rtc-cmos.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210
  1. /*
  2. * RTC class driver for "CMOS RTC": PCs, ACPI, etc
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5. * Copyright (C) 2006 David Brownell (convert to new framework)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  14. * That defined the register interface now provided by all PCs, some
  15. * non-PC systems, and incorporated into ACPI. Modern PC chipsets
  16. * integrate an MC146818 clone in their southbridge, and boards use
  17. * that instead of discrete clones like the DS12887 or M48T86. There
  18. * are also clones that connect using the LPC bus.
  19. *
  20. * That register API is also used directly by various other drivers
  21. * (notably for integrated NVRAM), infrastructure (x86 has code to
  22. * bypass the RTC framework, directly reading the RTC during boot
  23. * and updating minutes/seconds for systems using NTP synch) and
  24. * utilities (like userspace 'hwclock', if no /dev node exists).
  25. *
  26. * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  27. * interrupts disabled, holding the global rtc_lock, to exclude those
  28. * other drivers and utilities on correctly configured systems.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/mod_devicetable.h>
  37. /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  38. #include <asm-generic/rtc.h>
  39. struct cmos_rtc {
  40. struct rtc_device *rtc;
  41. struct device *dev;
  42. int irq;
  43. struct resource *iomem;
  44. void (*wake_on)(struct device *);
  45. void (*wake_off)(struct device *);
  46. u8 enabled_wake;
  47. u8 suspend_ctrl;
  48. /* newer hardware extends the original register set */
  49. u8 day_alrm;
  50. u8 mon_alrm;
  51. u8 century;
  52. };
  53. /* both platform and pnp busses use negative numbers for invalid irqs */
  54. #define is_valid_irq(n) ((n) >= 0)
  55. static const char driver_name[] = "rtc_cmos";
  56. /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  57. * always mask it against the irq enable bits in RTC_CONTROL. Bit values
  58. * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  59. */
  60. #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
  61. static inline int is_intr(u8 rtc_intr)
  62. {
  63. if (!(rtc_intr & RTC_IRQF))
  64. return 0;
  65. return rtc_intr & RTC_IRQMASK;
  66. }
  67. /*----------------------------------------------------------------*/
  68. /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  69. * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  70. * used in a broken "legacy replacement" mode. The breakage includes
  71. * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  72. * other (better) use.
  73. *
  74. * When that broken mode is in use, platform glue provides a partial
  75. * emulation of hardware RTC IRQ facilities using HPET #1. We don't
  76. * want to use HPET for anything except those IRQs though...
  77. */
  78. #ifdef CONFIG_HPET_EMULATE_RTC
  79. #include <asm/hpet.h>
  80. #else
  81. static inline int is_hpet_enabled(void)
  82. {
  83. return 0;
  84. }
  85. static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
  86. {
  87. return 0;
  88. }
  89. static inline int hpet_set_rtc_irq_bit(unsigned long mask)
  90. {
  91. return 0;
  92. }
  93. static inline int
  94. hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
  95. {
  96. return 0;
  97. }
  98. static inline int hpet_set_periodic_freq(unsigned long freq)
  99. {
  100. return 0;
  101. }
  102. static inline int hpet_rtc_dropped_irq(void)
  103. {
  104. return 0;
  105. }
  106. static inline int hpet_rtc_timer_init(void)
  107. {
  108. return 0;
  109. }
  110. extern irq_handler_t hpet_rtc_interrupt;
  111. static inline int hpet_register_irq_handler(irq_handler_t handler)
  112. {
  113. return 0;
  114. }
  115. static inline int hpet_unregister_irq_handler(irq_handler_t handler)
  116. {
  117. return 0;
  118. }
  119. #endif
  120. /*----------------------------------------------------------------*/
  121. #ifdef RTC_PORT
  122. /* Most newer x86 systems have two register banks, the first used
  123. * for RTC and NVRAM and the second only for NVRAM. Caller must
  124. * own rtc_lock ... and we won't worry about access during NMI.
  125. */
  126. #define can_bank2 true
  127. static inline unsigned char cmos_read_bank2(unsigned char addr)
  128. {
  129. outb(addr, RTC_PORT(2));
  130. return inb(RTC_PORT(3));
  131. }
  132. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  133. {
  134. outb(addr, RTC_PORT(2));
  135. outb(val, RTC_PORT(2));
  136. }
  137. #else
  138. #define can_bank2 false
  139. static inline unsigned char cmos_read_bank2(unsigned char addr)
  140. {
  141. return 0;
  142. }
  143. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  144. {
  145. }
  146. #endif
  147. /*----------------------------------------------------------------*/
  148. static int cmos_read_time(struct device *dev, struct rtc_time *t)
  149. {
  150. /* REVISIT: if the clock has a "century" register, use
  151. * that instead of the heuristic in get_rtc_time().
  152. * That'll make Y3K compatility (year > 2070) easy!
  153. */
  154. get_rtc_time(t);
  155. return 0;
  156. }
  157. static int cmos_set_time(struct device *dev, struct rtc_time *t)
  158. {
  159. /* REVISIT: set the "century" register if available
  160. *
  161. * NOTE: this ignores the issue whereby updating the seconds
  162. * takes effect exactly 500ms after we write the register.
  163. * (Also queueing and other delays before we get this far.)
  164. */
  165. return set_rtc_time(t);
  166. }
  167. static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  168. {
  169. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  170. unsigned char rtc_control;
  171. if (!is_valid_irq(cmos->irq))
  172. return -EIO;
  173. /* Basic alarms only support hour, minute, and seconds fields.
  174. * Some also support day and month, for alarms up to a year in
  175. * the future.
  176. */
  177. t->time.tm_mday = -1;
  178. t->time.tm_mon = -1;
  179. spin_lock_irq(&rtc_lock);
  180. t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  181. t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  182. t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  183. if (cmos->day_alrm) {
  184. /* ignore upper bits on readback per ACPI spec */
  185. t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
  186. if (!t->time.tm_mday)
  187. t->time.tm_mday = -1;
  188. if (cmos->mon_alrm) {
  189. t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
  190. if (!t->time.tm_mon)
  191. t->time.tm_mon = -1;
  192. }
  193. }
  194. rtc_control = CMOS_READ(RTC_CONTROL);
  195. spin_unlock_irq(&rtc_lock);
  196. /* REVISIT this assumes PC style usage: always BCD */
  197. if (((unsigned)t->time.tm_sec) < 0x60)
  198. t->time.tm_sec = bcd2bin(t->time.tm_sec);
  199. else
  200. t->time.tm_sec = -1;
  201. if (((unsigned)t->time.tm_min) < 0x60)
  202. t->time.tm_min = bcd2bin(t->time.tm_min);
  203. else
  204. t->time.tm_min = -1;
  205. if (((unsigned)t->time.tm_hour) < 0x24)
  206. t->time.tm_hour = bcd2bin(t->time.tm_hour);
  207. else
  208. t->time.tm_hour = -1;
  209. if (cmos->day_alrm) {
  210. if (((unsigned)t->time.tm_mday) <= 0x31)
  211. t->time.tm_mday = bcd2bin(t->time.tm_mday);
  212. else
  213. t->time.tm_mday = -1;
  214. if (cmos->mon_alrm) {
  215. if (((unsigned)t->time.tm_mon) <= 0x12)
  216. t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1;
  217. else
  218. t->time.tm_mon = -1;
  219. }
  220. }
  221. t->time.tm_year = -1;
  222. t->enabled = !!(rtc_control & RTC_AIE);
  223. t->pending = 0;
  224. return 0;
  225. }
  226. static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
  227. {
  228. unsigned char rtc_intr;
  229. /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
  230. * allegedly some older rtcs need that to handle irqs properly
  231. */
  232. rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
  233. if (is_hpet_enabled())
  234. return;
  235. rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  236. if (is_intr(rtc_intr))
  237. rtc_update_irq(cmos->rtc, 1, rtc_intr);
  238. }
  239. static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
  240. {
  241. unsigned char rtc_control;
  242. /* flush any pending IRQ status, notably for update irqs,
  243. * before we enable new IRQs
  244. */
  245. rtc_control = CMOS_READ(RTC_CONTROL);
  246. cmos_checkintr(cmos, rtc_control);
  247. rtc_control |= mask;
  248. CMOS_WRITE(rtc_control, RTC_CONTROL);
  249. hpet_set_rtc_irq_bit(mask);
  250. cmos_checkintr(cmos, rtc_control);
  251. }
  252. static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
  253. {
  254. unsigned char rtc_control;
  255. rtc_control = CMOS_READ(RTC_CONTROL);
  256. rtc_control &= ~mask;
  257. CMOS_WRITE(rtc_control, RTC_CONTROL);
  258. hpet_mask_rtc_irq_bit(mask);
  259. cmos_checkintr(cmos, rtc_control);
  260. }
  261. static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  262. {
  263. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  264. unsigned char mon, mday, hrs, min, sec;
  265. if (!is_valid_irq(cmos->irq))
  266. return -EIO;
  267. /* REVISIT this assumes PC style usage: always BCD */
  268. /* Writing 0xff means "don't care" or "match all". */
  269. mon = t->time.tm_mon + 1;
  270. mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
  271. mday = t->time.tm_mday;
  272. mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
  273. hrs = t->time.tm_hour;
  274. hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
  275. min = t->time.tm_min;
  276. min = (min < 60) ? bin2bcd(min) : 0xff;
  277. sec = t->time.tm_sec;
  278. sec = (sec < 60) ? bin2bcd(sec) : 0xff;
  279. spin_lock_irq(&rtc_lock);
  280. /* next rtc irq must not be from previous alarm setting */
  281. cmos_irq_disable(cmos, RTC_AIE);
  282. /* update alarm */
  283. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  284. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  285. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  286. /* the system may support an "enhanced" alarm */
  287. if (cmos->day_alrm) {
  288. CMOS_WRITE(mday, cmos->day_alrm);
  289. if (cmos->mon_alrm)
  290. CMOS_WRITE(mon, cmos->mon_alrm);
  291. }
  292. /* FIXME the HPET alarm glue currently ignores day_alrm
  293. * and mon_alrm ...
  294. */
  295. hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
  296. if (t->enabled)
  297. cmos_irq_enable(cmos, RTC_AIE);
  298. spin_unlock_irq(&rtc_lock);
  299. return 0;
  300. }
  301. static int cmos_irq_set_freq(struct device *dev, int freq)
  302. {
  303. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  304. int f;
  305. unsigned long flags;
  306. if (!is_valid_irq(cmos->irq))
  307. return -ENXIO;
  308. /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
  309. f = ffs(freq);
  310. if (f-- > 16)
  311. return -EINVAL;
  312. f = 16 - f;
  313. spin_lock_irqsave(&rtc_lock, flags);
  314. hpet_set_periodic_freq(freq);
  315. CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
  316. spin_unlock_irqrestore(&rtc_lock, flags);
  317. return 0;
  318. }
  319. static int cmos_irq_set_state(struct device *dev, int enabled)
  320. {
  321. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  322. unsigned long flags;
  323. if (!is_valid_irq(cmos->irq))
  324. return -ENXIO;
  325. spin_lock_irqsave(&rtc_lock, flags);
  326. if (enabled)
  327. cmos_irq_enable(cmos, RTC_PIE);
  328. else
  329. cmos_irq_disable(cmos, RTC_PIE);
  330. spin_unlock_irqrestore(&rtc_lock, flags);
  331. return 0;
  332. }
  333. #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
  334. static int
  335. cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
  336. {
  337. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  338. unsigned long flags;
  339. switch (cmd) {
  340. case RTC_AIE_OFF:
  341. case RTC_AIE_ON:
  342. case RTC_UIE_OFF:
  343. case RTC_UIE_ON:
  344. if (!is_valid_irq(cmos->irq))
  345. return -EINVAL;
  346. break;
  347. /* PIE ON/OFF is handled by cmos_irq_set_state() */
  348. default:
  349. return -ENOIOCTLCMD;
  350. }
  351. spin_lock_irqsave(&rtc_lock, flags);
  352. switch (cmd) {
  353. case RTC_AIE_OFF: /* alarm off */
  354. cmos_irq_disable(cmos, RTC_AIE);
  355. break;
  356. case RTC_AIE_ON: /* alarm on */
  357. cmos_irq_enable(cmos, RTC_AIE);
  358. break;
  359. case RTC_UIE_OFF: /* update off */
  360. cmos_irq_disable(cmos, RTC_UIE);
  361. break;
  362. case RTC_UIE_ON: /* update on */
  363. cmos_irq_enable(cmos, RTC_UIE);
  364. break;
  365. }
  366. spin_unlock_irqrestore(&rtc_lock, flags);
  367. return 0;
  368. }
  369. #else
  370. #define cmos_rtc_ioctl NULL
  371. #endif
  372. #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
  373. static int cmos_procfs(struct device *dev, struct seq_file *seq)
  374. {
  375. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  376. unsigned char rtc_control, valid;
  377. spin_lock_irq(&rtc_lock);
  378. rtc_control = CMOS_READ(RTC_CONTROL);
  379. valid = CMOS_READ(RTC_VALID);
  380. spin_unlock_irq(&rtc_lock);
  381. /* NOTE: at least ICH6 reports battery status using a different
  382. * (non-RTC) bit; and SQWE is ignored on many current systems.
  383. */
  384. return seq_printf(seq,
  385. "periodic_IRQ\t: %s\n"
  386. "update_IRQ\t: %s\n"
  387. "HPET_emulated\t: %s\n"
  388. // "square_wave\t: %s\n"
  389. // "BCD\t\t: %s\n"
  390. "DST_enable\t: %s\n"
  391. "periodic_freq\t: %d\n"
  392. "batt_status\t: %s\n",
  393. (rtc_control & RTC_PIE) ? "yes" : "no",
  394. (rtc_control & RTC_UIE) ? "yes" : "no",
  395. is_hpet_enabled() ? "yes" : "no",
  396. // (rtc_control & RTC_SQWE) ? "yes" : "no",
  397. // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
  398. (rtc_control & RTC_DST_EN) ? "yes" : "no",
  399. cmos->rtc->irq_freq,
  400. (valid & RTC_VRT) ? "okay" : "dead");
  401. }
  402. #else
  403. #define cmos_procfs NULL
  404. #endif
  405. static const struct rtc_class_ops cmos_rtc_ops = {
  406. .ioctl = cmos_rtc_ioctl,
  407. .read_time = cmos_read_time,
  408. .set_time = cmos_set_time,
  409. .read_alarm = cmos_read_alarm,
  410. .set_alarm = cmos_set_alarm,
  411. .proc = cmos_procfs,
  412. .irq_set_freq = cmos_irq_set_freq,
  413. .irq_set_state = cmos_irq_set_state,
  414. };
  415. /*----------------------------------------------------------------*/
  416. /*
  417. * All these chips have at least 64 bytes of address space, shared by
  418. * RTC registers and NVRAM. Most of those bytes of NVRAM are used
  419. * by boot firmware. Modern chips have 128 or 256 bytes.
  420. */
  421. #define NVRAM_OFFSET (RTC_REG_D + 1)
  422. static ssize_t
  423. cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
  424. char *buf, loff_t off, size_t count)
  425. {
  426. int retval;
  427. if (unlikely(off >= attr->size))
  428. return 0;
  429. if (unlikely(off < 0))
  430. return -EINVAL;
  431. if ((off + count) > attr->size)
  432. count = attr->size - off;
  433. off += NVRAM_OFFSET;
  434. spin_lock_irq(&rtc_lock);
  435. for (retval = 0; count; count--, off++, retval++) {
  436. if (off < 128)
  437. *buf++ = CMOS_READ(off);
  438. else if (can_bank2)
  439. *buf++ = cmos_read_bank2(off);
  440. else
  441. break;
  442. }
  443. spin_unlock_irq(&rtc_lock);
  444. return retval;
  445. }
  446. static ssize_t
  447. cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
  448. char *buf, loff_t off, size_t count)
  449. {
  450. struct cmos_rtc *cmos;
  451. int retval;
  452. cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
  453. if (unlikely(off >= attr->size))
  454. return -EFBIG;
  455. if (unlikely(off < 0))
  456. return -EINVAL;
  457. if ((off + count) > attr->size)
  458. count = attr->size - off;
  459. /* NOTE: on at least PCs and Ataris, the boot firmware uses a
  460. * checksum on part of the NVRAM data. That's currently ignored
  461. * here. If userspace is smart enough to know what fields of
  462. * NVRAM to update, updating checksums is also part of its job.
  463. */
  464. off += NVRAM_OFFSET;
  465. spin_lock_irq(&rtc_lock);
  466. for (retval = 0; count; count--, off++, retval++) {
  467. /* don't trash RTC registers */
  468. if (off == cmos->day_alrm
  469. || off == cmos->mon_alrm
  470. || off == cmos->century)
  471. buf++;
  472. else if (off < 128)
  473. CMOS_WRITE(*buf++, off);
  474. else if (can_bank2)
  475. cmos_write_bank2(*buf++, off);
  476. else
  477. break;
  478. }
  479. spin_unlock_irq(&rtc_lock);
  480. return retval;
  481. }
  482. static struct bin_attribute nvram = {
  483. .attr = {
  484. .name = "nvram",
  485. .mode = S_IRUGO | S_IWUSR,
  486. },
  487. .read = cmos_nvram_read,
  488. .write = cmos_nvram_write,
  489. /* size gets set up later */
  490. };
  491. /*----------------------------------------------------------------*/
  492. static struct cmos_rtc cmos_rtc;
  493. static irqreturn_t cmos_interrupt(int irq, void *p)
  494. {
  495. u8 irqstat;
  496. u8 rtc_control;
  497. spin_lock(&rtc_lock);
  498. /* When the HPET interrupt handler calls us, the interrupt
  499. * status is passed as arg1 instead of the irq number. But
  500. * always clear irq status, even when HPET is in the way.
  501. *
  502. * Note that HPET and RTC are almost certainly out of phase,
  503. * giving different IRQ status ...
  504. */
  505. irqstat = CMOS_READ(RTC_INTR_FLAGS);
  506. rtc_control = CMOS_READ(RTC_CONTROL);
  507. if (is_hpet_enabled())
  508. irqstat = (unsigned long)irq & 0xF0;
  509. irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  510. /* All Linux RTC alarms should be treated as if they were oneshot.
  511. * Similar code may be needed in system wakeup paths, in case the
  512. * alarm woke the system.
  513. */
  514. if (irqstat & RTC_AIE) {
  515. rtc_control &= ~RTC_AIE;
  516. CMOS_WRITE(rtc_control, RTC_CONTROL);
  517. hpet_mask_rtc_irq_bit(RTC_AIE);
  518. CMOS_READ(RTC_INTR_FLAGS);
  519. }
  520. spin_unlock(&rtc_lock);
  521. if (is_intr(irqstat)) {
  522. rtc_update_irq(p, 1, irqstat);
  523. return IRQ_HANDLED;
  524. } else
  525. return IRQ_NONE;
  526. }
  527. #ifdef CONFIG_PNP
  528. #define INITSECTION
  529. #else
  530. #define INITSECTION __init
  531. #endif
  532. static int INITSECTION
  533. cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
  534. {
  535. struct cmos_rtc_board_info *info = dev->platform_data;
  536. int retval = 0;
  537. unsigned char rtc_control;
  538. unsigned address_space;
  539. /* there can be only one ... */
  540. if (cmos_rtc.dev)
  541. return -EBUSY;
  542. if (!ports)
  543. return -ENODEV;
  544. /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
  545. *
  546. * REVISIT non-x86 systems may instead use memory space resources
  547. * (needing ioremap etc), not i/o space resources like this ...
  548. */
  549. ports = request_region(ports->start,
  550. ports->end + 1 - ports->start,
  551. driver_name);
  552. if (!ports) {
  553. dev_dbg(dev, "i/o registers already in use\n");
  554. return -EBUSY;
  555. }
  556. cmos_rtc.irq = rtc_irq;
  557. cmos_rtc.iomem = ports;
  558. /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
  559. * driver did, but don't reject unknown configs. Old hardware
  560. * won't address 128 bytes. Newer chips have multiple banks,
  561. * though they may not be listed in one I/O resource.
  562. */
  563. #if defined(CONFIG_ATARI)
  564. address_space = 64;
  565. #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__sparc__)
  566. address_space = 128;
  567. #else
  568. #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
  569. address_space = 128;
  570. #endif
  571. if (can_bank2 && ports->end > (ports->start + 1))
  572. address_space = 256;
  573. /* For ACPI systems extension info comes from the FADT. On others,
  574. * board specific setup provides it as appropriate. Systems where
  575. * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
  576. * some almost-clones) can provide hooks to make that behave.
  577. *
  578. * Note that ACPI doesn't preclude putting these registers into
  579. * "extended" areas of the chip, including some that we won't yet
  580. * expect CMOS_READ and friends to handle.
  581. */
  582. if (info) {
  583. if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
  584. cmos_rtc.day_alrm = info->rtc_day_alarm;
  585. if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
  586. cmos_rtc.mon_alrm = info->rtc_mon_alarm;
  587. if (info->rtc_century && info->rtc_century < 128)
  588. cmos_rtc.century = info->rtc_century;
  589. if (info->wake_on && info->wake_off) {
  590. cmos_rtc.wake_on = info->wake_on;
  591. cmos_rtc.wake_off = info->wake_off;
  592. }
  593. }
  594. cmos_rtc.rtc = rtc_device_register(driver_name, dev,
  595. &cmos_rtc_ops, THIS_MODULE);
  596. if (IS_ERR(cmos_rtc.rtc)) {
  597. retval = PTR_ERR(cmos_rtc.rtc);
  598. goto cleanup0;
  599. }
  600. cmos_rtc.dev = dev;
  601. dev_set_drvdata(dev, &cmos_rtc);
  602. rename_region(ports, cmos_rtc.rtc->dev.bus_id);
  603. spin_lock_irq(&rtc_lock);
  604. /* force periodic irq to CMOS reset default of 1024Hz;
  605. *
  606. * REVISIT it's been reported that at least one x86_64 ALI mobo
  607. * doesn't use 32KHz here ... for portability we might need to
  608. * do something about other clock frequencies.
  609. */
  610. cmos_rtc.rtc->irq_freq = 1024;
  611. hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
  612. CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
  613. /* disable irqs */
  614. cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
  615. rtc_control = CMOS_READ(RTC_CONTROL);
  616. spin_unlock_irq(&rtc_lock);
  617. /* FIXME teach the alarm code how to handle binary mode;
  618. * <asm-generic/rtc.h> doesn't know 12-hour mode either.
  619. */
  620. if (is_valid_irq(rtc_irq) &&
  621. (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) {
  622. dev_dbg(dev, "only 24-hr BCD mode supported\n");
  623. retval = -ENXIO;
  624. goto cleanup1;
  625. }
  626. if (is_valid_irq(rtc_irq)) {
  627. irq_handler_t rtc_cmos_int_handler;
  628. if (is_hpet_enabled()) {
  629. int err;
  630. rtc_cmos_int_handler = hpet_rtc_interrupt;
  631. err = hpet_register_irq_handler(cmos_interrupt);
  632. if (err != 0) {
  633. printk(KERN_WARNING "hpet_register_irq_handler "
  634. " failed in rtc_init().");
  635. goto cleanup1;
  636. }
  637. } else
  638. rtc_cmos_int_handler = cmos_interrupt;
  639. retval = request_irq(rtc_irq, rtc_cmos_int_handler,
  640. IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
  641. cmos_rtc.rtc);
  642. if (retval < 0) {
  643. dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
  644. goto cleanup1;
  645. }
  646. }
  647. hpet_rtc_timer_init();
  648. /* export at least the first block of NVRAM */
  649. nvram.size = address_space - NVRAM_OFFSET;
  650. retval = sysfs_create_bin_file(&dev->kobj, &nvram);
  651. if (retval < 0) {
  652. dev_dbg(dev, "can't create nvram file? %d\n", retval);
  653. goto cleanup2;
  654. }
  655. pr_info("%s: alarms up to one %s%s, %zd bytes nvram%s\n",
  656. cmos_rtc.rtc->dev.bus_id,
  657. is_valid_irq(rtc_irq)
  658. ? (cmos_rtc.mon_alrm
  659. ? "year"
  660. : (cmos_rtc.day_alrm
  661. ? "month" : "day"))
  662. : "no",
  663. cmos_rtc.century ? ", y3k" : "",
  664. nvram.size,
  665. is_hpet_enabled() ? ", hpet irqs" : "");
  666. return 0;
  667. cleanup2:
  668. if (is_valid_irq(rtc_irq))
  669. free_irq(rtc_irq, cmos_rtc.rtc);
  670. cleanup1:
  671. cmos_rtc.dev = NULL;
  672. rtc_device_unregister(cmos_rtc.rtc);
  673. cleanup0:
  674. release_region(ports->start, ports->end + 1 - ports->start);
  675. return retval;
  676. }
  677. static void cmos_do_shutdown(void)
  678. {
  679. spin_lock_irq(&rtc_lock);
  680. cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
  681. spin_unlock_irq(&rtc_lock);
  682. }
  683. static void __exit cmos_do_remove(struct device *dev)
  684. {
  685. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  686. struct resource *ports;
  687. cmos_do_shutdown();
  688. sysfs_remove_bin_file(&dev->kobj, &nvram);
  689. if (is_valid_irq(cmos->irq)) {
  690. free_irq(cmos->irq, cmos->rtc);
  691. hpet_unregister_irq_handler(cmos_interrupt);
  692. }
  693. rtc_device_unregister(cmos->rtc);
  694. cmos->rtc = NULL;
  695. ports = cmos->iomem;
  696. release_region(ports->start, ports->end + 1 - ports->start);
  697. cmos->iomem = NULL;
  698. cmos->dev = NULL;
  699. dev_set_drvdata(dev, NULL);
  700. }
  701. #ifdef CONFIG_PM
  702. static int cmos_suspend(struct device *dev, pm_message_t mesg)
  703. {
  704. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  705. unsigned char tmp;
  706. /* only the alarm might be a wakeup event source */
  707. spin_lock_irq(&rtc_lock);
  708. cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
  709. if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
  710. unsigned char mask;
  711. if (device_may_wakeup(dev))
  712. mask = RTC_IRQMASK & ~RTC_AIE;
  713. else
  714. mask = RTC_IRQMASK;
  715. tmp &= ~mask;
  716. CMOS_WRITE(tmp, RTC_CONTROL);
  717. hpet_mask_rtc_irq_bit(mask);
  718. cmos_checkintr(cmos, tmp);
  719. }
  720. spin_unlock_irq(&rtc_lock);
  721. if (tmp & RTC_AIE) {
  722. cmos->enabled_wake = 1;
  723. if (cmos->wake_on)
  724. cmos->wake_on(dev);
  725. else
  726. enable_irq_wake(cmos->irq);
  727. }
  728. pr_debug("%s: suspend%s, ctrl %02x\n",
  729. cmos_rtc.rtc->dev.bus_id,
  730. (tmp & RTC_AIE) ? ", alarm may wake" : "",
  731. tmp);
  732. return 0;
  733. }
  734. /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
  735. * after a detour through G3 "mechanical off", although the ACPI spec
  736. * says wakeup should only work from G1/S4 "hibernate". To most users,
  737. * distinctions between S4 and S5 are pointless. So when the hardware
  738. * allows, don't draw that distinction.
  739. */
  740. static inline int cmos_poweroff(struct device *dev)
  741. {
  742. return cmos_suspend(dev, PMSG_HIBERNATE);
  743. }
  744. static int cmos_resume(struct device *dev)
  745. {
  746. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  747. unsigned char tmp = cmos->suspend_ctrl;
  748. /* re-enable any irqs previously active */
  749. if (tmp & RTC_IRQMASK) {
  750. unsigned char mask;
  751. if (cmos->enabled_wake) {
  752. if (cmos->wake_off)
  753. cmos->wake_off(dev);
  754. else
  755. disable_irq_wake(cmos->irq);
  756. cmos->enabled_wake = 0;
  757. }
  758. spin_lock_irq(&rtc_lock);
  759. do {
  760. CMOS_WRITE(tmp, RTC_CONTROL);
  761. hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
  762. mask = CMOS_READ(RTC_INTR_FLAGS);
  763. mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
  764. if (!is_hpet_enabled() || !is_intr(mask))
  765. break;
  766. /* force one-shot behavior if HPET blocked
  767. * the wake alarm's irq
  768. */
  769. rtc_update_irq(cmos->rtc, 1, mask);
  770. tmp &= ~RTC_AIE;
  771. hpet_mask_rtc_irq_bit(RTC_AIE);
  772. } while (mask & RTC_AIE);
  773. spin_unlock_irq(&rtc_lock);
  774. }
  775. pr_debug("%s: resume, ctrl %02x\n",
  776. cmos_rtc.rtc->dev.bus_id,
  777. tmp);
  778. return 0;
  779. }
  780. #else
  781. #define cmos_suspend NULL
  782. #define cmos_resume NULL
  783. static inline int cmos_poweroff(struct device *dev)
  784. {
  785. return -ENOSYS;
  786. }
  787. #endif
  788. /*----------------------------------------------------------------*/
  789. /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
  790. * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
  791. * probably list them in similar PNPBIOS tables; so PNP is more common.
  792. *
  793. * We don't use legacy "poke at the hardware" probing. Ancient PCs that
  794. * predate even PNPBIOS should set up platform_bus devices.
  795. */
  796. #ifdef CONFIG_ACPI
  797. #include <linux/acpi.h>
  798. #ifdef CONFIG_PM
  799. static u32 rtc_handler(void *context)
  800. {
  801. acpi_clear_event(ACPI_EVENT_RTC);
  802. acpi_disable_event(ACPI_EVENT_RTC, 0);
  803. return ACPI_INTERRUPT_HANDLED;
  804. }
  805. static inline void rtc_wake_setup(void)
  806. {
  807. acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
  808. /*
  809. * After the RTC handler is installed, the Fixed_RTC event should
  810. * be disabled. Only when the RTC alarm is set will it be enabled.
  811. */
  812. acpi_clear_event(ACPI_EVENT_RTC);
  813. acpi_disable_event(ACPI_EVENT_RTC, 0);
  814. }
  815. static void rtc_wake_on(struct device *dev)
  816. {
  817. acpi_clear_event(ACPI_EVENT_RTC);
  818. acpi_enable_event(ACPI_EVENT_RTC, 0);
  819. }
  820. static void rtc_wake_off(struct device *dev)
  821. {
  822. acpi_disable_event(ACPI_EVENT_RTC, 0);
  823. }
  824. #else
  825. #define rtc_wake_setup() do{}while(0)
  826. #define rtc_wake_on NULL
  827. #define rtc_wake_off NULL
  828. #endif
  829. /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
  830. * its device node and pass extra config data. This helps its driver use
  831. * capabilities that the now-obsolete mc146818 didn't have, and informs it
  832. * that this board's RTC is wakeup-capable (per ACPI spec).
  833. */
  834. static struct cmos_rtc_board_info acpi_rtc_info;
  835. static void __devinit
  836. cmos_wake_setup(struct device *dev)
  837. {
  838. if (acpi_disabled)
  839. return;
  840. rtc_wake_setup();
  841. acpi_rtc_info.wake_on = rtc_wake_on;
  842. acpi_rtc_info.wake_off = rtc_wake_off;
  843. /* workaround bug in some ACPI tables */
  844. if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
  845. dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
  846. acpi_gbl_FADT.month_alarm);
  847. acpi_gbl_FADT.month_alarm = 0;
  848. }
  849. acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
  850. acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
  851. acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
  852. /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
  853. if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
  854. dev_info(dev, "RTC can wake from S4\n");
  855. dev->platform_data = &acpi_rtc_info;
  856. /* RTC always wakes from S1/S2/S3, and often S4/STD */
  857. device_init_wakeup(dev, 1);
  858. }
  859. #else
  860. static void __devinit
  861. cmos_wake_setup(struct device *dev)
  862. {
  863. }
  864. #endif
  865. #ifdef CONFIG_PNP
  866. #include <linux/pnp.h>
  867. static int __devinit
  868. cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
  869. {
  870. cmos_wake_setup(&pnp->dev);
  871. if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
  872. /* Some machines contain a PNP entry for the RTC, but
  873. * don't define the IRQ. It should always be safe to
  874. * hardcode it in these cases
  875. */
  876. return cmos_do_probe(&pnp->dev,
  877. pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
  878. else
  879. return cmos_do_probe(&pnp->dev,
  880. pnp_get_resource(pnp, IORESOURCE_IO, 0),
  881. pnp_irq(pnp, 0));
  882. }
  883. static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
  884. {
  885. cmos_do_remove(&pnp->dev);
  886. }
  887. #ifdef CONFIG_PM
  888. static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
  889. {
  890. return cmos_suspend(&pnp->dev, mesg);
  891. }
  892. static int cmos_pnp_resume(struct pnp_dev *pnp)
  893. {
  894. return cmos_resume(&pnp->dev);
  895. }
  896. #else
  897. #define cmos_pnp_suspend NULL
  898. #define cmos_pnp_resume NULL
  899. #endif
  900. static void cmos_pnp_shutdown(struct device *pdev)
  901. {
  902. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev))
  903. return;
  904. cmos_do_shutdown();
  905. }
  906. static const struct pnp_device_id rtc_ids[] = {
  907. { .id = "PNP0b00", },
  908. { .id = "PNP0b01", },
  909. { .id = "PNP0b02", },
  910. { },
  911. };
  912. MODULE_DEVICE_TABLE(pnp, rtc_ids);
  913. static struct pnp_driver cmos_pnp_driver = {
  914. .name = (char *) driver_name,
  915. .id_table = rtc_ids,
  916. .probe = cmos_pnp_probe,
  917. .remove = __exit_p(cmos_pnp_remove),
  918. /* flag ensures resume() gets called, and stops syslog spam */
  919. .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
  920. .suspend = cmos_pnp_suspend,
  921. .resume = cmos_pnp_resume,
  922. .driver = {
  923. .name = (char *)driver_name,
  924. .shutdown = cmos_pnp_shutdown,
  925. }
  926. };
  927. #endif /* CONFIG_PNP */
  928. /*----------------------------------------------------------------*/
  929. /* Platform setup should have set up an RTC device, when PNP is
  930. * unavailable ... this could happen even on (older) PCs.
  931. */
  932. static int __init cmos_platform_probe(struct platform_device *pdev)
  933. {
  934. cmos_wake_setup(&pdev->dev);
  935. return cmos_do_probe(&pdev->dev,
  936. platform_get_resource(pdev, IORESOURCE_IO, 0),
  937. platform_get_irq(pdev, 0));
  938. }
  939. static int __exit cmos_platform_remove(struct platform_device *pdev)
  940. {
  941. cmos_do_remove(&pdev->dev);
  942. return 0;
  943. }
  944. static void cmos_platform_shutdown(struct platform_device *pdev)
  945. {
  946. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
  947. return;
  948. cmos_do_shutdown();
  949. }
  950. /* work with hotplug and coldplug */
  951. MODULE_ALIAS("platform:rtc_cmos");
  952. static struct platform_driver cmos_platform_driver = {
  953. .remove = __exit_p(cmos_platform_remove),
  954. .shutdown = cmos_platform_shutdown,
  955. .driver = {
  956. .name = (char *) driver_name,
  957. .suspend = cmos_suspend,
  958. .resume = cmos_resume,
  959. }
  960. };
  961. static int __init cmos_init(void)
  962. {
  963. int retval = 0;
  964. #ifdef CONFIG_PNP
  965. pnp_register_driver(&cmos_pnp_driver);
  966. #endif
  967. if (!cmos_rtc.dev)
  968. retval = platform_driver_probe(&cmos_platform_driver,
  969. cmos_platform_probe);
  970. if (retval == 0)
  971. return 0;
  972. #ifdef CONFIG_PNP
  973. pnp_unregister_driver(&cmos_pnp_driver);
  974. #endif
  975. return retval;
  976. }
  977. module_init(cmos_init);
  978. static void __exit cmos_exit(void)
  979. {
  980. #ifdef CONFIG_PNP
  981. pnp_unregister_driver(&cmos_pnp_driver);
  982. #endif
  983. platform_driver_unregister(&cmos_platform_driver);
  984. }
  985. module_exit(cmos_exit);
  986. MODULE_AUTHOR("David Brownell");
  987. MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
  988. MODULE_LICENSE("GPL");