSPABASE);
  517. hw->disp_b_base = INREG(DSPBBASE);
  518. hw->disp_a_stride = INREG(DSPASTRIDE);
  519. hw->disp_b_stride = INREG(DSPBSTRIDE);
  520. if (flag == 9)
  521. return flag;
  522. hw->vgacntrl = INREG(VGACNTRL);
  523. if (flag == 10)
  524. return flag;
  525. hw->add_id = INREG(ADD_ID);
  526. if (flag == 11)
  527. return flag;
  528. for (i = 0; i < 7; i++) {
  529. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  530. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  531. if (i < 3)
  532. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  533. }
  534. for (i = 0; i < 8; i++)
  535. hw->fence[i] = INREG(FENCE + (i << 2));
  536. hw->instpm = INREG(INSTPM);
  537. hw->mem_mode = INREG(MEM_MODE);
  538. hw->fw_blc_0 = INREG(FW_BLC_0);
  539. hw->fw_blc_1 = INREG(FW_BLC_1);
  540. hw->hwstam = INREG16(HWSTAM);
  541. hw->ier = INREG16(IER);
  542. hw->iir = INREG16(IIR);
  543. hw->imr = INREG16(IMR);
  544. return 0;
  545. }
  546. static int calc_vclock3(int index, int m, int n, int p)
  547. {
  548. if (p == 0 || n == 0)
  549. return 0;
  550. return plls[index].ref_clk * m / n / p;
  551. }
  552. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
  553. int lvds)
  554. {
  555. struct pll_min_max *pll = &plls[index];
  556. u32 m, vco, p;
  557. m = (5 * (m1 + 2)) + (m2 + 2);
  558. n += 2;
  559. vco = pll->ref_clk * m / n;
  560. if (index == PLLS_I8xx)
  561. p = ((p1 + 2) * (1 << (p2 + 1)));
  562. else
  563. p = ((p1) * (p2 ? 5 : 10));
  564. return vco / p;
  565. }
  566. #if REGDUMP
  567. static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
  568. int *o_p1, int *o_p2)
  569. {
  570. int p1, p2;
  571. if (IS_I9XX(dinfo)) {
  572. if (dpll & DPLL_P1_FORCE_DIV2)
  573. p1 = 1;
  574. else
  575. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  576. p1 = ffs(p1);
  577. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  578. } else {
  579. if (dpll & DPLL_P1_FORCE_DIV2)
  580. p1 = 0;
  581. else
  582. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  583. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  584. }
  585. *o_p1 = p1;
  586. *o_p2 = p2;
  587. }
  588. #endif
  589. void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
  590. struct intelfb_hwstate *hw)
  591. {
  592. #if REGDUMP
  593. int i, m1, m2, n, p1, p2;
  594. int index = dinfo->pll_index;
  595. DBG_MSG("intelfbhw_print_hw_state\n");
  596. if (!hw)
  597. return;
  598. /* Read in as much of the HW state as possible. */
  599. printk("hw state dump start\n");
  600. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  601. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  602. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  603. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  604. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  605. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  606. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  607. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  608. m1, m2, n, p1, p2);
  609. printk(" VGA0: clock is %d\n",
  610. calc_vclock(index, m1, m2, n, p1, p2, 0));
  611. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  612. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  613. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  614. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  615. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  616. m1, m2, n, p1, p2);
  617. printk(" VGA1: clock is %d\n",
  618. calc_vclock(index, m1, m2, n, p1, p2, 0));
  619. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  620. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  621. printk(" FPA0: 0x%08x\n", hw->fpa0);
  622. printk(" FPA1: 0x%08x\n", hw->fpa1);
  623. printk(" FPB0: 0x%08x\n", hw->fpb0);
  624. printk(" FPB1: 0x%08x\n", hw->fpb1);
  625. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  626. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  627. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  628. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  629. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  630. m1, m2, n, p1, p2);
  631. printk(" PLLA0: clock is %d\n",
  632. calc_vclock(index, m1, m2, n, p1, p2, 0));
  633. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  634. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  635. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  636. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  637. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  638. m1, m2, n, p1, p2);
  639. printk(" PLLA1: clock is %d\n",
  640. calc_vclock(index, m1, m2, n, p1, p2, 0));
  641. #if 0
  642. printk(" PALETTE_A:\n");
  643. for (i = 0; i < PALETTE_8_ENTRIES)
  644. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  645. printk(" PALETTE_B:\n");
  646. for (i = 0; i < PALETTE_8_ENTRIES)
  647. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  648. #endif
  649. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  650. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  651. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  652. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  653. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  654. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  655. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  656. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  657. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  658. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  659. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  660. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  661. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  662. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  663. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  664. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  665. printk(" ADPA: 0x%08x\n", hw->adpa);
  666. printk(" DVOA: 0x%08x\n", hw->dvoa);
  667. printk(" DVOB: 0x%08x\n", hw->dvob);
  668. printk(" DVOC: 0x%08x\n", hw->dvoc);
  669. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  670. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  671. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  672. printk(" LVDS: 0x%08x\n", hw->lvds);
  673. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  674. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  675. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  676. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  677. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  678. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  679. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  680. printk(" CURSOR_A_PALETTE: ");
  681. for (i = 0; i < 4; i++) {
  682. printk("0x%08x", hw->cursor_a_palette[i]);
  683. if (i < 3)
  684. printk(", ");
  685. }
  686. printk("\n");
  687. printk(" CURSOR_B_PALETTE: ");
  688. for (i = 0; i < 4; i++) {
  689. printk("0x%08x", hw->cursor_b_palette[i]);
  690. if (i < 3)
  691. printk(", ");
  692. }
  693. printk("\n");
  694. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  695. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  696. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  697. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  698. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  699. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  700. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  701. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  702. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  703. for (i = 0; i < 7; i++) {
  704. printk(" SWF0%d 0x%08x\n", i,
  705. hw->swf0x[i]);
  706. }
  707. for (i = 0; i < 7; i++) {
  708. printk(" SWF1%d 0x%08x\n", i,
  709. hw->swf1x[i]);
  710. }
  711. for (i = 0; i < 3; i++) {
  712. printk(" SWF3%d 0x%08x\n", i,
  713. hw->swf3x[i]);
  714. }
  715. for (i = 0; i < 8; i++)
  716. printk(" FENCE%d 0x%08x\n", i,
  717. hw->fence[i]);
  718. printk(" INSTPM 0x%08x\n", hw->instpm);
  719. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  720. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  721. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  722. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  723. printk(" IER 0x%04x\n", hw->ier);
  724. printk(" IIR 0x%04x\n", hw->iir);
  725. printk(" IMR 0x%04x\n", hw->imr);
  726. printk("hw state dump end\n");
  727. #endif
  728. }
  729. /* Split the M parameter into M1 and M2. */
  730. static int splitm(int index, unsigned int m, unsigned int *retm1,
  731. unsigned int *retm2)
  732. {
  733. int m1, m2;
  734. int testm;
  735. struct pll_min_max *pll = &plls[index];
  736. /* no point optimising too much - brute force m */
  737. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  738. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  739. testm = (5 * (m1 + 2)) + (m2 + 2);
  740. if (testm == m) {
  741. *retm1 = (unsigned int)m1;
  742. *retm2 = (unsigned int)m2;
  743. return 0;
  744. }
  745. }
  746. }
  747. return 1;
  748. }
  749. /* Split the P parameter into P1 and P2. */
  750. static int splitp(int index, unsigned int p, unsigned int *retp1,
  751. unsigned int *retp2)
  752. {
  753. int p1, p2;
  754. struct pll_min_max *pll = &plls[index];
  755. if (index == PLLS_I9xx) {
  756. p2 = (p % 10) ? 1 : 0;
  757. p1 = p / (p2 ? 5 : 10);
  758. *retp1 = (unsigned int)p1;
  759. *retp2 = (unsigned int)p2;
  760. return 0;
  761. }
  762. if (p % 4 == 0)
  763. p2 = 1;
  764. else
  765. p2 = 0;
  766. p1 = (p / (1 << (p2 + 1))) - 2;
  767. if (p % 4 == 0 && p1 < pll->min_p1) {
  768. p2 = 0;
  769. p1 = (p / (1 << (p2 + 1))) - 2;
  770. }
  771. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  772. (p1 + 2) * (1 << (p2 + 1)) != p) {
  773. return 1;
  774. } else {
  775. *retp1 = (unsigned int)p1;
  776. *retp2 = (unsigned int)p2;
  777. return 0;
  778. }
  779. }
  780. static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
  781. u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
  782. {
  783. u32 m1, m2, n, p1, p2, n1, testm;
  784. u32 f_vco, p, p_best = 0, m, f_out = 0;
  785. u32 err_max, err_target, err_best = 10000000;
  786. u32 n_best = 0, m_best = 0, f_best, f_err;
  787. u32 p_min, p_max, p_inc, div_max;
  788. struct pll_min_max *pll = &plls[index];
  789. /* Accept 0.5% difference, but aim for 0.1% */
  790. err_max = 5 * clock / 1000;
  791. err_target = clock / 1000;
  792. DBG_MSG("Clock is %d\n", clock);
  793. div_max = pll->max_vco / clock;
  794. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  795. p_min = p_inc;
  796. p_max = ROUND_DOWN_TO(div_max, p_inc);
  797. if (p_min < pll->min_p)
  798. p_min = pll->min_p;
  799. if (p_max > pll->max_p)
  800. p_max = pll->max_p;
  801. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  802. p = p_min;
  803. do {
  804. if (splitp(index, p, &p1, &p2)) {
  805. WRN_MSG("cannot split p = %d\n", p);
  806. p += p_inc;
  807. continue;
  808. }
  809. n = pll->min_n;
  810. f_vco = clock * p;
  811. do {
  812. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  813. if (m < pll->min_m)
  814. m = pll->min_m + 1;
  815. if (m > pll->max_m)
  816. m = pll->max_m - 1;
  817. for (testm = m - 1; testm <= m; testm++) {
  818. f_out = calc_vclock3(index, testm, n, p);
  819. if (splitm(index, testm, &m1, &m2)) {
  820. WRN_MSG("cannot split m = %d\n",
  821. testm);
  822. continue;
  823. }
  824. if (clock > f_out)
  825. f_err = clock - f_out;
  826. else/* slightly bias the error for bigger clocks */
  827. f_err = f_out - clock + 1;
  828. if (f_err < err_best) {
  829. m_best = testm;
  830. n_best = n;
  831. p_best = p;
  832. f_best = f_out;
  833. err_best = f_err;
  834. }
  835. }
  836. n++;
  837. } while ((n <= pll->max_n) && (f_out >= clock));
  838. p += p_inc;
  839. } while ((p <= p_max));
  840. if (!m_best) {
  841. WRN_MSG("cannot find parameters for clock %d\n", clock);
  842. return 1;
  843. }
  844. m = m_best;
  845. n = n_best;
  846. p = p_best;
  847. splitm(index, m, &m1, &m2);
  848. splitp(index, p, &p1, &p2);
  849. n1 = n - 2;
  850. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  851. "f: %d (%d), VCO: %d\n",
  852. m, m1, m2, n, n1, p, p1, p2,
  853. calc_vclock3(index, m, n, p),
  854. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  855. calc_vclock3(index, m, n, p) * p);
  856. *retm1 = m1;
  857. *retm2 = m2;
  858. *retn = n1;
  859. *retp1 = p1;
  860. *retp2 = p2;
  861. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  862. return 0;
  863. }
  864. static __inline__ int check_overflow(u32 value, u32 limit,
  865. const char *description)
  866. {
  867. if (value > limit) {
  868. WRN_MSG("%s value %d exceeds limit %d\n",
  869. description, value, limit);
  870. return 1;
  871. }
  872. return 0;
  873. }
  874. /* It is assumed that hw is filled in with the initial state information. */
  875. int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
  876. struct intelfb_hwstate *hw,
  877. struct fb_var_screeninfo *var)
  878. {
  879. int pipe = PIPE_A;
  880. u32 *dpll, *fp0, *fp1;
  881. u32 m1, m2, n, p1, p2, clock_target, clock;
  882. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  883. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  884. u32 vsync_pol, hsync_pol;
  885. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  886. u32 stride_alignment;
  887. DBG_MSG("intelfbhw_mode_to_hw\n");
  888. /* Disable VGA */
  889. hw->vgacntrl |= VGA_DISABLE;
  890. /* Check whether pipe A or pipe B is enabled. */
  891. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  892. pipe = PIPE_A;
  893. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  894. pipe = PIPE_B;
  895. /* Set which pipe's registers will be set. */
  896. if (pipe == PIPE_B) {
  897. dpll = &hw->dpll_b;
  898. fp0 = &hw->fpb0;
  899. fp1 = &hw->fpb1;
  900. hs = &hw->hsync_b;
  901. hb = &hw->hblank_b;
  902. ht = &hw->htotal_b;
  903. vs = &hw->vsync_b;
  904. vb = &hw->vblank_b;
  905. vt = &hw->vtotal_b;
  906. ss = &hw->src_size_b;
  907. pipe_conf = &hw->pipe_b_conf;
  908. } else {
  909. dpll = &hw->dpll_a;
  910. fp0 = &hw->fpa0;
  911. fp1 = &hw->fpa1;
  912. hs = &hw->hsync_a;
  913. hb = &hw->hblank_a;
  914. ht = &hw->htotal_a;
  915. vs = &hw->vsync_a;
  916. vb = &hw->vblank_a;
  917. vt = &hw->vtotal_a;
  918. ss = &hw->src_size_a;
  919. pipe_conf = &hw->pipe_a_conf;
  920. }
  921. /* Use ADPA register for sync control. */
  922. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  923. /* sync polarity */
  924. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  925. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  926. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  927. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  928. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  929. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  930. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  931. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  932. /* Connect correct pipe to the analog port DAC */
  933. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  934. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  935. /* Set DPMS state to D0 (on) */
  936. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  937. hw->adpa |= ADPA_DPMS_D0;
  938. hw->adpa |= ADPA_DAC_ENABLE;
  939. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  940. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  941. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  942. /* Desired clock in kHz */
  943. clock_target = 1000000000 / var->pixclock;
  944. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  945. &n, &p1, &p2, &clock)) {
  946. WRN_MSG("calc_pll_params failed\n");
  947. return 1;
  948. }
  949. /* Check for overflow. */
  950. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  951. return 1;
  952. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  953. return 1;
  954. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  955. return 1;
  956. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  957. return 1;
  958. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  959. return 1;
  960. *dpll &= ~DPLL_P1_FORCE_DIV2;
  961. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  962. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  963. if (IS_I9XX(dinfo)) {
  964. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  965. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  966. } else
  967. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  968. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  969. (m1 << FP_M1_DIVISOR_SHIFT) |
  970. (m2 << FP_M2_DIVISOR_SHIFT);
  971. *fp1 = *fp0;
  972. hw->dvob &= ~PORT_ENABLE;
  973. hw->dvoc &= ~PORT_ENABLE;
  974. /* Use display plane A. */
  975. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  976. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  977. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  978. switch (intelfb_var_to_depth(var)) {
  979. case 8:
  980. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  981. break;
  982. case 15:
  983. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  984. break;
  985. case 16:
  986. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  987. break;
  988. case 24:
  989. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  990. break;
  991. }
  992. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  993. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  994. /* Set CRTC registers. */
  995. hactive = var->xres;
  996. hsync_start = hactive + var->right_margin;
  997. hsync_end = hsync_start + var->hsync_len;
  998. htotal = hsync_end + var->left_margin;
  999. hblank_start = hactive;
  1000. hblank_end = htotal;
  1001. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1002. hactive, hsync_start, hsync_end, htotal, hblank_start,
  1003. hblank_end);
  1004. vactive = var->yres;
  1005. if (var->vmode & FB_VMODE_INTERLACED)
  1006. vactive--; /* the chip adds 2 halflines automatically */
  1007. vsync_start = vactive + var->lower_margin;
  1008. vsync_end = vsync_start + var->vsync_len;
  1009. vtotal = vsync_end + var->upper_margin;
  1010. vblank_start = vactive;
  1011. vblank_end = vtotal;
  1012. vblank_end = vsync_end + 1;
  1013. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1014. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  1015. vblank_end);
  1016. /* Adjust for register values, and check for overflow. */
  1017. hactive--;
  1018. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  1019. return 1;
  1020. hsync_start--;
  1021. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  1022. return 1;
  1023. hsync_end--;
  1024. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1025. return 1;
  1026. htotal--;
  1027. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1028. return 1;
  1029. hblank_start--;
  1030. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1031. return 1;
  1032. hblank_end--;
  1033. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1034. return 1;
  1035. vactive--;
  1036. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1037. return 1;
  1038. vsync_start--;
  1039. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1040. return 1;
  1041. vsync_end--;
  1042. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1043. return 1;
  1044. vtotal--;
  1045. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1046. return 1;
  1047. vblank_start--;
  1048. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1049. return 1;
  1050. vblank_end--;
  1051. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1052. return 1;
  1053. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1054. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1055. (hblank_end << HSYNCEND_SHIFT);
  1056. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1057. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1058. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1059. (vblank_end << VSYNCEND_SHIFT);
  1060. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1061. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1062. (vactive << SRC_SIZE_VERT_SHIFT);
  1063. hw->disp_a_stride = dinfo->pitch;
  1064. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1065. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1066. var->xoffset * var->bits_per_pixel / 8;
  1067. hw->disp_a_base += dinfo->fb.offset << 12;
  1068. /* Check stride alignment. */
  1069. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1070. STRIDE_ALIGNMENT;
  1071. if (hw->disp_a_stride % stride_alignment != 0) {
  1072. WRN_MSG("display stride %d has bad alignment %d\n",
  1073. hw->disp_a_stride, stride_alignment);
  1074. return 1;
  1075. }
  1076. /* Set the palette to 8-bit mode. */
  1077. *pipe_conf &= ~PIPECONF_GAMMA;
  1078. if (var->vmode & FB_VMODE_INTERLACED)
  1079. *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  1080. else
  1081. *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
  1082. return 0;
  1083. }
  1084. /* Program a (non-VGA) video mode. */
  1085. int intelfbhw_program_mode(struct intelfb_info *dinfo,
  1086. const struct intelfb_hwstate *hw, int blank)
  1087. {
  1088. int pipe = PIPE_A;
  1089. u32 tmp;
  1090. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1091. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1092. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
  1093. u32 hsync_reg, htotal_reg, hblank_reg;
  1094. u32 vsync_reg, vtotal_reg, vblank_reg;
  1095. u32 src_size_reg;
  1096. u32 count, tmp_val[3];
  1097. /* Assume single pipe, display plane A, analog CRT. */
  1098. #if VERBOSE > 0
  1099. DBG_MSG("intelfbhw_program_mode\n");
  1100. #endif
  1101. /* Disable VGA */
  1102. tmp = INREG(VGACNTRL);
  1103. tmp |= VGA_DISABLE;
  1104. OUTREG(VGACNTRL, tmp);
  1105. /* Check whether pipe A or pipe B is enabled. */
  1106. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1107. pipe = PIPE_A;
  1108. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1109. pipe = PIPE_B;
  1110. dinfo->pipe = pipe;
  1111. if (pipe == PIPE_B) {
  1112. dpll = &hw->dpll_b;
  1113. fp0 = &hw->fpb0;
  1114. fp1 = &hw->fpb1;
  1115. pipe_conf = &hw->pipe_b_conf;
  1116. hs = &hw->hsync_b;
  1117. hb = &hw->hblank_b;
  1118. ht = &hw->htotal_b;
  1119. vs = &hw->vsync_b;
  1120. vb = &hw->vblank_b;
  1121. vt = &hw->vtotal_b;
  1122. ss = &hw->src_size_b;
  1123. dpll_reg = DPLL_B;
  1124. fp0_reg = FPB0;
  1125. fp1_reg = FPB1;
  1126. pipe_conf_reg = PIPEBCONF;
  1127. pipe_stat_reg = PIPEBSTAT;
  1128. hsync_reg = HSYNC_B;
  1129. htotal_reg = HTOTAL_B;
  1130. hblank_reg = HBLANK_B;
  1131. vsync_reg = VSYNC_B;
  1132. vtotal_reg = VTOTAL_B;
  1133. vblank_reg = VBLANK_B;
  1134. src_size_reg = SRC_SIZE_B;
  1135. } else {
  1136. dpll = &hw->dpll_a;
  1137. fp0 = &hw->fpa0;
  1138. fp1 = &hw->fpa1;
  1139. pipe_conf = &hw->pipe_a_conf;
  1140. hs = &hw->hsync_a;
  1141. hb = &hw->hblank_a;
  1142. ht = &hw->htotal_a;
  1143. vs = &hw->vsync_a;
  1144. vb = &hw->vblank_a;
  1145. vt = &hw->vtotal_a;
  1146. ss = &hw->src_size_a;
  1147. dpll_reg = DPLL_A;
  1148. fp0_reg = FPA0;
  1149. fp1_reg = FPA1;
  1150. pipe_conf_reg = PIPEACONF;
  1151. pipe_stat_reg = PIPEASTAT;
  1152. hsync_reg = HSYNC_A;
  1153. htotal_reg = HTOTAL_A;
  1154. hblank_reg = HBLANK_A;
  1155. vsync_reg = VSYNC_A;
  1156. vtotal_reg = VTOTAL_A;
  1157. vblank_reg = VBLANK_A;
  1158. src_size_reg = SRC_SIZE_A;
  1159. }
  1160. /* turn off pipe */
  1161. tmp = INREG(pipe_conf_reg);
  1162. tmp &= ~PIPECONF_ENABLE;
  1163. OUTREG(pipe_conf_reg, tmp);
  1164. count = 0;
  1165. do {
  1166. tmp_val[count % 3] = INREG(PIPEA_DSL);
  1167. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
  1168. break;
  1169. count++;
  1170. udelay(1);
  1171. if (count % 200 == 0) {
  1172. tmp = INREG(pipe_conf_reg);
  1173. tmp &= ~PIPECONF_ENABLE;
  1174. OUTREG(pipe_conf_reg, tmp);
  1175. }
  1176. } while (count < 2000);
  1177. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1178. /* Disable planes A and B. */
  1179. tmp = INREG(DSPACNTR);
  1180. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1181. OUTREG(DSPACNTR, tmp);
  1182. tmp = INREG(DSPBCNTR);
  1183. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1184. OUTREG(DSPBCNTR, tmp);
  1185. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1186. mdelay(20);
  1187. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1188. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1189. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1190. /* Disable Sync */
  1191. tmp = INREG(ADPA);
  1192. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1193. tmp |= ADPA_DPMS_D3;
  1194. OUTREG(ADPA, tmp);
  1195. /* do some funky magic - xyzzy */
  1196. OUTREG(0x61204, 0xabcd0000);
  1197. /* turn off PLL */
  1198. tmp = INREG(dpll_reg);
  1199. tmp &= ~DPLL_VCO_ENABLE;
  1200. OUTREG(dpll_reg, tmp);
  1201. /* Set PLL parameters */
  1202. OUTREG(fp0_reg, *fp0);
  1203. OUTREG(fp1_reg, *fp1);
  1204. /* Enable PLL */
  1205. OUTREG(dpll_reg, *dpll);
  1206. /* Set DVOs B/C */
  1207. OUTREG(DVOB, hw->dvob);
  1208. OUTREG(DVOC, hw->dvoc);
  1209. /* undo funky magic */
  1210. OUTREG(0x61204, 0x00000000);
  1211. /* Set ADPA */
  1212. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1213. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1214. /* Set pipe parameters */
  1215. OUTREG(hsync_reg, *hs);
  1216. OUTREG(hblank_reg, *hb);
  1217. OUTREG(htotal_reg, *ht);
  1218. OUTREG(vsync_reg, *vs);
  1219. OUTREG(vblank_reg, *vb);
  1220. OUTREG(vtotal_reg, *vt);
  1221. OUTREG(src_size_reg, *ss);
  1222. switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
  1223. FB_VMODE_ODD_FLD_FIRST)) {
  1224. case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
  1225. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
  1226. break;
  1227. case FB_VMODE_INTERLACED: /* even lines first */
  1228. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
  1229. break;
  1230. default: /* non-interlaced */
  1231. OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
  1232. }
  1233. /* Enable pipe */
  1234. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1235. /* Enable sync */
  1236. tmp = INREG(ADPA);
  1237. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1238. tmp |= ADPA_DPMS_D0;
  1239. OUTREG(ADPA, tmp);
  1240. /* setup display plane */
  1241. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1242. /*
  1243. * i830M errata: the display plane must be enabled
  1244. * to allow writes to the other bits in the plane
  1245. * control register.
  1246. */
  1247. tmp = INREG(DSPACNTR);
  1248. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1249. tmp |= DISPPLANE_PLANE_ENABLE;
  1250. OUTREG(DSPACNTR, tmp);
  1251. OUTREG(DSPACNTR,
  1252. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1253. mdelay(1);
  1254. }
  1255. }
  1256. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1257. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1258. OUTREG(DSPABASE, hw->disp_a_base);
  1259. /* Enable plane */
  1260. if (!blank) {
  1261. tmp = INREG(DSPACNTR);
  1262. tmp |= DISPPLANE_PLANE_ENABLE;
  1263. OUTREG(DSPACNTR, tmp);
  1264. OUTREG(DSPABASE, hw->disp_a_base);
  1265. }
  1266. return 0;
  1267. }
  1268. /* forward declarations */
  1269. static void refresh_ring(struct intelfb_info *dinfo);
  1270. static void reset_state(struct intelfb_info *dinfo);
  1271. static void do_flush(struct intelfb_info *dinfo);
  1272. static u32 get_ring_space(struct intelfb_info *dinfo)
  1273. {
  1274. u32 ring_space;
  1275. if (dinfo->ring_tail >= dinfo->ring_head)
  1276. ring_space = dinfo->ring.size -
  1277. (dinfo->ring_tail - dinfo->ring_head);
  1278. else
  1279. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1280. if (ring_space > RING_MIN_FREE)
  1281. ring_space -= RING_MIN_FREE;
  1282. else
  1283. ring_space = 0;
  1284. return ring_space;
  1285. }
  1286. static int wait_ring(struct intelfb_info *dinfo, int n)
  1287. {
  1288. int i = 0;
  1289. unsigned long end;
  1290. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1291. #if VERBOSE > 0
  1292. DBG_MSG("wait_ring: %d\n", n);
  1293. #endif
  1294. end = jiffies + (HZ * 3);
  1295. while (dinfo->ring_space < n) {
  1296. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1297. dinfo->ring_space = get_ring_space(dinfo);
  1298. if (dinfo->ring_head != last_head) {
  1299. end = jiffies + (HZ * 3);
  1300. last_head = dinfo->ring_head;
  1301. }
  1302. i++;
  1303. if (time_before(end, jiffies)) {
  1304. if (!i) {
  1305. /* Try again */
  1306. reset_state(dinfo);
  1307. refresh_ring(dinfo);
  1308. do_flush(dinfo);
  1309. end = jiffies + (HZ * 3);
  1310. i = 1;
  1311. } else {
  1312. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1313. dinfo->ring_space, n);
  1314. WRN_MSG("lockup - turning off hardware "
  1315. "acceleration\n");
  1316. dinfo->ring_lockup = 1;
  1317. break;
  1318. }
  1319. }
  1320. udelay(1);
  1321. }
  1322. return i;
  1323. }
  1324. static void do_flush(struct intelfb_info *dinfo)
  1325. {
  1326. START_RING(2);
  1327. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1328. OUT_RING(MI_NOOP);
  1329. ADVANCE_RING();
  1330. }
  1331. void intelfbhw_do_sync(struct intelfb_info *dinfo)
  1332. {
  1333. #if VERBOSE > 0
  1334. DBG_MSG("intelfbhw_do_sync\n");
  1335. #endif
  1336. if (!dinfo->accel)
  1337. return;
  1338. /*
  1339. * Send a flush, then wait until the ring is empty. This is what
  1340. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1341. * than the recommended method (both have problems).
  1342. */
  1343. do_flush(dinfo);
  1344. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1345. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1346. }
  1347. static void refresh_ring(struct intelfb_info *dinfo)
  1348. {
  1349. #if VERBOSE > 0
  1350. DBG_MSG("refresh_ring\n");
  1351. #endif
  1352. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1353. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1354. dinfo->ring_space = get_ring_space(dinfo);
  1355. }
  1356. static void reset_state(struct intelfb_info *dinfo)
  1357. {
  1358. int i;
  1359. u32 tmp;
  1360. #if VERBOSE > 0
  1361. DBG_MSG("reset_state\n");
  1362. #endif
  1363. for (i = 0; i < FENCE_NUM; i++)
  1364. OUTREG(FENCE + (i << 2), 0);
  1365. /* Flush the ring buffer if it's enabled. */
  1366. tmp = INREG(PRI_RING_LENGTH);
  1367. if (tmp & RING_ENABLE) {
  1368. #if VERBOSE > 0
  1369. DBG_MSG("reset_state: ring was enabled\n");
  1370. #endif
  1371. refresh_ring(dinfo);
  1372. intelfbhw_do_sync(dinfo);
  1373. DO_RING_IDLE();
  1374. }
  1375. OUTREG(PRI_RING_LENGTH, 0);
  1376. OUTREG(PRI_RING_HEAD, 0);
  1377. OUTREG(PRI_RING_TAIL, 0);
  1378. OUTREG(PRI_RING_START, 0);
  1379. }
  1380. /* Stop the 2D engine, and turn off the ring buffer. */
  1381. void intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1382. {
  1383. #if VERBOSE > 0
  1384. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
  1385. dinfo->accel, dinfo->ring_active);
  1386. #endif
  1387. if (!dinfo->accel)
  1388. return;
  1389. dinfo->ring_active = 0;
  1390. reset_state(dinfo);
  1391. }
  1392. /*
  1393. * Enable the ring buffer, and initialise the 2D engine.
  1394. * It is assumed that the graphics engine has been stopped by previously
  1395. * calling intelfb_2d_stop().
  1396. */
  1397. void intelfbhw_2d_start(struct intelfb_info *dinfo)
  1398. {
  1399. #if VERBOSE > 0
  1400. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1401. dinfo->accel, dinfo->ring_active);
  1402. #endif
  1403. if (!dinfo->accel)
  1404. return;
  1405. /* Initialise the primary ring buffer. */
  1406. OUTREG(PRI_RING_LENGTH, 0);
  1407. OUTREG(PRI_RING_TAIL, 0);
  1408. OUTREG(PRI_RING_HEAD, 0);
  1409. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1410. OUTREG(PRI_RING_LENGTH,
  1411. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1412. RING_NO_REPORT | RING_ENABLE);
  1413. refresh_ring(dinfo);
  1414. dinfo->ring_active = 1;
  1415. }
  1416. /* 2D fillrect (solid fill or invert) */
  1417. void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
  1418. u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
  1419. {
  1420. u32 br00, br09, br13, br14, br16;
  1421. #if VERBOSE > 0
  1422. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1423. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1424. #endif
  1425. br00 = COLOR_BLT_CMD;
  1426. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1427. br13 = (rop << ROP_SHIFT) | pitch;
  1428. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1429. br16 = color;
  1430. switch (bpp) {
  1431. case 8:
  1432. br13 |= COLOR_DEPTH_8;
  1433. break;
  1434. case 16:
  1435. br13 |= COLOR_DEPTH_16;
  1436. break;
  1437. case 32:
  1438. br13 |= COLOR_DEPTH_32;
  1439. br00 |= WRITE_ALPHA | WRITE_RGB;
  1440. break;
  1441. }
  1442. START_RING(6);
  1443. OUT_RING(br00);
  1444. OUT_RING(br13);
  1445. OUT_RING(br14);
  1446. OUT_RING(br09);
  1447. OUT_RING(br16);
  1448. OUT_RING(MI_NOOP);
  1449. ADVANCE_RING();
  1450. #if VERBOSE > 0
  1451. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1452. dinfo->ring_tail, dinfo->ring_space);
  1453. #endif
  1454. }
  1455. void
  1456. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1457. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1458. {
  1459. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1460. #if VERBOSE > 0
  1461. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1462. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1463. #endif
  1464. br00 = XY_SRC_COPY_BLT_CMD;
  1465. br09 = dinfo->fb_start;
  1466. br11 = (pitch << PITCH_SHIFT);
  1467. br12 = dinfo->fb_start;
  1468. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1469. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1470. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1471. ((dsty + h) << HEIGHT_SHIFT);
  1472. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1473. switch (bpp) {
  1474. case 8:
  1475. br13 |= COLOR_DEPTH_8;
  1476. break;
  1477. case 16:
  1478. br13 |= COLOR_DEPTH_16;
  1479. break;
  1480. case 32:
  1481. br13 |= COLOR_DEPTH_32;
  1482. br00 |= WRITE_ALPHA | WRITE_RGB;
  1483. break;
  1484. }
  1485. START_RING(8);
  1486. OUT_RING(br00);
  1487. OUT_RING(br13);
  1488. OUT_RING(br22);
  1489. OUT_RING(br23);
  1490. OUT_RING(br09);
  1491. OUT_RING(br26);
  1492. OUT_RING(br11);
  1493. OUT_RING(br12);
  1494. ADVANCE_RING();
  1495. }
  1496. int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1497. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
  1498. u32 bpp)
  1499. {
  1500. int nbytes, ndwords, pad, tmp;
  1501. u32 br00, br09, br13, br18, br19, br22, br23;
  1502. int dat, ix, iy, iw;
  1503. int i, j;
  1504. #if VERBOSE > 0
  1505. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1506. #endif
  1507. /* size in bytes of a padded scanline */
  1508. nbytes = ROUND_UP_TO(w, 16) / 8;
  1509. /* Total bytes of padded scanline data to write out. */
  1510. nbytes = nbytes * h;
  1511. /*
  1512. * Check if the glyph data exceeds the immediate mode limit.
  1513. * It would take a large font (1K pixels) to hit this limit.
  1514. */
  1515. if (nbytes > MAX_MONO_IMM_SIZE)
  1516. return 0;
  1517. /* Src data is packaged a dword (32-bit) at a time. */
  1518. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1519. /*
  1520. * Ring has to be padded to a quad word. But because the command starts
  1521. with 7 bytes, pad only if there is an even number of ndwords
  1522. */
  1523. pad = !(ndwords % 2);
  1524. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1525. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1526. br09 = dinfo->fb_start;
  1527. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1528. br18 = bg;
  1529. br19 = fg;
  1530. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1531. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1532. switch (bpp) {
  1533. case 8:
  1534. br13 |= COLOR_DEPTH_8;
  1535. break;
  1536. case 16:
  1537. br13 |= COLOR_DEPTH_16;
  1538. break;
  1539. case 32:
  1540. br13 |= COLOR_DEPTH_32;
  1541. br00 |= WRITE_ALPHA | WRITE_RGB;
  1542. break;
  1543. }
  1544. START_RING(8 + ndwords);
  1545. OUT_RING(br00);
  1546. OUT_RING(br13);
  1547. OUT_RING(br22);
  1548. OUT_RING(br23);
  1549. OUT_RING(br09);
  1550. OUT_RING(br18);
  1551. OUT_RING(br19);
  1552. ix = iy = 0;
  1553. iw = ROUND_UP_TO(w, 8) / 8;
  1554. while (ndwords--) {
  1555. dat = 0;
  1556. for (j = 0; j < 2; ++j) {
  1557. for (i = 0; i < 2; ++i) {
  1558. if (ix != iw || i == 0)
  1559. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1560. }
  1561. if (ix == iw && iy != (h-1)) {
  1562. ix = 0;
  1563. ++iy;
  1564. }
  1565. }
  1566. OUT_RING(dat);
  1567. }
  1568. if (pad)
  1569. OUT_RING(MI_NOOP);
  1570. ADVANCE_RING();
  1571. return 1;
  1572. }
  1573. /* HW cursor functions. */
  1574. void intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1575. {
  1576. u32 tmp;
  1577. #if VERBOSE > 0
  1578. DBG_MSG("intelfbhw_cursor_init\n");
  1579. #endif
  1580. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1581. if (!dinfo->cursor.physical)
  1582. return;
  1583. tmp = INREG(CURSOR_A_CONTROL);
  1584. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1585. CURSOR_MEM_TYPE_LOCAL |
  1586. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1587. tmp |= CURSOR_MODE_DISABLE;
  1588. OUTREG(CURSOR_A_CONTROL, tmp);
  1589. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1590. } else {
  1591. tmp = INREG(CURSOR_CONTROL);
  1592. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1593. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1594. tmp = CURSOR_FORMAT_3C;
  1595. OUTREG(CURSOR_CONTROL, tmp);
  1596. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1597. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1598. (64 << CURSOR_SIZE_V_SHIFT);
  1599. OUTREG(CURSOR_SIZE, tmp);
  1600. }
  1601. }
  1602. void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1603. {
  1604. u32 tmp;
  1605. #if VERBOSE > 0
  1606. DBG_MSG("intelfbhw_cursor_hide\n");
  1607. #endif
  1608. dinfo->cursor_on = 0;
  1609. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1610. if (!dinfo->cursor.physical)
  1611. return;
  1612. tmp = INREG(CURSOR_A_CONTROL);
  1613. tmp &= ~CURSOR_MODE_MASK;
  1614. tmp |= CURSOR_MODE_DISABLE;
  1615. OUTREG(CURSOR_A_CONTROL, tmp);
  1616. /* Flush changes */
  1617. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1618. } else {
  1619. tmp = INREG(CURSOR_CONTROL);
  1620. tmp &= ~CURSOR_ENABLE;
  1621. OUTREG(CURSOR_CONTROL, tmp);
  1622. }
  1623. }
  1624. void intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1625. {
  1626. u32 tmp;
  1627. #if VERBOSE > 0
  1628. DBG_MSG("intelfbhw_cursor_show\n");
  1629. #endif
  1630. dinfo->cursor_on = 1;
  1631. if (dinfo->cursor_blanked)
  1632. return;
  1633. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1634. if (!dinfo->cursor.physical)
  1635. return;
  1636. tmp = INREG(CURSOR_A_CONTROL);
  1637. tmp &= ~CURSOR_MODE_MASK;
  1638. tmp |= CURSOR_MODE_64_4C_AX;
  1639. OUTREG(CURSOR_A_CONTROL, tmp);
  1640. /* Flush changes */
  1641. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1642. } else {
  1643. tmp = INREG(CURSOR_CONTROL);
  1644. tmp |= CURSOR_ENABLE;
  1645. OUTREG(CURSOR_CONTROL, tmp);
  1646. }
  1647. }
  1648. void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1649. {
  1650. u32 tmp;
  1651. #if VERBOSE > 0
  1652. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1653. #endif
  1654. /*
  1655. * Sets the position. The coordinates are assumed to already
  1656. * have any offset adjusted. Assume that the cursor is never
  1657. * completely off-screen, and that x, y are always >= 0.
  1658. */
  1659. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1660. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1661. OUTREG(CURSOR_A_POSITION, tmp);
  1662. if (IS_I9XX(dinfo))
  1663. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1664. }
  1665. void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1666. {
  1667. #if VERBOSE > 0
  1668. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1669. #endif
  1670. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1671. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1672. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1673. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1674. }
  1675. void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1676. u8 *data)
  1677. {
  1678. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1679. int i, j, w = width / 8;
  1680. int mod = width % 8, t_mask, d_mask;
  1681. #if VERBOSE > 0
  1682. DBG_MSG("intelfbhw_cursor_load\n");
  1683. #endif
  1684. if (!dinfo->cursor.virtual)
  1685. return;
  1686. t_mask = 0xff >> mod;
  1687. d_mask = ~(0xff >> mod);
  1688. for (i = height; i--; ) {
  1689. for (j = 0; j < w; j++) {
  1690. writeb(0x00, addr + j);
  1691. writeb(*(data++), addr + j+8);
  1692. }
  1693. if (mod) {
  1694. writeb(t_mask, addr + j);
  1695. writeb(*(data++) & d_mask, addr + j+8);
  1696. }
  1697. addr += 16;
  1698. }
  1699. }
  1700. void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
  1701. {
  1702. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1703. int i, j;
  1704. #if VERBOSE > 0
  1705. DBG_MSG("intelfbhw_cursor_reset\n");
  1706. #endif
  1707. if (!dinfo->cursor.virtual)
  1708. return;
  1709. for (i = 64; i--; ) {
  1710. for (j = 0; j < 8; j++) {
  1711. writeb(0xff, addr + j+0);
  1712. writeb(0x00, addr + j+8);
  1713. }
  1714. addr += 16;
  1715. }
  1716. }
  1717. static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
  1718. {
  1719. u16 tmp;
  1720. struct intelfb_info *dinfo = dev_id;
  1721. spin_lock(&dinfo->int_lock);
  1722. tmp = INREG16(IIR);
  1723. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1724. tmp &= PIPE_A_EVENT_INTERRUPT;
  1725. else
  1726. tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1727. if (tmp == 0) {
  1728. spin_unlock(&dinfo->int_lock);
  1729. return IRQ_RETVAL(0); /* not us */
  1730. }
  1731. /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
  1732. OUTREG(PIPEASTAT, INREG(PIPEASTAT));
  1733. OUTREG16(IIR, tmp);
  1734. if (dinfo->vsync.pan_display) {
  1735. dinfo->vsync.pan_display = 0;
  1736. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1737. }
  1738. dinfo->vsync.count++;
  1739. wake_up_interruptible(&dinfo->vsync.wait);
  1740. spin_unlock(&dinfo->int_lock);
  1741. return IRQ_RETVAL(1);
  1742. }
  1743. int intelfbhw_enable_irq(struct intelfb_info *dinfo)
  1744. {
  1745. u16 tmp;
  1746. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1747. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1748. "intelfb", dinfo)) {
  1749. clear_bit(0, &dinfo->irq_flags);
  1750. return -EINVAL;
  1751. }
  1752. spin_lock_irq(&dinfo->int_lock);
  1753. OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
  1754. OUTREG16(IMR, 0);
  1755. } else
  1756. spin_lock_irq(&dinfo->int_lock);
  1757. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1758. tmp = PIPE_A_EVENT_INTERRUPT;
  1759. else
  1760. tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1761. if (tmp != INREG16(IER)) {
  1762. DBG_MSG("changing IER to 0x%X\n", tmp);
  1763. OUTREG16(IER, tmp);
  1764. }
  1765. spin_unlock_irq(&dinfo->int_lock);
  1766. return 0;
  1767. }
  1768. void intelfbhw_disable_irq(struct intelfb_info *dinfo)
  1769. {
  1770. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1771. if (dinfo->vsync.pan_display) {
  1772. dinfo->vsync.pan_display = 0;
  1773. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1774. }
  1775. spin_lock_irq(&dinfo->int_lock);
  1776. OUTREG16(HWSTAM, 0xffff);
  1777. OUTREG16(IMR, 0xffff);
  1778. OUTREG16(IER, 0x0);
  1779. OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
  1780. spin_unlock_irq(&dinfo->int_lock);
  1781. free_irq(dinfo->pdev->irq, dinfo);
  1782. }
  1783. }
  1784. int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
  1785. {
  1786. struct intelfb_vsync *vsync;
  1787. unsigned int count;
  1788. int ret;
  1789. switch (pipe) {
  1790. case 0:
  1791. vsync = &dinfo->vsync;
  1792. break;
  1793. default:
  1794. return -ENODEV;
  1795. }
  1796. ret = intelfbhw_enable_irq(dinfo);
  1797. if (ret)
  1798. return ret;
  1799. count = vsync->count;
  1800. ret = wait_event_interruptible_timeout(vsync->wait,
  1801. count != vsync->count, HZ / 10);
  1802. if (ret < 0)
  1803. return ret;
  1804. if (ret == 0) {
  1805. DBG_MSG("wait_for_vsync timed out!\n");
  1806. return -ETIMEDOUT;
  1807. }
  1808. return 0;
  1809. }