rt2400pci.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. #define WAIT_FOR_BBP(__dev, __reg) \
  46. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  47. #define WAIT_FOR_RF(__dev, __reg) \
  48. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  49. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  50. const unsigned int word, const u8 value)
  51. {
  52. u32 reg;
  53. mutex_lock(&rt2x00dev->csr_mutex);
  54. /*
  55. * Wait until the BBP becomes available, afterwards we
  56. * can safely write the new data into the register.
  57. */
  58. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  59. reg = 0;
  60. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  61. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  62. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  63. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  64. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  65. }
  66. mutex_unlock(&rt2x00dev->csr_mutex);
  67. }
  68. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  69. const unsigned int word, u8 *value)
  70. {
  71. u32 reg;
  72. mutex_lock(&rt2x00dev->csr_mutex);
  73. /*
  74. * Wait until the BBP becomes available, afterwards we
  75. * can safely write the read request into the register.
  76. * After the data has been written, we wait until hardware
  77. * returns the correct value, if at any time the register
  78. * doesn't become available in time, reg will be 0xffffffff
  79. * which means we return 0xff to the caller.
  80. */
  81. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  82. reg = 0;
  83. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  84. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  85. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  86. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  87. WAIT_FOR_BBP(rt2x00dev, &reg);
  88. }
  89. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  90. mutex_unlock(&rt2x00dev->csr_mutex);
  91. }
  92. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  93. const unsigned int word, const u32 value)
  94. {
  95. u32 reg;
  96. if (!word)
  97. return;
  98. mutex_lock(&rt2x00dev->csr_mutex);
  99. /*
  100. * Wait until the RF becomes available, afterwards we
  101. * can safely write the new data into the register.
  102. */
  103. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  104. reg = 0;
  105. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  106. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  107. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  108. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  109. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  110. rt2x00_rf_write(rt2x00dev, word, value);
  111. }
  112. mutex_unlock(&rt2x00dev->csr_mutex);
  113. }
  114. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  115. {
  116. struct rt2x00_dev *rt2x00dev = eeprom->data;
  117. u32 reg;
  118. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  119. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  120. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  121. eeprom->reg_data_clock =
  122. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  123. eeprom->reg_chip_select =
  124. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  125. }
  126. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  127. {
  128. struct rt2x00_dev *rt2x00dev = eeprom->data;
  129. u32 reg = 0;
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  132. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  133. !!eeprom->reg_data_clock);
  134. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  135. !!eeprom->reg_chip_select);
  136. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  137. }
  138. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  139. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  140. .owner = THIS_MODULE,
  141. .csr = {
  142. .read = rt2x00pci_register_read,
  143. .write = rt2x00pci_register_write,
  144. .flags = RT2X00DEBUGFS_OFFSET,
  145. .word_base = CSR_REG_BASE,
  146. .word_size = sizeof(u32),
  147. .word_count = CSR_REG_SIZE / sizeof(u32),
  148. },
  149. .eeprom = {
  150. .read = rt2x00_eeprom_read,
  151. .write = rt2x00_eeprom_write,
  152. .word_base = EEPROM_BASE,
  153. .word_size = sizeof(u16),
  154. .word_count = EEPROM_SIZE / sizeof(u16),
  155. },
  156. .bbp = {
  157. .read = rt2400pci_bbp_read,
  158. .write = rt2400pci_bbp_write,
  159. .word_base = BBP_BASE,
  160. .word_size = sizeof(u8),
  161. .word_count = BBP_SIZE / sizeof(u8),
  162. },
  163. .rf = {
  164. .read = rt2x00_rf_read,
  165. .write = rt2400pci_rf_write,
  166. .word_base = RF_BASE,
  167. .word_size = sizeof(u32),
  168. .word_count = RF_SIZE / sizeof(u32),
  169. },
  170. };
  171. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  172. #ifdef CONFIG_RT2X00_LIB_RFKILL
  173. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  174. {
  175. u32 reg;
  176. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  177. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  178. }
  179. #else
  180. #define rt2400pci_rfkill_poll NULL
  181. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  182. #ifdef CONFIG_RT2X00_LIB_LEDS
  183. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  184. enum led_brightness brightness)
  185. {
  186. struct rt2x00_led *led =
  187. container_of(led_cdev, struct rt2x00_led, led_dev);
  188. unsigned int enabled = brightness != LED_OFF;
  189. u32 reg;
  190. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  191. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  192. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  193. else if (led->type == LED_TYPE_ACTIVITY)
  194. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  195. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  196. }
  197. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  198. unsigned long *delay_on,
  199. unsigned long *delay_off)
  200. {
  201. struct rt2x00_led *led =
  202. container_of(led_cdev, struct rt2x00_led, led_dev);
  203. u32 reg;
  204. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  205. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  206. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  207. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  208. return 0;
  209. }
  210. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  211. struct rt2x00_led *led,
  212. enum led_type type)
  213. {
  214. led->rt2x00dev = rt2x00dev;
  215. led->type = type;
  216. led->led_dev.brightness_set = rt2400pci_brightness_set;
  217. led->led_dev.blink_set = rt2400pci_blink_set;
  218. led->flags = LED_INITIALIZED;
  219. }
  220. #endif /* CONFIG_RT2X00_LIB_LEDS */
  221. /*
  222. * Configuration handlers.
  223. */
  224. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  225. const unsigned int filter_flags)
  226. {
  227. u32 reg;
  228. /*
  229. * Start configuration steps.
  230. * Note that the version error will always be dropped
  231. * since there is no filter for it at this time.
  232. */
  233. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  234. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  235. !(filter_flags & FIF_FCSFAIL));
  236. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  237. !(filter_flags & FIF_PLCPFAIL));
  238. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  239. !(filter_flags & FIF_CONTROL));
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  241. !(filter_flags & FIF_PROMISC_IN_BSS));
  242. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  243. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  244. !rt2x00dev->intf_ap_count);
  245. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  246. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  247. }
  248. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  249. struct rt2x00_intf *intf,
  250. struct rt2x00intf_conf *conf,
  251. const unsigned int flags)
  252. {
  253. unsigned int bcn_preload;
  254. u32 reg;
  255. if (flags & CONFIG_UPDATE_TYPE) {
  256. /*
  257. * Enable beacon config
  258. */
  259. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  260. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  261. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  262. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  263. /*
  264. * Enable synchronisation.
  265. */
  266. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  267. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  268. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  269. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  270. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  271. }
  272. if (flags & CONFIG_UPDATE_MAC)
  273. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  274. conf->mac, sizeof(conf->mac));
  275. if (flags & CONFIG_UPDATE_BSSID)
  276. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  277. conf->bssid, sizeof(conf->bssid));
  278. }
  279. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  280. struct rt2x00lib_erp *erp)
  281. {
  282. int preamble_mask;
  283. u32 reg;
  284. /*
  285. * When short preamble is enabled, we should set bit 0x08
  286. */
  287. preamble_mask = erp->short_preamble << 3;
  288. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  289. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  290. erp->ack_timeout);
  291. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  292. erp->ack_consume_time);
  293. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  294. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  295. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  296. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  297. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  298. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  299. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  300. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  301. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  302. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  303. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  304. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  305. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  306. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  307. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  308. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  309. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  310. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  311. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  312. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  313. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  314. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  315. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  316. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  317. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  318. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  319. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  320. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  321. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  322. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  323. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  324. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  325. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  326. }
  327. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  328. struct antenna_setup *ant)
  329. {
  330. u8 r1;
  331. u8 r4;
  332. /*
  333. * We should never come here because rt2x00lib is supposed
  334. * to catch this and send us the correct antenna explicitely.
  335. */
  336. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  337. ant->tx == ANTENNA_SW_DIVERSITY);
  338. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  339. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  340. /*
  341. * Configure the TX antenna.
  342. */
  343. switch (ant->tx) {
  344. case ANTENNA_HW_DIVERSITY:
  345. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  346. break;
  347. case ANTENNA_A:
  348. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  349. break;
  350. case ANTENNA_B:
  351. default:
  352. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  353. break;
  354. }
  355. /*
  356. * Configure the RX antenna.
  357. */
  358. switch (ant->rx) {
  359. case ANTENNA_HW_DIVERSITY:
  360. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  361. break;
  362. case ANTENNA_A:
  363. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  364. break;
  365. case ANTENNA_B:
  366. default:
  367. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  368. break;
  369. }
  370. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  371. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  372. }
  373. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  374. struct rf_channel *rf)
  375. {
  376. /*
  377. * Switch on tuning bits.
  378. */
  379. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  380. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  381. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  382. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  383. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  384. /*
  385. * RF2420 chipset don't need any additional actions.
  386. */
  387. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  388. return;
  389. /*
  390. * For the RT2421 chipsets we need to write an invalid
  391. * reference clock rate to activate auto_tune.
  392. * After that we set the value back to the correct channel.
  393. */
  394. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  395. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  396. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  397. msleep(1);
  398. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  399. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  400. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  401. msleep(1);
  402. /*
  403. * Switch off tuning bits.
  404. */
  405. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  406. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  407. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  408. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  409. /*
  410. * Clear false CRC during channel switch.
  411. */
  412. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  413. }
  414. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  415. {
  416. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  417. }
  418. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  419. struct rt2x00lib_conf *libconf)
  420. {
  421. u32 reg;
  422. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  423. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  424. libconf->conf->long_frame_max_tx_count);
  425. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  426. libconf->conf->short_frame_max_tx_count);
  427. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  428. }
  429. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  430. struct rt2x00lib_conf *libconf)
  431. {
  432. u32 reg;
  433. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  434. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  435. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  436. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  437. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  438. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  439. libconf->conf->beacon_int * 16);
  440. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  441. libconf->conf->beacon_int * 16);
  442. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  443. }
  444. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  445. struct rt2x00lib_conf *libconf,
  446. const unsigned int flags)
  447. {
  448. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  449. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  450. if (flags & IEEE80211_CONF_CHANGE_POWER)
  451. rt2400pci_config_txpower(rt2x00dev,
  452. libconf->conf->power_level);
  453. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  454. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  455. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  456. rt2400pci_config_duration(rt2x00dev, libconf);
  457. }
  458. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  459. const int cw_min, const int cw_max)
  460. {
  461. u32 reg;
  462. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  463. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  464. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  465. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  466. }
  467. /*
  468. * Link tuning
  469. */
  470. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  471. struct link_qual *qual)
  472. {
  473. u32 reg;
  474. u8 bbp;
  475. /*
  476. * Update FCS error count from register.
  477. */
  478. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  479. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  480. /*
  481. * Update False CCA count from register.
  482. */
  483. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  484. qual->false_cca = bbp;
  485. }
  486. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  487. {
  488. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  489. rt2x00dev->link.vgc_level = 0x08;
  490. }
  491. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  492. {
  493. u8 reg;
  494. /*
  495. * The link tuner should not run longer then 60 seconds,
  496. * and should run once every 2 seconds.
  497. */
  498. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  499. return;
  500. /*
  501. * Base r13 link tuning on the false cca count.
  502. */
  503. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  504. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  505. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  506. rt2x00dev->link.vgc_level = reg;
  507. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  508. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  509. rt2x00dev->link.vgc_level = reg;
  510. }
  511. }
  512. /*
  513. * Initialization functions.
  514. */
  515. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  516. {
  517. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  518. u32 word;
  519. if (entry->queue->qid == QID_RX) {
  520. rt2x00_desc_read(entry_priv->desc, 0, &word);
  521. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  522. } else {
  523. rt2x00_desc_read(entry_priv->desc, 0, &word);
  524. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  525. rt2x00_get_field32(word, TXD_W0_VALID));
  526. }
  527. }
  528. static void rt2400pci_clear_entry(struct queue_entry *entry)
  529. {
  530. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  531. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  532. u32 word;
  533. if (entry->queue->qid == QID_RX) {
  534. rt2x00_desc_read(entry_priv->desc, 2, &word);
  535. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  536. rt2x00_desc_write(entry_priv->desc, 2, word);
  537. rt2x00_desc_read(entry_priv->desc, 1, &word);
  538. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  539. rt2x00_desc_write(entry_priv->desc, 1, word);
  540. rt2x00_desc_read(entry_priv->desc, 0, &word);
  541. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  542. rt2x00_desc_write(entry_priv->desc, 0, word);
  543. } else {
  544. rt2x00_desc_read(entry_priv->desc, 0, &word);
  545. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  546. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  547. rt2x00_desc_write(entry_priv->desc, 0, word);
  548. }
  549. }
  550. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  551. {
  552. struct queue_entry_priv_pci *entry_priv;
  553. u32 reg;
  554. /*
  555. * Initialize registers.
  556. */
  557. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  558. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  559. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  560. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  561. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  562. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  563. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  564. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  565. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  566. entry_priv->desc_dma);
  567. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  568. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  569. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  570. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  571. entry_priv->desc_dma);
  572. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  573. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  574. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  575. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  576. entry_priv->desc_dma);
  577. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  578. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  579. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  580. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  581. entry_priv->desc_dma);
  582. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  583. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  584. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  585. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  586. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  587. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  588. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  589. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  590. entry_priv->desc_dma);
  591. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  592. return 0;
  593. }
  594. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  595. {
  596. u32 reg;
  597. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  598. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  599. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  600. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  601. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  602. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  603. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  604. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  605. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  606. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  607. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  608. (rt2x00dev->rx->data_size / 128));
  609. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  610. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  611. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  612. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  613. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  614. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  615. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  616. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  617. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  618. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  619. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  620. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  621. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  622. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  623. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  624. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  625. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  626. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  627. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  628. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  629. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  630. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  631. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  632. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  633. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  634. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  635. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  636. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  637. return -EBUSY;
  638. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  639. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  640. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  641. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  642. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  643. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  644. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  645. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  646. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  647. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  648. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  649. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  650. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  651. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  652. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  653. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  654. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  655. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  656. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  657. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  658. /*
  659. * We must clear the FCS and FIFO error count.
  660. * These registers are cleared on read,
  661. * so we may pass a useless variable to store the value.
  662. */
  663. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  664. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  665. return 0;
  666. }
  667. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  668. {
  669. unsigned int i;
  670. u8 value;
  671. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  672. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  673. if ((value != 0xff) && (value != 0x00))
  674. return 0;
  675. udelay(REGISTER_BUSY_DELAY);
  676. }
  677. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  678. return -EACCES;
  679. }
  680. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  681. {
  682. unsigned int i;
  683. u16 eeprom;
  684. u8 reg_id;
  685. u8 value;
  686. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  687. return -EACCES;
  688. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  689. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  690. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  691. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  692. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  693. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  694. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  695. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  696. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  697. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  698. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  699. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  700. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  701. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  702. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  703. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  704. if (eeprom != 0xffff && eeprom != 0x0000) {
  705. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  706. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  707. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  708. }
  709. }
  710. return 0;
  711. }
  712. /*
  713. * Device state switch handlers.
  714. */
  715. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  716. enum dev_state state)
  717. {
  718. u32 reg;
  719. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  720. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  721. (state == STATE_RADIO_RX_OFF) ||
  722. (state == STATE_RADIO_RX_OFF_LINK));
  723. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  724. }
  725. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  726. enum dev_state state)
  727. {
  728. int mask = (state == STATE_RADIO_IRQ_OFF);
  729. u32 reg;
  730. /*
  731. * When interrupts are being enabled, the interrupt registers
  732. * should clear the register to assure a clean state.
  733. */
  734. if (state == STATE_RADIO_IRQ_ON) {
  735. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  736. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  737. }
  738. /*
  739. * Only toggle the interrupts bits we are going to use.
  740. * Non-checked interrupt bits are disabled by default.
  741. */
  742. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  743. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  744. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  745. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  746. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  747. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  748. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  749. }
  750. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  751. {
  752. /*
  753. * Initialize all registers.
  754. */
  755. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  756. rt2400pci_init_registers(rt2x00dev) ||
  757. rt2400pci_init_bbp(rt2x00dev)))
  758. return -EIO;
  759. return 0;
  760. }
  761. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  762. {
  763. u32 reg;
  764. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  765. /*
  766. * Disable synchronisation.
  767. */
  768. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  769. /*
  770. * Cancel RX and TX.
  771. */
  772. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  773. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  774. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  775. }
  776. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  777. enum dev_state state)
  778. {
  779. u32 reg;
  780. unsigned int i;
  781. char put_to_sleep;
  782. char bbp_state;
  783. char rf_state;
  784. put_to_sleep = (state != STATE_AWAKE);
  785. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  786. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  787. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  788. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  789. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  790. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  791. /*
  792. * Device is not guaranteed to be in the requested state yet.
  793. * We must wait until the register indicates that the
  794. * device has entered the correct state.
  795. */
  796. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  797. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  798. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  799. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  800. if (bbp_state == state && rf_state == state)
  801. return 0;
  802. msleep(10);
  803. }
  804. return -EBUSY;
  805. }
  806. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  807. enum dev_state state)
  808. {
  809. int retval = 0;
  810. switch (state) {
  811. case STATE_RADIO_ON:
  812. retval = rt2400pci_enable_radio(rt2x00dev);
  813. break;
  814. case STATE_RADIO_OFF:
  815. rt2400pci_disable_radio(rt2x00dev);
  816. break;
  817. case STATE_RADIO_RX_ON:
  818. case STATE_RADIO_RX_ON_LINK:
  819. case STATE_RADIO_RX_OFF:
  820. case STATE_RADIO_RX_OFF_LINK:
  821. rt2400pci_toggle_rx(rt2x00dev, state);
  822. break;
  823. case STATE_RADIO_IRQ_ON:
  824. case STATE_RADIO_IRQ_OFF:
  825. rt2400pci_toggle_irq(rt2x00dev, state);
  826. break;
  827. case STATE_DEEP_SLEEP:
  828. case STATE_SLEEP:
  829. case STATE_STANDBY:
  830. case STATE_AWAKE:
  831. retval = rt2400pci_set_state(rt2x00dev, state);
  832. break;
  833. default:
  834. retval = -ENOTSUPP;
  835. break;
  836. }
  837. if (unlikely(retval))
  838. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  839. state, retval);
  840. return retval;
  841. }
  842. /*
  843. * TX descriptor initialization
  844. */
  845. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  846. struct sk_buff *skb,
  847. struct txentry_desc *txdesc)
  848. {
  849. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  850. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  851. __le32 *txd = skbdesc->desc;
  852. u32 word;
  853. /*
  854. * Start writing the descriptor words.
  855. */
  856. rt2x00_desc_read(entry_priv->desc, 1, &word);
  857. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  858. rt2x00_desc_write(entry_priv->desc, 1, word);
  859. rt2x00_desc_read(txd, 2, &word);
  860. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
  861. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
  862. rt2x00_desc_write(txd, 2, word);
  863. rt2x00_desc_read(txd, 3, &word);
  864. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  865. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  866. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  867. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  868. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  869. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  870. rt2x00_desc_write(txd, 3, word);
  871. rt2x00_desc_read(txd, 4, &word);
  872. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  873. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  874. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  875. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  876. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  877. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  878. rt2x00_desc_write(txd, 4, word);
  879. rt2x00_desc_read(txd, 0, &word);
  880. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  881. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  882. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  883. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  884. rt2x00_set_field32(&word, TXD_W0_ACK,
  885. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  886. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  887. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  888. rt2x00_set_field32(&word, TXD_W0_RTS,
  889. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  890. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  891. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  892. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  893. rt2x00_desc_write(txd, 0, word);
  894. }
  895. /*
  896. * TX data initialization
  897. */
  898. static void rt2400pci_write_beacon(struct queue_entry *entry)
  899. {
  900. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  901. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  902. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  903. u32 word;
  904. u32 reg;
  905. /*
  906. * Disable beaconing while we are reloading the beacon data,
  907. * otherwise we might be sending out invalid data.
  908. */
  909. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  910. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  911. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  912. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  913. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  914. /*
  915. * Replace rt2x00lib allocated descriptor with the
  916. * pointer to the _real_ hardware descriptor.
  917. * After that, map the beacon to DMA and update the
  918. * descriptor.
  919. */
  920. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  921. skbdesc->desc = entry_priv->desc;
  922. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  923. rt2x00_desc_read(entry_priv->desc, 1, &word);
  924. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  925. rt2x00_desc_write(entry_priv->desc, 1, word);
  926. }
  927. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  928. const enum data_queue_qid queue)
  929. {
  930. u32 reg;
  931. if (queue == QID_BEACON) {
  932. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  933. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  934. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  935. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  936. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  937. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  938. }
  939. return;
  940. }
  941. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  942. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  943. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  944. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  945. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  946. }
  947. /*
  948. * RX control handlers
  949. */
  950. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  951. struct rxdone_entry_desc *rxdesc)
  952. {
  953. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  954. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  955. u32 word0;
  956. u32 word2;
  957. u32 word3;
  958. u32 word4;
  959. u64 tsf;
  960. u32 rx_low;
  961. u32 rx_high;
  962. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  963. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  964. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  965. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  966. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  967. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  968. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  969. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  970. /*
  971. * We only get the lower 32bits from the timestamp,
  972. * to get the full 64bits we must complement it with
  973. * the timestamp from get_tsf().
  974. * Note that when a wraparound of the lower 32bits
  975. * has occurred between the frame arrival and the get_tsf()
  976. * call, we must decrease the higher 32bits with 1 to get
  977. * to correct value.
  978. */
  979. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
  980. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  981. rx_high = upper_32_bits(tsf);
  982. if ((u32)tsf <= rx_low)
  983. rx_high--;
  984. /*
  985. * Obtain the status about this packet.
  986. * The signal is the PLCP value, and needs to be stripped
  987. * of the preamble bit (0x08).
  988. */
  989. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  990. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  991. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  992. entry->queue->rt2x00dev->rssi_offset;
  993. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  994. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  995. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  996. rxdesc->dev_flags |= RXDONE_MY_BSS;
  997. }
  998. /*
  999. * Interrupt functions.
  1000. */
  1001. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1002. const enum data_queue_qid queue_idx)
  1003. {
  1004. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1005. struct queue_entry_priv_pci *entry_priv;
  1006. struct queue_entry *entry;
  1007. struct txdone_entry_desc txdesc;
  1008. u32 word;
  1009. while (!rt2x00queue_empty(queue)) {
  1010. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1011. entry_priv = entry->priv_data;
  1012. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1013. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1014. !rt2x00_get_field32(word, TXD_W0_VALID))
  1015. break;
  1016. /*
  1017. * Obtain the status about this packet.
  1018. */
  1019. txdesc.flags = 0;
  1020. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1021. case 0: /* Success */
  1022. case 1: /* Success with retry */
  1023. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1024. break;
  1025. case 2: /* Failure, excessive retries */
  1026. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1027. /* Don't break, this is a failed frame! */
  1028. default: /* Failure */
  1029. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1030. }
  1031. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1032. rt2x00lib_txdone(entry, &txdesc);
  1033. }
  1034. }
  1035. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1036. {
  1037. struct rt2x00_dev *rt2x00dev = dev_instance;
  1038. u32 reg;
  1039. /*
  1040. * Get the interrupt sources & saved to local variable.
  1041. * Write register value back to clear pending interrupts.
  1042. */
  1043. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1044. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1045. if (!reg)
  1046. return IRQ_NONE;
  1047. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1048. return IRQ_HANDLED;
  1049. /*
  1050. * Handle interrupts, walk through all bits
  1051. * and run the tasks, the bits are checked in order of
  1052. * priority.
  1053. */
  1054. /*
  1055. * 1 - Beacon timer expired interrupt.
  1056. */
  1057. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1058. rt2x00lib_beacondone(rt2x00dev);
  1059. /*
  1060. * 2 - Rx ring done interrupt.
  1061. */
  1062. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1063. rt2x00pci_rxdone(rt2x00dev);
  1064. /*
  1065. * 3 - Atim ring transmit done interrupt.
  1066. */
  1067. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1068. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1069. /*
  1070. * 4 - Priority ring transmit done interrupt.
  1071. */
  1072. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1073. rt2400pci_txdone(rt2x00dev, QID_AC_BE);
  1074. /*
  1075. * 5 - Tx ring transmit done interrupt.
  1076. */
  1077. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1078. rt2400pci_txdone(rt2x00dev, QID_AC_BK);
  1079. return IRQ_HANDLED;
  1080. }
  1081. /*
  1082. * Device probe functions.
  1083. */
  1084. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1085. {
  1086. struct eeprom_93cx6 eeprom;
  1087. u32 reg;
  1088. u16 word;
  1089. u8 *mac;
  1090. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1091. eeprom.data = rt2x00dev;
  1092. eeprom.register_read = rt2400pci_eepromregister_read;
  1093. eeprom.register_write = rt2400pci_eepromregister_write;
  1094. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1095. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1096. eeprom.reg_data_in = 0;
  1097. eeprom.reg_data_out = 0;
  1098. eeprom.reg_data_clock = 0;
  1099. eeprom.reg_chip_select = 0;
  1100. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1101. EEPROM_SIZE / sizeof(u16));
  1102. /*
  1103. * Start validation of the data that has been read.
  1104. */
  1105. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1106. if (!is_valid_ether_addr(mac)) {
  1107. random_ether_addr(mac);
  1108. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1109. }
  1110. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1111. if (word == 0xffff) {
  1112. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1113. return -EINVAL;
  1114. }
  1115. return 0;
  1116. }
  1117. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1118. {
  1119. u32 reg;
  1120. u16 value;
  1121. u16 eeprom;
  1122. /*
  1123. * Read EEPROM word for configuration.
  1124. */
  1125. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1126. /*
  1127. * Identify RF chipset.
  1128. */
  1129. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1130. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1131. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1132. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1133. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1134. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1135. return -ENODEV;
  1136. }
  1137. /*
  1138. * Identify default antenna configuration.
  1139. */
  1140. rt2x00dev->default_ant.tx =
  1141. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1142. rt2x00dev->default_ant.rx =
  1143. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1144. /*
  1145. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1146. * I am not 100% sure about this, but the legacy drivers do not
  1147. * indicate antenna swapping in software is required when
  1148. * diversity is enabled.
  1149. */
  1150. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1151. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1152. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1153. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1154. /*
  1155. * Store led mode, for correct led behaviour.
  1156. */
  1157. #ifdef CONFIG_RT2X00_LIB_LEDS
  1158. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1159. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1160. if (value == LED_MODE_TXRX_ACTIVITY)
  1161. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1162. LED_TYPE_ACTIVITY);
  1163. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1164. /*
  1165. * Detect if this device has an hardware controlled radio.
  1166. */
  1167. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1168. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1169. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1170. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1171. /*
  1172. * Check if the BBP tuning should be enabled.
  1173. */
  1174. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1175. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1176. return 0;
  1177. }
  1178. /*
  1179. * RF value list for RF2420 & RF2421
  1180. * Supports: 2.4 GHz
  1181. */
  1182. static const struct rf_channel rf_vals_b[] = {
  1183. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1184. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1185. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1186. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1187. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1188. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1189. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1190. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1191. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1192. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1193. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1194. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1195. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1196. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1197. };
  1198. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1199. {
  1200. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1201. struct channel_info *info;
  1202. char *tx_power;
  1203. unsigned int i;
  1204. /*
  1205. * Initialize all hw fields.
  1206. */
  1207. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1208. IEEE80211_HW_SIGNAL_DBM;
  1209. rt2x00dev->hw->extra_tx_headroom = 0;
  1210. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1211. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1212. rt2x00_eeprom_addr(rt2x00dev,
  1213. EEPROM_MAC_ADDR_0));
  1214. /*
  1215. * Initialize hw_mode information.
  1216. */
  1217. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1218. spec->supported_rates = SUPPORT_RATE_CCK;
  1219. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1220. spec->channels = rf_vals_b;
  1221. /*
  1222. * Create channel information array
  1223. */
  1224. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1225. if (!info)
  1226. return -ENOMEM;
  1227. spec->channels_info = info;
  1228. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1229. for (i = 0; i < 14; i++)
  1230. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1231. return 0;
  1232. }
  1233. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1234. {
  1235. int retval;
  1236. /*
  1237. * Allocate eeprom data.
  1238. */
  1239. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1240. if (retval)
  1241. return retval;
  1242. retval = rt2400pci_init_eeprom(rt2x00dev);
  1243. if (retval)
  1244. return retval;
  1245. /*
  1246. * Initialize hw specifications.
  1247. */
  1248. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1249. if (retval)
  1250. return retval;
  1251. /*
  1252. * This device requires the atim queue and DMA-mapped skbs.
  1253. */
  1254. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1255. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1256. /*
  1257. * Set the rssi offset.
  1258. */
  1259. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1260. return 0;
  1261. }
  1262. /*
  1263. * IEEE80211 stack callback functions.
  1264. */
  1265. static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
  1266. const struct ieee80211_tx_queue_params *params)
  1267. {
  1268. struct rt2x00_dev *rt2x00dev = hw->priv;
  1269. /*
  1270. * We don't support variating cw_min and cw_max variables
  1271. * per queue. So by default we only configure the TX queue,
  1272. * and ignore all other configurations.
  1273. */
  1274. if (queue != 0)
  1275. return -EINVAL;
  1276. if (rt2x00mac_conf_tx(hw, queue, params))
  1277. return -EINVAL;
  1278. /*
  1279. * Write configuration to register.
  1280. */
  1281. rt2400pci_config_cw(rt2x00dev,
  1282. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1283. return 0;
  1284. }
  1285. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1286. {
  1287. struct rt2x00_dev *rt2x00dev = hw->priv;
  1288. u64 tsf;
  1289. u32 reg;
  1290. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1291. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1292. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1293. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1294. return tsf;
  1295. }
  1296. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1297. {
  1298. struct rt2x00_dev *rt2x00dev = hw->priv;
  1299. u32 reg;
  1300. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1301. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1302. }
  1303. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1304. .tx = rt2x00mac_tx,
  1305. .start = rt2x00mac_start,
  1306. .stop = rt2x00mac_stop,
  1307. .add_interface = rt2x00mac_add_interface,
  1308. .remove_interface = rt2x00mac_remove_interface,
  1309. .config = rt2x00mac_config,
  1310. .config_interface = rt2x00mac_config_interface,
  1311. .configure_filter = rt2x00mac_configure_filter,
  1312. .get_stats = rt2x00mac_get_stats,
  1313. .bss_info_changed = rt2x00mac_bss_info_changed,
  1314. .conf_tx = rt2400pci_conf_tx,
  1315. .get_tx_stats = rt2x00mac_get_tx_stats,
  1316. .get_tsf = rt2400pci_get_tsf,
  1317. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1318. };
  1319. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1320. .irq_handler = rt2400pci_interrupt,
  1321. .probe_hw = rt2400pci_probe_hw,
  1322. .initialize = rt2x00pci_initialize,
  1323. .uninitialize = rt2x00pci_uninitialize,
  1324. .get_entry_state = rt2400pci_get_entry_state,
  1325. .clear_entry = rt2400pci_clear_entry,
  1326. .set_device_state = rt2400pci_set_device_state,
  1327. .rfkill_poll = rt2400pci_rfkill_poll,
  1328. .link_stats = rt2400pci_link_stats,
  1329. .reset_tuner = rt2400pci_reset_tuner,
  1330. .link_tuner = rt2400pci_link_tuner,
  1331. .write_tx_desc = rt2400pci_write_tx_desc,
  1332. .write_tx_data = rt2x00pci_write_tx_data,
  1333. .write_beacon = rt2400pci_write_beacon,
  1334. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1335. .fill_rxdone = rt2400pci_fill_rxdone,
  1336. .config_filter = rt2400pci_config_filter,
  1337. .config_intf = rt2400pci_config_intf,
  1338. .config_erp = rt2400pci_config_erp,
  1339. .config_ant = rt2400pci_config_ant,
  1340. .config = rt2400pci_config,
  1341. };
  1342. static const struct data_queue_desc rt2400pci_queue_rx = {
  1343. .entry_num = RX_ENTRIES,
  1344. .data_size = DATA_FRAME_SIZE,
  1345. .desc_size = RXD_DESC_SIZE,
  1346. .priv_size = sizeof(struct queue_entry_priv_pci),
  1347. };
  1348. static const struct data_queue_desc rt2400pci_queue_tx = {
  1349. .entry_num = TX_ENTRIES,
  1350. .data_size = DATA_FRAME_SIZE,
  1351. .desc_size = TXD_DESC_SIZE,
  1352. .priv_size = sizeof(struct queue_entry_priv_pci),
  1353. };
  1354. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1355. .entry_num = BEACON_ENTRIES,
  1356. .data_size = MGMT_FRAME_SIZE,
  1357. .desc_size = TXD_DESC_SIZE,
  1358. .priv_size = sizeof(struct queue_entry_priv_pci),
  1359. };
  1360. static const struct data_queue_desc rt2400pci_queue_atim = {
  1361. .entry_num = ATIM_ENTRIES,
  1362. .data_size = DATA_FRAME_SIZE,
  1363. .desc_size = TXD_DESC_SIZE,
  1364. .priv_size = sizeof(struct queue_entry_priv_pci),
  1365. };
  1366. static const struct rt2x00_ops rt2400pci_ops = {
  1367. .name = KBUILD_MODNAME,
  1368. .max_sta_intf = 1,
  1369. .max_ap_intf = 1,
  1370. .eeprom_size = EEPROM_SIZE,
  1371. .rf_size = RF_SIZE,
  1372. .tx_queues = NUM_TX_QUEUES,
  1373. .rx = &rt2400pci_queue_rx,
  1374. .tx = &rt2400pci_queue_tx,
  1375. .bcn = &rt2400pci_queue_bcn,
  1376. .atim = &rt2400pci_queue_atim,
  1377. .lib = &rt2400pci_rt2x00_ops,
  1378. .hw = &rt2400pci_mac80211_ops,
  1379. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1380. .debugfs = &rt2400pci_rt2x00debug,
  1381. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1382. };
  1383. /*
  1384. * RT2400pci module information.
  1385. */
  1386. static struct pci_device_id rt2400pci_device_table[] = {
  1387. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1388. { 0, }
  1389. };
  1390. MODULE_AUTHOR(DRV_PROJECT);
  1391. MODULE_VERSION(DRV_VERSION);
  1392. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1393. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1394. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1395. MODULE_LICENSE("GPL");
  1396. static struct pci_driver rt2400pci_driver = {
  1397. .name = KBUILD_MODNAME,
  1398. .id_table = rt2400pci_device_table,
  1399. .probe = rt2x00pci_probe,
  1400. .remove = __devexit_p(rt2x00pci_remove),
  1401. .suspend = rt2x00pci_suspend,
  1402. .resume = rt2x00pci_resume,
  1403. };
  1404. static int __init rt2400pci_init(void)
  1405. {
  1406. return pci_register_driver(&rt2400pci_driver);
  1407. }
  1408. static void __exit rt2400pci_exit(void)
  1409. {
  1410. pci_unregister_driver(&rt2400pci_driver);
  1411. }
  1412. module_init(rt2400pci_init);
  1413. module_exit(rt2400pci_exit);