pci.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812
  1. /*
  2. * Sonics Silicon Backplane PCI-Hostbus related functions.
  3. *
  4. * Copyright (C) 2005-2006 Michael Buesch <mb@bu3sch.de>
  5. * Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
  6. * Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
  7. * Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
  8. * Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
  9. *
  10. * Derived from the Broadcom 4400 device driver.
  11. * Copyright (C) 2002 David S. Miller (davem@redhat.com)
  12. * Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
  13. * Copyright (C) 2006 Broadcom Corporation.
  14. *
  15. * Licensed under the GNU/GPL. See COPYING for details.
  16. */
  17. #include <linux/ssb/ssb.h>
  18. #include <linux/ssb/ssb_regs.h>
  19. #include <linux/pci.h>
  20. #include <linux/delay.h>
  21. #include "ssb_private.h"
  22. /* Define the following to 1 to enable a printk on each coreswitch. */
  23. #define SSB_VERBOSE_PCICORESWITCH_DEBUG 0
  24. /* Lowlevel coreswitching */
  25. int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
  26. {
  27. int err;
  28. int attempts = 0;
  29. u32 cur_core;
  30. while (1) {
  31. err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
  32. (coreidx * SSB_CORE_SIZE)
  33. + SSB_ENUM_BASE);
  34. if (err)
  35. goto error;
  36. err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
  37. &cur_core);
  38. if (err)
  39. goto error;
  40. cur_core = (cur_core - SSB_ENUM_BASE)
  41. / SSB_CORE_SIZE;
  42. if (cur_core == coreidx)
  43. break;
  44. if (attempts++ > SSB_BAR0_MAX_RETRIES)
  45. goto error;
  46. udelay(10);
  47. }
  48. return 0;
  49. error:
  50. ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
  51. return -ENODEV;
  52. }
  53. int ssb_pci_switch_core(struct ssb_bus *bus,
  54. struct ssb_device *dev)
  55. {
  56. int err;
  57. unsigned long flags;
  58. #if SSB_VERBOSE_PCICORESWITCH_DEBUG
  59. ssb_printk(KERN_INFO PFX
  60. "Switching to %s core, index %d\n",
  61. ssb_core_name(dev->id.coreid),
  62. dev->core_index);
  63. #endif
  64. spin_lock_irqsave(&bus->bar_lock, flags);
  65. err = ssb_pci_switch_coreidx(bus, dev->core_index);
  66. if (!err)
  67. bus->mapped_device = dev;
  68. spin_unlock_irqrestore(&bus->bar_lock, flags);
  69. return err;
  70. }
  71. /* Enable/disable the on board crystal oscillator and/or PLL. */
  72. int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
  73. {
  74. int err;
  75. u32 in, out, outenable;
  76. u16 pci_status;
  77. if (bus->bustype != SSB_BUSTYPE_PCI)
  78. return 0;
  79. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
  80. if (err)
  81. goto err_pci;
  82. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
  83. if (err)
  84. goto err_pci;
  85. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
  86. if (err)
  87. goto err_pci;
  88. outenable |= what;
  89. if (turn_on) {
  90. /* Avoid glitching the clock if GPRS is already using it.
  91. * We can't actually read the state of the PLLPD so we infer it
  92. * by the value of XTAL_PU which *is* readable via gpioin.
  93. */
  94. if (!(in & SSB_GPIO_XTAL)) {
  95. if (what & SSB_GPIO_XTAL) {
  96. /* Turn the crystal on */
  97. out |= SSB_GPIO_XTAL;
  98. if (what & SSB_GPIO_PLL)
  99. out |= SSB_GPIO_PLL;
  100. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  101. if (err)
  102. goto err_pci;
  103. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
  104. outenable);
  105. if (err)
  106. goto err_pci;
  107. msleep(1);
  108. }
  109. if (what & SSB_GPIO_PLL) {
  110. /* Turn the PLL on */
  111. out &= ~SSB_GPIO_PLL;
  112. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  113. if (err)
  114. goto err_pci;
  115. msleep(5);
  116. }
  117. }
  118. err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
  119. if (err)
  120. goto err_pci;
  121. pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
  122. err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
  123. if (err)
  124. goto err_pci;
  125. } else {
  126. if (what & SSB_GPIO_XTAL) {
  127. /* Turn the crystal off */
  128. out &= ~SSB_GPIO_XTAL;
  129. }
  130. if (what & SSB_GPIO_PLL) {
  131. /* Turn the PLL off */
  132. out |= SSB_GPIO_PLL;
  133. }
  134. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  135. if (err)
  136. goto err_pci;
  137. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
  138. if (err)
  139. goto err_pci;
  140. }
  141. out:
  142. return err;
  143. err_pci:
  144. printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
  145. err = -EBUSY;
  146. goto out;
  147. }
  148. /* Get the word-offset for a SSB_SPROM_XXX define. */
  149. #define SPOFF(offset) (((offset) - SSB_SPROM_BASE) / sizeof(u16))
  150. /* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
  151. #define SPEX(_outvar, _offset, _mask, _shift) \
  152. out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
  153. static inline u8 ssb_crc8(u8 crc, u8 data)
  154. {
  155. /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
  156. static const u8 t[] = {
  157. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  158. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  159. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  160. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  161. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  162. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  163. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  164. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  165. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  166. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  167. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  168. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  169. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  170. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  171. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  172. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  173. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  174. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  175. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  176. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  177. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  178. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  179. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  180. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  181. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  182. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  183. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  184. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  185. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  186. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  187. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  188. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  189. };
  190. return t[crc ^ data];
  191. }
  192. static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
  193. {
  194. int word;
  195. u8 crc = 0xFF;
  196. for (word = 0; word < size - 1; word++) {
  197. crc = ssb_crc8(crc, sprom[word] & 0x00FF);
  198. crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  199. }
  200. crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
  201. crc ^= 0xFF;
  202. return crc;
  203. }
  204. static int sprom_check_crc(const u16 *sprom, size_t size)
  205. {
  206. u8 crc;
  207. u8 expected_crc;
  208. u16 tmp;
  209. crc = ssb_sprom_crc(sprom, size);
  210. tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
  211. expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
  212. if (crc != expected_crc)
  213. return -EPROTO;
  214. return 0;
  215. }
  216. static int sprom_do_read(struct ssb_bus *bus, u16 *sprom)
  217. {
  218. int i;
  219. for (i = 0; i < bus->sprom_size; i++)
  220. sprom[i] = ioread16(bus->mmio + SSB_SPROM_BASE + (i * 2));
  221. return 0;
  222. }
  223. static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
  224. {
  225. struct pci_dev *pdev = bus->host_pci;
  226. int i, err;
  227. u32 spromctl;
  228. u16 size = bus->sprom_size;
  229. ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  230. err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
  231. if (err)
  232. goto err_ctlreg;
  233. spromctl |= SSB_SPROMCTL_WE;
  234. err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
  235. if (err)
  236. goto err_ctlreg;
  237. ssb_printk(KERN_NOTICE PFX "[ 0%%");
  238. msleep(500);
  239. for (i = 0; i < size; i++) {
  240. if (i == size / 4)
  241. ssb_printk("25%%");
  242. else if (i == size / 2)
  243. ssb_printk("50%%");
  244. else if (i == (size * 3) / 4)
  245. ssb_printk("75%%");
  246. else if (i % 2)
  247. ssb_printk(".");
  248. writew(sprom[i], bus->mmio + SSB_SPROM_BASE + (i * 2));
  249. mmiowb();
  250. msleep(20);
  251. }
  252. err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
  253. if (err)
  254. goto err_ctlreg;
  255. spromctl &= ~SSB_SPROMCTL_WE;
  256. err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
  257. if (err)
  258. goto err_ctlreg;
  259. msleep(500);
  260. ssb_printk("100%% ]\n");
  261. ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
  262. return 0;
  263. err_ctlreg:
  264. ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  265. return err;
  266. }
  267. static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
  268. u16 mask, u16 shift)
  269. {
  270. u16 v;
  271. u8 gain;
  272. v = in[SPOFF(SSB_SPROM1_AGAIN)];
  273. gain = (v & mask) >> shift;
  274. if (gain == 0xFF)
  275. gain = 2; /* If unset use 2dBm */
  276. if (sprom_revision == 1) {
  277. /* Convert to Q5.2 */
  278. gain <<= 2;
  279. } else {
  280. /* Q5.2 Fractional part is stored in 0xC0 */
  281. gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
  282. }
  283. return (s8)gain;
  284. }
  285. static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
  286. {
  287. int i;
  288. u16 v;
  289. s8 gain;
  290. u16 loc[3];
  291. if (out->revision == 3) /* rev 3 moved MAC */
  292. loc[0] = SSB_SPROM3_IL0MAC;
  293. else {
  294. loc[0] = SSB_SPROM1_IL0MAC;
  295. loc[1] = SSB_SPROM1_ET0MAC;
  296. loc[2] = SSB_SPROM1_ET1MAC;
  297. }
  298. for (i = 0; i < 3; i++) {
  299. v = in[SPOFF(loc[0]) + i];
  300. *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
  301. }
  302. if (out->revision < 3) { /* only rev 1-2 have et0, et1 */
  303. for (i = 0; i < 3; i++) {
  304. v = in[SPOFF(loc[1]) + i];
  305. *(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
  306. }
  307. for (i = 0; i < 3; i++) {
  308. v = in[SPOFF(loc[2]) + i];
  309. *(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
  310. }
  311. }
  312. SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
  313. SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
  314. SSB_SPROM1_ETHPHY_ET1A_SHIFT);
  315. SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
  316. SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
  317. SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
  318. SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
  319. SSB_SPROM1_BINF_CCODE_SHIFT);
  320. SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
  321. SSB_SPROM1_BINF_ANTA_SHIFT);
  322. SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
  323. SSB_SPROM1_BINF_ANTBG_SHIFT);
  324. SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
  325. SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
  326. SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
  327. SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
  328. SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
  329. SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
  330. SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
  331. SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
  332. SSB_SPROM1_GPIOA_P1_SHIFT);
  333. SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
  334. SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
  335. SSB_SPROM1_GPIOB_P3_SHIFT);
  336. SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
  337. SSB_SPROM1_MAXPWR_A_SHIFT);
  338. SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
  339. SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
  340. SSB_SPROM1_ITSSI_A_SHIFT);
  341. SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
  342. SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
  343. if (out->revision >= 2)
  344. SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
  345. /* Extract the antenna gain values. */
  346. gain = r123_extract_antgain(out->revision, in,
  347. SSB_SPROM1_AGAIN_BG,
  348. SSB_SPROM1_AGAIN_BG_SHIFT);
  349. out->antenna_gain.ghz24.a0 = gain;
  350. out->antenna_gain.ghz24.a1 = gain;
  351. out->antenna_gain.ghz24.a2 = gain;
  352. out->antenna_gain.ghz24.a3 = gain;
  353. gain = r123_extract_antgain(out->revision, in,
  354. SSB_SPROM1_AGAIN_A,
  355. SSB_SPROM1_AGAIN_A_SHIFT);
  356. out->antenna_gain.ghz5.a0 = gain;
  357. out->antenna_gain.ghz5.a1 = gain;
  358. out->antenna_gain.ghz5.a2 = gain;
  359. out->antenna_gain.ghz5.a3 = gain;
  360. }
  361. static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in)
  362. {
  363. int i;
  364. u16 v;
  365. u16 il0mac_offset;
  366. if (out->revision == 4)
  367. il0mac_offset = SSB_SPROM4_IL0MAC;
  368. else
  369. il0mac_offset = SSB_SPROM5_IL0MAC;
  370. /* extract the MAC address */
  371. for (i = 0; i < 3; i++) {
  372. v = in[SPOFF(il0mac_offset) + i];
  373. *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
  374. }
  375. SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
  376. SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
  377. SSB_SPROM4_ETHPHY_ET1A_SHIFT);
  378. if (out->revision == 4) {
  379. SPEX(country_code, SSB_SPROM4_CCODE, 0xFFFF, 0);
  380. SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
  381. SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
  382. } else {
  383. SPEX(country_code, SSB_SPROM5_CCODE, 0xFFFF, 0);
  384. SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0);
  385. SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0);
  386. }
  387. SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
  388. SSB_SPROM4_ANTAVAIL_A_SHIFT);
  389. SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
  390. SSB_SPROM4_ANTAVAIL_BG_SHIFT);
  391. SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
  392. SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
  393. SSB_SPROM4_ITSSI_BG_SHIFT);
  394. SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
  395. SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
  396. SSB_SPROM4_ITSSI_A_SHIFT);
  397. if (out->revision == 4) {
  398. SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
  399. SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
  400. SSB_SPROM4_GPIOA_P1_SHIFT);
  401. SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
  402. SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
  403. SSB_SPROM4_GPIOB_P3_SHIFT);
  404. } else {
  405. SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0);
  406. SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1,
  407. SSB_SPROM5_GPIOA_P1_SHIFT);
  408. SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0);
  409. SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3,
  410. SSB_SPROM5_GPIOB_P3_SHIFT);
  411. }
  412. /* Extract the antenna gain values. */
  413. SPEX(antenna_gain.ghz24.a0, SSB_SPROM4_AGAIN01,
  414. SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
  415. SPEX(antenna_gain.ghz24.a1, SSB_SPROM4_AGAIN01,
  416. SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
  417. SPEX(antenna_gain.ghz24.a2, SSB_SPROM4_AGAIN23,
  418. SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
  419. SPEX(antenna_gain.ghz24.a3, SSB_SPROM4_AGAIN23,
  420. SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
  421. memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
  422. sizeof(out->antenna_gain.ghz5));
  423. /* TODO - get remaining rev 4 stuff needed */
  424. }
  425. static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
  426. const u16 *in, u16 size)
  427. {
  428. memset(out, 0, sizeof(*out));
  429. out->revision = in[size - 1] & 0x00FF;
  430. ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
  431. memset(out->et0mac, 0xFF, 6); /* preset et0 and et1 mac */
  432. memset(out->et1mac, 0xFF, 6);
  433. if ((bus->chip_id & 0xFF00) == 0x4400) {
  434. /* Workaround: The BCM44XX chip has a stupid revision
  435. * number stored in the SPROM.
  436. * Always extract r1. */
  437. out->revision = 1;
  438. sprom_extract_r123(out, in);
  439. } else if (bus->chip_id == 0x4321) {
  440. /* the BCM4328 has a chipid == 0x4321 and a rev 4 SPROM */
  441. out->revision = 4;
  442. sprom_extract_r45(out, in);
  443. } else {
  444. if (out->revision == 0)
  445. goto unsupported;
  446. if (out->revision >= 1 && out->revision <= 3) {
  447. sprom_extract_r123(out, in);
  448. }
  449. if (out->revision == 4 || out->revision == 5)
  450. sprom_extract_r45(out, in);
  451. if (out->revision > 5)
  452. goto unsupported;
  453. }
  454. if (out->boardflags_lo == 0xFFFF)
  455. out->boardflags_lo = 0; /* per specs */
  456. if (out->boardflags_hi == 0xFFFF)
  457. out->boardflags_hi = 0; /* per specs */
  458. return 0;
  459. unsupported:
  460. ssb_printk(KERN_WARNING PFX "Unsupported SPROM revision %d "
  461. "detected. Will extract v1\n", out->revision);
  462. sprom_extract_r123(out, in);
  463. return 0;
  464. }
  465. static int ssb_pci_sprom_get(struct ssb_bus *bus,
  466. struct ssb_sprom *sprom)
  467. {
  468. int err = -ENOMEM;
  469. u16 *buf;
  470. buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
  471. if (!buf)
  472. goto out;
  473. bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
  474. sprom_do_read(bus, buf);
  475. err = sprom_check_crc(buf, bus->sprom_size);
  476. if (err) {
  477. /* try for a 440 byte SPROM - revision 4 and higher */
  478. kfree(buf);
  479. buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
  480. GFP_KERNEL);
  481. if (!buf)
  482. goto out;
  483. bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
  484. sprom_do_read(bus, buf);
  485. err = sprom_check_crc(buf, bus->sprom_size);
  486. if (err)
  487. ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
  488. " SPROM CRC (corrupt SPROM)\n");
  489. }
  490. err = sprom_extract(bus, sprom, buf, bus->sprom_size);
  491. kfree(buf);
  492. out:
  493. return err;
  494. }
  495. static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
  496. struct ssb_boardinfo *bi)
  497. {
  498. pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID,
  499. &bi->vendor);
  500. pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID,
  501. &bi->type);
  502. pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
  503. &bi->rev);
  504. }
  505. int ssb_pci_get_invariants(struct ssb_bus *bus,
  506. struct ssb_init_invariants *iv)
  507. {
  508. int err;
  509. err = ssb_pci_sprom_get(bus, &iv->sprom);
  510. if (err)
  511. goto out;
  512. ssb_pci_get_boardinfo(bus, &iv->boardinfo);
  513. out:
  514. return err;
  515. }
  516. #ifdef CONFIG_SSB_DEBUG
  517. static int ssb_pci_assert_buspower(struct ssb_bus *bus)
  518. {
  519. if (likely(bus->powered_up))
  520. return 0;
  521. printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
  522. "while accessing PCI MMIO space\n");
  523. if (bus->power_warn_count <= 10) {
  524. bus->power_warn_count++;
  525. dump_stack();
  526. }
  527. return -ENODEV;
  528. }
  529. #else /* DEBUG */
  530. static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
  531. {
  532. return 0;
  533. }
  534. #endif /* DEBUG */
  535. static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset)
  536. {
  537. struct ssb_bus *bus = dev->bus;
  538. if (unlikely(ssb_pci_assert_buspower(bus)))
  539. return 0xFF;
  540. if (unlikely(bus->mapped_device != dev)) {
  541. if (unlikely(ssb_pci_switch_core(bus, dev)))
  542. return 0xFF;
  543. }
  544. return ioread8(bus->mmio + offset);
  545. }
  546. static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
  547. {
  548. struct ssb_bus *bus = dev->bus;
  549. if (unlikely(ssb_pci_assert_buspower(bus)))
  550. return 0xFFFF;
  551. if (unlikely(bus->mapped_device != dev)) {
  552. if (unlikely(ssb_pci_switch_core(bus, dev)))
  553. return 0xFFFF;
  554. }
  555. return ioread16(bus->mmio + offset);
  556. }
  557. static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
  558. {
  559. struct ssb_bus *bus = dev->bus;
  560. if (unlikely(ssb_pci_assert_buspower(bus)))
  561. return 0xFFFFFFFF;
  562. if (unlikely(bus->mapped_device != dev)) {
  563. if (unlikely(ssb_pci_switch_core(bus, dev)))
  564. return 0xFFFFFFFF;
  565. }
  566. return ioread32(bus->mmio + offset);
  567. }
  568. #ifdef CONFIG_SSB_BLOCKIO
  569. static void ssb_pci_block_read(struct ssb_device *dev, void *buffer,
  570. size_t count, u16 offset, u8 reg_width)
  571. {
  572. struct ssb_bus *bus = dev->bus;
  573. void __iomem *addr = bus->mmio + offset;
  574. if (unlikely(ssb_pci_assert_buspower(bus)))
  575. goto error;
  576. if (unlikely(bus->mapped_device != dev)) {
  577. if (unlikely(ssb_pci_switch_core(bus, dev)))
  578. goto error;
  579. }
  580. switch (reg_width) {
  581. case sizeof(u8):
  582. ioread8_rep(addr, buffer, count);
  583. break;
  584. case sizeof(u16):
  585. SSB_WARN_ON(count & 1);
  586. ioread16_rep(addr, buffer, count >> 1);
  587. break;
  588. case sizeof(u32):
  589. SSB_WARN_ON(count & 3);
  590. ioread32_rep(addr, buffer, count >> 2);
  591. break;
  592. default:
  593. SSB_WARN_ON(1);
  594. }
  595. return;
  596. error:
  597. memset(buffer, 0xFF, count);
  598. }
  599. #endif /* CONFIG_SSB_BLOCKIO */
  600. static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value)
  601. {
  602. struct ssb_bus *bus = dev->bus;
  603. if (unlikely(ssb_pci_assert_buspower(bus)))
  604. return;
  605. if (unlikely(bus->mapped_device != dev)) {
  606. if (unlikely(ssb_pci_switch_core(bus, dev)))
  607. return;
  608. }
  609. iowrite8(value, bus->mmio + offset);
  610. }
  611. static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
  612. {
  613. struct ssb_bus *bus = dev->bus;
  614. if (unlikely(ssb_pci_assert_buspower(bus)))
  615. return;
  616. if (unlikely(bus->mapped_device != dev)) {
  617. if (unlikely(ssb_pci_switch_core(bus, dev)))
  618. return;
  619. }
  620. iowrite16(value, bus->mmio + offset);
  621. }
  622. static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
  623. {
  624. struct ssb_bus *bus = dev->bus;
  625. if (unlikely(ssb_pci_assert_buspower(bus)))
  626. return;
  627. if (unlikely(bus->mapped_device != dev)) {
  628. if (unlikely(ssb_pci_switch_core(bus, dev)))
  629. return;
  630. }
  631. iowrite32(value, bus->mmio + offset);
  632. }
  633. #ifdef CONFIG_SSB_BLOCKIO
  634. static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer,
  635. size_t count, u16 offset, u8 reg_width)
  636. {
  637. struct ssb_bus *bus = dev->bus;
  638. void __iomem *addr = bus->mmio + offset;
  639. if (unlikely(ssb_pci_assert_buspower(bus)))
  640. return;
  641. if (unlikely(bus->mapped_device != dev)) {
  642. if (unlikely(ssb_pci_switch_core(bus, dev)))
  643. return;
  644. }
  645. switch (reg_width) {
  646. case sizeof(u8):
  647. iowrite8_rep(addr, buffer, count);
  648. break;
  649. case sizeof(u16):
  650. SSB_WARN_ON(count & 1);
  651. iowrite16_rep(addr, buffer, count >> 1);
  652. break;
  653. case sizeof(u32):
  654. SSB_WARN_ON(count & 3);
  655. iowrite32_rep(addr, buffer, count >> 2);
  656. break;
  657. default:
  658. SSB_WARN_ON(1);
  659. }
  660. }
  661. #endif /* CONFIG_SSB_BLOCKIO */
  662. /* Not "static", as it's used in main.c */
  663. const struct ssb_bus_ops ssb_pci_ops = {
  664. .read8 = ssb_pci_read8,
  665. .read16 = ssb_pci_read16,
  666. .read32 = ssb_pci_read32,
  667. .write8 = ssb_pci_write8,
  668. .write16 = ssb_pci_write16,
  669. .write32 = ssb_pci_write32,
  670. #ifdef CONFIG_SSB_BLOCKIO
  671. .block_read = ssb_pci_block_read,
  672. .block_write = ssb_pci_block_write,
  673. #endif
  674. };
  675. static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
  676. struct device_attribute *attr,
  677. char *buf)
  678. {
  679. struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
  680. struct ssb_bus *bus;
  681. bus = ssb_pci_dev_to_bus(pdev);
  682. if (!bus)
  683. return -ENODEV;
  684. return ssb_attr_sprom_show(bus, buf, sprom_do_read);
  685. }
  686. static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
  687. struct device_attribute *attr,
  688. const char *buf, size_t count)
  689. {
  690. struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
  691. struct ssb_bus *bus;
  692. bus = ssb_pci_dev_to_bus(pdev);
  693. if (!bus)
  694. return -ENODEV;
  695. return ssb_attr_sprom_store(bus, buf, count,
  696. sprom_check_crc, sprom_do_write);
  697. }
  698. static DEVICE_ATTR(ssb_sprom, 0600,
  699. ssb_pci_attr_sprom_show,
  700. ssb_pci_attr_sprom_store);
  701. void ssb_pci_exit(struct ssb_bus *bus)
  702. {
  703. struct pci_dev *pdev;
  704. if (bus->bustype != SSB_BUSTYPE_PCI)
  705. return;
  706. pdev = bus->host_pci;
  707. device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
  708. }
  709. int ssb_pci_init(struct ssb_bus *bus)
  710. {
  711. struct pci_dev *pdev;
  712. int err;
  713. if (bus->bustype != SSB_BUSTYPE_PCI)
  714. return 0;
  715. pdev = bus->host_pci;
  716. mutex_init(&bus->sprom_mutex);
  717. err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
  718. if (err)
  719. goto out;
  720. out:
  721. return err;
  722. }