pxa2xx_spi.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/delay.h>
  33. #include <mach/dma.h>
  34. #include <mach/hardware.h>
  35. #include <mach/pxa-regs.h>
  36. #include <mach/regs-ssp.h>
  37. #include <mach/ssp.h>
  38. #include <mach/pxa2xx_spi.h>
  39. MODULE_AUTHOR("Stephen Street");
  40. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41. MODULE_LICENSE("GPL");
  42. MODULE_ALIAS("platform:pxa2xx-spi");
  43. #define MAX_BUSES 3
  44. #define RX_THRESH_DFLT 8
  45. #define TX_THRESH_DFLT 8
  46. #define TIMOUT_DFLT 1000
  47. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  48. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  49. #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
  50. #define MAX_DMA_LEN 8191
  51. /*
  52. * for testing SSCR1 changes that require SSP restart, basically
  53. * everything except the service and interrupt enables, the pxa270 developer
  54. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  55. * list, but the PXA255 dev man says all bits without really meaning the
  56. * service and interrupt enables
  57. */
  58. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  59. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  60. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  61. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  62. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  63. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  64. #define DEFINE_SSP_REG(reg, off) \
  65. static inline u32 read_##reg(void const __iomem *p) \
  66. { return __raw_readl(p + (off)); } \
  67. \
  68. static inline void write_##reg(u32 v, void __iomem *p) \
  69. { __raw_writel(v, p + (off)); }
  70. DEFINE_SSP_REG(SSCR0, 0x00)
  71. DEFINE_SSP_REG(SSCR1, 0x04)
  72. DEFINE_SSP_REG(SSSR, 0x08)
  73. DEFINE_SSP_REG(SSITR, 0x0c)
  74. DEFINE_SSP_REG(SSDR, 0x10)
  75. DEFINE_SSP_REG(SSTO, 0x28)
  76. DEFINE_SSP_REG(SSPSP, 0x2c)
  77. #define START_STATE ((void*)0)
  78. #define RUNNING_STATE ((void*)1)
  79. #define DONE_STATE ((void*)2)
  80. #define ERROR_STATE ((void*)-1)
  81. #define QUEUE_RUNNING 0
  82. #define QUEUE_STOPPED 1
  83. struct driver_data {
  84. /* Driver model hookup */
  85. struct platform_device *pdev;
  86. /* SSP Info */
  87. struct ssp_device *ssp;
  88. /* SPI framework hookup */
  89. enum pxa_ssp_type ssp_type;
  90. struct spi_master *master;
  91. /* PXA hookup */
  92. struct pxa2xx_spi_master *master_info;
  93. /* DMA setup stuff */
  94. int rx_channel;
  95. int tx_channel;
  96. u32 *null_dma_buf;
  97. /* SSP register addresses */
  98. void __iomem *ioaddr;
  99. u32 ssdr_physical;
  100. /* SSP masks*/
  101. u32 dma_cr1;
  102. u32 int_cr1;
  103. u32 clear_sr;
  104. u32 mask_sr;
  105. /* Driver message queue */
  106. struct workqueue_struct *workqueue;
  107. struct work_struct pump_messages;
  108. spinlock_t lock;
  109. struct list_head queue;
  110. int busy;
  111. int run;
  112. /* Message Transfer pump */
  113. struct tasklet_struct pump_transfers;
  114. /* Current message transfer state info */
  115. struct spi_message* cur_msg;
  116. struct spi_transfer* cur_transfer;
  117. struct chip_data *cur_chip;
  118. size_t len;
  119. void *tx;
  120. void *tx_end;
  121. void *rx;
  122. void *rx_end;
  123. int dma_mapped;
  124. dma_addr_t rx_dma;
  125. dma_addr_t tx_dma;
  126. size_t rx_map_len;
  127. size_t tx_map_len;
  128. u8 n_bytes;
  129. u32 dma_width;
  130. int (*write)(struct driver_data *drv_data);
  131. int (*read)(struct driver_data *drv_data);
  132. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  133. void (*cs_control)(u32 command);
  134. };
  135. struct chip_data {
  136. u32 cr0;
  137. u32 cr1;
  138. u32 psp;
  139. u32 timeout;
  140. u8 n_bytes;
  141. u32 dma_width;
  142. u32 dma_burst_size;
  143. u32 threshold;
  144. u32 dma_threshold;
  145. u8 enable_dma;
  146. u8 bits_per_word;
  147. u32 speed_hz;
  148. int (*write)(struct driver_data *drv_data);
  149. int (*read)(struct driver_data *drv_data);
  150. void (*cs_control)(u32 command);
  151. };
  152. static void pump_messages(struct work_struct *work);
  153. static int flush(struct driver_data *drv_data)
  154. {
  155. unsigned long limit = loops_per_jiffy << 1;
  156. void __iomem *reg = drv_data->ioaddr;
  157. do {
  158. while (read_SSSR(reg) & SSSR_RNE) {
  159. read_SSDR(reg);
  160. }
  161. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  162. write_SSSR(SSSR_ROR, reg);
  163. return limit;
  164. }
  165. static void null_cs_control(u32 command)
  166. {
  167. }
  168. static int null_writer(struct driver_data *drv_data)
  169. {
  170. void __iomem *reg = drv_data->ioaddr;
  171. u8 n_bytes = drv_data->n_bytes;
  172. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  173. || (drv_data->tx == drv_data->tx_end))
  174. return 0;
  175. write_SSDR(0, reg);
  176. drv_data->tx += n_bytes;
  177. return 1;
  178. }
  179. static int null_reader(struct driver_data *drv_data)
  180. {
  181. void __iomem *reg = drv_data->ioaddr;
  182. u8 n_bytes = drv_data->n_bytes;
  183. while ((read_SSSR(reg) & SSSR_RNE)
  184. && (drv_data->rx < drv_data->rx_end)) {
  185. read_SSDR(reg);
  186. drv_data->rx += n_bytes;
  187. }
  188. return drv_data->rx == drv_data->rx_end;
  189. }
  190. static int u8_writer(struct driver_data *drv_data)
  191. {
  192. void __iomem *reg = drv_data->ioaddr;
  193. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  194. || (drv_data->tx == drv_data->tx_end))
  195. return 0;
  196. write_SSDR(*(u8 *)(drv_data->tx), reg);
  197. ++drv_data->tx;
  198. return 1;
  199. }
  200. static int u8_reader(struct driver_data *drv_data)
  201. {
  202. void __iomem *reg = drv_data->ioaddr;
  203. while ((read_SSSR(reg) & SSSR_RNE)
  204. && (drv_data->rx < drv_data->rx_end)) {
  205. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  206. ++drv_data->rx;
  207. }
  208. return drv_data->rx == drv_data->rx_end;
  209. }
  210. static int u16_writer(struct driver_data *drv_data)
  211. {
  212. void __iomem *reg = drv_data->ioaddr;
  213. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  214. || (drv_data->tx == drv_data->tx_end))
  215. return 0;
  216. write_SSDR(*(u16 *)(drv_data->tx), reg);
  217. drv_data->tx += 2;
  218. return 1;
  219. }
  220. static int u16_reader(struct driver_data *drv_data)
  221. {
  222. void __iomem *reg = drv_data->ioaddr;
  223. while ((read_SSSR(reg) & SSSR_RNE)
  224. && (drv_data->rx < drv_data->rx_end)) {
  225. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  226. drv_data->rx += 2;
  227. }
  228. return drv_data->rx == drv_data->rx_end;
  229. }
  230. static int u32_writer(struct driver_data *drv_data)
  231. {
  232. void __iomem *reg = drv_data->ioaddr;
  233. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  234. || (drv_data->tx == drv_data->tx_end))
  235. return 0;
  236. write_SSDR(*(u32 *)(drv_data->tx), reg);
  237. drv_data->tx += 4;
  238. return 1;
  239. }
  240. static int u32_reader(struct driver_data *drv_data)
  241. {
  242. void __iomem *reg = drv_data->ioaddr;
  243. while ((read_SSSR(reg) & SSSR_RNE)
  244. && (drv_data->rx < drv_data->rx_end)) {
  245. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  246. drv_data->rx += 4;
  247. }
  248. return drv_data->rx == drv_data->rx_end;
  249. }
  250. static void *next_transfer(struct driver_data *drv_data)
  251. {
  252. struct spi_message *msg = drv_data->cur_msg;
  253. struct spi_transfer *trans = drv_data->cur_transfer;
  254. /* Move to next transfer */
  255. if (trans->transfer_list.next != &msg->transfers) {
  256. drv_data->cur_transfer =
  257. list_entry(trans->transfer_list.next,
  258. struct spi_transfer,
  259. transfer_list);
  260. return RUNNING_STATE;
  261. } else
  262. return DONE_STATE;
  263. }
  264. static int map_dma_buffers(struct driver_data *drv_data)
  265. {
  266. struct spi_message *msg = drv_data->cur_msg;
  267. struct device *dev = &msg->spi->dev;
  268. if (!drv_data->cur_chip->enable_dma)
  269. return 0;
  270. if (msg->is_dma_mapped)
  271. return drv_data->rx_dma && drv_data->tx_dma;
  272. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  273. return 0;
  274. /* Modify setup if rx buffer is null */
  275. if (drv_data->rx == NULL) {
  276. *drv_data->null_dma_buf = 0;
  277. drv_data->rx = drv_data->null_dma_buf;
  278. drv_data->rx_map_len = 4;
  279. } else
  280. drv_data->rx_map_len = drv_data->len;
  281. /* Modify setup if tx buffer is null */
  282. if (drv_data->tx == NULL) {
  283. *drv_data->null_dma_buf = 0;
  284. drv_data->tx = drv_data->null_dma_buf;
  285. drv_data->tx_map_len = 4;
  286. } else
  287. drv_data->tx_map_len = drv_data->len;
  288. /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
  289. * so we flush the cache *before* invalidating it, in case
  290. * the tx and rx buffers overlap.
  291. */
  292. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  293. drv_data->tx_map_len, DMA_TO_DEVICE);
  294. if (dma_mapping_error(dev, drv_data->tx_dma))
  295. return 0;
  296. /* Stream map the rx buffer */
  297. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  298. drv_data->rx_map_len, DMA_FROM_DEVICE);
  299. if (dma_mapping_error(dev, drv_data->rx_dma)) {
  300. dma_unmap_single(dev, drv_data->tx_dma,
  301. drv_data->tx_map_len, DMA_TO_DEVICE);
  302. return 0;
  303. }
  304. return 1;
  305. }
  306. static void unmap_dma_buffers(struct driver_data *drv_data)
  307. {
  308. struct device *dev;
  309. if (!drv_data->dma_mapped)
  310. return;
  311. if (!drv_data->cur_msg->is_dma_mapped) {
  312. dev = &drv_data->cur_msg->spi->dev;
  313. dma_unmap_single(dev, drv_data->rx_dma,
  314. drv_data->rx_map_len, DMA_FROM_DEVICE);
  315. dma_unmap_single(dev, drv_data->tx_dma,
  316. drv_data->tx_map_len, DMA_TO_DEVICE);
  317. }
  318. drv_data->dma_mapped = 0;
  319. }
  320. /* caller already set message->status; dma and pio irqs are blocked */
  321. static void giveback(struct driver_data *drv_data)
  322. {
  323. struct spi_transfer* last_transfer;
  324. unsigned long flags;
  325. struct spi_message *msg;
  326. spin_lock_irqsave(&drv_data->lock, flags);
  327. msg = drv_data->cur_msg;
  328. drv_data->cur_msg = NULL;
  329. drv_data->cur_transfer = NULL;
  330. drv_data->cur_chip = NULL;
  331. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  332. spin_unlock_irqrestore(&drv_data->lock, flags);
  333. last_transfer = list_entry(msg->transfers.prev,
  334. struct spi_transfer,
  335. transfer_list);
  336. /* Delay if requested before any change in chip select */
  337. if (last_transfer->delay_usecs)
  338. udelay(last_transfer->delay_usecs);
  339. /* Drop chip select UNLESS cs_change is true or we are returning
  340. * a message with an error, or next message is for another chip
  341. */
  342. if (!last_transfer->cs_change)
  343. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  344. else {
  345. struct spi_message *next_msg;
  346. /* Holding of cs was hinted, but we need to make sure
  347. * the next message is for the same chip. Don't waste
  348. * time with the following tests unless this was hinted.
  349. *
  350. * We cannot postpone this until pump_messages, because
  351. * after calling msg->complete (below) the driver that
  352. * sent the current message could be unloaded, which
  353. * could invalidate the cs_control() callback...
  354. */
  355. /* get a pointer to the next message, if any */
  356. spin_lock_irqsave(&drv_data->lock, flags);
  357. if (list_empty(&drv_data->queue))
  358. next_msg = NULL;
  359. else
  360. next_msg = list_entry(drv_data->queue.next,
  361. struct spi_message, queue);
  362. spin_unlock_irqrestore(&drv_data->lock, flags);
  363. /* see if the next and current messages point
  364. * to the same chip
  365. */
  366. if (next_msg && next_msg->spi != msg->spi)
  367. next_msg = NULL;
  368. if (!next_msg || msg->state == ERROR_STATE)
  369. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  370. }
  371. msg->state = NULL;
  372. if (msg->complete)
  373. msg->complete(msg->context);
  374. }
  375. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  376. {
  377. unsigned long limit = loops_per_jiffy << 1;
  378. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  379. cpu_relax();
  380. return limit;
  381. }
  382. static int wait_dma_channel_stop(int channel)
  383. {
  384. unsigned long limit = loops_per_jiffy << 1;
  385. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  386. cpu_relax();
  387. return limit;
  388. }
  389. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  390. {
  391. void __iomem *reg = drv_data->ioaddr;
  392. /* Stop and reset */
  393. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  394. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  395. write_SSSR(drv_data->clear_sr, reg);
  396. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  397. if (drv_data->ssp_type != PXA25x_SSP)
  398. write_SSTO(0, reg);
  399. flush(drv_data);
  400. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  401. unmap_dma_buffers(drv_data);
  402. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  403. drv_data->cur_msg->state = ERROR_STATE;
  404. tasklet_schedule(&drv_data->pump_transfers);
  405. }
  406. static void dma_transfer_complete(struct driver_data *drv_data)
  407. {
  408. void __iomem *reg = drv_data->ioaddr;
  409. struct spi_message *msg = drv_data->cur_msg;
  410. /* Clear and disable interrupts on SSP and DMA channels*/
  411. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  412. write_SSSR(drv_data->clear_sr, reg);
  413. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  414. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  415. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  416. dev_err(&drv_data->pdev->dev,
  417. "dma_handler: dma rx channel stop failed\n");
  418. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  419. dev_err(&drv_data->pdev->dev,
  420. "dma_transfer: ssp rx stall failed\n");
  421. unmap_dma_buffers(drv_data);
  422. /* update the buffer pointer for the amount completed in dma */
  423. drv_data->rx += drv_data->len -
  424. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  425. /* read trailing data from fifo, it does not matter how many
  426. * bytes are in the fifo just read until buffer is full
  427. * or fifo is empty, which ever occurs first */
  428. drv_data->read(drv_data);
  429. /* return count of what was actually read */
  430. msg->actual_length += drv_data->len -
  431. (drv_data->rx_end - drv_data->rx);
  432. /* Transfer delays and chip select release are
  433. * handled in pump_transfers or giveback
  434. */
  435. /* Move to next transfer */
  436. msg->state = next_transfer(drv_data);
  437. /* Schedule transfer tasklet */
  438. tasklet_schedule(&drv_data->pump_transfers);
  439. }
  440. static void dma_handler(int channel, void *data)
  441. {
  442. struct driver_data *drv_data = data;
  443. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  444. if (irq_status & DCSR_BUSERR) {
  445. if (channel == drv_data->tx_channel)
  446. dma_error_stop(drv_data,
  447. "dma_handler: "
  448. "bad bus address on tx channel");
  449. else
  450. dma_error_stop(drv_data,
  451. "dma_handler: "
  452. "bad bus address on rx channel");
  453. return;
  454. }
  455. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  456. if ((channel == drv_data->tx_channel)
  457. && (irq_status & DCSR_ENDINTR)
  458. && (drv_data->ssp_type == PXA25x_SSP)) {
  459. /* Wait for rx to stall */
  460. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  461. dev_err(&drv_data->pdev->dev,
  462. "dma_handler: ssp rx stall failed\n");
  463. /* finish this transfer, start the next */
  464. dma_transfer_complete(drv_data);
  465. }
  466. }
  467. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  468. {
  469. u32 irq_status;
  470. void __iomem *reg = drv_data->ioaddr;
  471. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  472. if (irq_status & SSSR_ROR) {
  473. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  474. return IRQ_HANDLED;
  475. }
  476. /* Check for false positive timeout */
  477. if ((irq_status & SSSR_TINT)
  478. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  479. write_SSSR(SSSR_TINT, reg);
  480. return IRQ_HANDLED;
  481. }
  482. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  483. /* Clear and disable timeout interrupt, do the rest in
  484. * dma_transfer_complete */
  485. if (drv_data->ssp_type != PXA25x_SSP)
  486. write_SSTO(0, reg);
  487. /* finish this transfer, start the next */
  488. dma_transfer_complete(drv_data);
  489. return IRQ_HANDLED;
  490. }
  491. /* Opps problem detected */
  492. return IRQ_NONE;
  493. }
  494. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  495. {
  496. void __iomem *reg = drv_data->ioaddr;
  497. /* Stop and reset SSP */
  498. write_SSSR(drv_data->clear_sr, reg);
  499. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  500. if (drv_data->ssp_type != PXA25x_SSP)
  501. write_SSTO(0, reg);
  502. flush(drv_data);
  503. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  504. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  505. drv_data->cur_msg->state = ERROR_STATE;
  506. tasklet_schedule(&drv_data->pump_transfers);
  507. }
  508. static void int_transfer_complete(struct driver_data *drv_data)
  509. {
  510. void __iomem *reg = drv_data->ioaddr;
  511. /* Stop SSP */
  512. write_SSSR(drv_data->clear_sr, reg);
  513. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  514. if (drv_data->ssp_type != PXA25x_SSP)
  515. write_SSTO(0, reg);
  516. /* Update total byte transfered return count actual bytes read */
  517. drv_data->cur_msg->actual_length += drv_data->len -
  518. (drv_data->rx_end - drv_data->rx);
  519. /* Transfer delays and chip select release are
  520. * handled in pump_transfers or giveback
  521. */
  522. /* Move to next transfer */
  523. drv_data->cur_msg->state = next_transfer(drv_data);
  524. /* Schedule transfer tasklet */
  525. tasklet_schedule(&drv_data->pump_transfers);
  526. }
  527. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  528. {
  529. void __iomem *reg = drv_data->ioaddr;
  530. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  531. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  532. u32 irq_status = read_SSSR(reg) & irq_mask;
  533. if (irq_status & SSSR_ROR) {
  534. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  535. return IRQ_HANDLED;
  536. }
  537. if (irq_status & SSSR_TINT) {
  538. write_SSSR(SSSR_TINT, reg);
  539. if (drv_data->read(drv_data)) {
  540. int_transfer_complete(drv_data);
  541. return IRQ_HANDLED;
  542. }
  543. }
  544. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  545. do {
  546. if (drv_data->read(drv_data)) {
  547. int_transfer_complete(drv_data);
  548. return IRQ_HANDLED;
  549. }
  550. } while (drv_data->write(drv_data));
  551. if (drv_data->read(drv_data)) {
  552. int_transfer_complete(drv_data);
  553. return IRQ_HANDLED;
  554. }
  555. if (drv_data->tx == drv_data->tx_end) {
  556. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  557. /* PXA25x_SSP has no timeout, read trailing bytes */
  558. if (drv_data->ssp_type == PXA25x_SSP) {
  559. if (!wait_ssp_rx_stall(reg))
  560. {
  561. int_error_stop(drv_data, "interrupt_transfer: "
  562. "rx stall failed");
  563. return IRQ_HANDLED;
  564. }
  565. if (!drv_data->read(drv_data))
  566. {
  567. int_error_stop(drv_data,
  568. "interrupt_transfer: "
  569. "trailing byte read failed");
  570. return IRQ_HANDLED;
  571. }
  572. int_transfer_complete(drv_data);
  573. }
  574. }
  575. /* We did something */
  576. return IRQ_HANDLED;
  577. }
  578. static irqreturn_t ssp_int(int irq, void *dev_id)
  579. {
  580. struct driver_data *drv_data = dev_id;
  581. void __iomem *reg = drv_data->ioaddr;
  582. if (!drv_data->cur_msg) {
  583. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  584. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  585. if (drv_data->ssp_type != PXA25x_SSP)
  586. write_SSTO(0, reg);
  587. write_SSSR(drv_data->clear_sr, reg);
  588. dev_err(&drv_data->pdev->dev, "bad message state "
  589. "in interrupt handler\n");
  590. /* Never fail */
  591. return IRQ_HANDLED;
  592. }
  593. return drv_data->transfer_handler(drv_data);
  594. }
  595. static int set_dma_burst_and_threshold(struct chip_data *chip,
  596. struct spi_device *spi,
  597. u8 bits_per_word, u32 *burst_code,
  598. u32 *threshold)
  599. {
  600. struct pxa2xx_spi_chip *chip_info =
  601. (struct pxa2xx_spi_chip *)spi->controller_data;
  602. int bytes_per_word;
  603. int burst_bytes;
  604. int thresh_words;
  605. int req_burst_size;
  606. int retval = 0;
  607. /* Set the threshold (in registers) to equal the same amount of data
  608. * as represented by burst size (in bytes). The computation below
  609. * is (burst_size rounded up to nearest 8 byte, word or long word)
  610. * divided by (bytes/register); the tx threshold is the inverse of
  611. * the rx, so that there will always be enough data in the rx fifo
  612. * to satisfy a burst, and there will always be enough space in the
  613. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  614. * there is not enough space), there must always remain enough empty
  615. * space in the rx fifo for any data loaded to the tx fifo.
  616. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  617. * will be 8, or half the fifo;
  618. * The threshold can only be set to 2, 4 or 8, but not 16, because
  619. * to burst 16 to the tx fifo, the fifo would have to be empty;
  620. * however, the minimum fifo trigger level is 1, and the tx will
  621. * request service when the fifo is at this level, with only 15 spaces.
  622. */
  623. /* find bytes/word */
  624. if (bits_per_word <= 8)
  625. bytes_per_word = 1;
  626. else if (bits_per_word <= 16)
  627. bytes_per_word = 2;
  628. else
  629. bytes_per_word = 4;
  630. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  631. if (chip_info)
  632. req_burst_size = chip_info->dma_burst_size;
  633. else {
  634. switch (chip->dma_burst_size) {
  635. default:
  636. /* if the default burst size is not set,
  637. * do it now */
  638. chip->dma_burst_size = DCMD_BURST8;
  639. case DCMD_BURST8:
  640. req_burst_size = 8;
  641. break;
  642. case DCMD_BURST16:
  643. req_burst_size = 16;
  644. break;
  645. case DCMD_BURST32:
  646. req_burst_size = 32;
  647. break;
  648. }
  649. }
  650. if (req_burst_size <= 8) {
  651. *burst_code = DCMD_BURST8;
  652. burst_bytes = 8;
  653. } else if (req_burst_size <= 16) {
  654. if (bytes_per_word == 1) {
  655. /* don't burst more than 1/2 the fifo */
  656. *burst_code = DCMD_BURST8;
  657. burst_bytes = 8;
  658. retval = 1;
  659. } else {
  660. *burst_code = DCMD_BURST16;
  661. burst_bytes = 16;
  662. }
  663. } else {
  664. if (bytes_per_word == 1) {
  665. /* don't burst more than 1/2 the fifo */
  666. *burst_code = DCMD_BURST8;
  667. burst_bytes = 8;
  668. retval = 1;
  669. } else if (bytes_per_word == 2) {
  670. /* don't burst more than 1/2 the fifo */
  671. *burst_code = DCMD_BURST16;
  672. burst_bytes = 16;
  673. retval = 1;
  674. } else {
  675. *burst_code = DCMD_BURST32;
  676. burst_bytes = 32;
  677. }
  678. }
  679. thresh_words = burst_bytes / bytes_per_word;
  680. /* thresh_words will be between 2 and 8 */
  681. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  682. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  683. return retval;
  684. }
  685. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  686. {
  687. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  688. if (ssp->type == PXA25x_SSP)
  689. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  690. else
  691. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  692. }
  693. static void pump_transfers(unsigned long data)
  694. {
  695. struct driver_data *drv_data = (struct driver_data *)data;
  696. struct spi_message *message = NULL;
  697. struct spi_transfer *transfer = NULL;
  698. struct spi_transfer *previous = NULL;
  699. struct chip_data *chip = NULL;
  700. struct ssp_device *ssp = drv_data->ssp;
  701. void __iomem *reg = drv_data->ioaddr;
  702. u32 clk_div = 0;
  703. u8 bits = 0;
  704. u32 speed = 0;
  705. u32 cr0;
  706. u32 cr1;
  707. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  708. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  709. /* Get current state information */
  710. message = drv_data->cur_msg;
  711. transfer = drv_data->cur_transfer;
  712. chip = drv_data->cur_chip;
  713. /* Handle for abort */
  714. if (message->state == ERROR_STATE) {
  715. message->status = -EIO;
  716. giveback(drv_data);
  717. return;
  718. }
  719. /* Handle end of message */
  720. if (message->state == DONE_STATE) {
  721. message->status = 0;
  722. giveback(drv_data);
  723. return;
  724. }
  725. /* Delay if requested at end of transfer before CS change */
  726. if (message->state == RUNNING_STATE) {
  727. previous = list_entry(transfer->transfer_list.prev,
  728. struct spi_transfer,
  729. transfer_list);
  730. if (previous->delay_usecs)
  731. udelay(previous->delay_usecs);
  732. /* Drop chip select only if cs_change is requested */
  733. if (previous->cs_change)
  734. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  735. }
  736. /* Check for transfers that need multiple DMA segments */
  737. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  738. /* reject already-mapped transfers; PIO won't always work */
  739. if (message->is_dma_mapped
  740. || transfer->rx_dma || transfer->tx_dma) {
  741. dev_err(&drv_data->pdev->dev,
  742. "pump_transfers: mapped transfer length "
  743. "of %u is greater than %d\n",
  744. transfer->len, MAX_DMA_LEN);
  745. message->status = -EINVAL;
  746. giveback(drv_data);
  747. return;
  748. }
  749. /* warn ... we force this to PIO mode */
  750. if (printk_ratelimit())
  751. dev_warn(&message->spi->dev, "pump_transfers: "
  752. "DMA disabled for transfer length %ld "
  753. "greater than %d\n",
  754. (long)drv_data->len, MAX_DMA_LEN);
  755. }
  756. /* Setup the transfer state based on the type of transfer */
  757. if (flush(drv_data) == 0) {
  758. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  759. message->status = -EIO;
  760. giveback(drv_data);
  761. return;
  762. }
  763. drv_data->n_bytes = chip->n_bytes;
  764. drv_data->dma_width = chip->dma_width;
  765. drv_data->cs_control = chip->cs_control;
  766. drv_data->tx = (void *)transfer->tx_buf;
  767. drv_data->tx_end = drv_data->tx + transfer->len;
  768. drv_data->rx = transfer->rx_buf;
  769. drv_data->rx_end = drv_data->rx + transfer->len;
  770. drv_data->rx_dma = transfer->rx_dma;
  771. drv_data->tx_dma = transfer->tx_dma;
  772. drv_data->len = transfer->len & DCMD_LENGTH;
  773. drv_data->write = drv_data->tx ? chip->write : null_writer;
  774. drv_data->read = drv_data->rx ? chip->read : null_reader;
  775. /* Change speed and bit per word on a per transfer */
  776. cr0 = chip->cr0;
  777. if (transfer->speed_hz || transfer->bits_per_word) {
  778. bits = chip->bits_per_word;
  779. speed = chip->speed_hz;
  780. if (transfer->speed_hz)
  781. speed = transfer->speed_hz;
  782. if (transfer->bits_per_word)
  783. bits = transfer->bits_per_word;
  784. clk_div = ssp_get_clk_div(ssp, speed);
  785. if (bits <= 8) {
  786. drv_data->n_bytes = 1;
  787. drv_data->dma_width = DCMD_WIDTH1;
  788. drv_data->read = drv_data->read != null_reader ?
  789. u8_reader : null_reader;
  790. drv_data->write = drv_data->write != null_writer ?
  791. u8_writer : null_writer;
  792. } else if (bits <= 16) {
  793. drv_data->n_bytes = 2;
  794. drv_data->dma_width = DCMD_WIDTH2;
  795. drv_data->read = drv_data->read != null_reader ?
  796. u16_reader : null_reader;
  797. drv_data->write = drv_data->write != null_writer ?
  798. u16_writer : null_writer;
  799. } else if (bits <= 32) {
  800. drv_data->n_bytes = 4;
  801. drv_data->dma_width = DCMD_WIDTH4;
  802. drv_data->read = drv_data->read != null_reader ?
  803. u32_reader : null_reader;
  804. drv_data->write = drv_data->write != null_writer ?
  805. u32_writer : null_writer;
  806. }
  807. /* if bits/word is changed in dma mode, then must check the
  808. * thresholds and burst also */
  809. if (chip->enable_dma) {
  810. if (set_dma_burst_and_threshold(chip, message->spi,
  811. bits, &dma_burst,
  812. &dma_thresh))
  813. if (printk_ratelimit())
  814. dev_warn(&message->spi->dev,
  815. "pump_transfers: "
  816. "DMA burst size reduced to "
  817. "match bits_per_word\n");
  818. }
  819. cr0 = clk_div
  820. | SSCR0_Motorola
  821. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  822. | SSCR0_SSE
  823. | (bits > 16 ? SSCR0_EDSS : 0);
  824. }
  825. message->state = RUNNING_STATE;
  826. /* Try to map dma buffer and do a dma transfer if successful, but
  827. * only if the length is non-zero and less than MAX_DMA_LEN.
  828. *
  829. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  830. * of PIO instead. Care is needed above because the transfer may
  831. * have have been passed with buffers that are already dma mapped.
  832. * A zero-length transfer in PIO mode will not try to write/read
  833. * to/from the buffers
  834. *
  835. * REVISIT large transfers are exactly where we most want to be
  836. * using DMA. If this happens much, split those transfers into
  837. * multiple DMA segments rather than forcing PIO.
  838. */
  839. drv_data->dma_mapped = 0;
  840. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  841. drv_data->dma_mapped = map_dma_buffers(drv_data);
  842. if (drv_data->dma_mapped) {
  843. /* Ensure we have the correct interrupt handler */
  844. drv_data->transfer_handler = dma_transfer;
  845. /* Setup rx DMA Channel */
  846. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  847. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  848. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  849. if (drv_data->rx == drv_data->null_dma_buf)
  850. /* No target address increment */
  851. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  852. | drv_data->dma_width
  853. | dma_burst
  854. | drv_data->len;
  855. else
  856. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  857. | DCMD_FLOWSRC
  858. | drv_data->dma_width
  859. | dma_burst
  860. | drv_data->len;
  861. /* Setup tx DMA Channel */
  862. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  863. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  864. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  865. if (drv_data->tx == drv_data->null_dma_buf)
  866. /* No source address increment */
  867. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  868. | drv_data->dma_width
  869. | dma_burst
  870. | drv_data->len;
  871. else
  872. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  873. | DCMD_FLOWTRG
  874. | drv_data->dma_width
  875. | dma_burst
  876. | drv_data->len;
  877. /* Enable dma end irqs on SSP to detect end of transfer */
  878. if (drv_data->ssp_type == PXA25x_SSP)
  879. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  880. /* Clear status and start DMA engine */
  881. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  882. write_SSSR(drv_data->clear_sr, reg);
  883. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  884. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  885. } else {
  886. /* Ensure we have the correct interrupt handler */
  887. drv_data->transfer_handler = interrupt_transfer;
  888. /* Clear status */
  889. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  890. write_SSSR(drv_data->clear_sr, reg);
  891. }
  892. /* see if we need to reload the config registers */
  893. if ((read_SSCR0(reg) != cr0)
  894. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  895. (cr1 & SSCR1_CHANGE_MASK)) {
  896. /* stop the SSP, and update the other bits */
  897. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  898. if (drv_data->ssp_type != PXA25x_SSP)
  899. write_SSTO(chip->timeout, reg);
  900. /* first set CR1 without interrupt and service enables */
  901. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  902. /* restart the SSP */
  903. write_SSCR0(cr0, reg);
  904. } else {
  905. if (drv_data->ssp_type != PXA25x_SSP)
  906. write_SSTO(chip->timeout, reg);
  907. }
  908. /* FIXME, need to handle cs polarity,
  909. * this driver uses struct pxa2xx_spi_chip.cs_control to
  910. * specify a CS handling function, and it ignores most
  911. * struct spi_device.mode[s], including SPI_CS_HIGH */
  912. drv_data->cs_control(PXA2XX_CS_ASSERT);
  913. /* after chip select, release the data by enabling service
  914. * requests and interrupts, without changing any mode bits */
  915. write_SSCR1(cr1, reg);
  916. }
  917. static void pump_messages(struct work_struct *work)
  918. {
  919. struct driver_data *drv_data =
  920. container_of(work, struct driver_data, pump_messages);
  921. unsigned long flags;
  922. /* Lock queue and check for queue work */
  923. spin_lock_irqsave(&drv_data->lock, flags);
  924. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  925. drv_data->busy = 0;
  926. spin_unlock_irqrestore(&drv_data->lock, flags);
  927. return;
  928. }
  929. /* Make sure we are not already running a message */
  930. if (drv_data->cur_msg) {
  931. spin_unlock_irqrestore(&drv_data->lock, flags);
  932. return;
  933. }
  934. /* Extract head of queue */
  935. drv_data->cur_msg = list_entry(drv_data->queue.next,
  936. struct spi_message, queue);
  937. list_del_init(&drv_data->cur_msg->queue);
  938. /* Initial message state*/
  939. drv_data->cur_msg->state = START_STATE;
  940. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  941. struct spi_transfer,
  942. transfer_list);
  943. /* prepare to setup the SSP, in pump_transfers, using the per
  944. * chip configuration */
  945. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  946. /* Mark as busy and launch transfers */
  947. tasklet_schedule(&drv_data->pump_transfers);
  948. drv_data->busy = 1;
  949. spin_unlock_irqrestore(&drv_data->lock, flags);
  950. }
  951. static int transfer(struct spi_device *spi, struct spi_message *msg)
  952. {
  953. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  954. unsigned long flags;
  955. spin_lock_irqsave(&drv_data->lock, flags);
  956. if (drv_data->run == QUEUE_STOPPED) {
  957. spin_unlock_irqrestore(&drv_data->lock, flags);
  958. return -ESHUTDOWN;
  959. }
  960. msg->actual_length = 0;
  961. msg->status = -EINPROGRESS;
  962. msg->state = START_STATE;
  963. list_add_tail(&msg->queue, &drv_data->queue);
  964. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  965. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  966. spin_unlock_irqrestore(&drv_data->lock, flags);
  967. return 0;
  968. }
  969. /* the spi->mode bits understood by this driver: */
  970. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  971. static int setup(struct spi_device *spi)
  972. {
  973. struct pxa2xx_spi_chip *chip_info = NULL;
  974. struct chip_data *chip;
  975. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  976. struct ssp_device *ssp = drv_data->ssp;
  977. unsigned int clk_div;
  978. uint tx_thres = TX_THRESH_DFLT;
  979. uint rx_thres = RX_THRESH_DFLT;
  980. if (!spi->bits_per_word)
  981. spi->bits_per_word = 8;
  982. if (drv_data->ssp_type != PXA25x_SSP
  983. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  984. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  985. "b/w not 4-32 for type non-PXA25x_SSP\n",
  986. drv_data->ssp_type, spi->bits_per_word);
  987. return -EINVAL;
  988. }
  989. else if (drv_data->ssp_type == PXA25x_SSP
  990. && (spi->bits_per_word < 4
  991. || spi->bits_per_word > 16)) {
  992. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  993. "b/w not 4-16 for type PXA25x_SSP\n",
  994. drv_data->ssp_type, spi->bits_per_word);
  995. return -EINVAL;
  996. }
  997. if (spi->mode & ~MODEBITS) {
  998. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  999. spi->mode & ~MODEBITS);
  1000. return -EINVAL;
  1001. }
  1002. /* Only alloc on first setup */
  1003. chip = spi_get_ctldata(spi);
  1004. if (!chip) {
  1005. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1006. if (!chip) {
  1007. dev_err(&spi->dev,
  1008. "failed setup: can't allocate chip data\n");
  1009. return -ENOMEM;
  1010. }
  1011. chip->cs_control = null_cs_control;
  1012. chip->enable_dma = 0;
  1013. chip->timeout = TIMOUT_DFLT;
  1014. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1015. DCMD_BURST8 : 0;
  1016. }
  1017. /* protocol drivers may change the chip settings, so...
  1018. * if chip_info exists, use it */
  1019. chip_info = spi->controller_data;
  1020. /* chip_info isn't always needed */
  1021. chip->cr1 = 0;
  1022. if (chip_info) {
  1023. if (chip_info->cs_control)
  1024. chip->cs_control = chip_info->cs_control;
  1025. if (chip_info->timeout)
  1026. chip->timeout = chip_info->timeout;
  1027. if (chip_info->tx_threshold)
  1028. tx_thres = chip_info->tx_threshold;
  1029. if (chip_info->rx_threshold)
  1030. rx_thres = chip_info->rx_threshold;
  1031. chip->enable_dma = drv_data->master_info->enable_dma;
  1032. chip->dma_threshold = 0;
  1033. if (chip_info->enable_loopback)
  1034. chip->cr1 = SSCR1_LBM;
  1035. }
  1036. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  1037. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  1038. /* set dma burst and threshold outside of chip_info path so that if
  1039. * chip_info goes away after setting chip->enable_dma, the
  1040. * burst and threshold can still respond to changes in bits_per_word */
  1041. if (chip->enable_dma) {
  1042. /* set up legal burst and threshold for dma */
  1043. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1044. &chip->dma_burst_size,
  1045. &chip->dma_threshold)) {
  1046. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1047. "to match bits_per_word\n");
  1048. }
  1049. }
  1050. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  1051. chip->speed_hz = spi->max_speed_hz;
  1052. chip->cr0 = clk_div
  1053. | SSCR0_Motorola
  1054. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1055. spi->bits_per_word - 16 : spi->bits_per_word)
  1056. | SSCR0_SSE
  1057. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1058. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1059. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1060. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1061. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1062. if (drv_data->ssp_type != PXA25x_SSP)
  1063. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1064. spi->bits_per_word,
  1065. clk_get_rate(ssp->clk)
  1066. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1067. spi->mode & 0x3,
  1068. chip->enable_dma ? "DMA" : "PIO");
  1069. else
  1070. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1071. spi->bits_per_word,
  1072. clk_get_rate(ssp->clk) / 2
  1073. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1074. spi->mode & 0x3,
  1075. chip->enable_dma ? "DMA" : "PIO");
  1076. if (spi->bits_per_word <= 8) {
  1077. chip->n_bytes = 1;
  1078. chip->dma_width = DCMD_WIDTH1;
  1079. chip->read = u8_reader;
  1080. chip->write = u8_writer;
  1081. } else if (spi->bits_per_word <= 16) {
  1082. chip->n_bytes = 2;
  1083. chip->dma_width = DCMD_WIDTH2;
  1084. chip->read = u16_reader;
  1085. chip->write = u16_writer;
  1086. } else if (spi->bits_per_word <= 32) {
  1087. chip->cr0 |= SSCR0_EDSS;
  1088. chip->n_bytes = 4;
  1089. chip->dma_width = DCMD_WIDTH4;
  1090. chip->read = u32_reader;
  1091. chip->write = u32_writer;
  1092. } else {
  1093. dev_err(&spi->dev, "invalid wordsize\n");
  1094. return -ENODEV;
  1095. }
  1096. chip->bits_per_word = spi->bits_per_word;
  1097. spi_set_ctldata(spi, chip);
  1098. return 0;
  1099. }
  1100. static void cleanup(struct spi_device *spi)
  1101. {
  1102. struct chip_data *chip = spi_get_ctldata(spi);
  1103. kfree(chip);
  1104. }
  1105. static int __init init_queue(struct driver_data *drv_data)
  1106. {
  1107. INIT_LIST_HEAD(&drv_data->queue);
  1108. spin_lock_init(&drv_data->lock);
  1109. drv_data->run = QUEUE_STOPPED;
  1110. drv_data->busy = 0;
  1111. tasklet_init(&drv_data->pump_transfers,
  1112. pump_transfers, (unsigned long)drv_data);
  1113. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1114. drv_data->workqueue = create_singlethread_workqueue(
  1115. drv_data->master->dev.parent->bus_id);
  1116. if (drv_data->workqueue == NULL)
  1117. return -EBUSY;
  1118. return 0;
  1119. }
  1120. static int start_queue(struct driver_data *drv_data)
  1121. {
  1122. unsigned long flags;
  1123. spin_lock_irqsave(&drv_data->lock, flags);
  1124. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1125. spin_unlock_irqrestore(&drv_data->lock, flags);
  1126. return -EBUSY;
  1127. }
  1128. drv_data->run = QUEUE_RUNNING;
  1129. drv_data->cur_msg = NULL;
  1130. drv_data->cur_transfer = NULL;
  1131. drv_data->cur_chip = NULL;
  1132. spin_unlock_irqrestore(&drv_data->lock, flags);
  1133. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1134. return 0;
  1135. }
  1136. static int stop_queue(struct driver_data *drv_data)
  1137. {
  1138. unsigned long flags;
  1139. unsigned limit = 500;
  1140. int status = 0;
  1141. spin_lock_irqsave(&drv_data->lock, flags);
  1142. /* This is a bit lame, but is optimized for the common execution path.
  1143. * A wait_queue on the drv_data->busy could be used, but then the common
  1144. * execution path (pump_messages) would be required to call wake_up or
  1145. * friends on every SPI message. Do this instead */
  1146. drv_data->run = QUEUE_STOPPED;
  1147. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1148. spin_unlock_irqrestore(&drv_data->lock, flags);
  1149. msleep(10);
  1150. spin_lock_irqsave(&drv_data->lock, flags);
  1151. }
  1152. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1153. status = -EBUSY;
  1154. spin_unlock_irqrestore(&drv_data->lock, flags);
  1155. return status;
  1156. }
  1157. static int destroy_queue(struct driver_data *drv_data)
  1158. {
  1159. int status;
  1160. status = stop_queue(drv_data);
  1161. /* we are unloading the module or failing to load (only two calls
  1162. * to this routine), and neither call can handle a return value.
  1163. * However, destroy_workqueue calls flush_workqueue, and that will
  1164. * block until all work is done. If the reason that stop_queue
  1165. * timed out is that the work will never finish, then it does no
  1166. * good to call destroy_workqueue, so return anyway. */
  1167. if (status != 0)
  1168. return status;
  1169. destroy_workqueue(drv_data->workqueue);
  1170. return 0;
  1171. }
  1172. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1173. {
  1174. struct device *dev = &pdev->dev;
  1175. struct pxa2xx_spi_master *platform_info;
  1176. struct spi_master *master;
  1177. struct driver_data *drv_data;
  1178. struct ssp_device *ssp;
  1179. int status;
  1180. platform_info = dev->platform_data;
  1181. ssp = ssp_request(pdev->id, pdev->name);
  1182. if (ssp == NULL) {
  1183. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1184. return -ENODEV;
  1185. }
  1186. /* Allocate master with space for drv_data and null dma buffer */
  1187. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1188. if (!master) {
  1189. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1190. ssp_free(ssp);
  1191. return -ENOMEM;
  1192. }
  1193. drv_data = spi_master_get_devdata(master);
  1194. drv_data->master = master;
  1195. drv_data->master_info = platform_info;
  1196. drv_data->pdev = pdev;
  1197. drv_data->ssp = ssp;
  1198. master->bus_num = pdev->id;
  1199. master->num_chipselect = platform_info->num_chipselect;
  1200. master->cleanup = cleanup;
  1201. master->setup = setup;
  1202. master->transfer = transfer;
  1203. drv_data->ssp_type = ssp->type;
  1204. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1205. sizeof(struct driver_data)), 8);
  1206. drv_data->ioaddr = ssp->mmio_base;
  1207. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1208. if (ssp->type == PXA25x_SSP) {
  1209. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1210. drv_data->dma_cr1 = 0;
  1211. drv_data->clear_sr = SSSR_ROR;
  1212. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1213. } else {
  1214. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1215. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1216. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1217. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1218. }
  1219. status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
  1220. if (status < 0) {
  1221. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1222. goto out_error_master_alloc;
  1223. }
  1224. /* Setup DMA if requested */
  1225. drv_data->tx_channel = -1;
  1226. drv_data->rx_channel = -1;
  1227. if (platform_info->enable_dma) {
  1228. /* Get two DMA channels (rx and tx) */
  1229. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1230. DMA_PRIO_HIGH,
  1231. dma_handler,
  1232. drv_data);
  1233. if (drv_data->rx_channel < 0) {
  1234. dev_err(dev, "problem (%d) requesting rx channel\n",
  1235. drv_data->rx_channel);
  1236. status = -ENODEV;
  1237. goto out_error_irq_alloc;
  1238. }
  1239. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1240. DMA_PRIO_MEDIUM,
  1241. dma_handler,
  1242. drv_data);
  1243. if (drv_data->tx_channel < 0) {
  1244. dev_err(dev, "problem (%d) requesting tx channel\n",
  1245. drv_data->tx_channel);
  1246. status = -ENODEV;
  1247. goto out_error_dma_alloc;
  1248. }
  1249. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1250. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1251. }
  1252. /* Enable SOC clock */
  1253. clk_enable(ssp->clk);
  1254. /* Load default SSP configuration */
  1255. write_SSCR0(0, drv_data->ioaddr);
  1256. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1257. SSCR1_TxTresh(TX_THRESH_DFLT),
  1258. drv_data->ioaddr);
  1259. write_SSCR0(SSCR0_SerClkDiv(2)
  1260. | SSCR0_Motorola
  1261. | SSCR0_DataSize(8),
  1262. drv_data->ioaddr);
  1263. if (drv_data->ssp_type != PXA25x_SSP)
  1264. write_SSTO(0, drv_data->ioaddr);
  1265. write_SSPSP(0, drv_data->ioaddr);
  1266. /* Initial and start queue */
  1267. status = init_queue(drv_data);
  1268. if (status != 0) {
  1269. dev_err(&pdev->dev, "problem initializing queue\n");
  1270. goto out_error_clock_enabled;
  1271. }
  1272. status = start_queue(drv_data);
  1273. if (status != 0) {
  1274. dev_err(&pdev->dev, "problem starting queue\n");
  1275. goto out_error_clock_enabled;
  1276. }
  1277. /* Register with the SPI framework */
  1278. platform_set_drvdata(pdev, drv_data);
  1279. status = spi_register_master(master);
  1280. if (status != 0) {
  1281. dev_err(&pdev->dev, "problem registering spi master\n");
  1282. goto out_error_queue_alloc;
  1283. }
  1284. return status;
  1285. out_error_queue_alloc:
  1286. destroy_queue(drv_data);
  1287. out_error_clock_enabled:
  1288. clk_disable(ssp->clk);
  1289. out_error_dma_alloc:
  1290. if (drv_data->tx_channel != -1)
  1291. pxa_free_dma(drv_data->tx_channel);
  1292. if (drv_data->rx_channel != -1)
  1293. pxa_free_dma(drv_data->rx_channel);
  1294. out_error_irq_alloc:
  1295. free_irq(ssp->irq, drv_data);
  1296. out_error_master_alloc:
  1297. spi_master_put(master);
  1298. ssp_free(ssp);
  1299. return status;
  1300. }
  1301. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1302. {
  1303. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1304. struct ssp_device *ssp = drv_data->ssp;
  1305. int status = 0;
  1306. if (!drv_data)
  1307. return 0;
  1308. /* Remove the queue */
  1309. status = destroy_queue(drv_data);
  1310. if (status != 0)
  1311. /* the kernel does not check the return status of this
  1312. * this routine (mod->exit, within the kernel). Therefore
  1313. * nothing is gained by returning from here, the module is
  1314. * going away regardless, and we should not leave any more
  1315. * resources allocated than necessary. We cannot free the
  1316. * message memory in drv_data->queue, but we can release the
  1317. * resources below. I think the kernel should honor -EBUSY
  1318. * returns but... */
  1319. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1320. "complete, message memory not freed\n");
  1321. /* Disable the SSP at the peripheral and SOC level */
  1322. write_SSCR0(0, drv_data->ioaddr);
  1323. clk_disable(ssp->clk);
  1324. /* Release DMA */
  1325. if (drv_data->master_info->enable_dma) {
  1326. DRCMR(ssp->drcmr_rx) = 0;
  1327. DRCMR(ssp->drcmr_tx) = 0;
  1328. pxa_free_dma(drv_data->tx_channel);
  1329. pxa_free_dma(drv_data->rx_channel);
  1330. }
  1331. /* Release IRQ */
  1332. free_irq(ssp->irq, drv_data);
  1333. /* Release SSP */
  1334. ssp_free(ssp);
  1335. /* Disconnect from the SPI framework */
  1336. spi_unregister_master(drv_data->master);
  1337. /* Prevent double remove */
  1338. platform_set_drvdata(pdev, NULL);
  1339. return 0;
  1340. }
  1341. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1342. {
  1343. int status = 0;
  1344. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1345. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1346. }
  1347. #ifdef CONFIG_PM
  1348. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1349. {
  1350. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1351. struct ssp_device *ssp = drv_data->ssp;
  1352. int status = 0;
  1353. status = stop_queue(drv_data);
  1354. if (status != 0)
  1355. return status;
  1356. write_SSCR0(0, drv_data->ioaddr);
  1357. clk_disable(ssp->clk);
  1358. return 0;
  1359. }
  1360. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1361. {
  1362. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1363. struct ssp_device *ssp = drv_data->ssp;
  1364. int status = 0;
  1365. /* Enable the SSP clock */
  1366. clk_enable(ssp->clk);
  1367. /* Start the queue running */
  1368. status = start_queue(drv_data);
  1369. if (status != 0) {
  1370. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1371. return status;
  1372. }
  1373. return 0;
  1374. }
  1375. #else
  1376. #define pxa2xx_spi_suspend NULL
  1377. #define pxa2xx_spi_resume NULL
  1378. #endif /* CONFIG_PM */
  1379. static struct platform_driver driver = {
  1380. .driver = {
  1381. .name = "pxa2xx-spi",
  1382. .owner = THIS_MODULE,
  1383. },
  1384. .remove = pxa2xx_spi_remove,
  1385. .shutdown = pxa2xx_spi_shutdown,
  1386. .suspend = pxa2xx_spi_suspend,
  1387. .resume = pxa2xx_spi_resume,
  1388. };
  1389. static int __init pxa2xx_spi_init(void)
  1390. {
  1391. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1392. }
  1393. module_init(pxa2xx_spi_init);
  1394. static void __exit pxa2xx_spi_exit(void)
  1395. {
  1396. platform_driver_unregister(&driver);
  1397. }
  1398. module_exit(pxa2xx_spi_exit);