rt73usb.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt73usb
  19. Abstract: rt73usb device specific routines.
  20. Supported chipsets: rt2571W & rt2671.
  21. */
  22. #include <linux/crc-itu-t.h>
  23. #include <linux/delay.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/usb.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00usb.h"
  31. #include "rt73usb.h"
  32. /*
  33. * Allow hardware encryption to be disabled.
  34. */
  35. static int modparam_nohwcrypt = 0;
  36. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  37. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  38. /*
  39. * Register access.
  40. * All access to the CSR registers will go through the methods
  41. * rt2x00usb_register_read and rt2x00usb_register_write.
  42. * BBP and RF register require indirect register access,
  43. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  44. * These indirect registers work with busy bits,
  45. * and we will try maximal REGISTER_BUSY_COUNT times to access
  46. * the register while taking a REGISTER_BUSY_DELAY us delay
  47. * between each attampt. When the busy bit is still set at that time,
  48. * the access attempt is considered to have failed,
  49. * and we will print an error.
  50. * The _lock versions must be used if you already hold the csr_mutex
  51. */
  52. #define WAIT_FOR_BBP(__dev, __reg) \
  53. rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  54. #define WAIT_FOR_RF(__dev, __reg) \
  55. rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  56. static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  57. const unsigned int word, const u8 value)
  58. {
  59. u32 reg;
  60. mutex_lock(&rt2x00dev->csr_mutex);
  61. /*
  62. * Wait until the BBP becomes available, afterwards we
  63. * can safely write the new data into the register.
  64. */
  65. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  66. reg = 0;
  67. rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  68. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  69. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  70. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  71. rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
  72. }
  73. mutex_unlock(&rt2x00dev->csr_mutex);
  74. }
  75. static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  76. const unsigned int word, u8 *value)
  77. {
  78. u32 reg;
  79. mutex_lock(&rt2x00dev->csr_mutex);
  80. /*
  81. * Wait until the BBP becomes available, afterwards we
  82. * can safely write the read request into the register.
  83. * After the data has been written, we wait until hardware
  84. * returns the correct value, if at any time the register
  85. * doesn't become available in time, reg will be 0xffffffff
  86. * which means we return 0xff to the caller.
  87. */
  88. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  89. reg = 0;
  90. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  91. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  92. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
  93. rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
  94. WAIT_FOR_BBP(rt2x00dev, &reg);
  95. }
  96. *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
  97. mutex_unlock(&rt2x00dev->csr_mutex);
  98. }
  99. static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
  100. const unsigned int word, const u32 value)
  101. {
  102. u32 reg;
  103. if (!word)
  104. return;
  105. mutex_lock(&rt2x00dev->csr_mutex);
  106. /*
  107. * Wait until the RF becomes available, afterwards we
  108. * can safely write the new data into the register.
  109. */
  110. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  111. reg = 0;
  112. rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
  113. /*
  114. * RF5225 and RF2527 contain 21 bits per RF register value,
  115. * all others contain 20 bits.
  116. */
  117. rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
  118. 20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  119. rt2x00_rf(&rt2x00dev->chip, RF2527)));
  120. rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
  121. rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
  122. rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
  123. rt2x00_rf_write(rt2x00dev, word, value);
  124. }
  125. mutex_unlock(&rt2x00dev->csr_mutex);
  126. }
  127. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  128. static const struct rt2x00debug rt73usb_rt2x00debug = {
  129. .owner = THIS_MODULE,
  130. .csr = {
  131. .read = rt2x00usb_register_read,
  132. .write = rt2x00usb_register_write,
  133. .flags = RT2X00DEBUGFS_OFFSET,
  134. .word_base = CSR_REG_BASE,
  135. .word_size = sizeof(u32),
  136. .word_count = CSR_REG_SIZE / sizeof(u32),
  137. },
  138. .eeprom = {
  139. .read = rt2x00_eeprom_read,
  140. .write = rt2x00_eeprom_write,
  141. .word_base = EEPROM_BASE,
  142. .word_size = sizeof(u16),
  143. .word_count = EEPROM_SIZE / sizeof(u16),
  144. },
  145. .bbp = {
  146. .read = rt73usb_bbp_read,
  147. .write = rt73usb_bbp_write,
  148. .word_base = BBP_BASE,
  149. .word_size = sizeof(u8),
  150. .word_count = BBP_SIZE / sizeof(u8),
  151. },
  152. .rf = {
  153. .read = rt2x00_rf_read,
  154. .write = rt73usb_rf_write,
  155. .word_base = RF_BASE,
  156. .word_size = sizeof(u32),
  157. .word_count = RF_SIZE / sizeof(u32),
  158. },
  159. };
  160. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  161. #ifdef CONFIG_RT2X00_LIB_LEDS
  162. static void rt73usb_brightness_set(struct led_classdev *led_cdev,
  163. enum led_brightness brightness)
  164. {
  165. struct rt2x00_led *led =
  166. container_of(led_cdev, struct rt2x00_led, led_dev);
  167. unsigned int enabled = brightness != LED_OFF;
  168. unsigned int a_mode =
  169. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  170. unsigned int bg_mode =
  171. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  172. if (led->type == LED_TYPE_RADIO) {
  173. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  174. MCU_LEDCS_RADIO_STATUS, enabled);
  175. rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
  176. 0, led->rt2x00dev->led_mcu_reg,
  177. REGISTER_TIMEOUT);
  178. } else if (led->type == LED_TYPE_ASSOC) {
  179. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  180. MCU_LEDCS_LINK_BG_STATUS, bg_mode);
  181. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  182. MCU_LEDCS_LINK_A_STATUS, a_mode);
  183. rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
  184. 0, led->rt2x00dev->led_mcu_reg,
  185. REGISTER_TIMEOUT);
  186. } else if (led->type == LED_TYPE_QUALITY) {
  187. /*
  188. * The brightness is divided into 6 levels (0 - 5),
  189. * this means we need to convert the brightness
  190. * argument into the matching level within that range.
  191. */
  192. rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
  193. brightness / (LED_FULL / 6),
  194. led->rt2x00dev->led_mcu_reg,
  195. REGISTER_TIMEOUT);
  196. }
  197. }
  198. static int rt73usb_blink_set(struct led_classdev *led_cdev,
  199. unsigned long *delay_on,
  200. unsigned long *delay_off)
  201. {
  202. struct rt2x00_led *led =
  203. container_of(led_cdev, struct rt2x00_led, led_dev);
  204. u32 reg;
  205. rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
  206. rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
  207. rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
  208. rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
  209. return 0;
  210. }
  211. static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
  212. struct rt2x00_led *led,
  213. enum led_type type)
  214. {
  215. led->rt2x00dev = rt2x00dev;
  216. led->type = type;
  217. led->led_dev.brightness_set = rt73usb_brightness_set;
  218. led->led_dev.blink_set = rt73usb_blink_set;
  219. led->flags = LED_INITIALIZED;
  220. }
  221. #endif /* CONFIG_RT2X00_LIB_LEDS */
  222. /*
  223. * Configuration handlers.
  224. */
  225. static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
  226. struct rt2x00lib_crypto *crypto,
  227. struct ieee80211_key_conf *key)
  228. {
  229. struct hw_key_entry key_entry;
  230. struct rt2x00_field32 field;
  231. int timeout;
  232. u32 mask;
  233. u32 reg;
  234. if (crypto->cmd == SET_KEY) {
  235. /*
  236. * rt2x00lib can't determine the correct free
  237. * key_idx for shared keys. We have 1 register
  238. * with key valid bits. The goal is simple, read
  239. * the register, if that is full we have no slots
  240. * left.
  241. * Note that each BSS is allowed to have up to 4
  242. * shared keys, so put a mask over the allowed
  243. * entries.
  244. */
  245. mask = (0xf << crypto->bssidx);
  246. rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
  247. reg &= mask;
  248. if (reg && reg == mask)
  249. return -ENOSPC;
  250. key->hw_key_idx += reg ? ffz(reg) : 0;
  251. /*
  252. * Upload key to hardware
  253. */
  254. memcpy(key_entry.key, crypto->key,
  255. sizeof(key_entry.key));
  256. memcpy(key_entry.tx_mic, crypto->tx_mic,
  257. sizeof(key_entry.tx_mic));
  258. memcpy(key_entry.rx_mic, crypto->rx_mic,
  259. sizeof(key_entry.rx_mic));
  260. reg = SHARED_KEY_ENTRY(key->hw_key_idx);
  261. timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
  262. rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
  263. USB_VENDOR_REQUEST_OUT, reg,
  264. &key_entry,
  265. sizeof(key_entry),
  266. timeout);
  267. /*
  268. * The cipher types are stored over 2 registers.
  269. * bssidx 0 and 1 keys are stored in SEC_CSR1 and
  270. * bssidx 1 and 2 keys are stored in SEC_CSR5.
  271. * Using the correct defines correctly will cause overhead,
  272. * so just calculate the correct offset.
  273. */
  274. if (key->hw_key_idx < 8) {
  275. field.bit_offset = (3 * key->hw_key_idx);
  276. field.bit_mask = 0x7 << field.bit_offset;
  277. rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
  278. rt2x00_set_field32(&reg, field, crypto->cipher);
  279. rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
  280. } else {
  281. field.bit_offset = (3 * (key->hw_key_idx - 8));
  282. field.bit_mask = 0x7 << field.bit_offset;
  283. rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
  284. rt2x00_set_field32(&reg, field, crypto->cipher);
  285. rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
  286. }
  287. /*
  288. * The driver does not support the IV/EIV generation
  289. * in hardware. However it doesn't support the IV/EIV
  290. * inside the ieee80211 frame either, but requires it
  291. * to be provided seperately for the descriptor.
  292. * rt2x00lib will cut the IV/EIV data out of all frames
  293. * given to us by mac80211, but we must tell mac80211
  294. * to generate the IV/EIV data.
  295. */
  296. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  297. }
  298. /*
  299. * SEC_CSR0 contains only single-bit fields to indicate
  300. * a particular key is valid. Because using the FIELD32()
  301. * defines directly will cause a lot of overhead we use
  302. * a calculation to determine the correct bit directly.
  303. */
  304. mask = 1 << key->hw_key_idx;
  305. rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
  306. if (crypto->cmd == SET_KEY)
  307. reg |= mask;
  308. else if (crypto->cmd == DISABLE_KEY)
  309. reg &= ~mask;
  310. rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
  311. return 0;
  312. }
  313. static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
  314. struct rt2x00lib_crypto *crypto,
  315. struct ieee80211_key_conf *key)
  316. {
  317. struct hw_pairwise_ta_entry addr_entry;
  318. struct hw_key_entry key_entry;
  319. int timeout;
  320. u32 mask;
  321. u32 reg;
  322. if (crypto->cmd == SET_KEY) {
  323. /*
  324. * rt2x00lib can't determine the correct free
  325. * key_idx for pairwise keys. We have 2 registers
  326. * with key valid bits. The goal is simple, read
  327. * the first register, if that is full move to
  328. * the next register.
  329. * When both registers are full, we drop the key,
  330. * otherwise we use the first invalid entry.
  331. */
  332. rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
  333. if (reg && reg == ~0) {
  334. key->hw_key_idx = 32;
  335. rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
  336. if (reg && reg == ~0)
  337. return -ENOSPC;
  338. }
  339. key->hw_key_idx += reg ? ffz(reg) : 0;
  340. /*
  341. * Upload key to hardware
  342. */
  343. memcpy(key_entry.key, crypto->key,
  344. sizeof(key_entry.key));
  345. memcpy(key_entry.tx_mic, crypto->tx_mic,
  346. sizeof(key_entry.tx_mic));
  347. memcpy(key_entry.rx_mic, crypto->rx_mic,
  348. sizeof(key_entry.rx_mic));
  349. reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
  350. timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
  351. rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
  352. USB_VENDOR_REQUEST_OUT, reg,
  353. &key_entry,
  354. sizeof(key_entry),
  355. timeout);
  356. /*
  357. * Send the address and cipher type to the hardware register.
  358. * This data fits within the CSR cache size, so we can use
  359. * rt2x00usb_register_multiwrite() directly.
  360. */
  361. memset(&addr_entry, 0, sizeof(addr_entry));
  362. memcpy(&addr_entry, crypto->address, ETH_ALEN);
  363. addr_entry.cipher = crypto->cipher;
  364. reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
  365. rt2x00usb_register_multiwrite(rt2x00dev, reg,
  366. &addr_entry, sizeof(addr_entry));
  367. /*
  368. * Enable pairwise lookup table for given BSS idx,
  369. * without this received frames will not be decrypted
  370. * by the hardware.
  371. */
  372. rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
  373. reg |= (1 << crypto->bssidx);
  374. rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
  375. /*
  376. * The driver does not support the IV/EIV generation
  377. * in hardware. However it doesn't support the IV/EIV
  378. * inside the ieee80211 frame either, but requires it
  379. * to be provided seperately for the descriptor.
  380. * rt2x00lib will cut the IV/EIV data out of all frames
  381. * given to us by mac80211, but we must tell mac80211
  382. * to generate the IV/EIV data.
  383. */
  384. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  385. }
  386. /*
  387. * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
  388. * a particular key is valid. Because using the FIELD32()
  389. * defines directly will cause a lot of overhead we use
  390. * a calculation to determine the correct bit directly.
  391. */
  392. if (key->hw_key_idx < 32) {
  393. mask = 1 << key->hw_key_idx;
  394. rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
  395. if (crypto->cmd == SET_KEY)
  396. reg |= mask;
  397. else if (crypto->cmd == DISABLE_KEY)
  398. reg &= ~mask;
  399. rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
  400. } else {
  401. mask = 1 << (key->hw_key_idx - 32);
  402. rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
  403. if (crypto->cmd == SET_KEY)
  404. reg |= mask;
  405. else if (crypto->cmd == DISABLE_KEY)
  406. reg &= ~mask;
  407. rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
  408. }
  409. return 0;
  410. }
  411. static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
  412. const unsigned int filter_flags)
  413. {
  414. u32 reg;
  415. /*
  416. * Start configuration steps.
  417. * Note that the version error will always be dropped
  418. * and broadcast frames will always be accepted since
  419. * there is no filter for it at this time.
  420. */
  421. rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  422. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
  423. !(filter_flags & FIF_FCSFAIL));
  424. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
  425. !(filter_flags & FIF_PLCPFAIL));
  426. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
  427. !(filter_flags & FIF_CONTROL));
  428. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
  429. !(filter_flags & FIF_PROMISC_IN_BSS));
  430. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
  431. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  432. !rt2x00dev->intf_ap_count);
  433. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
  434. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
  435. !(filter_flags & FIF_ALLMULTI));
  436. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
  437. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
  438. !(filter_flags & FIF_CONTROL));
  439. rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  440. }
  441. static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
  442. struct rt2x00_intf *intf,
  443. struct rt2x00intf_conf *conf,
  444. const unsigned int flags)
  445. {
  446. unsigned int beacon_base;
  447. u32 reg;
  448. if (flags & CONFIG_UPDATE_TYPE) {
  449. /*
  450. * Clear current synchronisation setup.
  451. * For the Beacon base registers we only need to clear
  452. * the first byte since that byte contains the VALID and OWNER
  453. * bits which (when set to 0) will invalidate the entire beacon.
  454. */
  455. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  456. rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
  457. /*
  458. * Enable synchronisation.
  459. */
  460. rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
  461. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  462. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
  463. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  464. rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
  465. }
  466. if (flags & CONFIG_UPDATE_MAC) {
  467. reg = le32_to_cpu(conf->mac[1]);
  468. rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
  469. conf->mac[1] = cpu_to_le32(reg);
  470. rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
  471. conf->mac, sizeof(conf->mac));
  472. }
  473. if (flags & CONFIG_UPDATE_BSSID) {
  474. reg = le32_to_cpu(conf->bssid[1]);
  475. rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
  476. conf->bssid[1] = cpu_to_le32(reg);
  477. rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
  478. conf->bssid, sizeof(conf->bssid));
  479. }
  480. }
  481. static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
  482. struct rt2x00lib_erp *erp)
  483. {
  484. u32 reg;
  485. rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  486. rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
  487. rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  488. rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
  489. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
  490. !!erp->short_preamble);
  491. rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
  492. rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
  493. rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
  494. rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
  495. rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
  496. rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  497. rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
  498. rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
  499. rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
  500. rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
  501. }
  502. static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
  503. struct antenna_setup *ant)
  504. {
  505. u8 r3;
  506. u8 r4;
  507. u8 r77;
  508. u8 temp;
  509. rt73usb_bbp_read(rt2x00dev, 3, &r3);
  510. rt73usb_bbp_read(rt2x00dev, 4, &r4);
  511. rt73usb_bbp_read(rt2x00dev, 77, &r77);
  512. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
  513. /*
  514. * Configure the RX antenna.
  515. */
  516. switch (ant->rx) {
  517. case ANTENNA_HW_DIVERSITY:
  518. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  519. temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
  520. && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
  521. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
  522. break;
  523. case ANTENNA_A:
  524. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  525. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  526. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  527. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  528. else
  529. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  530. break;
  531. case ANTENNA_B:
  532. default:
  533. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  534. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  535. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  536. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  537. else
  538. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  539. break;
  540. }
  541. rt73usb_bbp_write(rt2x00dev, 77, r77);
  542. rt73usb_bbp_write(rt2x00dev, 3, r3);
  543. rt73usb_bbp_write(rt2x00dev, 4, r4);
  544. }
  545. static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
  546. struct antenna_setup *ant)
  547. {
  548. u8 r3;
  549. u8 r4;
  550. u8 r77;
  551. rt73usb_bbp_read(rt2x00dev, 3, &r3);
  552. rt73usb_bbp_read(rt2x00dev, 4, &r4);
  553. rt73usb_bbp_read(rt2x00dev, 77, &r77);
  554. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
  555. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  556. !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
  557. /*
  558. * Configure the RX antenna.
  559. */
  560. switch (ant->rx) {
  561. case ANTENNA_HW_DIVERSITY:
  562. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  563. break;
  564. case ANTENNA_A:
  565. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  566. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  567. break;
  568. case ANTENNA_B:
  569. default:
  570. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  571. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  572. break;
  573. }
  574. rt73usb_bbp_write(rt2x00dev, 77, r77);
  575. rt73usb_bbp_write(rt2x00dev, 3, r3);
  576. rt73usb_bbp_write(rt2x00dev, 4, r4);
  577. }
  578. struct antenna_sel {
  579. u8 word;
  580. /*
  581. * value[0] -> non-LNA
  582. * value[1] -> LNA
  583. */
  584. u8 value[2];
  585. };
  586. static const struct antenna_sel antenna_sel_a[] = {
  587. { 96, { 0x58, 0x78 } },
  588. { 104, { 0x38, 0x48 } },
  589. { 75, { 0xfe, 0x80 } },
  590. { 86, { 0xfe, 0x80 } },
  591. { 88, { 0xfe, 0x80 } },
  592. { 35, { 0x60, 0x60 } },
  593. { 97, { 0x58, 0x58 } },
  594. { 98, { 0x58, 0x58 } },
  595. };
  596. static const struct antenna_sel antenna_sel_bg[] = {
  597. { 96, { 0x48, 0x68 } },
  598. { 104, { 0x2c, 0x3c } },
  599. { 75, { 0xfe, 0x80 } },
  600. { 86, { 0xfe, 0x80 } },
  601. { 88, { 0xfe, 0x80 } },
  602. { 35, { 0x50, 0x50 } },
  603. { 97, { 0x48, 0x48 } },
  604. { 98, { 0x48, 0x48 } },
  605. };
  606. static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
  607. struct antenna_setup *ant)
  608. {
  609. const struct antenna_sel *sel;
  610. unsigned int lna;
  611. unsigned int i;
  612. u32 reg;
  613. /*
  614. * We should never come here because rt2x00lib is supposed
  615. * to catch this and send us the correct antenna explicitely.
  616. */
  617. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  618. ant->tx == ANTENNA_SW_DIVERSITY);
  619. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
  620. sel = antenna_sel_a;
  621. lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  622. } else {
  623. sel = antenna_sel_bg;
  624. lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  625. }
  626. for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
  627. rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
  628. rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
  629. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
  630. (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
  631. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
  632. (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
  633. rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
  634. if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
  635. rt2x00_rf(&rt2x00dev->chip, RF5225))
  636. rt73usb_config_antenna_5x(rt2x00dev, ant);
  637. else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
  638. rt2x00_rf(&rt2x00dev->chip, RF2527))
  639. rt73usb_config_antenna_2x(rt2x00dev, ant);
  640. }
  641. static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
  642. struct rt2x00lib_conf *libconf)
  643. {
  644. u16 eeprom;
  645. short lna_gain = 0;
  646. if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
  647. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
  648. lna_gain += 14;
  649. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
  650. lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
  651. } else {
  652. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
  653. lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
  654. }
  655. rt2x00dev->lna_gain = lna_gain;
  656. }
  657. static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
  658. struct rf_channel *rf, const int txpower)
  659. {
  660. u8 r3;
  661. u8 r94;
  662. u8 smart;
  663. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  664. rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
  665. smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  666. rt2x00_rf(&rt2x00dev->chip, RF2527));
  667. rt73usb_bbp_read(rt2x00dev, 3, &r3);
  668. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
  669. rt73usb_bbp_write(rt2x00dev, 3, r3);
  670. r94 = 6;
  671. if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
  672. r94 += txpower - MAX_TXPOWER;
  673. else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
  674. r94 += txpower;
  675. rt73usb_bbp_write(rt2x00dev, 94, r94);
  676. rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
  677. rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
  678. rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  679. rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
  680. rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
  681. rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
  682. rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
  683. rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
  684. rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
  685. rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
  686. rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  687. rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
  688. udelay(10);
  689. }
  690. static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  691. const int txpower)
  692. {
  693. struct rf_channel rf;
  694. rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
  695. rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
  696. rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
  697. rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
  698. rt73usb_config_channel(rt2x00dev, &rf, txpower);
  699. }
  700. static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  701. struct rt2x00lib_conf *libconf)
  702. {
  703. u32 reg;
  704. rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
  705. rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
  706. libconf->conf->long_frame_max_tx_count);
  707. rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
  708. libconf->conf->short_frame_max_tx_count);
  709. rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
  710. }
  711. static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev,
  712. struct rt2x00lib_conf *libconf)
  713. {
  714. u32 reg;
  715. rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  716. rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
  717. rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  718. rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
  719. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
  720. rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
  721. rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
  722. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
  723. libconf->conf->beacon_int * 16);
  724. rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
  725. }
  726. static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
  727. struct rt2x00lib_conf *libconf,
  728. const unsigned int flags)
  729. {
  730. /* Always recalculate LNA gain before changing configuration */
  731. rt73usb_config_lna_gain(rt2x00dev, libconf);
  732. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  733. rt73usb_config_channel(rt2x00dev, &libconf->rf,
  734. libconf->conf->power_level);
  735. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  736. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  737. rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
  738. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  739. rt73usb_config_retry_limit(rt2x00dev, libconf);
  740. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  741. rt73usb_config_duration(rt2x00dev, libconf);
  742. }
  743. /*
  744. * Link tuning
  745. */
  746. static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
  747. struct link_qual *qual)
  748. {
  749. u32 reg;
  750. /*
  751. * Update FCS error count from register.
  752. */
  753. rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
  754. qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
  755. /*
  756. * Update False CCA count from register.
  757. */
  758. rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
  759. qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
  760. }
  761. static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
  762. {
  763. rt73usb_bbp_write(rt2x00dev, 17, 0x20);
  764. rt2x00dev->link.vgc_level = 0x20;
  765. }
  766. static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev)
  767. {
  768. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  769. u8 r17;
  770. u8 up_bound;
  771. u8 low_bound;
  772. rt73usb_bbp_read(rt2x00dev, 17, &r17);
  773. /*
  774. * Determine r17 bounds.
  775. */
  776. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  777. low_bound = 0x28;
  778. up_bound = 0x48;
  779. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
  780. low_bound += 0x10;
  781. up_bound += 0x10;
  782. }
  783. } else {
  784. if (rssi > -82) {
  785. low_bound = 0x1c;
  786. up_bound = 0x40;
  787. } else if (rssi > -84) {
  788. low_bound = 0x1c;
  789. up_bound = 0x20;
  790. } else {
  791. low_bound = 0x1c;
  792. up_bound = 0x1c;
  793. }
  794. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
  795. low_bound += 0x14;
  796. up_bound += 0x10;
  797. }
  798. }
  799. /*
  800. * If we are not associated, we should go straight to the
  801. * dynamic CCA tuning.
  802. */
  803. if (!rt2x00dev->intf_associated)
  804. goto dynamic_cca_tune;
  805. /*
  806. * Special big-R17 for very short distance
  807. */
  808. if (rssi > -35) {
  809. if (r17 != 0x60)
  810. rt73usb_bbp_write(rt2x00dev, 17, 0x60);
  811. return;
  812. }
  813. /*
  814. * Special big-R17 for short distance
  815. */
  816. if (rssi >= -58) {
  817. if (r17 != up_bound)
  818. rt73usb_bbp_write(rt2x00dev, 17, up_bound);
  819. return;
  820. }
  821. /*
  822. * Special big-R17 for middle-short distance
  823. */
  824. if (rssi >= -66) {
  825. low_bound += 0x10;
  826. if (r17 != low_bound)
  827. rt73usb_bbp_write(rt2x00dev, 17, low_bound);
  828. return;
  829. }
  830. /*
  831. * Special mid-R17 for middle distance
  832. */
  833. if (rssi >= -74) {
  834. if (r17 != (low_bound + 0x10))
  835. rt73usb_bbp_write(rt2x00dev, 17, low_bound + 0x08);
  836. return;
  837. }
  838. /*
  839. * Special case: Change up_bound based on the rssi.
  840. * Lower up_bound when rssi is weaker then -74 dBm.
  841. */
  842. up_bound -= 2 * (-74 - rssi);
  843. if (low_bound > up_bound)
  844. up_bound = low_bound;
  845. if (r17 > up_bound) {
  846. rt73usb_bbp_write(rt2x00dev, 17, up_bound);
  847. return;
  848. }
  849. dynamic_cca_tune:
  850. /*
  851. * r17 does not yet exceed upper limit, continue and base
  852. * the r17 tuning on the false CCA count.
  853. */
  854. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  855. r17 += 4;
  856. if (r17 > up_bound)
  857. r17 = up_bound;
  858. rt73usb_bbp_write(rt2x00dev, 17, r17);
  859. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  860. r17 -= 4;
  861. if (r17 < low_bound)
  862. r17 = low_bound;
  863. rt73usb_bbp_write(rt2x00dev, 17, r17);
  864. }
  865. }
  866. /*
  867. * Firmware functions
  868. */
  869. static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  870. {
  871. return FIRMWARE_RT2571;
  872. }
  873. static u16 rt73usb_get_firmware_crc(const void *data, const size_t len)
  874. {
  875. u16 crc;
  876. /*
  877. * Use the crc itu-t algorithm.
  878. * The last 2 bytes in the firmware array are the crc checksum itself,
  879. * this means that we should never pass those 2 bytes to the crc
  880. * algorithm.
  881. */
  882. crc = crc_itu_t(0, data, len - 2);
  883. crc = crc_itu_t_byte(crc, 0);
  884. crc = crc_itu_t_byte(crc, 0);
  885. return crc;
  886. }
  887. static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
  888. const size_t len)
  889. {
  890. unsigned int i;
  891. int status;
  892. u32 reg;
  893. /*
  894. * Wait for stable hardware.
  895. */
  896. for (i = 0; i < 100; i++) {
  897. rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  898. if (reg)
  899. break;
  900. msleep(1);
  901. }
  902. if (!reg) {
  903. ERROR(rt2x00dev, "Unstable hardware.\n");
  904. return -EBUSY;
  905. }
  906. /*
  907. * Write firmware to device.
  908. */
  909. rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
  910. USB_VENDOR_REQUEST_OUT,
  911. FIRMWARE_IMAGE_BASE,
  912. data, len,
  913. REGISTER_TIMEOUT32(len));
  914. /*
  915. * Send firmware request to device to load firmware,
  916. * we need to specify a long timeout time.
  917. */
  918. status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
  919. 0, USB_MODE_FIRMWARE,
  920. REGISTER_TIMEOUT_FIRMWARE);
  921. if (status < 0) {
  922. ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
  923. return status;
  924. }
  925. return 0;
  926. }
  927. /*
  928. * Initialization functions.
  929. */
  930. static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
  931. {
  932. u32 reg;
  933. rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  934. rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
  935. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
  936. rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
  937. rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  938. rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  939. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
  940. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
  941. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
  942. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
  943. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
  944. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
  945. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
  946. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
  947. rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  948. /*
  949. * CCK TXD BBP registers
  950. */
  951. rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  952. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
  953. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
  954. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
  955. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
  956. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
  957. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
  958. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
  959. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
  960. rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  961. /*
  962. * OFDM TXD BBP registers
  963. */
  964. rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
  965. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
  966. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
  967. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
  968. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
  969. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
  970. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
  971. rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
  972. rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  973. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
  974. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
  975. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
  976. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
  977. rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  978. rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  979. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
  980. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
  981. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
  982. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
  983. rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  984. rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
  985. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
  986. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
  987. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
  988. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
  989. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  990. rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
  991. rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
  992. rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
  993. rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
  994. rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
  995. rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
  996. rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
  997. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  998. return -EBUSY;
  999. rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
  1000. /*
  1001. * Invalidate all Shared Keys (SEC_CSR0),
  1002. * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
  1003. */
  1004. rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
  1005. rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
  1006. rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
  1007. reg = 0x000023b0;
  1008. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  1009. rt2x00_rf(&rt2x00dev->chip, RF2527))
  1010. rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
  1011. rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
  1012. rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
  1013. rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
  1014. rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
  1015. rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
  1016. rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
  1017. rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
  1018. /*
  1019. * Clear all beacons
  1020. * For the Beacon base registers we only need to clear
  1021. * the first byte since that byte contains the VALID and OWNER
  1022. * bits which (when set to 0) will invalidate the entire beacon.
  1023. */
  1024. rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
  1025. rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
  1026. rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
  1027. rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
  1028. /*
  1029. * We must clear the error counters.
  1030. * These registers are cleared on read,
  1031. * so we may pass a useless variable to store the value.
  1032. */
  1033. rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
  1034. rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
  1035. rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
  1036. /*
  1037. * Reset MAC and BBP registers.
  1038. */
  1039. rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  1040. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  1041. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  1042. rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
  1043. rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  1044. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  1045. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  1046. rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
  1047. rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  1048. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  1049. rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
  1050. return 0;
  1051. }
  1052. static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  1053. {
  1054. unsigned int i;
  1055. u8 value;
  1056. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1057. rt73usb_bbp_read(rt2x00dev, 0, &value);
  1058. if ((value != 0xff) && (value != 0x00))
  1059. return 0;
  1060. udelay(REGISTER_BUSY_DELAY);
  1061. }
  1062. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  1063. return -EACCES;
  1064. }
  1065. static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  1066. {
  1067. unsigned int i;
  1068. u16 eeprom;
  1069. u8 reg_id;
  1070. u8 value;
  1071. if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
  1072. return -EACCES;
  1073. rt73usb_bbp_write(rt2x00dev, 3, 0x80);
  1074. rt73usb_bbp_write(rt2x00dev, 15, 0x30);
  1075. rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
  1076. rt73usb_bbp_write(rt2x00dev, 22, 0x38);
  1077. rt73usb_bbp_write(rt2x00dev, 23, 0x06);
  1078. rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
  1079. rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
  1080. rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
  1081. rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
  1082. rt73usb_bbp_write(rt2x00dev, 34, 0x12);
  1083. rt73usb_bbp_write(rt2x00dev, 37, 0x07);
  1084. rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
  1085. rt73usb_bbp_write(rt2x00dev, 41, 0x60);
  1086. rt73usb_bbp_write(rt2x00dev, 53, 0x10);
  1087. rt73usb_bbp_write(rt2x00dev, 54, 0x18);
  1088. rt73usb_bbp_write(rt2x00dev, 60, 0x10);
  1089. rt73usb_bbp_write(rt2x00dev, 61, 0x04);
  1090. rt73usb_bbp_write(rt2x00dev, 62, 0x04);
  1091. rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
  1092. rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
  1093. rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
  1094. rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
  1095. rt73usb_bbp_write(rt2x00dev, 99, 0x00);
  1096. rt73usb_bbp_write(rt2x00dev, 102, 0x16);
  1097. rt73usb_bbp_write(rt2x00dev, 107, 0x04);
  1098. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  1099. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  1100. if (eeprom != 0xffff && eeprom != 0x0000) {
  1101. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  1102. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  1103. rt73usb_bbp_write(rt2x00dev, reg_id, value);
  1104. }
  1105. }
  1106. return 0;
  1107. }
  1108. /*
  1109. * Device state switch handlers.
  1110. */
  1111. static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  1112. enum dev_state state)
  1113. {
  1114. u32 reg;
  1115. rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  1116. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
  1117. (state == STATE_RADIO_RX_OFF) ||
  1118. (state == STATE_RADIO_RX_OFF_LINK));
  1119. rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  1120. }
  1121. static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  1122. {
  1123. /*
  1124. * Initialize all registers.
  1125. */
  1126. if (unlikely(rt73usb_init_registers(rt2x00dev) ||
  1127. rt73usb_init_bbp(rt2x00dev)))
  1128. return -EIO;
  1129. return 0;
  1130. }
  1131. static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  1132. {
  1133. rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
  1134. /*
  1135. * Disable synchronisation.
  1136. */
  1137. rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
  1138. rt2x00usb_disable_radio(rt2x00dev);
  1139. }
  1140. static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  1141. {
  1142. u32 reg;
  1143. unsigned int i;
  1144. char put_to_sleep;
  1145. put_to_sleep = (state != STATE_AWAKE);
  1146. rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
  1147. rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
  1148. rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
  1149. rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
  1150. /*
  1151. * Device is not guaranteed to be in the requested state yet.
  1152. * We must wait until the register indicates that the
  1153. * device has entered the correct state.
  1154. */
  1155. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1156. rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
  1157. state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
  1158. if (state == !put_to_sleep)
  1159. return 0;
  1160. msleep(10);
  1161. }
  1162. return -EBUSY;
  1163. }
  1164. static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  1165. enum dev_state state)
  1166. {
  1167. int retval = 0;
  1168. switch (state) {
  1169. case STATE_RADIO_ON:
  1170. retval = rt73usb_enable_radio(rt2x00dev);
  1171. break;
  1172. case STATE_RADIO_OFF:
  1173. rt73usb_disable_radio(rt2x00dev);
  1174. break;
  1175. case STATE_RADIO_RX_ON:
  1176. case STATE_RADIO_RX_ON_LINK:
  1177. case STATE_RADIO_RX_OFF:
  1178. case STATE_RADIO_RX_OFF_LINK:
  1179. rt73usb_toggle_rx(rt2x00dev, state);
  1180. break;
  1181. case STATE_RADIO_IRQ_ON:
  1182. case STATE_RADIO_IRQ_OFF:
  1183. /* No support, but no error either */
  1184. break;
  1185. case STATE_DEEP_SLEEP:
  1186. case STATE_SLEEP:
  1187. case STATE_STANDBY:
  1188. case STATE_AWAKE:
  1189. retval = rt73usb_set_state(rt2x00dev, state);
  1190. break;
  1191. default:
  1192. retval = -ENOTSUPP;
  1193. break;
  1194. }
  1195. if (unlikely(retval))
  1196. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  1197. state, retval);
  1198. return retval;
  1199. }
  1200. /*
  1201. * TX descriptor initialization
  1202. */
  1203. static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1204. struct sk_buff *skb,
  1205. struct txentry_desc *txdesc)
  1206. {
  1207. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1208. __le32 *txd = skbdesc->desc;
  1209. u32 word;
  1210. /*
  1211. * Start writing the descriptor words.
  1212. */
  1213. rt2x00_desc_read(txd, 1, &word);
  1214. rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
  1215. rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
  1216. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  1217. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  1218. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
  1219. rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
  1220. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  1221. rt2x00_desc_write(txd, 1, word);
  1222. rt2x00_desc_read(txd, 2, &word);
  1223. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  1224. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  1225. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  1226. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  1227. rt2x00_desc_write(txd, 2, word);
  1228. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
  1229. _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
  1230. _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
  1231. }
  1232. rt2x00_desc_read(txd, 5, &word);
  1233. rt2x00_set_field32(&word, TXD_W5_TX_POWER,
  1234. TXPOWER_TO_DEV(rt2x00dev->tx_power));
  1235. rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
  1236. rt2x00_desc_write(txd, 5, word);
  1237. rt2x00_desc_read(txd, 0, &word);
  1238. rt2x00_set_field32(&word, TXD_W0_BURST,
  1239. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  1240. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1241. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1242. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1243. rt2x00_set_field32(&word, TXD_W0_ACK,
  1244. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1245. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1246. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1247. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1248. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1249. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1250. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1251. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1252. rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
  1253. test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
  1254. rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
  1255. test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
  1256. rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
  1257. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  1258. rt2x00_set_field32(&word, TXD_W0_BURST2,
  1259. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  1260. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
  1261. rt2x00_desc_write(txd, 0, word);
  1262. }
  1263. /*
  1264. * TX data initialization
  1265. */
  1266. static void rt73usb_write_beacon(struct queue_entry *entry)
  1267. {
  1268. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1269. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1270. unsigned int beacon_base;
  1271. u32 reg;
  1272. /*
  1273. * Add the descriptor in front of the skb.
  1274. */
  1275. skb_push(entry->skb, entry->queue->desc_size);
  1276. memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
  1277. skbdesc->desc = entry->skb->data;
  1278. /*
  1279. * Disable beaconing while we are reloading the beacon data,
  1280. * otherwise we might be sending out invalid data.
  1281. */
  1282. rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
  1283. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
  1284. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
  1285. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  1286. rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
  1287. /*
  1288. * Write entire beacon with descriptor to register.
  1289. */
  1290. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  1291. rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
  1292. USB_VENDOR_REQUEST_OUT, beacon_base,
  1293. entry->skb->data, entry->skb->len,
  1294. REGISTER_TIMEOUT32(entry->skb->len));
  1295. /*
  1296. * Clean up the beacon skb.
  1297. */
  1298. dev_kfree_skb(entry->skb);
  1299. entry->skb = NULL;
  1300. }
  1301. static int rt73usb_get_tx_data_len(struct queue_entry *entry)
  1302. {
  1303. int length;
  1304. /*
  1305. * The length _must_ be a multiple of 4,
  1306. * but it must _not_ be a multiple of the USB packet size.
  1307. */
  1308. length = roundup(entry->skb->len, 4);
  1309. length += (4 * !(length % entry->queue->usb_maxpacket));
  1310. return length;
  1311. }
  1312. static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1313. const enum data_queue_qid queue)
  1314. {
  1315. u32 reg;
  1316. if (queue != QID_BEACON) {
  1317. rt2x00usb_kick_tx_queue(rt2x00dev, queue);
  1318. return;
  1319. }
  1320. /*
  1321. * For Wi-Fi faily generated beacons between participating stations.
  1322. * Set TBTT phase adaptive adjustment step to 8us (default 16us)
  1323. */
  1324. rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
  1325. rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
  1326. if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
  1327. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  1328. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  1329. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
  1330. rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
  1331. }
  1332. }
  1333. /*
  1334. * RX control handlers
  1335. */
  1336. static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
  1337. {
  1338. u8 offset = rt2x00dev->lna_gain;
  1339. u8 lna;
  1340. lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
  1341. switch (lna) {
  1342. case 3:
  1343. offset += 90;
  1344. break;
  1345. case 2:
  1346. offset += 74;
  1347. break;
  1348. case 1:
  1349. offset += 64;
  1350. break;
  1351. default:
  1352. return 0;
  1353. }
  1354. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  1355. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
  1356. if (lna == 3 || lna == 2)
  1357. offset += 10;
  1358. } else {
  1359. if (lna == 3)
  1360. offset += 6;
  1361. else if (lna == 2)
  1362. offset += 8;
  1363. }
  1364. }
  1365. return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
  1366. }
  1367. static void rt73usb_fill_rxdone(struct queue_entry *entry,
  1368. struct rxdone_entry_desc *rxdesc)
  1369. {
  1370. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1371. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1372. __le32 *rxd = (__le32 *)entry->skb->data;
  1373. u32 word0;
  1374. u32 word1;
  1375. /*
  1376. * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
  1377. * frame data in rt2x00usb.
  1378. */
  1379. memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
  1380. rxd = (__le32 *)skbdesc->desc;
  1381. /*
  1382. * It is now safe to read the descriptor on all architectures.
  1383. */
  1384. rt2x00_desc_read(rxd, 0, &word0);
  1385. rt2x00_desc_read(rxd, 1, &word1);
  1386. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1387. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1388. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  1389. rxdesc->cipher =
  1390. rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
  1391. rxdesc->cipher_status =
  1392. rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
  1393. }
  1394. if (rxdesc->cipher != CIPHER_NONE) {
  1395. _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
  1396. _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
  1397. rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
  1398. _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
  1399. rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
  1400. /*
  1401. * Hardware has stripped IV/EIV data from 802.11 frame during
  1402. * decryption. It has provided the data seperately but rt2x00lib
  1403. * should decide if it should be reinserted.
  1404. */
  1405. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  1406. /*
  1407. * FIXME: Legacy driver indicates that the frame does
  1408. * contain the Michael Mic. Unfortunately, in rt2x00
  1409. * the MIC seems to be missing completely...
  1410. */
  1411. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  1412. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1413. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1414. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1415. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1416. }
  1417. /*
  1418. * Obtain the status about this packet.
  1419. * When frame was received with an OFDM bitrate,
  1420. * the signal is the PLCP value. If it was received with
  1421. * a CCK bitrate the signal is the rate in 100kbit/s.
  1422. */
  1423. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1424. rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
  1425. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1426. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1427. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1428. else
  1429. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1430. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1431. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1432. /*
  1433. * Set skb pointers, and update frame information.
  1434. */
  1435. skb_pull(entry->skb, entry->queue->desc_size);
  1436. skb_trim(entry->skb, rxdesc->size);
  1437. }
  1438. /*
  1439. * Device probe functions.
  1440. */
  1441. static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1442. {
  1443. u16 word;
  1444. u8 *mac;
  1445. s8 value;
  1446. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1447. /*
  1448. * Start validation of the data that has been read.
  1449. */
  1450. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1451. if (!is_valid_ether_addr(mac)) {
  1452. random_ether_addr(mac);
  1453. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1454. }
  1455. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1456. if (word == 0xffff) {
  1457. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1458. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1459. ANTENNA_B);
  1460. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1461. ANTENNA_B);
  1462. rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
  1463. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1464. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1465. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
  1466. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1467. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1468. }
  1469. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1470. if (word == 0xffff) {
  1471. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
  1472. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1473. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1474. }
  1475. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
  1476. if (word == 0xffff) {
  1477. rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
  1478. rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
  1479. rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
  1480. rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
  1481. rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
  1482. rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
  1483. rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
  1484. rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
  1485. rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
  1486. LED_MODE_DEFAULT);
  1487. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
  1488. EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
  1489. }
  1490. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  1491. if (word == 0xffff) {
  1492. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  1493. rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
  1494. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  1495. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  1496. }
  1497. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
  1498. if (word == 0xffff) {
  1499. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1500. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1501. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1502. EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
  1503. } else {
  1504. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
  1505. if (value < -10 || value > 10)
  1506. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1507. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
  1508. if (value < -10 || value > 10)
  1509. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1510. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1511. }
  1512. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
  1513. if (word == 0xffff) {
  1514. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1515. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1516. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1517. EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
  1518. } else {
  1519. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
  1520. if (value < -10 || value > 10)
  1521. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1522. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
  1523. if (value < -10 || value > 10)
  1524. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1525. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1526. }
  1527. return 0;
  1528. }
  1529. static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1530. {
  1531. u32 reg;
  1532. u16 value;
  1533. u16 eeprom;
  1534. /*
  1535. * Read EEPROM word for configuration.
  1536. */
  1537. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1538. /*
  1539. * Identify RF chipset.
  1540. */
  1541. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1542. rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1543. rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
  1544. if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) {
  1545. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1546. return -ENODEV;
  1547. }
  1548. if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
  1549. !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
  1550. !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
  1551. !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
  1552. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1553. return -ENODEV;
  1554. }
  1555. /*
  1556. * Identify default antenna configuration.
  1557. */
  1558. rt2x00dev->default_ant.tx =
  1559. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1560. rt2x00dev->default_ant.rx =
  1561. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1562. /*
  1563. * Read the Frame type.
  1564. */
  1565. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
  1566. __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
  1567. /*
  1568. * Read frequency offset.
  1569. */
  1570. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  1571. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  1572. /*
  1573. * Read external LNA informations.
  1574. */
  1575. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1576. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
  1577. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  1578. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  1579. }
  1580. /*
  1581. * Store led settings, for correct led behaviour.
  1582. */
  1583. #ifdef CONFIG_RT2X00_LIB_LEDS
  1584. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
  1585. rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1586. rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
  1587. if (value == LED_MODE_SIGNAL_STRENGTH)
  1588. rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1589. LED_TYPE_QUALITY);
  1590. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
  1591. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
  1592. rt2x00_get_field16(eeprom,
  1593. EEPROM_LED_POLARITY_GPIO_0));
  1594. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
  1595. rt2x00_get_field16(eeprom,
  1596. EEPROM_LED_POLARITY_GPIO_1));
  1597. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
  1598. rt2x00_get_field16(eeprom,
  1599. EEPROM_LED_POLARITY_GPIO_2));
  1600. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
  1601. rt2x00_get_field16(eeprom,
  1602. EEPROM_LED_POLARITY_GPIO_3));
  1603. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
  1604. rt2x00_get_field16(eeprom,
  1605. EEPROM_LED_POLARITY_GPIO_4));
  1606. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
  1607. rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
  1608. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
  1609. rt2x00_get_field16(eeprom,
  1610. EEPROM_LED_POLARITY_RDY_G));
  1611. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
  1612. rt2x00_get_field16(eeprom,
  1613. EEPROM_LED_POLARITY_RDY_A));
  1614. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1615. return 0;
  1616. }
  1617. /*
  1618. * RF value list for RF2528
  1619. * Supports: 2.4 GHz
  1620. */
  1621. static const struct rf_channel rf_vals_bg_2528[] = {
  1622. { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
  1623. { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
  1624. { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
  1625. { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
  1626. { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
  1627. { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
  1628. { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
  1629. { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
  1630. { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
  1631. { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
  1632. { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
  1633. { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
  1634. { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
  1635. { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
  1636. };
  1637. /*
  1638. * RF value list for RF5226
  1639. * Supports: 2.4 GHz & 5.2 GHz
  1640. */
  1641. static const struct rf_channel rf_vals_5226[] = {
  1642. { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
  1643. { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
  1644. { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
  1645. { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
  1646. { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
  1647. { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
  1648. { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
  1649. { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
  1650. { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
  1651. { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
  1652. { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
  1653. { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
  1654. { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
  1655. { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
  1656. /* 802.11 UNI / HyperLan 2 */
  1657. { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
  1658. { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
  1659. { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
  1660. { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
  1661. { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
  1662. { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
  1663. { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
  1664. { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
  1665. /* 802.11 HyperLan 2 */
  1666. { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
  1667. { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
  1668. { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
  1669. { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
  1670. { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
  1671. { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
  1672. { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
  1673. { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
  1674. { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
  1675. { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
  1676. /* 802.11 UNII */
  1677. { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
  1678. { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
  1679. { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
  1680. { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
  1681. { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
  1682. { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
  1683. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1684. { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
  1685. { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
  1686. { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
  1687. { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
  1688. };
  1689. /*
  1690. * RF value list for RF5225 & RF2527
  1691. * Supports: 2.4 GHz & 5.2 GHz
  1692. */
  1693. static const struct rf_channel rf_vals_5225_2527[] = {
  1694. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1695. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1696. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1697. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1698. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1699. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1700. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1701. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1702. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1703. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1704. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1705. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1706. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1707. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1708. /* 802.11 UNI / HyperLan 2 */
  1709. { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
  1710. { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
  1711. { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
  1712. { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
  1713. { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
  1714. { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
  1715. { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
  1716. { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
  1717. /* 802.11 HyperLan 2 */
  1718. { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
  1719. { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
  1720. { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
  1721. { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
  1722. { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
  1723. { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
  1724. { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
  1725. { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
  1726. { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
  1727. { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
  1728. /* 802.11 UNII */
  1729. { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
  1730. { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
  1731. { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
  1732. { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
  1733. { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
  1734. { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
  1735. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1736. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
  1737. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
  1738. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
  1739. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
  1740. };
  1741. static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1742. {
  1743. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1744. struct channel_info *info;
  1745. char *tx_power;
  1746. unsigned int i;
  1747. /*
  1748. * Initialize all hw fields.
  1749. */
  1750. rt2x00dev->hw->flags =
  1751. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1752. IEEE80211_HW_SIGNAL_DBM;
  1753. rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
  1754. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1755. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1756. rt2x00_eeprom_addr(rt2x00dev,
  1757. EEPROM_MAC_ADDR_0));
  1758. /*
  1759. * Initialize hw_mode information.
  1760. */
  1761. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1762. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1763. if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
  1764. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
  1765. spec->channels = rf_vals_bg_2528;
  1766. } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
  1767. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1768. spec->num_channels = ARRAY_SIZE(rf_vals_5226);
  1769. spec->channels = rf_vals_5226;
  1770. } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
  1771. spec->num_channels = 14;
  1772. spec->channels = rf_vals_5225_2527;
  1773. } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
  1774. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1775. spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
  1776. spec->channels = rf_vals_5225_2527;
  1777. }
  1778. /*
  1779. * Create channel information array
  1780. */
  1781. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1782. if (!info)
  1783. return -ENOMEM;
  1784. spec->channels_info = info;
  1785. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
  1786. for (i = 0; i < 14; i++)
  1787. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1788. if (spec->num_channels > 14) {
  1789. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
  1790. for (i = 14; i < spec->num_channels; i++)
  1791. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1792. }
  1793. return 0;
  1794. }
  1795. static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1796. {
  1797. int retval;
  1798. /*
  1799. * Allocate eeprom data.
  1800. */
  1801. retval = rt73usb_validate_eeprom(rt2x00dev);
  1802. if (retval)
  1803. return retval;
  1804. retval = rt73usb_init_eeprom(rt2x00dev);
  1805. if (retval)
  1806. return retval;
  1807. /*
  1808. * Initialize hw specifications.
  1809. */
  1810. retval = rt73usb_probe_hw_mode(rt2x00dev);
  1811. if (retval)
  1812. return retval;
  1813. /*
  1814. * This device requires firmware.
  1815. */
  1816. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1817. __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
  1818. if (!modparam_nohwcrypt)
  1819. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1820. /*
  1821. * Set the rssi offset.
  1822. */
  1823. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1824. return 0;
  1825. }
  1826. /*
  1827. * IEEE80211 stack callback functions.
  1828. */
  1829. static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
  1830. const struct ieee80211_tx_queue_params *params)
  1831. {
  1832. struct rt2x00_dev *rt2x00dev = hw->priv;
  1833. struct data_queue *queue;
  1834. struct rt2x00_field32 field;
  1835. int retval;
  1836. u32 reg;
  1837. /*
  1838. * First pass the configuration through rt2x00lib, that will
  1839. * update the queue settings and validate the input. After that
  1840. * we are free to update the registers based on the value
  1841. * in the queue parameter.
  1842. */
  1843. retval = rt2x00mac_conf_tx(hw, queue_idx, params);
  1844. if (retval)
  1845. return retval;
  1846. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1847. /* Update WMM TXOP register */
  1848. if (queue_idx < 2) {
  1849. field.bit_offset = queue_idx * 16;
  1850. field.bit_mask = 0xffff << field.bit_offset;
  1851. rt2x00usb_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
  1852. rt2x00_set_field32(&reg, field, queue->txop);
  1853. rt2x00usb_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
  1854. } else if (queue_idx < 4) {
  1855. field.bit_offset = (queue_idx - 2) * 16;
  1856. field.bit_mask = 0xffff << field.bit_offset;
  1857. rt2x00usb_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
  1858. rt2x00_set_field32(&reg, field, queue->txop);
  1859. rt2x00usb_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
  1860. }
  1861. /* Update WMM registers */
  1862. field.bit_offset = queue_idx * 4;
  1863. field.bit_mask = 0xf << field.bit_offset;
  1864. rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
  1865. rt2x00_set_field32(&reg, field, queue->aifs);
  1866. rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
  1867. rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
  1868. rt2x00_set_field32(&reg, field, queue->cw_min);
  1869. rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
  1870. rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
  1871. rt2x00_set_field32(&reg, field, queue->cw_max);
  1872. rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
  1873. return 0;
  1874. }
  1875. #if 0
  1876. /*
  1877. * Mac80211 demands get_tsf must be atomic.
  1878. * This is not possible for rt73usb since all register access
  1879. * functions require sleeping. Untill mac80211 no longer needs
  1880. * get_tsf to be atomic, this function should be disabled.
  1881. */
  1882. static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
  1883. {
  1884. struct rt2x00_dev *rt2x00dev = hw->priv;
  1885. u64 tsf;
  1886. u32 reg;
  1887. rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
  1888. tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
  1889. rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
  1890. tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
  1891. return tsf;
  1892. }
  1893. #else
  1894. #define rt73usb_get_tsf NULL
  1895. #endif
  1896. static const struct ieee80211_ops rt73usb_mac80211_ops = {
  1897. .tx = rt2x00mac_tx,
  1898. .start = rt2x00mac_start,
  1899. .stop = rt2x00mac_stop,
  1900. .add_interface = rt2x00mac_add_interface,
  1901. .remove_interface = rt2x00mac_remove_interface,
  1902. .config = rt2x00mac_config,
  1903. .config_interface = rt2x00mac_config_interface,
  1904. .configure_filter = rt2x00mac_configure_filter,
  1905. .set_key = rt2x00mac_set_key,
  1906. .get_stats = rt2x00mac_get_stats,
  1907. .bss_info_changed = rt2x00mac_bss_info_changed,
  1908. .conf_tx = rt73usb_conf_tx,
  1909. .get_tx_stats = rt2x00mac_get_tx_stats,
  1910. .get_tsf = rt73usb_get_tsf,
  1911. };
  1912. static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
  1913. .probe_hw = rt73usb_probe_hw,
  1914. .get_firmware_name = rt73usb_get_firmware_name,
  1915. .get_firmware_crc = rt73usb_get_firmware_crc,
  1916. .load_firmware = rt73usb_load_firmware,
  1917. .initialize = rt2x00usb_initialize,
  1918. .uninitialize = rt2x00usb_uninitialize,
  1919. .clear_entry = rt2x00usb_clear_entry,
  1920. .set_device_state = rt73usb_set_device_state,
  1921. .link_stats = rt73usb_link_stats,
  1922. .reset_tuner = rt73usb_reset_tuner,
  1923. .link_tuner = rt73usb_link_tuner,
  1924. .write_tx_desc = rt73usb_write_tx_desc,
  1925. .write_tx_data = rt2x00usb_write_tx_data,
  1926. .write_beacon = rt73usb_write_beacon,
  1927. .get_tx_data_len = rt73usb_get_tx_data_len,
  1928. .kick_tx_queue = rt73usb_kick_tx_queue,
  1929. .fill_rxdone = rt73usb_fill_rxdone,
  1930. .config_shared_key = rt73usb_config_shared_key,
  1931. .config_pairwise_key = rt73usb_config_pairwise_key,
  1932. .config_filter = rt73usb_config_filter,
  1933. .config_intf = rt73usb_config_intf,
  1934. .config_erp = rt73usb_config_erp,
  1935. .config_ant = rt73usb_config_ant,
  1936. .config = rt73usb_config,
  1937. };
  1938. static const struct data_queue_desc rt73usb_queue_rx = {
  1939. .entry_num = RX_ENTRIES,
  1940. .data_size = DATA_FRAME_SIZE,
  1941. .desc_size = RXD_DESC_SIZE,
  1942. .priv_size = sizeof(struct queue_entry_priv_usb),
  1943. };
  1944. static const struct data_queue_desc rt73usb_queue_tx = {
  1945. .entry_num = TX_ENTRIES,
  1946. .data_size = DATA_FRAME_SIZE,
  1947. .desc_size = TXD_DESC_SIZE,
  1948. .priv_size = sizeof(struct queue_entry_priv_usb),
  1949. };
  1950. static const struct data_queue_desc rt73usb_queue_bcn = {
  1951. .entry_num = 4 * BEACON_ENTRIES,
  1952. .data_size = MGMT_FRAME_SIZE,
  1953. .desc_size = TXINFO_SIZE,
  1954. .priv_size = sizeof(struct queue_entry_priv_usb),
  1955. };
  1956. static const struct rt2x00_ops rt73usb_ops = {
  1957. .name = KBUILD_MODNAME,
  1958. .max_sta_intf = 1,
  1959. .max_ap_intf = 4,
  1960. .eeprom_size = EEPROM_SIZE,
  1961. .rf_size = RF_SIZE,
  1962. .tx_queues = NUM_TX_QUEUES,
  1963. .rx = &rt73usb_queue_rx,
  1964. .tx = &rt73usb_queue_tx,
  1965. .bcn = &rt73usb_queue_bcn,
  1966. .lib = &rt73usb_rt2x00_ops,
  1967. .hw = &rt73usb_mac80211_ops,
  1968. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1969. .debugfs = &rt73usb_rt2x00debug,
  1970. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1971. };
  1972. /*
  1973. * rt73usb module information.
  1974. */
  1975. static struct usb_device_id rt73usb_device_table[] = {
  1976. /* AboCom */
  1977. { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
  1978. /* Askey */
  1979. { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
  1980. /* ASUS */
  1981. { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
  1982. { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
  1983. /* Belkin */
  1984. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
  1985. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
  1986. { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
  1987. { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
  1988. /* Billionton */
  1989. { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
  1990. /* Buffalo */
  1991. { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
  1992. /* CNet */
  1993. { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
  1994. { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
  1995. /* Conceptronic */
  1996. { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
  1997. /* Corega */
  1998. { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
  1999. /* D-Link */
  2000. { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
  2001. { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
  2002. { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
  2003. { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
  2004. /* Gemtek */
  2005. { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
  2006. /* Gigabyte */
  2007. { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
  2008. { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
  2009. /* Huawei-3Com */
  2010. { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
  2011. /* Hercules */
  2012. { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
  2013. { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
  2014. /* Linksys */
  2015. { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
  2016. { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
  2017. /* MSI */
  2018. { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
  2019. { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
  2020. { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
  2021. { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
  2022. /* Ralink */
  2023. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
  2024. { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
  2025. /* Qcom */
  2026. { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
  2027. { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
  2028. { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
  2029. /* Senao */
  2030. { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
  2031. /* Sitecom */
  2032. { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
  2033. { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
  2034. /* Surecom */
  2035. { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
  2036. /* Planex */
  2037. { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
  2038. { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
  2039. { 0, }
  2040. };
  2041. MODULE_AUTHOR(DRV_PROJECT);
  2042. MODULE_VERSION(DRV_VERSION);
  2043. MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
  2044. MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
  2045. MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
  2046. MODULE_FIRMWARE(FIRMWARE_RT2571);
  2047. MODULE_LICENSE("GPL");
  2048. static struct usb_driver rt73usb_driver = {
  2049. .name = KBUILD_MODNAME,
  2050. .id_table = rt73usb_device_table,
  2051. .probe = rt2x00usb_probe,
  2052. .disconnect = rt2x00usb_disconnect,
  2053. .suspend = rt2x00usb_suspend,
  2054. .resume = rt2x00usb_resume,
  2055. };
  2056. static int __init rt73usb_init(void)
  2057. {
  2058. return usb_register(&rt73usb_driver);
  2059. }
  2060. static void __exit rt73usb_exit(void)
  2061. {
  2062. usb_deregister(&rt73usb_driver);
  2063. }
  2064. module_init(rt73usb_init);
  2065. module_exit(rt73usb_exit);